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RÉSUMÉ 

La segmentation de structures anatomiques multiples dans des images de résonance magnétique 

(RM) est souvent requise dans des applications de génie biomédical telles que la simulation 

numérique, la chirurgie guidée par l’image, la planification de traitements, etc. De plus, il y a un 

besoin croissant pour une segmentation automatique d’organes multiples et de structures 

complexes à partir de cette modalité d’imagerie. Il existe plusieurs techniques de segmentation 

multi-objets qui ont été appliquées avec succès sur des images de tomographie axiale à rayons-X 

(CT). Cependant, dans le cas des images RM cette tâche est plus difficile en raison de 

l’inhomogénéité des intensités dans ces images et de la variabilité dans l’apparence des structures 

anatomiques. Par conséquent, l’état de l’art sur la segmentation multi-objets sur des images RM 

est beaucoup plus faible que celui sur les images CT. 

Parmi les travaux qui portent sur la segmentation d’images RM, les approches basées sur la 

segmentation de régions sont sensibles au bruit et la non uniformité de l’intensité dans les 

images. Les approches basées sur les contours ont de la difficulté à regrouper les informations sur 

les contours de sorte à produire un contour fermé cohérent. Les techniques basées sur les atlas 

peuvent avoir des problèmes en présence de structures complexes avec une grande variabilité 

anatomique. Les modèles déformables représentent une des méthodes les plus populaire pour la 

détection automatique de différents organes dans les images RM. Cependant, ces modèles 

souffrent encore d’une limitation importante qui est leur sensibilité à la position initiale et la 

forme du modèle. Une initialisation inappropriée peut conduire à un échec dans l’extraction des 

frontières des objets. D’un autre côté, le but ultime d’une segmentation automatique multi-objets 

dans les images RM est de produire un modèle qui peut aider à extraire les caractéristiques 

structurelles d’organes distincts dans les images. Les méthodes d’initialisation automatique 

actuelles qui utilisent différents descripteurs ne réussissent pas complètement l’extraction 

d’objets multiples dans les images RM. Nous avons besoin d’exploiter une information plus riche 

qui se trouve dans les contours des organes. Dans ce contexte les maillages adaptatifs 

anisotropiques semblent être une solution potentielle au problème soulevé. Les maillages 

adaptatifs anisotropiques construits à partir des images RM contiennent de l’information à un 

plus haut niveau d’abstraction représentant les éléments, d’une orientation et d’une forme 

donnée, qui constituent les différents organes dans l’image. Les méthodes existantes pour la 
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construction de maillages adaptatifs sont basées sur les intensités dans l’image et possèdent une 

limitation pratique qui est l’alignement inadéquat des éléments du maillage en présence de 

contours inclinés dans l’image. Par conséquent, nous avons aussi besoin d’améliorer le processus 

d’adaptation de maillage pour produire une meilleure représentation de l’image basée sur un 

maillage. 

Dans le cadre de ce projet de doctorat, pour pallier au problèmes soulevés nous allons présenter 

une nouvelle méthode pour la segmentation automatique d’organes multiples dans les images RM 

en incorporant une technique d’adaptation de maillages. Dans une première étape, nous 

améliorons le processus d’adaptation anisotropique pour des maillages construits à partir 

d’images RM. Ainsi, les éléments du maillage sont alignés adéquatement avec le contenu de 

l’image et améliore l’anisotropie du maillage le long des contours dans toutes les directions. 

Ensuite, le maillage résultant est utilisé pour l’initialisation de modèles actifs multiples qui 

permettent d’extraire simultanément les frontières initiales des objets qui sont proches des 

frontières réelles d’organes multiples. Finalement, une méthode de convolution par champ de 

vecteurs est utilisée pour guider l’évolution de la courbe vers les frontières des organes afin 

d’obtenir les résultats de la segmentation finale avec une meilleure performance en termes de 

vitesse et de précision. 

Plusieurs expériences et comparaisons ont été effectuées afin d’évaluer les différentes étapes de 

la méthodologie proposée. Notre méthode a été appliquée sur des séries d’images RM et les 

résultats obtenus démontrent sa capacité pour l’extraction simultanée de frontières 

approximatives initiales qui sont proches des frontières réelles d’organes multiples. Une 

comparaison a été effectuée entre la méthode proposée et trois autres méthodes distinctes pour 

l’initialisation automatique afin d’évaluer l’efficacité de la nouvelle approche d’initialisation et 

son impact sur la performance de la segmentation. La comparaison porte sur le nombre de 

modèles, le nombre d’itérations et le temps de convergence. Les résultats démontrent une 

amélioration de la convergence et de la vitesse des modèles actifs dans la segmentation d’organes 

multiples par rapport aux trois méthodes considérées. Afin d’évaluer la précision des résultats de 

segmentation, nous avons aussi effectué une comparaison entre les contours segmentés 

automatiquement à l’aide de la méthode proposée et ceux segmentés par un expert sur des images 

RM de colonnes vertébrales. 
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Cependant, la méthode proposée possède certaines limitations comme par exemple son échec 

dans l’extraction de descripteurs anisotropiques dans des régions à faible contraste et le fait 

qu’elle soit validée uniquement sur des images 2D, ce qui laisse de la place à des améliorations.  

Une des recommandations serait de construire une métrique à partir de techniques plus avancées 

pour l’extraction de descripteurs anisotropiques à partir des images et d’étendre l’algorithme en 

3D pour prendre en charge des volumes d’images RM. Une autre recommandation serait de 

poursuivre cette recherche afin d’annoter les régions segmentées dans le but d’utiliser le modèle 

géométrique obtenu dans des applications cliniques comme la simulation numérique de 

traitements. 
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ABSTRACT 

Segmentation of multiple anatomical structures in MR images is often required for biomedical 

engineering applications such as clinical simulation, image-guided surgery, treatment planning, 

etc. Moreover, there is a growing need for automatic segmentation of multiple organs and 

complex structures from this medical imaging modality. Many successful multi-object 

segmentation attempts were introduced for CT images. However in the case of MR images it is a 

more challenging task due to intensity inhomogeneity and variability of anatomy appearance. 

Therefore, state-of-the-art in multi-object MR segmentation is very inferior to that of CT images. 

In literature dealing with MR image segmentation, the region-based approaches are sensitive to 

noise and non-uniformity in the input image. The edge-based approaches are challenging to 

group the edge information into a coherent closed contour. The atlas-based techniques can be 

problematic for complicated structures with anatomical variability. Deformable models are 

among the most popular methods for automatic detection of different organs in MR images. 

However they still have an important limitation which is that they are sensitive to initial position 

and shape of the model. An unsuitable initialization may provide failure to capture the true 

boundaries of the objects. On the other hand, a useful aim for an automatic multi-object MR 

segmentation is to provide a model which promotes understanding of the structural features of the 

distinct objects within the MR images. The current automatic initialization methods which have 

used different descriptors are not completely successful in extracting multiple objects from MR 

images and we need to find richer information that is available from edges. In this regard, 

anisotropic adaptive meshes seem to be a potential solution to the aforesaid limitation. 

Anisotropic adaptive meshes constructed from MR images contain higher level, abstract 

information about the anatomical structures of the organs within the image retained as the 

elements shape and orientation. Existing methods for constructing adaptive meshes based on 

image features have a practical limitation where manifest itself in inadequate mesh elements 

alignment to inclined edges in the image. Therefore, we also have to enhance mesh adaptation 

process to provide a better mesh-based representation.  

In this Ph.D. project, considering the highlighted limitations we are going to present a novel 

method for automatic segmentation of multiple organs in MR images by incorporating mesh 

adaptation techniques. In our progress, first, we improve an anisotropic adaptation process for the 
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meshes that are constructed from MR images where the mesh elements align adequately to the 

image content and improve mesh anisotropy along edges in all directions. Then the resulting 

adaptive meshes are used for initialization of multiple active models which leads to extract initial 

object boundaries close to the true boundaries of multiple objects simultaneously. Finally, the 

Vector Field Convolution method is utilized to guide curve evolution towards the object 

boundaries to obtain the final segmentation results and present a better performance in terms of 

speed and accuracy. 

Experiments and comparison have been carried out to evaluate different parts of the 

methodology. This method has been applied on series of MR images, and results show the ability 

of the proposed method in simultaneously extracting initial approximate boundaries that are close 

to the exact boundaries of multiple organs. A comparison has been made between the proposed 

method and three distinct methods for automatic initialization to show the effectiveness of the 

new initialization approach on segmentation performance. The comparison is done in terms of 

number of models, number of iterations, and convergence time and results indicate an 

improvement in the convergence and speed of active model segmentation of multiple organs with 

respect to those obtained using existing methods. In order to assess the accuracy of the 

segmentation results of our approach we also perform a comparison with ground truth data 

provided by experts for a series of MR images. 

There are, however, some general remaining limitations, for instance, failure to reveal anisotropic 

features in the areas with low contrast or also being limited to the 2D images, which still leaves 

room for improvement. It is recommended to try to construct a metric from more advanced 

techniques for extracting anisotropic features from images and also try to extend the algorithm to 

deal with volumetric MR images. It is also recommended to pursue research for labeling the 

segmented regions, which may potentially impact further applications. 
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CHAPTER 1 INTRODUCTION 

1.1 Context 

Magnetic resonance imaging (MRI) has become a useful diagnostic tool in numerous fields of 

biomedical by providing high-resolution anatomic information on human soft tissue [1]. This 

imaging modality is non-invasive and does not require ionizing radiation. The scanner (figure 

1.1) uses the property of nuclear magnetic resonance to create images. When the human body 

(which is mostly water) is placed in a strong magnetic field, the protons in the hydrogen atoms 

tend to align themselves with the field and result in a net magnetization of the body. This net 

magnetization can be pushed away from equilibrium by selectively exciting regions within the 

body with radio waves at an appropriate frequency. When eventually it returns to equilibrium 

(relaxation) it generates a radio-frequency electromagnetic signature, which can be measured and 

analyzed. MR imaging is able to provide high contrast sensitivity for visualizing differences 

among the tissues in the body because there are several sources of contrast. The contrast in an 

MR image is controlled both by the characteristics of the externally applied excitation and also 

the intrinsic properties of the tissues, which affect the relaxation times. Therefore these flexible 

characteristics of MR images allow varying the contrast between different tissues and 

highlighting various components in order to reveal fine details of the anatomy [2].  

 

 

Figure  1.1 : MRI scanner cutaway (left) and an MR image of human trunk (right) 
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The problematic properties of MRI are intensity inhomogeneity and noise, which arise from the 

limitations of imaging devices. Due to the presence of this non-uniformity in the image, the 

intensity varies in different parts of the same tissue within the image. Although this is an 

imperceptible issue for a human observer, some image analysis methods which are sensitive to 

intensity variations, such as segmentation, encounter difficulties in identifying tissues based only 

on pixel intensity. It is very hard to rectify intensity inhomogeneity and noise from MR images 

because the non-uniformity patterns vary from patient to patient and from slice to slice. There are 

many methods that have been proposed for correcting the intensity inhomogeneity in MRI [3], 

but it is still not a completely solved problem, and we have to tackle this obstacle in the 

segmentation process. It is worth pointing out that intensity inhomogeneity correction and 

segmentation are two connected procedures and improvements in segmentation can boost non-

uniformity correction. According to [3], there are some approaches for inhomogeneity correction 

which are segmentation-based methods. They try to merge two procedures so that they benefit 

from each other, simultaneously, in order to yield better segmentation and inhomogeneity 

correction.  

Due to the distinctive characteristics of MRI, it plays a supplementary role in disease 

management from diagnosis to treatment planning and progress monitoring. Moreover, the 

creation of 3D patient-specific models out of these images for simulation purposes is becoming a 

beneficial application. Clinical interpretation of these medical images including segmentation, 

identification, and analysis of anatomical structures is an essential task which, for images with 

complicated shape and topology, is very challenging. Unlike traditional medical image analysis 

which has focused on a single organ or tissue applications, recent technological advances have 

brought increasing interest in simultaneous analysis and multi-object segmentation of medical 

images. Despite extensive research and methodological advances, there are still several issues 

that remain to be solved, and there is a high demand for a widely applicable automatic 

segmentation and classification technique which is able to handle all anatomical structures. New 

algorithms and technologies need to be investigated to meet these demands while preserving 

overall performance. 
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1.2 Motivation 

MR image segmentation which is the process of extracting anatomically significant regions from 

the image is a challenging and important task in MR image analysis. Moreover, there is a 

growing need for automatic segmentation of multiple organs and complex structures from this 

medical imaging modality. Segmentation of multiple objects should provide a decomposition of 

the image into several components without overlap between the segmented regions.  

In literature dealing with MR image segmentation, the region-based approaches which are 

looking for intensity similarities and try to group pixels into coherent regions, are sensitive to 

noise and non-uniformity in the input image. The edge-based approaches where use only the 

intensity discontinuities to determine region boundaries are challenging to group the edge 

information into a coherent closed contour. The atlas-based techniques which provide prior 

information for MRI segmentation can be problematic for complicated structures with anatomical 

variability. A class of variational methods known as deformable models has a great potential to 

confront MR multi-object segmentation challenges. These model-based techniques are designed 

to determine region boundaries using closed parametric curves that deform under defined force 

terms such that the curves are attracted to the image features (e.g. edges) while maintaining 

internal shape constraints. The main reasons why they are favored in MR image segmentation 

related to their robustness to noise and spurious edges, mathematical consistency, and sub-pixel 

accuracy. However they still have an important limitation which is that they are sensitive to 

initial position and shape of the model. An unsuitable initialization may provide failure to capture 

the true boundaries of the regions. 

On the other hand, a useful aim for an automatic multi-object MR segmentation is to provide a 

model which promotes understanding of the structural features of the distinct objects within the 

MR images. However, the lack of connectivity of edge point features is a major limitation to 

aggregate edge points into a coherent closed curve for every distinct object and obtain initial 

models automatically only from edge points. Therefore we have to find richer information that is 

available from edges. The current automatic initialization methods which have used different 

descriptors such as gradient vector flow or Poisson inverse gradient are not completely successful 

in extracting multiple objects from MR images. But, the improvement trend of the results by 
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using higher level descriptions indicates that, providing more abstract level of information 

enhance the performance of the automatic initialization of the model.   

In this regard, anisotropic adaptive meshes seem to be a potential solution to the aforesaid 

limitation. Mesh-based image representations facilitate the use of non-uniform sampling and have 

proven beneficial in many image analysis applications. To generate a mesh model of an image, 

the image domain is partitioned into a set of elements and then over each element an 

approximating function is constructed. Anisotropic mesh adaptation uses edge and gradient 

information of an image to provide a sort of structure tensor which is defined as a symmetric and 

positive semi definite matrix to modify the elements size and orientation in a specific manner. 

This structure tensor has two orthogonal eigenvectors and the corresponding eigenvalues which 

can be used to reveal more robust and accurate information about edge structure and orientation. 

Eigenvectors point in the direction orthogonal across the local edge, with the eigenvalues 

indicating the strength of the directional intensity change. Furthermore, the eigenvalues can be 

used as descriptors of local structure as it is shown in figure 1.2. 

 

 

Figure  1.2 : Understanding local structure based on eigenvalues where E is the change of 

intensity for a small shift 
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Accordingly, anisotropic adaptive meshes constructed from MR images contain higher level, 

abstract information about the anatomical structures of the organs within the image retained as 

the elements shape and orientation. Adaptive mesh strategies try to specify metric tensors based 

on edge points information to control mesh elements characteristics so that they can align with 

the boundaries of the objects within the image. Existing methods for constructing metrics out of 

image features have a practical limitation where manifest itself in inadequate mesh elements 

alignment to inclined edges in the image. Therefore, we also have to enhance metric computation 

technique in mesh adaptation process to provide a better mesh-based representation. As we can 

provide a better mesh element alignment to the boundaries of the objects in the image, we may 

enhance the multi-object extraction process afterward.    

Based on these insights, this thesis is going to introduce a new segmentation approach by 

integrating adaptive mesh generation techniques and deformable models to delineate the 

geometric structure of different structural objects in MR images.  

In this research project, we have mainly focused on 2-dimensional MR images of the human 

trunk and try to segment all structural organs and tissues in these images. Since this is a very 

challenging and sophisticated case to handle, we expect our approach to be readily generalizable, 

and the proposed algorithms to be applicable to other kinds of MR images, thereby having an 

impact in the field of biomedical engineering. 

 

1.3 Organization   

Following the above introductory chapter, this thesis is organized as follows. 

Chapter 2 provides relevant literature on three main topics. The first topic is about mesh 

concepts, mesh generation and adaptation techniques, and mesh-based image representation 

methods. The second topic is related to MR image properties and existing segmentation 

techniques for MR images with more details on deformable models as state-of-the-art methods. 

And the third one reviews current methods for multi-object medical image segmentation. The 

existing methods in each field are discussed with their advantages and limitations which are 

going to be addressed in the proposed methodology. 
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Chapter 3 summarizes the limitation of the existing approaches and presents general and specific 

objectives of the research project to address those limitations and also provide an overview of the 

proposed methodology. 

Chapter 4 provides the details about the proposed methodology for developing a new mesh-based 

method for multi-object MR image segmentation. 

In chapter 5, experiments and results are discussed. Finally, in chapter 6, conclusions and future 

research directions are presented. 
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CHAPTER 2 BACKGROUND & LITERATURE REVIEW 

 

In the three sections that follow, we review the relevant literature to provide a clear 

understanding about challenges and opportunities in multi-object MR image segmentation 

towards our general methodology. First we provide a brief introduction to the mesh generation 

and mesh adaptation process along with literature review addressing the mesh-based image 

representations and their applications in medical image analysis including segmentation. Since 

the anisotropic adaptive mesh will be used to provide a roughly representation of multiple objects 

in the image, then we need to employ a segmentation technique to obtain the exact boundaries of 

the objects. In this regard we survey various segmentation techniques by emphasizing on active 

contour model as great candidates for segmenting multiple objects from MR images. The 

advantages of active contours and their limitations are discussed and the methods which address 

these limitations are investigated.  

 

2.1 Mesh Generation and Adaptation 

A mesh is a discretization of a continuous domain into simple elements such as triangles or 

quadrilaterals in two dimensions. The elements and their connectivity express the geometry and 

topology of the spatial domain. The shape and orientation of the elements affect both efficiency 

and accuracy of the mesh-based methods in scientific applications [4].  

Generating meshes can be done in two different manners. Structured methods generate meshes 

with regular connectivity where all the vertices have the same number of neighbors, and all 

interior vertices are topologically alike (grid of quadrilaterals in 2D shown in figure 2.1). 

Structured meshes provide simplicity and easy data access, but they have lower geometrical 

flexibility. On the other hand, unstructured methods generate meshes with irregular connectivity 

where the number of neighbors may vary for different vertices (set of triangles in 2D shown in 

figure 2.1). Unstructured meshes are more costly to access, but they offer geometrical flexibility 

and more convenient mesh adaptivity for complicated domains. 
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Figure  2.1: Different types of meshes structured (left) and unstructured (right) 

 

Since the domains that are studied in this research are medical images and they usually contain 

complicated structures, unstructured meshing methods are chosen over structured methods.  

Mesh adaptation refers to the modification of an existing mesh as to conform to physical features 

of the domain. The goal of these modifications is to achieve higher resolution of the domain 

features and lower overall computational time for respective applications [5-9].  

Mesh adaptation methods try to modify the meshes by controlling the size, shape, and orientation 

of mesh elements throughout the domain and in this regard, they can be categorized into two 

types; isotropic vs. anisotropic. 

Traditionally researchers have focused on isotropic mesh adaptation where only the size is 

specified for mesh element modification, and there is no stretching and orientation. Therefore, the 

triangles (mesh elements) in the result mesh are close to equilateral (figure 2.2). This can only be 

optimal if the gradients of the domain features are almost equal in all spatial directions. The 

alternative approach is an anisotropic mesh adaptation in which the mesh modifications are 

controlled to simultaneously adjust the size, shape, and orientation of mesh elements [9-13]. 

Thus, if the features of the domain are highly directional and the variation in one direction is 

more significant than the others, the triangles in the resulting mesh are stretched and aligned with 

directional properties (figure 2.3).  
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Figure  2.2: Size specification map and the corresponding isotropic mesh adapted based on the 

specified sizes [10] 

 

Figure  2.3: Anisotropic map of a domain and the corresponding anisotropic mesh adapted based 

on the specified size, stretching and orientation [10] 

 

Since the domain features studied in this project are the edges from the outline of the objects in 

the image and they are strongly directional, an anisotropic adaptation approach is chosen over an 

isotropic one. In the following, more details on anisotropic mesh adaptation are provided. 
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2.1.1 Anisotropic Mesh Adaptation  

As mentioned before, the idea of mesh adaptation is to modify the mesh according to the domain 

features by controlling size and orientation. As a result, in areas of high variation in the domain, 

elements are fine and highly stretched, and in areas of low variation, elements are coarse and 

more regular. In this regard, the concept of metric is used to specify the mesh size in different 

directions and orientation. This is also called metric-based anisotropic adaptation. 

 

 Metric Notion 2.1.1.1

A Metric is a function defined over a domain that maps any point in the domain to a  2 × 2 

matrix (in 2-dimensions) and expresses how long and skinny the triangles should be and in which 

direction they should be oriented. In another word, at each point, a metric determines how 

distances and angles are measured. 

Geometrically, distance can be measured by the dot product between two vectors which is 

symmetric, positive, and definite. In 2 × 2 Euclidean space, for two vectors 𝑢 and 𝑣 the dot 

product is indicated in Eq. 2-1 and the length of a segment 𝑎𝑏 is given by Eq. 2-2.  

〈�⃗� , 𝑣 〉 =  �⃗�  
𝑡  𝑣  (2-1) 

ℓ(𝑎, 𝑏) =  √ 𝑎𝑏⃗⃗⃗⃗ 
 
𝑡   𝑎𝑏⃗⃗⃗⃗  (2-2) 

In Euclidean metric space, the dot product is generalized by introducing a 2 × 2 symmetric 

positive definite matrix as ℳ =  [
𝑎 𝑏
𝑏 𝑐

]. 

In this space, the distance definition is shown in Eq. 2-3 and length of the segment 𝑎𝑏 is given by 

Eq. 2-4. 

〈�⃗� , 𝑣 〉ℳ = �⃗�  
𝑡  ℳ𝑣  (2-3) 

ℓℳ(𝑎, 𝑏) =  √ 𝑎𝑏⃗⃗⃗⃗ 
 
𝑡  ℳ 𝑎𝑏⃗⃗⃗⃗  (2-4) 
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In the context of mesh adaptation, a Riemannian metric space defined by 𝑀 = (ℳ(𝑥))𝑥∈Ω 

represents ℳ as a Riemannian metric over the space of parametrization Ω. To consider the 

variation of the metric along the segment 𝑎𝑏 the length is computed using the straight line 

parametrization in domain  Ω with an integral formula as in Eq. 2-5. 

ℓℳ(𝑎, 𝑏) =  ∫ √ 𝑎𝑏⃗⃗⃗⃗ 
 
𝑡  ℳ(𝑎 + 𝑡𝑎𝑏)𝑎𝑏⃗⃗⃗⃗  dt  

1

0

 (2-5) 

Where 𝑡 ∈ [0,1].  

 

 Geometric Representation of Metrics 2.1.1.2

In the above equations, the metric ℳ which is also called a metric tensor, has geometric 

representation in the form of an ellipse [14]. Since this metric tensor is symmetric, it is 

diagonalizable and can be decomposed as indicated in Eq. 2-6. 

ℳ =  ℛ Λ ℛ 
𝑡  

Λ =  [
𝜆1 0
0 𝜆2

] 

ℛ = (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗) 

(2-6) 

where ℛ is an orthonormal matrix containing the eigenvectors of ℳ that represent the two axes 

of the ellipse and Λ is a diagonal matrix containing the eigenvalues of  ℳ specifying two lengths 

of the ellipse axes as ℎ𝑖 =  𝜆
𝑖

−1
2⁄  as shown in figure 2.4. 

 

Figure  2.4: Geometric representation of a metric tensor 
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Geometric representation of metric tensors by ellipses provides a convenient way to visualize the 

size, stretching, and orientation over the domain for mesh generation and adaptation process.  

 

 Mesh Adaptation Scheme  2.1.1.3

There are many software systems for performing anisotropic mesh adaptation and the more recent 

ones are, Gamanic3d [15], Tango [16], Mesh Adap [17], OORT [18], Feflo.a [19], and MAdLib 

[20]. 

The OORT (Object-Oriented Remeshing Toolkit) which was developed by Julien Dompierre and 

Paul Labbe is the one that has been chosen for this project. The capacity of this tool for metric-

based anisotropic mesh adaptation has been shown in [21]. The adaptation process in OORT is 

performed iteratively as it is shown in figure 2.5.  

 

Figure  2.5 : The adaptation process of OORT [22] 
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In each iteration, any local mesh modification (including moving vertices, swapping, refining, 

and decimating edges of the elements) is done to satisfy the metric. The final result is a unit mesh 

in predefined Riemannian metric space in which all elements are quasi-unit while they are 

adapted and anisotropic in the Euclidean space.  

 

2.2 Mesh-based Image Models 

In recent years, researchers have presented numerical simulations in the biomedical field in order 

to investigate the impact of medical treatments in different areas including cardiology, neurology, 

orthopedic surgery, etc. Many of these simulators are constructed based on medical images by 

generating structured or unstructured meshes from the images. Then through an adaptation 

process, the initial mesh is deformed to follow desirable features within the image. In the scope 

of this research, desirable features of an image are considered as all the edges in the image that 

represent boundaries of different regions (in particular, distinct anatomical tissues) within the 

image. Therefore the process of mesh deformation to conform to the edges involves changing 

mesh elements size and orientation to align element edges with the boundaries of the regions. As 

mentioned before, although structured meshes can produce high-quality models, the advantages 

of using unstructured meshes include generating meshes with fewer elements and the ability to 

conform better with image features [23, 24]. In this regard, we are going to focus on generating 

unstructured meshes and anisotropic adaptation processes applied on these meshes. Many of 

these methods are considered as sampling methods which try to find desired sample points first 

and then connect the points to construct a mesh [25-35] and a few methods start from an initial 

mesh and then try to adapt the mesh according to the image content [22, 36-38]. Ramponi and 

Carrato [33] have introduced non-uniform grids using an irregular sampling scheme based on 

measuring the change in gray-level values. Yang et al. [31] have represented an adaptive mesh 

generation technique by placing the mesh vertices using the classical Floyd-Steinberg error 

diffusion algorithm and then using Delaunay triangulation to connect the vertices. The resulting 

mesh contains small elements where the gray-level variation is high and large elements in low 

variation regions. Demaret et al. [27, 28] have proposed an image approximation scheme for the 
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purpose of image compression which starts with all image points and then removes less 

significant pixels in a greedy way to reach the smallest reconstruction error. Adams et al. [25] 

have presented an effective framework based on the greedy point removal scheme of Demaret et 

al. and the idea of the error diffusion scheme of Yang et al. in order to replace the initial mesh of 

all image points with a good subset of those sample points. This would provide a flexible tradeoff 

between mesh quality and computational and memory complexity. Sarkis and Diepold [36] have 

combined a Binary Space Partition and clustering scheme to present a new method for 

approximating an image with a mesh. They cluster the image area into a few triangles and try to 

model the intensity variation inside each triangle and reconstruct the gray level values of pixels 

lying within. If a triangle's equation does not have the ability to reconstruct those pixel values, it 

is subdivided recursively based on a predefined threshold. Bougleux et al. [37] have shown that 

anisotropic sampling and triangulation are crucial to improve image approximation. They have 

proposed a progressive geodesic meshing that defines geodesic distance using a Riemannian Fast 

Marching to force the triangulation to follow the anisotropy of the image. However, in their 

method, the metrics are constructed using first order derivatives which make the eigenvalues 

physically meaningless. On the other hand, Riemannian metric tensors have been used to control 

the anisotropic adaptation of meshes. These metric tensors in the case of images are constructed 

based on second order derivatives of the intensity of the image at every pixel. Several approaches 

have been presented for the computation of second order derivatives of images. Vallet et al. [39] 

have compared different methods such as: Double linear fitting (DLF) [40], Simple linear fitting 

(SLF) [41], Double 𝐿2-projection (DL2P) [42], and Quadratic fitting (QF) [43]. The common 

feature of all these methods is that they try to find an approximation of the image function at each 

pixel and then the partial derivatives of these functions will be derived to construct the Hessian 

matrix for all pixel intensities. Among these second derivatives recovery methods, they suggest 

that, the QF method which fits a least-square quadratic polynomial on a two neighborhood levels 

patch is more robust and more accurate. O. Courchesne et al. [22] have applied the QF method on 

MRI images to compute a Hessian matrix and construct metric tensors for mesh adaptation 

processes. The result in figure 2.6 shows that this approach only works perfectly for edges in 

vertical and horizontal directions and for other directions it can align element edges with the 

oriented boundaries but not as perfectly as in the main two directions. 
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Several methods have been proposed for computing image derivatives using special convolution 

filters such as Steerable filters [44] and least-squares polynomial smoothing [45].  Farid and 

Simoncelli [46, 47] have provided a discrete representation of their continuous differentiation 

scheme as some optimized differentiating filters which are commonly used in practice. Their 

method has demonstrated more accuracy in estimating local orientation in images. However, the 

result of constructing a metric based on the image derivatives is shown in figure 2.6 which only 

gives proper alignment in horizontal and vertical directions and fails to be aligned in other 

directions. 

 

Figure  2.6 : Three examples of simple images with edges in different directions (left), 

corresponding adaptive meshes by spatial convolution filtering approach (middle), and 

corresponding adaptive meshes by geometric approximation approach (right) 
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In summary, the above literature review indicates that the main limitation of the existing 

approaches for anisotropic mesh adaptation is their inadequate alignment for non-axis aligned 

edge directions. Therefore we need to construct an adaptive mesh for a given image in which 

elements of the mesh become aligned with the boundaries of the objects in any directions. 

As mentioned before, we want to incorporate anisotropic mesh adaptation and segmentation 

methods to present an automatic multi-object segmentation technique. In this regard we survey 

various segmentation techniques for MR images in the following section. 

 

2.3 MRI Segmentation Techniques 

In this section, we review some of the current methods in MRI segmentation and the state-of-the-

art related to the proposed segmentation framework. A large and growing body of literature has 

been published which can be divided into three main categories: classification-based, region-

based and contour-based techniques. In the following sections, we discuss the characteristics, 

advantages, and disadvantages of these methods. 

 

2.3.1 Classification-Based Techniques 

In classification-based methods, segmentation is the process of classifying pixels into certain 

tissue classes based on some specific criteria. One class of techniques in this category is 

statistical pattern recognition models, which have been applied extensively in MRI segmentation 

[48]. A mixture model is used to model the probability density function of tissue classes. A set of 

features based on pixel information is provided in order to measure the probability of pixels 

belonging to each class. Generally, to characterize the variation of each pixel feature, a class 

conditional probability distribution is needed which is generally unknown [49]. In supervised 

approaches, these distributions will be provided based on the tissue regions identified by the user. 

In statistical clustering [50], they can be approximated automatically based on the image data in 

an iterative way. On the other hand, some of the statistical methods, which are considered as 

parametric methods, assume that the conditional distribution of classes is known and often model 
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them as a mixture of Gaussians [51]. Many statistical methods assume that the number of tissue 

classes and a priori probability of their occurrence are provided prior to the segmentation process. 

Then, in order to estimate a posteriori probability, the Bayes rule is employed, and pixels are 

assigned to the class with highest a posteriori probabilities [52]. Markov random fields (MRF) 

are introduced to incorporate local contextual information which allows neighbourhood pixels to 

affect segmentation. MRF also provides reliable information to model the possible 

neighbourhood for each tissue class [53]. A recent study shows that MRF regularization allows 

modelling the spatial interaction in neighbourhood space [54]. Another implementation of 

statistical clustering for tissue identification is based on a 3-step expectation maximization (EM) 

algorithm [55, 56]. This iterative procedure also assumes tissue classes as a mixture of Gaussians 

and creates a model with MRF regularization in order to reduce segmentation errors arising from 

intensity inhomogeneity and noise. Although statistical techniques result in a significant 

improvement in MRI segmentation, they are still not powerful enough to yield automatic and 

accurate segmentation, in the general case [57]. 

A popular class of pixel clustering methods is based on a fuzzy clustering technique, derived 

from the fuzzy c-means (FCM) algorithm [52]. The FCM and its derivatives have been found 

very successful in medical image segmentation particularly in those cases where distinctive 

decisions have to be made. Clustering algorithms allow image pixels to be grouped together 

based on similarity of the description features. Unlike hard c-means algorithms which assign an 

absolute membership to one of the classes, the FCM algorithm assigns a degree of membership to 

each of the classes. Some adaptive methods based on FCM have been applied to MRI 

segmentation [58, 59]. These methods implement a modified objective function for FCM to 

model the variation in intensity value and help to amend the intensity inhomogeneity problem. 

However, they do not pay attention to spatial context between pixels because the procedure is 

done in the feature space and this limitation makes them sensitive to noise and image artefacts. 

Some alternative approaches have been proposed to consider spatial constraints and reduce errors 

caused by noise [58, 60], but they induce a higher computational complexity and are time-

consuming. 

Some recent studies [61, 62] have presented visual features for capturing spatial context for 

detection and localization of anatomical structure in CT images, and they plan to extend their 

technique to MR images. They have incorporated those features within a random decision forest 
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classifier. A random forest [63] is a collection of randomly trained decision trees. Decision trees 

were once very popular, but researchers have stopped using them because they suffer from the 

over-fitting problem and consequently they don't tend to generalize and provide well prediction. 

After coming along the idea of bias-variance trade-off, it was found that even though trees have 

very high variance in their predictions, if you make many trees and average them, you can get rid 

of the variance and build one of the most powerful classifier called random forest. A Random 

forest is a kind of ensemble model, and the algorithm simply takes the trees, sums them and 

divides by the number of trees. The algorithm has two sources of randomness, one is the 

randomness of the input data, and the other one is the randomness in the features. Injecting such 

randomness improves generalization. So, by randomly choosing input data and features for 

different trees, each tree only sees a small part of the data and features. Each tree is correct but 

missing a lot of information, but when we average them, we get a classifier which is very near the 

truth. Just like the forest can be used for classification, it also can be used for regression. A split 

point is introduced which divides the data into two nodes, and then in each node, a linear model 

is fitted. The aforesaid techniques built upon randomized decision forests for detecting 

anatomical structures have been enriched with learned visual features which capture long-range 

spatial context. Although they have presented satisfactory result in the case of CT images and 

might be extendable to MR images, they have focused only on some specific human organs. In 

order to consider all organs and tissues and moreover to introduce general-purpose classifier, 

further generic features need to be defined. 

 

2.3.2 Region-Based Techniques 

Another way of describing the objects in the image is by determining the region they occupy. 

Usually, the pixels within an object have similar intensity or texture characteristics. Accordingly, 

region-based methods make efforts to identify homogenous regions in the image in order to 

segment various objects. Region-based techniques, unlike clustering approaches, try to embody 

spatial properties between pixels and neighborhood information. Thresholding [64] approaches 

are the simplest techniques which try to find a threshold value to differentiate between tissue 

regions in the image. Although these methods are computationally fast, in the presence of noise 

and intensity inhomogeneity, it becomes very difficult to determine thresholds accurately. 
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Another simple idea is to determine some seeds indicating different regions and let them grow 

until the entire image is covered [65, 66]. In this regard, for controlling the growing process, 

some rules or tools must be provided to check the similarity at each growth step. One class of 

region-based approaches which has been used for MRI segmentation is region growing. These 

methods start by locating the seeds in the image and check the neighborhood pixels with 

predefined homogeneity criteria to identify biological segments [67]. Most of these techniques 

are semi-automatic and rely on user interactions. Also, some automatic statistical forms of these 

methods have been proposed. They estimate local mean and variance for each pixel and try to 

find the best parameter via a minimization function, but in the general case, they encounter some 

difficulties in determining a proper homogeneity criterion in advance [68]. In this regard, an 

adaptive technique was proposed which attempts to learn the criteria automatically, based on the 

characteristics of the regions during the segmentation process [69]. 

Split and merge techniques are another set of region-based methods that operate on an image in a 

recursive way. They start with entire images and check intensity homogeneity, and if pixels are 

not all of a similar intensity, the volume is split into smaller sub-regions, and the same process is 

applied to sub-sections. In the merge step, the inverse direction is followed, and the small regions 

are joined together if they have enough similarity [70]. In the case of medical images, the major 

problem is when the image contains many small sub-regions with variable sizes which cause 

over-segmentation difficulties. 

 

2.3.3 Contour-Based Techniques 

Several attempts have been made to segment biological and anatomical objects in MR images by 

detecting their boundaries. This group of approaches is categorized as contour-based 

segmentation techniques.  

A notable idea in the class of edge detection methods suggests combining Marr-Hildreth and 

morphological operators for edge detection and edge refinement in MRI segmentations [71]. 

Some other studies based on edge tracing, which is commonly used in image processing, try to 

extract edge information and trace the adjacent connectivity to represent the object boundaries 

[72]. Typically they are not applicable for segmentation problems on their own, because their 
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information is based on local intensity variations and may not always result in a closed form and 

connected boundaries. Some studies have been done to produce suboptimal results and also 

reduce computation time, but they are restricted to segmentation of large and well-defined 

structures [73]. Generally, these boundary-based methods tend to be sensitive to noise and image 

artefacts and may suffer seriously from over and under-segmentation due to the inaccurate 

threshold selection [74]. Some MRI segmentation approaches are based on the watershed 

algorithm. They choose to model MR images as topographic reliefs where intensity values of 

voxels determine the physical elevation. The watershed method subdivides the image into basic 

elements, called catchment basins and considers each one has a local minimum. By imagining a 

hole at each local minimum of the topographic relief, as the catchment basins are filled with 

water, the surface will be immersed starting from the basin which is associated to the global 

minimum. As soon as water flows from one catchment basin to another, a dam is built. In the 

end, the borders defined by the watersheds represent the segmentation result [75]. This semi-

automatic segmentation method also suffers from an over-segmentation problem in the presence 

of noise and other artefacts [57]. The images have to be smoothed prior to the watershed 

operation in order to reduce this adverse effect. 

In recent years there has been a considerable amount of literature on a group of contour-based 

methods known as deformable models. These methods have an increasing influence on medical 

image segmentation including MRI segmentation. Their distinctive properties, which are 

discussed in the following, make them state-of-the-art methods for MRI segmentation. 

 

 Deformable Models  2.3.3.1

Deformable models are used in a very large range of applications such as image processing, 

surgery simulation, computer animation, etc. Different models can be classified based on their 

contour representation as it is shown in figure 2.7. The difference between continuous and 

discrete representation is that in discrete form the geometry of contours is only known at finite 

sets of points. Continuous forms must be discretized for computational needs, but it is possible to 

compute normal and curvature along the whole curve. 
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Figure  2.7 : Geometric representation of deformable models 

 

Continuous models have been used extensively for image segmentation while discrete models 

such as meshes are mostly used for object modelling. There are some advantages in using 

deformable models in medical images over other segmentation techniques. They are able to 

generate closed parametric templates from images in a smooth manner, making them robust to 

noise and spurious edges, and able to manage complex geometries and topology changes (curve 

splitting and merging). Moreover, they provide consistent mathematical descriptions, which can 

be used for subsequent applications. Continuous deformable models including active contours 

(2D) and active surfaces (3D) provide some closed curves or surfaces with the ability of 

expansion and contraction to fit the objects’ boundaries. There are two types of these deformable 

models: parametric and geometric. 

 

2.3.3.1.1 Parametric Models 

Parametric models represent deformable contour that are explicit in their parametric form during 

deformation. Mathematically, a deformable contour is a parametrized curve 𝐶(𝑠)  =

 [𝑋(𝑠), 𝑌(𝑠)]; 𝑠 ∈ [0,1] where deformation is based on energy minimizing functions. Most of 

them are derived from snake models [76]. Snake energy formulation is based on internal and 

external forces as shown in Eq. 2-1: 
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𝐸 = 𝐸(𝑖𝑛𝑡) + 𝐸(𝑒𝑥𝑡) (2-1) 

Internal energy manifests itself in the smoothness of the shape and is given by Eq. 2-2: 

𝐸(𝑖𝑛𝑡) = ∫ 𝛼|𝐶′(𝑠)|2 + 𝛽|𝐶′′(𝑠)|2𝑑𝑠
1

0

 (2-2) 

Where α and β control the tension and rigidity of contours respectively and 𝐶′(𝑠) and 𝐶′′(𝑠) are 

curve derivatives.  

External energy consists of potential forces which usually involve forces derived from the image. 

The role of the external energy is to make the curve converge towards the edges and is given by 

Eq. 2-3: 

𝐸(𝑒𝑥𝑡) = ∫ 𝐸𝑖𝑚(𝐶(𝑠))
1

0

𝑑𝑠 (2-3) 

𝐸𝑖𝑚 is the edge attraction function and represents the gradient of the image intensity function. 

Local minima of  𝐸𝑖𝑚 represent the situation where the snake and the edge conform to each other 

(figure 2.8). It is defined as Eq. 2-4: 

𝐸𝑖𝑚 =
1

𝜆 |∇𝐺𝜎 ∗ 𝐼(𝑥, 𝑦)|
 (2-4) 

Where λ is a chosen constant, 𝐺𝜎 is a Gaussian function with standard deviation σ, ∇ is the 

gradient operator, * is the image convolution operator, and 𝐼(𝑥, 𝑦) is a given gray-level image. 

So, the curve moves through the spatial domain of an image to minimize the following energy 

function (Eq. 2-5): 

𝐸 = ∫ [
1

2
(𝛼|𝐶′(𝑠)|2 + 𝛽|𝐶′′(𝑠)|2) + 𝐸𝑖𝑚(𝐶(𝑠))] 𝑑𝑠

1

0

 (2-5) 
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Figure  2.8 : Some iterative steps for parametric curve evolution to fit an edge 

 

Many extensions have been proposed for medical image analysis including segmentation. The 

first use of parametric models in segmentation was proposed in [77]. The major limitations of 

their approach are that they can only provide accurate results if the initial curve is given close to 

the edge and they also detect some spurious edges as real edges of the structures. Although many 

modifications have been done to traditional snakes to overcome the initial condition and spurious 

edge problems, they all suffer from noise and other image artefacts due to the fact that they only 

use the gradients of the image. In order to solve this problem, one study [78] suggests using 

gradient vector flow (GVF) as a kind of region-based feature to form the external force. They 

alleviate the problems related to noise and are also able to handle concave objects. However, their 

method has some drawbacks. The generation of GVF needs intensive computations. Also, weak 

and strong edges create similar flow because only the gradient information affects the flow. 

Another problem of traditional snakes is convergence to local minima which makes them 

improper for noisy images. Another early study [79] suggests a different external force model. 

They first apply a Gaussian kernel for smoothing and then compute the edge map based on a 

gradient operator or Gabor filter. They improve the capture range, but this method requires prior 

information of the object in order to select the initial parameter and produce accurate results. 

Another research [80] indicates a different formulation of the energy function based on a mean 

shift technique in order to improve segmentation accuracy and computational efficiency, but it 

still has initial condition and parameter optimization problems. In addition, several issues still 

remain unsolved for parametric models such as topological changes, handling multiple objects, 

and convergence stability. Another class of methods known as geometric models is proposed to 

handle some of these limitations. 



24 

 

2.3.3.1.2 Geometric Models 

Geometric models deform curves or surfaces implicitly as a particular level of a function and 

using an elegant formulation based on the object geometry. These models comprise two 

approaches; one is based on curve evolution theory [81] which uses geometric information such 

as curvatures and unit normal for curve deformation, and another one is based on level set 

methods which represent curves or surfaces as a level set of a higher dimension scalar function. 

After complete deformation, the parameterized model is computed. 

In the first approach, the curves are parameterized and the energy function can be defined by 

adding an integral functional on the boundary and another integral functional inside the 

boundary. Then the contour that minimizes the energy function can be identified by an Euler-

Lagrange equation. Let us consider the curve 𝑿(𝑠, 𝑡) = [𝑋(𝑠, 𝑡), 𝑌(𝑠, 𝑡)] where 𝑠 is any 

parametrization and 𝑡 is the time. The contour evolution towards the minimum is implemented by 

the gradient descent equation (Eq. 2-6): 

𝜕𝑿

𝜕𝑡
= 𝑉(𝑘). 𝑁,⃗⃗⃗⃗  (2-6) 

which moves the contour along the normal �⃗⃗�  with the speed function 𝑉(𝑘). 

In the level set approach [79, 82], a function represents the contour in implicit form and uses a 

contour of higher order; a 3D surface is used for 2D curves and a 4D hyper-surface for 

representing 3D surfaces. If Ω is the range of the contour model and function 𝜙: Ω × ℜ+ ⟶ ℜ  is 

defined, the task is to analyze and compute deformation under a velocity field. This velocity can 

depend on position, time, geometry (normal and mean curvature) of the curve and the external 

physics. The curve is expressed with a function 𝜙 (figure 2.9) as Eq. 2-7: 

𝑿 = {𝑥|𝜙(𝑠, 𝑡) = 0} (2-7) 

And the function 𝜙 has the following properties (Eq. 2-8): 
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𝜙(𝑥, 𝑡) < 0                      𝑓𝑜𝑟 𝑥 𝑖𝑛𝑠𝑖𝑑𝑒 Ω 

𝜙(𝑥, 𝑡) > 0                      𝑓𝑜𝑟 𝑥 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 Ω 

𝜙(𝑥, 𝑡) = 0                     𝑓𝑜𝑟 𝑥 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 

(2-8) 

 

 

 

Figure  2.9 : Level set function of a curve 

 

If the curve moves with speed 𝐹 along the normal �⃗⃗�  as in Eq. 2-9: 

𝜕𝑿

𝜕𝑡
= 𝐹. �⃗⃗�  (2-9) 

we express the change in the level set 𝜙 to move according to this speed by Eq. 2-10: 

𝜙𝑡 =
𝜕𝜙

𝜕𝑡
= |∇𝜙|. 𝐹 (2-10) 

which is much easier to implement than the previous approach. Since the movement or evolution 

of the curve and the level set function are identical, a curve can be represented as the border 

between the positive and negative areas of the level set function. An important issue in this 

approach is that topological merging and breaking are handled naturally (figure 2.10). The 
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popularity of this approach in MRI segmentation is explained by the fact that it can handle 

complex geometry and topological changes. 

 

Figure  2.10 : Example of topology changes of the contour for ϕ function 

 

Early methods [83, 84] that have been proposed for MRI segmentation consider the segments as 

intensity constant regions and ignore the intensity inhomogeneity and noise problems. Some 

extensions to these methods have been suggested in [85, 86] and although the results have 

improved, they still have problems with intensity non-uniformity. Mainly because they don’t 

consider the fact that non-uniformity patterns are not similar in different tissue regions. Another 

study [87] advises to construct the level set model based on Bayesian inference for volumetric 

image segmentation. They introduce neighborhood statistical analysis in order to overcome 

disturbances caused by noise and intensity inhomogeneity. A very recent method [88] has 

presented a new level set approach using a new formulation of the speed function. Although they 

produce results which are more accurate and less sensitive to noise, they still vary from ground 

truth. In summary, the level set approach offers good performance in MRI segmentation, but 

current methods need to be improved in order to overcome the initialization problem and produce 

more accurate results despite of noise and non-uniformity. Resolving these issues would help to 

contribute to a fully-automatic and general-purpose segmentation approach. 

As mentioned before, discrete deformable models such as meshes (sets of points with some 

connectivity relations) are mostly used for modeling and have many applications in image 

processing including medical image analysis. The main issue is how to construct a mesh for 
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image representation that is well adapted to the content of the image. In the sense of mesh-based 

segmentation approaches, several efforts have been made to use meshes for image segmentation. 

The most relevant ones are presented in [89-93] and all of them are based on the same concept 

but involve different approaches. In [91] they have introduced topological active volume (TAV) 

which is a structure composed of interrelated nodes. This model is based on polyhedral meshes 

and represents segmentation by means of a distribution of nodes. The segmentation process is 

performed by moving the nodes which deform the mesh to detect the objects in the scene. The 

state of the structure is governed by an energy function. The internal energy is based on first and 

second order derivatives and controls the shape and structure of the net and the external energy is 

obtained from intensity value and neighborhood information of the node and guides the 

adjustment process. They have shown the ability of accommodating topological changes and 

conforming to concavities and holes. They have also provided some extension to their method 

[89, 90] in order to improve the adjustment to complex regions and represent better segmentation 

results. Another method and its recent extension to medical images [92, 93] called whole mesh 

deformation (WMD) has been proposed with similar assumptions as in the case of TAVs, but 

with different mesh deformation strategy and different energy formulation in order to improve the 

efficiency of the model. The internal energy is represented as a combination of mesh continuity 

and curvature forces and the external energy is defined based on three forces from image 

intensity, gradient vector flow, and results of a Canny edge detector. The methods show that 

mesh models are simpler to manipulate than parametric models and allow fast convergence of the 

models, represent more details about the segmented scenes and offer more efficiency and stability 

in segmentation procedures. Another semi-automatic approach proposes using anisotropic mesh 

adaptation in MR image segmentation which has been demonstrated accurate results [94]. The 

anisotropic mesh is provided by the Object-Oriented Remeshing Toolkit [18] and the 

segmentation is performed using a thresholding technique on the mesh. 

Despite many interesting efforts in using continuous and discrete deformable models for MRI 

segmentation, there are still a number of drawbacks for these models. The region-based 

approaches are sensitive to noise and non-uniformity in the input image and the edge-based 

approaches are sensitive to initial position and shape of the model. An improper initialization of 

the model might cause entrapment in a local minimum and result in segmentation error. 

Topology changes and detecting large regions when the image contains more than one object and 



28 

 

when the objects have discontinuities would be problematic in a parametric formulation and 

would need user interaction over the process. In the following section we review some of the 

existing literature on initialization of deformable models.  

 

 Deformable Model Initialization 2.3.3.2

The concluding point from the previous section states that initialization of deformable models is a 

crucial part which will affect the ultimate result of the segmentation. A suitable initialization can 

prevent failure caused by entrapment in local minima and help capture the boundary of objects. It 

will also reduce the number of iterations that the method needs to converge. Although 

considerable research has been carried out on active model improvement, only a small portion of 

this research has paid attention to model initialization. 

Some of the current methods use manual initialization by selecting some initial points on the 

image [95, 96]. Although manual initialization is more effective, it is very tedious and time-

consuming. Also, it may not always capture the true boundary, due to the limited number of 

points used (figure 2.11). 

 

Figure  2.11 : Manual initialization on a MR image (left) and final segmentation result (right) 

 

Some other models employ simple geometric models such as circles (2D) which may need many 

iterations to converge and also may not converge to the desired features due to noise and artifacts 

in the image (figure 2.12).  
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Figure  2.12 : Simple model initialization on a MR image (left) and final segmentation result 

(right) 

 

There have been several investigations on automatic initialization. Ge et al. [97] proposed a 

method to start multiple active contours based on some points called Center of Divergence (CoD) 

computed by Gradient Vector Flow (GVF) field. In the CoD method presented by Ge and Tian 

[97], some points are computed from a gradient vector flow field, which are called centers of 

divergence. Then multiple active contours are initialized by locating circles which are centered 

on these points like the examples in figure 2.13. 

 

Figure  2.13 : Part of GVF fields and centers of divergence marked by circles [97] 
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Their approach is suitable for simple images, but for complex images, it is difficult to determine 

an appropriate set of CoD. Tauber et al. [98] generalized the notion of CoD by representing a 

skeleton of divergence, but it needs the starting point to be determined by the user. They also 

presented a method [99] based on a GVF field combined with anisotropic diffusion in order to 

improve the results, but this method is also considered as quasi-automatic and needs user 

interaction. Another method named Force Field Segmentation (FFS) was introduced by Li et al. 

[100]. They have proposed a new external force field named edge preserving gradient vector flow 

(EPGVF). With the help of graph representation and a graph theory approach, the EPGVF field is 

segmented first as shown in figure 2.14, and then multiple active contours are individually 

initialized within each segment.  

 

 

Figure  2.14 : (a) An example of a binary feature map, (b) the derived EPGVF vector field, and (c) 

the segmented force field enclosed by the two dark thick contours 

 

Figure 2.16 indicates a deficiency of the CoD and FFS methods for contour initialization on a 

MR image, where they produce many active contour models due to the noise within the image.  

Bing et al. [101] proposed a method based on an external energy force field and Dirichlet 

boundary conditions to automatically initialize parametric active models by solving Poisson's 

equation. They point out the relation between force field and energy field which implies that a 

force field is considered as the negative gradient of an energy field. Since the related fields such 

as GVF and VFC are not conservative, the scalar energy function does not exist and the external 
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energy field is approximated by solving Poisson’s equation (see an example in figure 2.15). Then 

the initialization of the active model is identified as the contour line of the reconstructed external 

energy with lowest energy.  

 

 

Figure  2.15 : Original image (left), computed VFC field (middle) and the estimated external 

energy of the VFC field (right) 

Their method is limited to parametric active models, and doesn’t preserve the boundaries of the 

objects within the image very well (figure 2.16).  

 

 

Figure  2.16 : Three different automatic initialization methods on a MR image; center of 

divergence (CoD) method (left), force field segmentation (FFS) method (middle), and Poisson 

inverse gradient (PIG) method (right) 

 

So far we have reviewed segmentation methods which have been mainly proposed for MR 

images. Since our perspective is to segment multiple objects within the image, in the next section 
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we are going to review the literature that addresses the challenges of multi-object detection (aka 

MR image parsing). 

 

2.4 Multi-Object Segmentation 

Recently, there has been increasing interest in simultaneous multi-object segmentation. One of 

the popular applications for this approach is creating patient-specific models for simulation 

purposes. Many segmentation methods are capable of extracting one object at a time. Therefore, 

the process should be performed sequentially for multi-object segmentation. However such an 

approach may cause inefficiency and overlapping problems. Several attempts have been made to 

segment multiple adjacent objects at the same time and also solve the overlapping problem for 

medical images. A number of studies have led to the development of methods which incorporate 

higher-level knowledge into the segmentation. This knowledge, such as expert-defined rules, 

prior information, and shape models, can greatly improve the result of segmentation if they are 

applied properly. As an example, some researchers propose atlas-based approaches for multi-

object segmentation. The atlases are generated based on information needed for segmentation. 

For example, some types of probabilistic atlases are generated from average intensity, tissue type 

and structural information [102]. The atlases are applied as a reference frame in the segmentation 

process, and the main idea is to determine a transformation to register one region of interest from 

the atlas to the region in the image that we are going to segment [103]. The result is mostly used 

as prior information for statistical pattern recognition and clustering approaches. For instance, 

atlases have been used with the fuzzy c-means method [104], the fuzzy connectedness 

segmentation [105], and the boundary identification approach [106]. Park et al. [107] present a 

probabilistic atlas and incorporate a Bayesian framework to segment low-contrast organs within 

CT images. Zhou and Bai [108] combine an abdominal atlas and a fuzzy-connectedness approach 

for segmenting abdominal organs. Okada et al. [109] construct hierarchical multi-organ statistical 

atlases from CT images for automatic segmentation. Wolz et al. [110] combine multi-atlas 

registration and patch-based registration to generate hierarchical atlases for segmenting 

abdominal organs from CT images. The major difficulty of atlas-based techniques is to find an 

accurate registration, especially in the case of complex structures, and this issue makes them 

more suitable in situations with stable structures over the population of study. In the general case, 
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atlas-based methods are problematic for segmentation of complicated structures with anatomical 

variability. Another groups suggest learning-based approach such as learning-based marginal 

space learning (MSL) models presented by Kohllberger et al. [111] for multi-organ detection in 

CT images. Also Lu et al. [112] combine the same approach with information theory to extract 

organs from CT scans.  

Some other studies propose energy minimization approaches and using deformable models. Tsai 

et al. [113] present multiple objects which are implicitly separated by some signed distance 

functions and then a parametric model is derived by applying principal component analysis to 

these functions. The method represents a wide range of shape variability and can handle a large 

amount of noise. Yang et al. [114] present the incorporation of statistical neighbor prior 

information into level set formulation to segment multiple objects in MR data. Yan et al. [115] 

propose an energy function to provide competition between multiple deformable models using 

prior shape information. Li et al. [116] propose an optimal graph searching technique for 

segmenting multiple objects for MR images of ankle cartilage and tries to solve the overlapping 

problem. They also have extended their method for segmenting long vascular trees [117]. Costa 

et al. [118] introduce a fully automatic method for the segmentation of lower abdomen structures 

in CT images by enforcing statistical shape prior information into coupled deformable models. 

Shimizu et al. [119] introduce an energy minimization method for simultaneous extraction for 12 

organs from CT images. They perform segmentation using multiple level sets and energy 

functional considering gray level uniformity, hierarchy and exclusiveness between organs. Yin et 

al. [120] have applied multi-object graph cuts for knee-joint bones segmentation and produce an 

accurate bone and cartilage segmentation result. Their graph segmentation requires preliminary 

localization prior to the optimal segmentation.  A recent interesting method has been introduced 

by Gao et al. for multi-object segmentation of MR images in [121]. Although they have proposed 

a general-purpose image segmentation framework, it is not suitable in the context of an automatic 

scheme, because it is based on prior anatomical knowledge provided by the user. As can be seen 

many successful multi-object segmentation attempts were introduced for CT images. However in 

the case of MR images it is a more challenging task due to intensity inhomogeneity and low 

contrast across structures and also variability of anatomy appearance. Therefore, state-of-the-art 

in multi-object MR segmentation is very inferior to that of CT images.  
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Overall, the literature review presented here, has indicated some of the limitations of the current 

approaches in multi-object MR image segmentation. We have seen a number of edge-based and 

region-based segmentation methods (thresholding, clustering, region growing, watershed, etc.) 

which have been applied on MR images. Edge-based methods use intensity discontinuities as a 

criterion of region boundaries, but it is very challenging to aggregate the edge-based information 

to some coherent closed curves. On the other hand, region-based methods exploit intensity 

similarity and try to group pixels into coherent regions. The main challenge in these approaches 

is to find out the similarity criterion. Most of the above methods lack a mathematical 

optimization criterion to determine the convergence of the methods. This is where variational 

methods were introduced to devise a segmentation approaches that groups the regions based on 

optimizing some criterion such as minimizing some energy functional. Deformable models as a 

class of variational methods used for computing the segmentation, try to minimize the energy 

functional where its argument is a curve in the image. The curve is a boundary that we are 

looking for. The variational approaches have been started with ‘Snakes' and then improved 

greatly with time by introducing better representations, data terms, regularizers, etc. the main 

strategy for energy minimization approaches is to initialize the curve somehow and then 

propagate the curve to minimize the energy. The initialization is a crucial part which directly 

affects the segmentation performance. 

Inspired by the ideas of discrete deformable models (meshes) and the capability of anisotropic 

adaptive mesh in mesh-based image representation, we are going to propose a new idea for 

automatic multi-object MR segmentation. We have a plan to employ anisotropic adaptive meshes 

for the initialization of active contour models. However, for incorporating mesh adaptation 

technique for our proposed framework, we need to construct a mesh for a given image in which 

elements of the mesh become aligned adequately with the boundaries of the objects in any 

directions. In this regard, we need to specify the metric tensors for image pixels in a proper 

manner to obtain the desired result. The current methods usually construct metrics using Hessian 

matrix of image pixels. Their computations lack an adequate alignment along inclined 

boundaries.  
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CHAPTER 3 RESEARCH OBJECTIVES 

  

3.1 Problem Statement 

Multi-object segmentation of MR images is a process of decomposing the images into several 

distinct sub-regions which represent different anatomical structures. This process can be 

conducted by classification of pixels in the image or by recognition of a boundary for each tissue 

class. Manual segmentation by radiologists is possible but it is tedious and time-consuming and 

reproducing the result is very difficult and uncertain. Therefore, automatic segmentation would 

be more desirable; however, there are still some problems to overcome for achieving a fully 

automatic approach which make it an active research area. 

Deformable models are model-based techniques for determining boundaries of the objects using 

closed parametric curves which move based on internal and external forces. The major drawback 

of these models is that they are highly sensitive to model initialization and improper initialization 

may cause divergence and entrapment into local minima, and it may result in failure to detect true 

boundaries. The existing methods are limited in different ways which have been presented in the 

previous chapter. In this regard, we are going to propose incorporating anisotropic adaptive 

meshes to develop a new initialization method for deformable models to yield better 

segmentation results. In this thesis we implement and test our idea for parametric deformable 

models (active contours) but the idea can be used for initializing other types of deformable 

models as well. 

On the other hand, anisotropic adaptive mesh strategies try to control mesh element 

characteristics so that they conform to image features and become usable for different 

applications in image processing. The edges are considered one of the most important features of 

the image identifying different objects in the image and mesh-based representation methods try to 

align mesh elements along these edges. The edge length of the mesh elements is controlled 

through the specification of a metric. As we discussed before, the existing anisotropic adaptive 

meshes which are used for mesh-based image representation are not completely suitable for our 

purpose. The main limitation of constructing metric tensors using these methods manifests itself 

in inadequate mesh element alignment to inclined edges of the image. Therefore, we need to 
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improve metric computation techniques for anisotropic mesh adaptation to provide a better 

representation according to our needs. 

Consequently, by considering the above limitations, we set out our objectives in the following. 

 

3.2 General and specific Objectives 

As mentioned in the introduction, the general objective of this research study is to introduce an 

automatic method for multi-objects MR image segmentation by exploiting active contour models 

initialized using anisotropic adaptive meshes. In this way and also by considering the highlighted 

limitations of current methods, the specific objectives are as follows: 

 To improve mesh anisotropy along inclined boundaries in mesh-based image 

representation 

 To devise automatic deformable model initialization for multiple organ detection. 

 To apply evolution process and integrate it in an organ segmentation process. 

 To evaluate the initialization and final segmentation results. 

 

3.3 General Methodology 

In order to accomplish our objectives, several steps are specified as summarized in figure 3.1. 

Adaptive Mesh Generation: At first we provide a triangular mesh for a given image and 

construct a metric tensor for each pixel, based on the directional second derivatives information. 

Then we generate an anisotropic mesh through mesh adaptation controlled by the prescribed 

metric. The output of this part is a mesh which is adequately adapted with region boundaries in 

the image. 

Multi-objects Extraction: At this point, the elements of the adaptive mesh are partitioned in two 

sets: those that belong to the region interior, and those that belong to region boundary. Removing 

the interior elements creates several holes in the mesh, each one depicting the presence of an 



37 

 

object in that area. The holes are then extracted by identifying the elements around the holes. The 

outputs of this phase are several ordered sets of points for several objects in the image.  

Segmentation Process: In this step, for each set of points we fit a B-Spline curve which provides 

an initialization for deformable model techniques. After automatic initialization of the model, the 

deformation process is applied to reach the final segmentation result. 

Evaluation: In order to evaluate the effectiveness of the proposed approach, experimental 

validations using clinical MR data and comparison with current methods are conducted for 

different phases. Also the final segmentation result is compared to the ground truth result 

provided by experts. 

 

 

Figure  3.1 : Summary of general methodology presented in this thesis 

 

 

• Generate Mesh from Image  

• Adapt Mesh by Image Contents 
Adaptive Mesh Generation 

• Partitioning the Elements 

• Extracting Holes 
Multi-object Extraction 

• Active Models Initialization 

•  Evolution Process 
Segmentation Process 

• Qualitative Results 

• Comparison  
Evaluation 
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CHAPTER 4 METHODOLOGY 

In this chapter, we propose a novel framework for multi-object MR image segmentation by 

incorporating an adaptive mesh generation technique. The overview of the general methodology 

to achieve our goal was presented in the previous chapter and here we explain different steps of 

this methodology in details. 

 

4.1 Adaptive Mesh Generation 

The goal of this step is to provide an adaptive mesh for a given image that conforms well to the 

desired features within the image. In the scope of this project, desirable features of an image are 

considered as all the edges in the image that represent boundaries of different regions within the 

image. The OORT (Object-Oriented Remeshing Toolkit) software is used for adaptive mesh 

generation which needs two types of data as input; an initial mesh and a metric tensor field.  

OORT modifies the initial mesh based on the supplied metric tensor field to fit the mesh to the 

desired features.  

The Initial Mesh is constructed based on MR image by considering each pixel in the image as a 

vertex in a triangular mesh as it is shown in the figure 4.1. Therefore, the vertices of the initial 

mesh support the gray-level intensity of image pixels as the solution field. 

 

Figure  4.1: Initial triangular mesh corresponding to original image pixels 

 

The Metric Tensor Field is constructed on the initial mesh using a Hessian matrix computed at 

pixels. The computation of the Hessian matrix in OORT is based on a geometric approximation 
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and it has been shown to be robust in numerical simulations for a range of application areas such 

as computation fluid dynamics. However, in the case of images, the Hessian computation does 

not work well for the pixels that belong to the edges in directions other than vertical and 

horizontal. In this sense, we propose a two-step process to overcome this limitation.  

 

4.1.1 Metric Construction 

The Hessian matrix is used to build a metric field and in the case of images, the Hessian matrix is 

constructed based on the gray-level intensity of the image pixels. In this regard, we apply a 

quadratic fitting approach for computing the Hessian matrix for all pixels except for the pixels 

that belong to the edge map, for which we compute a directional Hessian. 

 

 Hessian Matrix Computation 4.1.1.1

The Quadratic Fitting (QF) method fits a least-square quadratic polynomial at each pixel by 

considering a two-level neighborhood that surrounds the pixel. If we consider the quadratic 

function given in Eq. 4-1 and the basis functions for QF as in Eq.4-2, 

𝐹ℎ(𝑥, 𝑦) =  ∑𝑎𝑖𝜍𝑖(𝑥, 𝑦)

6

𝑖=1

 (4-1) 

𝜍𝑖  𝜖 {1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2} (4-2) 

the values of the second order derivatives are estimated at each pixel as in Eq. 4-3 to construct the 

Hessian matrix 𝐻 in Eq.4-4. 

𝜕2

𝜕𝑥2
∑𝑎𝑖𝜍𝑖(𝑥, 𝑦)

6

𝑖=1

 =  2𝑎4 

𝜕2

𝜕𝑥𝜕𝑦
∑𝑎𝑖𝜍𝑖(𝑥, 𝑦)

6

𝑖=1

 =  𝑎5 

(4-3) 
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𝜕2

𝜕𝑦2
∑𝑎𝑖𝜍𝑖(𝑥, 𝑦)

6

𝑖=1

 =  2𝑎6 

 

𝐻 =  

[
 
 
 
 
𝜕2𝐹ℎ

𝜕𝑥2

𝜕2𝐹ℎ

𝜕𝑥𝜕𝑦

𝜕2𝐹ℎ

𝜕𝑥𝜕𝑦

𝜕2𝐹ℎ

𝜕𝑦2 ]
 
 
 
 

 =  [
2𝑎4 𝑎5

𝑎5 2𝑎6
] (4-4) 

 

 Directional Hessian Computation 4.1.1.2

Consider a discrete intensity function 𝐼 = 𝑓(𝑥, 𝑦) corresponding to a gray scale image as shown 

in figure 4.2. The reference coordinate system is shown by (𝑥, 𝑦). 

 

Figure  4.2 : Image  𝐼 as a function of intensity values in a global coordinate system (𝑥, 𝑦) 

 

According to Geusebroek et al. [122], in two dimension images, image points that are on  straight 

lines  in different directions can be detected (i.e. line detection) by considering second order 

directional derivatives in the gradient direction. In practice, a measure of line contrast can be 
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obtained by the appropriate Gaussian weighted differentiation in the gradient direction as in Eq. 

4-5. 

𝑓𝑤𝑤
𝜎 = 𝐺𝑤𝑤(𝜎) ∗ 𝑓(𝑥, 𝑦) (4-5) 

Where 𝑓𝑤𝑤
𝜎  and 𝐺𝑤𝑤(𝜎) are second derivatives in the gradient direction of the image function and 

a Gaussian kernel respectively. The Gaussian standard deviation (𝜎) denotes the scale for 

detecting the line structure. They also concluded that, because of larger spatial extent along the 

line direction, compared to the direction perpendicular to the line, we need to use anisotropic 

Gaussian filtering with scales 𝜎𝑣 and 𝜎𝑤 along the longest and shortest axis. Therefore, 

differentiation along the line in direction 𝜃 when the filter is correctly aligned to the line direction 

is given by Eq. 4-6. 

𝑓𝑤𝑤
𝜎𝑣,𝜎𝑤,𝜃

= 𝐺𝑤𝑤(𝜎𝑣, 𝜎𝑤, 𝜃) ∗ 𝑓(𝑥, 𝑦) (4-6) 

Where 𝜃 is a line direction, 𝜎𝑣 is a smoothing scale in line direction, and  𝜎𝑤 is a differentiation 

scale perpendicular to the line. Accordingly, in order to capture anisotropic features along 

inclined edges in a mesh-based image representation, we need to get elements aligned with the 

edge direction and compute a metric function by considering neighbors along the edges. In this 

regard, we need to use directional filtering in the edges directions.  
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Figure  4.3 : Changing coordinate system and using proper neighborhood for Hessian computation 

 

In terms of edge pixels, we compute the Hessian matrix on a rotated image.  Rotating the image 

at edge pixels consists in changing the coordinate system along the edge direction and 

considering the neighbors along that direction for the Hessian matrix computation. Let’s consider 

the local coordinate system denoted by (𝑥′, 𝑦′) as shown in Figure 4.3, which corresponds to the 

edge direction 𝜃. To determine the direction of the edges in the image, standard edge detection 

methods such as Canny which is the most widely used edge detector in image analysis can be 

used, followed by a gradient direction computation as follow:  

𝜃 = tan−1 (
𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕𝑥
⁄ ) (4-7) 

Then the local Hessian matrix, by considering differentiation on the discrete image with 

neighboring pixels labeled 1-9 along the edge direction in this coordinate system, is given by: 
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𝐻(𝑥′, 𝑦′) =  

[
 
 
 
 

𝜕2𝑓

𝜕𝑥′2

𝜕2𝑓

𝜕𝑥′𝜕𝑦′

𝜕2𝑓

𝜕𝑦′𝜕𝑥′

𝜕2𝑓

𝜕𝑦′2 ]
 
 
 
 

 (4-8) 

Then we have to use rotation transformation equations (Eq. 4-9) to transform the results from the 

local coordinate system back to the global coordinate system. Accordingly, the Hessian matrix in 

the global image system is obtained with Eq. 4-10 which will be used to construct the Hessian 

matrix for the image pixels that belong to the region boundaries.  

𝑅𝜃 = [
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

] (4-9) 

𝐻(𝑥, 𝑦) =  𝑅𝜃
′  𝐻(𝑥′, 𝑦′) 𝑅𝜃 (4-10) 

With respect to the direction of derivation (𝑥′, 𝑦′), approximations to the true image partial 

derivatives using conventional neighborhood are as follow: 

 

𝑓𝑥𝑥
𝜃 = cos2 𝜃 (𝑓[𝑥 + 1, 𝑦] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥 − 1, 𝑦])

+ 2 sin 𝜃 cos 𝜃 (𝑓[𝑥 + 1, 𝑦 + 1] + 𝑓[𝑥 − 1, 𝑦 − 1]

− 𝑓[𝑥 − 1, 𝑦 + 1] − 𝑓[𝑥 + 1, 𝑦 − 1])

+ sin2 𝜃 (𝑓[𝑥, 𝑦 + 1] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥, 𝑦 − 1]) 

                     (4-11) 

𝑓𝑥𝑦
𝜃 = sin 𝜃 cos 𝜃 {(𝑓[𝑥, 𝑦 + 1] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥, 𝑦 − 1])

− (𝑓[𝑥 + 1, 𝑦] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥 − 1, 𝑦])}

+ (cos2 𝜃 − sin2 𝜃)(𝑓[𝑥 + 1, 𝑦 + 1] + 𝑓[𝑥 − 1, 𝑦 − 1]

− 𝑓[𝑥 − 1, 𝑦 + 1] − 𝑓[𝑥 + 1, 𝑦 − 1]) 

                    (4-12) 
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𝑓𝑦𝑦
𝜃 = sin2 𝜃 (𝑓[𝑥 + 1, 𝑦] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥 − 1, 𝑦])

− 2 sin 𝜃 cos 𝜃 (𝑓[𝑥 + 1, 𝑦 + 1] + 𝑓[𝑥 − 1, 𝑦 − 1]

− 𝑓[𝑥 − 1, 𝑦 + 1] − 𝑓[𝑥 + 1, 𝑦 − 1])

+ cos2 𝜃 (𝑓[𝑥, 𝑦 + 1] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥, 𝑦 − 1]) 

                   (4-13) 

The above equations are modified by picking neighbors along the edges. Using a 3x3 

neighborhood size, we have a few possible pixel-wise situations in terms of edge angles 

(0∘, 18∘, 26∘, 45∘, 63∘, 72∘, 90∘) where some of them are presented in figure 4.5. All other 

direction angles are rounded to the nearest case. If edge is blurry which means image gradient 

changes gradually along the edge normal direction, we use a non-maximum suppression step of 

Canny’s algorithm to find the local peaks of the neighborhood as it is shown in figure 4.4. 

 

Figure  4.4 : Illustration of non-maximum suppression when the edge is blurry. The edge strengths 

are indicated both as colors and numbers. 

 

Herein the computation of second derivatives for each pixel is performed in the edge direction 

and by considering neighbors along the edge numbered 1 to 9 as indicated in figure 4.5. 

 

Figure  4.5 : Picking a proper neighborhood for the pixel in the center according to its edge 

direction 
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For example the partial second derivatives for an 18 degree edge are computed using Eq. 4-11 to 

4-13 by substituting the image pixels according the new neighborhood set represented in figure 

4.5. Therefore the modified equations are presented as follow: 

𝑓𝑥𝑥
18 = cos2 18 (𝑓[𝑥 + 1, 𝑦 − 1] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥 − 1, 𝑦])

+ 2 sin 18 cos 18 (𝑓[𝑥 + 1, 𝑦] + 𝑓[𝑥 − 1, 𝑦 − 1]

− 𝑓[𝑥 − 1, 𝑦 + 1] − 𝑓[𝑥 + 1, 𝑦 − 2])

+ sin2 18 (𝑓[𝑥, 𝑦 + 1] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥, 𝑦 − 1]) 

                    (4-14) 

𝑓𝑥𝑦
18 = sin 18 cos 18 {(𝑓[𝑥, 𝑦 + 1] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥, 𝑦 − 1])

− (𝑓[𝑥 + 1, 𝑦 − 1] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥 − 1, 𝑦])}

+ (cos2 18 − sin2 18)(𝑓[𝑥 + 1, 𝑦] + 𝑓[𝑥 − 1, 𝑦 − 1]

− 𝑓[𝑥 − 1, 𝑦 + 1] − 𝑓[𝑥 + 1, 𝑦 − 2]) 

                   (4-15) 

𝑓𝑦𝑦
18 = sin2 18 (𝑓[𝑥 + 1, 𝑦 − 1] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥 − 1, 𝑦])

− 2 sin 18 cos 18 (𝑓[𝑥 + 1, 𝑦] + 𝑓[𝑥 − 1, 𝑦 − 1]

− 𝑓[𝑥 − 1, 𝑦 + 1] − 𝑓[𝑥 + 1, 𝑦 − 2])

+ cos2 18 (𝑓[𝑥, 𝑦 + 1] − 2𝑓[𝑥, 𝑦] + 𝑓[𝑥, 𝑦 − 1]) 

                  (4-16) 

 

Likewise for the other six cases we provide corresponding equations to approximate the second 

derivatives which form the elements of the Hessian matrix. This would provide a better response 

of the second order directional derivatives in the gradient direction and the reason is because it 

involves proper neighbors along the edge direction. 

So far we have computed the Hessian matrix for all pixels in the image. The next step is to 

construct a Riemannian metric field based on these Hessian matrices. As we mentioned in the 

previous chapter, the metric tensors need to be symmetric positive definite by construction. Since 
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the Hessian matrix is symmetric, it is diagonalizable and can be decomposed to eigenvectors and 

eigenvalues as in Eq. 4-17. 

𝐻 =  ℛΛ ℛ 
𝑡  = (𝑒1⃗⃗  ⃗ 𝑒2⃗⃗  ⃗)  (

𝜆1 0
0 𝜆2

) (
𝑒1⃗⃗  ⃗

 

𝑒2⃗⃗  ⃗
 ) (4-17) 

Where  𝑒1⃗⃗  ⃗ and 𝑒2⃗⃗  ⃗ are eigenvectors and 𝜆1 and 𝜆2 are eigenvalues such that: 

𝜆1,2  =  
 𝑓𝑥𝑥 + 𝑓𝑦𝑦 ± √(𝑓𝑥𝑥 − 𝑓𝑦𝑦)

2
+ 4𝑓𝑥𝑦

2

2
 

(4-18) 

Where  𝑓𝑥𝑥 , 𝑓𝑦𝑦 and 𝑓𝑥𝑦 denote second order derivatives from the Hessian matrix. Then the 

eigenvalues are processed to be nonzero, positive definite such that when the metric tensor will 

be used to compute the distance, it will satisfy usual properties of a distance. Finally the 

processed eigenvalues 𝜆1
′  and 𝜆2

′  are multiplied by the eigenvectors to recompose the metric 

tensor ℳ as in Eq. 4-19. 

ℳ =  (𝑒1⃗⃗  ⃗ 𝑒2⃗⃗  ⃗) (
 𝜆1

′ 0

0 𝜆2
′ ) (

𝑒1⃗⃗  ⃗
 

𝑒2⃗⃗  ⃗
 ) (4-19) 

The mesh adaptation process enforces the target size, stretching and orientation prescribed by this 

metric ℳ. Therefore, the edge length between two points 𝑎 and 𝑏 of the mesh domain in the 

Riemannian metric space is calculated by the following formula: 

ℓℳ(𝑎, 𝑏) =  ∫ √ 𝑎𝑏⃗⃗⃗⃗ 
 
𝑡  ℳ(𝑎 + 𝑡𝑎𝑏)𝑎𝑏⃗⃗⃗⃗  dt  

1

0

 (4-20) 

Where 𝑎𝑏 is parametrized by 𝑡 ∈ [0,1]. 

Figure 4.6 presents the adaptive meshes for three simple images with edges in different directions 

based on the proposed metric construction. It is shown that the proposed method is capable of 

handling all edge directions in the same manner and provides a smooth alignment even all around 

a circle with continuous change in orientation. This leads to an adaptation process that can: align 

adequately element edges with the edges present in an image, regardless of the edge direction, 
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improve the quality of the anisotropic meshing and reduce the number of mesh elements. A result 

of this anisotropic mesh adaptation technique on a MR image is presented in figure 4.7. 

 

Figure  4.6 : Original images (top) and the corresponding adaptive meshes generated based on 

proposed metric construction (bottom) 

 

Figure  4.7 : (A) Original MR image; (B) Adaptive mesh of the same image; (C) Zoom on the 

highlighted part in (B) 
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4.2 Multi-Object Extraction 

In this step, the goal is to utilize the adaptive mesh to identify different objects representing 

different organs in the image. The rationale behind our approach is to capture the image contents 

using a unit mesh generated in Riemannian space and discriminate the structures by analysing 

mesh characteristics in Euclidean Space. In this regard, first we partition the mesh elements and 

then extract the border lines to roughly identify different organs in the domain. 

 

4.2.1 Partition of Elements  

As a result of anisotropic mesh adaptation we have obtained a unit mesh in Riemannian space 

that contains fine and stretched elements near object boundaries and coarse and regular elements 

in the region inside the objects. Although all the elements sizes are equal in Riemannian length, 

they can be discriminated using Euclidean length. For this distinction we need to set a threshold 

on element size to categorize the mesh elements into boundary elements and region elements. 

To find a suitable threshold we have analyzed the histogram of the mesh element size and found 

that, in general, the size histogram of all meshes are double-peaked or bimodal distributed like 

the one in  figure 4.8. The bimodality is caused by two groups of elements which can be 

recognized pretty easily. Therefore, the threshold for separating boundary and region elements 

can be chosen in the distinctive valley between the two peaks. As it is shown in the figure, by 

removing the region elements from the mesh, several holes  appear inside the mesh with each one 

depicting the presence of an organ in that area. This action also removes the background area of 

the image from the mesh. The results of two different thresholds selected in the range of the 

valley between the two peaks are also presented in the figure, where both of them are valid for 

roughly identifying organ structures.  



49 

 

   

Figure  4.8 : Bimodal histogram of the element size for the mesh at the top and the result of 

selecting two different threshold values and removing the region elements from the mesh 

 

4.2.2 Extracting Holes 

Extracting the holes and identifying the elements around the holes yields a rough representation 

of the interfaces between the objects, which are very close to their true boundaries.  We want to 

represent each hole as a set of vertices surrounding the hole and an important aspect we would 

like to consider is to have a set of ordered points to represent each hole. Therefore, after 

discriminating between the elements and removing the region elements, the next step is to extract 

the vertices around the holes which are shown in red color in figure 4.9-c. The Feature Edge filter 

from the Visualization Toolkit (VTK) has been used to extract these mesh edges on the borders 

and the example output is shown in figure 4.9-d. 
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Figure  4.9 : (a) Original MR image (b) The corresponding adaptive mesh of the image (c) 

Extracting boundary elements (d) Identifying holes by locating boundary edges 

 

Then we have to go through all these vertices to collect the different sets of vertices that belong 

to each hole. There is another filter in the VTK library named the Connectivity filter that can 

detect connected regions by selecting mesh edges that share common vertices and meet other 

connectivity criterion. Then by tracking these vertices sequentially, we can obtain the ordered set 

of vertices that belong to each hole. The Connectivity filter would be a solution to our need if the 

holes were completely separate, which is not a common situation in our cases. On the contrary, it 

is very probable to confront connected holes that share one or more vertices with each other as 

shown in figure 4.10. Therefore, we need to provide a more robust algorithm to handle all 

possible situations. 
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Figure  4.10 : Various status of produced holes after identifying boundary edges of the mesh 

 

The following algorithm has been developed for extracting holes by tracking boundary edges, 

linking them together into loops which can handle all these situations and output several sets of 

points defining several holes. The algorithm explained in detail in the following.  

 

Algorithm for Detecting the Holes 

Input: List of feature edges extracted from the mesh 

Output: Several Sequences of points  defining several objects 

Begin 

    - Create a Vertex List 

    - Mark all vertices as unvisited  

    - While ( unvisited vertex exists ) 

    { 

         - Create an empty output Sequence 

         - Pick an unvisited, single-degree from head vertices as a starting point S 
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         - Mark as visited and add to the output Sequence 

         - While (the starting point S is not reached ) 

         { 

               - Follow the tail vertices 

               - If ( at this point exists more than one tail to follow) 

               { 

                      - Compute angles considering each tail by   𝐜𝐨𝐬−𝟏 (
𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒆𝒅𝒈𝒆 .  𝒏𝒆𝒙𝒕 𝒆𝒅𝒈𝒆

‖𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒆𝒅𝒈𝒆‖‖𝒏𝒆𝒙𝒕 𝒆𝒅𝒈𝒆‖
)  

                    - Pick tail vertex from the edge with biggest angle 

                } 

                - Mark the vertex as visited and add to the output Sequence 

         } 

         - Print out the output Sequence 

    } 

End 

 

The input of the algorithm is a set of mesh edges (line segment joining two vertices) where each 

edge consists of head vertex and tail vertex. The algorithm first creates a vertex list and for any 

head vertex, list out all the tail vertices for that, as it is shown in figure 4.11. The goal in this 

example is to separate these three connected holes and print out three sequences that contain 

ordered sets of vertices surrounding the holes.  
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Figure  4.11 : An example of creating a vector list for a given mesh edge set 

 

Each vertex has a unique id, position information, and a flag indicating if the vertex has been 

visited or not. All vertices are marked as unvisited and a loop begins by picking an unvisited, 

single-degree (a head vertex that has only one tail) vertex. The vertex is added to the output 

sequence and the loop continues by tracking subsequent tail vertices and adding to the sequence 

list until we reach back the starting point where we close the loop and print out the sequence. 

Figure 4.12 shows an example of this traversal procedure. This procedure is repeated until there 

are no unvisited vertices left in the vertex list. If in the cycle of any loop we encounter a vertex 

with more than one tail vertex, it means we have reached a point where two or more holes are 

connected to each other. To pick the correct subsequent vertex in a hole, we need to compute the 

angle between the current edge and the next candidate edge and pick the one with the biggest 

angle as shown in the example of figure 4.12. In this way, we can extract all the holes in only one 

pass through this list very efficiently and output several distinct sets. Each set contains an ordered 

list of vertices surrounding each hole. 
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Figure  4.12 : The schematic description of the algorithm for extracting the holes with an example 

 

4.3 Segmentation Process    

After identifying admissible holes, the next step is to perform segmentation on the MR images. In 

this research we have focused on improving parametric deformable models also known as active 

contour models, but the idea can be extended to other types of edge-based deformable models as 

well.  

For detecting multiple organs using an active contour model, we need multiple initial contours to 

deform based on external constraint forces and image forces toward boundaries of the organs. 

The initial contours can be provided by a user or by some other method, perhaps an automated 

one. In the following we use the extracted holes from the previous stage to automatically 

initialize   multiple active contours and provide an approximation to the organs boundaries in the 

MR image, and then guide them using vector field convolution to find the actual boundaries. 
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4.3.1 Active Models Initialization 

In general, an active contour is a controlled continuity spline guided by some external forces 

which tends to fall into the closest local energy minimum. Therefore, to obtain an accurate result, 

the contours need to be placed near the desired true boundary. As a potential solution, sets of 

points extracted for holes which are close enough to the true boundaries, are used to construct 

several splines for initiating the active contours segmentation approach. Each set of points is 

considered as a set of control points for fitting a B-spline curve. The k-order B-spline curve with 

𝑛 + 1 control points (𝑃0, 𝑃1, … , 𝑃𝑛 ) and the knot vector 𝑇 =  {𝑡0, 𝑡1, … , 𝑡𝑚}  is defined in Eq. 4-

21 and its basis functions are defined in Eq. 4-22. An example of a B-spline curve fitted to some 

points and the corresponding basis functions are shown in figure 4.13. 

𝐶(𝑡)  =  ∑𝑁𝑖,𝑘

𝑛

𝑖=0

(𝑡) 𝑃𝑖 (4-21) 

𝑁𝑖,0(𝑡)  =  {
1      𝑖𝑓     𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1 
0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

 (4-22) 

𝑁𝑖,𝑗(𝑡)  =   
𝑡 − 𝑡𝑖

𝑡𝑖+𝑗 − 𝑡𝑖
𝑁𝑖,𝑗−1(𝑡)  +  

𝑡𝑖+𝑗+1 − 𝑡

𝑡𝑖+𝑗+1 − 𝑡𝑖+1
𝑁𝑖+1,𝑗−1(𝑡)  

Where 𝑗 = 1,2, … , 𝑘 and the degree of the basis functions is  𝑘 = 𝑚 − 𝑛 − 1 . 

 

Figure  4.13 : Example of a B-spline curve with control points and corresponding basis functions 
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By repeating some of the knots and control points, the end points of the generated B-spline curve 

can coincide with each other and form a closed loop. In this regard, we follow these steps: 

 Add a new control point   𝑃𝑛+1 = 𝑃0 

 Provide a knot vector of  𝑛 + 1 knots  {𝑡0, 𝑡1, … , 𝑡𝑛}   

 Add 𝑘 + 2 knots and wrap around the first 𝑘 + 2 knots : 𝑡𝑛+1 = 𝑡0,  𝑡𝑛+2 = 𝑡1,

, . . . , 𝑡𝑛+𝑘+1 = 𝑡𝑘  , 𝑡𝑛+𝑘+2 = 𝑡𝑘+1 

In the same way, we have constructed multiple closed B-spline curves for every set of points 

extracted for each organ in the MR images and initialize active models for performing 

segmentation. The result of generating several B-spline curves for sets of points extracted for a 

MR image is indicated in figure 4.14.  

 

 

Figure  4.14 : Original MR image and its extracted sets of points (top) and overlay constructed 

curves onto the original image (bottom) 
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4.3.2 Evolution Process 

So far we have provided several parametric active contours which are placed near the true 

boundaries of the organs in the MR images. At this stage, each active contour or curve 𝐶(𝑠)  =

 [𝑥(𝑠) 𝑦(𝑠)]𝑇 is deformed to match the true boundary of each organ by minimizing the following 

energy functional: 

𝐸 = ∫ [
1

2
(𝛼|𝐶′(𝑠)|2 + 𝛽|𝐶′′(𝑠)|2) + 𝐸𝑒𝑥𝑡(𝐶(𝑠))] 𝑑𝑠

1

0

 (4-23) 

Where 𝐶′(𝑠) and 𝐶′′(𝑠) are the first and second order derivatives of the curve with weighting 

parameters 𝛼 and  𝛽. These parameters provide control over the internal energy functional 

responsible for controlling the smoothness constraints. 𝐸𝑒𝑥𝑡 is an external energy function that 

depends on the image properties for pushing the curve toward the boundary of the organ. The 

corresponding Euler-Lagrange equation for the minimum of the energy functional is as follow: 

𝛼𝐶′′(𝑠) − 𝛽𝐶′′′′(𝑠) + 𝑓𝑒𝑥𝑡(𝐶) = 0 (4-24) 

which means that the external force 𝑓𝑒𝑥𝑡(𝐶) needs to be in balance with internal forces at the 

minimum. To solve the above equation, we convert it into a time dependent function 𝐶(𝑠, 𝑡) and 

use the following gradient descent equation which can be solved by considering the initial 

contour  𝐶(𝑠, 0) : 

𝜕𝐶(𝑠, 𝑡)

𝜕𝑡
= 𝛼𝐶′′(𝑠, 𝑡) − 𝛽𝐶′′′′(𝑠, 𝑡) + 𝑓𝑒𝑥𝑡(𝐶(𝑠, 𝑡)) (4-25) 

In the same way, all active contours evolve independently to minimize their energy functional 

and capture the true boundaries of the organs beneath them while keeping the smoothness of the 

resulting contours. The only problem that may arise during the evolution is the overlapping of 

adjacent contours because of a leakage problem when there is a weak edge separating two 

regions. In order to prevent such a situation, we chose an appropriate external energy field called 

Vector Field Convolution (VFC) presented by [123]. They have proposed a new class of static 
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external forces by convoluting 𝑓𝑒𝑑𝑔𝑒(𝑥, 𝑦) as the edge map of the image with a vector field kernel 

𝑘(𝑥, 𝑦) = [𝑢𝑘(𝑥, 𝑦), 𝑢𝑦(𝑥, 𝑦)] shown in figure 4.15 as: 

𝑓𝑣𝑓𝑐(𝑥, 𝑦) = 𝑓𝑒𝑑𝑔𝑒(𝑥, 𝑦) ∗ 𝑘(𝑥, 𝑦) 

                  =  [𝑓𝑒𝑑𝑔𝑒(𝑥, 𝑦) ∗ 𝑢𝑘(𝑥, 𝑦) ,  𝑓𝑒𝑑𝑔𝑒(𝑥, 𝑦) ∗ 𝑣𝑘(𝑥, 𝑦)] 
(4-26) 

 

where the vector field 𝑘 contains vectors with magnitude 𝑚(𝑥, 𝑦) pointing to the kernel origin. 

 

 

Figure  4.15 : Example of vector field kernel with radius 𝑅 and its related terms 

 

They have alleviated the leakage problem by mixing the VFC field and gradient field of the edge 

map 𝑓𝑒𝑑𝑔𝑒 to increase the influence of the strong and weak edges and their capture range while 

the contribution of noise is reduced.  

Hence by using 𝑓𝑣𝑓𝑐 as the external energy function, we represent the family of evolving closed 

contours 𝐶𝑖 that evolve simultaneously by solving the following gradient descent equation from 

the initial contours provided for each of them. 

𝜕𝐶𝑖(𝑠, 𝑡)

𝜕𝑡
= 𝛼𝐶𝑖

′′(𝑠, 𝑡) − 𝛽𝐶𝑖
′′′′(𝑠, 𝑡) + 𝑓𝑣𝑓𝑐(𝐶𝑖(𝑠, 𝑡)) (4-27) 
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Figure 4.16 indicates the final segmentation result of the above process and decomposition of the 

MR image into several segments representing different organs in the image without overlapping 

between adjacent regions. 

 

Figure  4.16 : Several closed active contours initialized on a MR image (left) final segmentation 

result for detecting the true boundary of the organs in the image (right) 

4.4 Evaluation 

In order to evaluate the performance of the proposed methodology, we have conducted several 

tests and comparisons for each step in the methodology. First for anisotropic mesh adaptation 

where we have proposed a new approach for metric computation, we generate adaptive meshes 

using the proposed metric and two other approaches and compare them qualitatively and 

quantitatively. Also we use these meshes to reconstruct the input images and measure the 

difference between these approximation and original images to indicate which approach provides 

a better representation of the given images. 

Then for the active contour initialization step, we also picked two other automatic initialization 

methods and compared them to our results to demonstrate the effectiveness of our method in 

detecting multiple organs in MR image data and initializing multiple active contour models. After 

that, we allow the initial models provided by those three approaches to evolve and produce final 

segmentation results. The comparison is done in terms of number of models, number of 

iterations, and convergence time to verify the performance of the proposed method. In order to 

assess the accuracy of the segmentation results of our approach we also perform a comparison 

with ground truth data provided by experts for a series of MR images.  
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CHAPTER 5 RESULTS AND DISCUSSIONS 

 

In this section we provide different experiments to evaluate the performance of the proposed 

methodology. These experiments include qualitative and quantitative evaluation for anisotropic 

mesh adaptation, active contour initialization, and the MR image segmentation along with 

comparison to previous methods and ground truth results. 

 

5.1 Anisotropic Mesh Adaptation 

As mentioned before, mesh-based image representation has been used in many applications such 

as numerical simulation in biomedical fields [94], finite element techniques in image processing 

[124, 125], image compression [126], etc. to meet the demands of these applications we need to 

reduce the number of elements and increase the anisotropy of the elements to be oriented in the 

direction of the image edges. In particular, for numerical simulation, which is our main concern, 

having fewer elements improves the computational efficiency of the simulations and the 

numerical solvers are highly sensitive to the element orientations especially when the features of 

the physical phenomena to capture are anisotropic. In the following, to demonstrate the ability of 

the proposed metric construction approach, we are going to present several adaptive meshes 

constructed by our proposed approach for different images and then the results will be compared 

to other approaches. In this regard, we have selected two different Hessian recovery techniques 

for images to construct metric tensors and generate anisotropic adaptive meshes for those images. 

One approach consists in computing a Hessian by spatial convolution filtering as presented by 

Farid and Simoncelli in [46] and the other to compute a Hessian by geometric approximation 

called the Quadratic Fitting (QF) method that fits a least-square quadratic polynomial for each 

pixel by considering two-level neighborhoods that surround the pixel [43]. Figure 5.1 shows 

three simple images containing single objects (square, diamond, and circle) and their 

corresponding adaptive meshes constructed using each approach, including our new method.  
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Figure  5.1 : Original images containing single objects for testing Hessian reconstruction 

algorithms and their corresponding anisotropic adaptive meshes 

 

The comparison results are shown in figure 5.2 where results are illustrated with zoomed in 

portions on edge parts, to indicate the details of adaptation at the edges. The first column in figure 

5.2 shows the results using Farid and Simoncelli’s technique for derivative computation, which 

clearly can provide adequate alignment only in orthogonal directions and fails in all other 

directions. The second column of figure 5.2 illustrates the resulting meshes using the QF 

technique that provides better alignment to the edges in all directions but the elements are not 

stretched enough along the edges in directions other than those aligned with the coordinate axes, 

where this difference is clearly showed in figure 5.3. The third column in figure 5.2 represents the 

result of applying our approach, which provides a smooth alignment even all around a circle with 

continuous change in orientation. Figure 5.4 indicates the skewness of the elements on the 

adapted mesh obtained by the proposed method along the orthogonal and non-orthogonal edges 
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in the image which confirms its ability to handle orthogonal and non-orthogonal edge directions 

in the same manner. 

 

 

Figure  5.2 : Zoom-in on resulting adapted meshes constructed based on three methods; the 

approach by Farid & Simoncelli (left), the QF approach (middle), and our proposed approach 

(right) 
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Figure  5.3 : Element skewness on the adapted mesh obtained by the QF approach for axis-aligned 

and non-axis-aligned edge directions 

 

 

Figure  5.4 : Element skewness on the adapted mesh obtained by our proposed approach for axis-

aligned and non-axis-aligned edge directions 
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In terms of the number of elements, our proposed method also has better performance than the 

two other approaches and, as can be seen in Table 5.1, produces adaptive meshes with fewer 

elements, thereby demonstrating the improvement of the adaptation process. 

 

 

Table  5-1 : Number of elements in adaptive meshes constructed by the three approaches 

 Farid & Simoncelli Quadratic Fitting Proposed method 

Square 4584 4428 4148 

Diamond 8682 7300 4524 

Circle 6354 5496 4160 

 

Moreover, in order to show the improvement of the anisotropy and skewness of the elements 

along the image edges, figure 5.5 presents histograms of element anisotropy for the Circle 

example provided by the three approaches. 

In this regard, we chose the three adaptive meshes generated by the three approaches for the 

Circle example and extracted the elements with aspect ratio ≥ 2. The corresponding histograms 

present the number of the elements with an aspect ratio ≥ 2. The results indicate that the 

anisotropic elements obtained by the two other methods are not located on the image edges and 

they do not follow the edges orientation. Then again, the result of the proposed method shows the 

presence of more anisotropic elements along the edge locations and in the corresponding 

orientations.  
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Figure  5.5 : Extracting the anisotropic elements (aspect ratio ≥ 2) from resulting meshes for the 

three approaches for the Circle example and their corresponding histograms 

   

In order to validate the proposed algorithm for real applications, we have used MRI data of 

human trunk. So, we have applied the proposed method on a series of MR images of human trunk 

and generated adaptive meshes. We have performed the same comparison as above, with the two 

other methods and the results are shown in figure 5.6 and 5.7.  
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Figure  5.6 : Anisotropic adaptive meshes constructed based on the three mentioned approaches 

for the given MR image of the human trunk 

 

As clearly observable in figure 5.7, the proposed approach generates elongated elements in all 

directions and provides a detailed map of anisotropic features of the image in terms of anisotropic 

mesh elements while the other two methods were able to capture the detailed features mostly in 

the orthogonal directions. 
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Figure  5.7 : Extracting anisotropic elements (aspect ratio ≥ 2) from resulting meshes for the three 

approaches for a MR image and their corresponding histograms 

 

Furthermore, to verify the proposed adaptation process, we have considered the verification of 

the reconstructed solution [21]. In this regard, we have used the gray-level values of the image as 

a solution and tried to reconstruct the image by interpolating data from the adaptive mesh, and 

then computed the error of image reconstruction. To demonstrate the relative improvement in 

mesh-based representation of those images, we have compared image reconstruction results of 

isotropic and anisotropic adaptation techniques. Figure 5.8 presents three adaptive meshes for an 
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MR image of a human trunk generated based on isotropic, QF, and the proposed adaptation 

process. The comparison result for image reconstruction over series of adaptive meshes of 

different sizes is shown in figure 5.9. The reconstruction error is obtained as a Mean Square Error 

(MSE) between pixel intensity of the original image and the reconstructed image, and the mesh 

size is characterized by length h of the mesh which is computed as follows: 

ℎ = (𝐴Ω 𝑁⁄ )1/2 (5-1) 

where 𝐴Ω  denotes the area of the image domain Ω and 𝑁 is the number of elements. 
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Figure  5.8 : Original MR image at the top and three mesh-based representations (isotropic, QF, 

proposed method) and their corresponding reconstructed images 



70 

 

Figure 5.9 presents a plot of the log value of the reconstruction error of the image as a function of 

the log value of ℎ. The top curve corresponds to adapted isotropic meshes, the middle curve to 

adapted anisotropic meshes based on the QF method and the bottom curve to adapted anisotropic 

meshes by the proposed method. 

 

 

Figure  5.9 : Image reconstruction error over different types of adaptive meshes with different 

sizes 

 

As expected, the error decreases with refinement for all types of the meshes, but there is an 

improvement in precision for an equivalent number of elements for the proposed anisotropic 

adapted meshes. Furthermore, in order to verify the correctness of the results, we have applied 

the QF method and the proposed method on a series of MR images containing 28 slices of human 

trunk and summarized the results in figure 5.10. In this bar graph, each bar length represents the 

average reconstruction error of all images, computed for different mesh sizes and each error bar 

represents the minimum and maximum error computed among all those images.  This shows that 

the proposed method, which generates more anisotropic meshes by aligning elements with the 

boundaries of the regions in every direction, not only can provide an adaptive mesh with fewer 
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elements, but also can improve the interpolation results for image reconstruction. These aspects 

make the proposed method a better fit for mesh-based image representation for simulation 

purposes, or any applications that incorporates finite element techniques for image analysis. 

 

 

Figure  5.10 : Comparison between QF method and proposed method on a series of MR images 

 

So far, we have demonstrated the capability of the proposed anisotropic mesh adaptation method 

for image representation. In the next part we discuss exploiting this mesh-based representation 

for active contour initialization. 

 

5.2 Active Contour Initialization 

As described in the methodology part, after partitioning the mesh elements and detecting the 

holes, several distinct closed curves are constructed using a B-spline parametric representation. 

These are used as active contour initializations for segmenting different organs in MR images. 

We have applied this procedure for various series of axial MR images and the results are reported 

in the following. Since quantitative assessment is generally difficult for medical images and there 

is no formal criterion to measure initialization results, we have provided qualitative results and 
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comparison with other studies. Figure 5.11 and 5.12 present several MR images from human arm 

and trunk sections and their corresponding multiple active contour initializations, constructed 

using our proposed method. 

 

 

 

Figure  5.11 : Original MR images of a human arm (left) Multiple active contour initializations 

(right) 
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Figure  5.12 : Original MR image of human trunk sections (left) Multiple active contour 

initializations (right) 
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As can be observed in these figures, we are dealing with MR images that contain different 

numbers of anatomical structures and tissues with a great variety in appearance. For example, 

they contain small bone structures, large and very complex structures for muscle tissues, and long 

narrow structures for fat tissues. These images also contain some degree of noise and intensity 

inhomogeneity which are hardly noticeable to a human observer but can be problematic for 

medical image analysis methods. With all this, however, the proposed initialization method 

performs fairly well in decomposing the image into its main components and constructs an active 

contour model for each component. The contours provided for complex muscle structures where 

intertwined with adjacent structures or those narrow elongated contours for fat parts in the 

surrounding areas, have been well adapted to the shape of the structures. Moreover, the contours 

are located very close to the exact boundary of the respective structures. In all our tests, 

operations were done on the original images without any preprocessing or filtering. It is believed 

that MR images of human trunk are some of the most challenging images to process, thus, the 

proposed method should be applicable to other modalities such as CT images. 

For the sake of comparison, we have picked out three existing automatic initialization methods; 

Center of Divergence (CoD), Force Field Segmentation (FFS), and Poisson Inverse Gradient 

(PIG). In the following, qualitative comparisons of results with these three methods for automatic 

initialization are presented through figure 5.13 to 5.18. We have used their implementations in 

MATLAB and in all cases they have been applied on original images without any preprocessing 

and augmentation procedures. The examples shown here have been selected through series of 

MR images of human trunk that belong to different axial levels to provide an illustrative diversity 

in number of objects, their shape and complexity. 
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Figure  5.13 : Comparison of automatic initialization on a MR image (example 1) 

 

Figure  5.14 : Comparison of automatic initialization on a MR image (example 2) 
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Figure  5.15 : Comparison of automatic initialization on a MR image (example 3) 

 

Figure  5.16 : Comparison of automatic initialization on a MR image (example 4) 
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Figure  5.17 : Comparison of automatic initialization on a MR image (example 5) 

 

Figure  5.18 : Comparison of automatic initialization on a MR image (example 6) 
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As can be seen in the figures, very clearly CoD and FFS methods are inefficient for contour 

estimation on MR images and this indicates that working solely with a force field does not 

provide a proper solution for multi-object detections from complicated images such as MRI. We 

therefore need a more abstract level of information, which is provided by the two other methods, 

PIG and our proposed method. The main difference between PIG and our method is that the PIG 

approach is based on an energy field computed for the whole image domain without emphasizing 

boundary information, while the intent of our method is to concentrate on edges and boundary 

information. Although PIG provides much better results compared to CoD and FFS, it doesn’t 

preserve the boundaries of the organs within the image very well. On the other hand, our 

proposed approach can respect fairly well the boundaries and provide an adequate contour 

representation, close to the true boundaries of the organs. 

 

 

5.3 MR Image Segmentation 

In order to demonstrate the effectiveness of the initialization method, we now present final 

segmentation results and investigate the performance of the segmentation approach qualitatively 

and quantitatively. Thereby, we have applied the proposed initialization and evolution models for 

the same image series and some of the results are shown in figure 5.19. In this figure, left images 

indicate multiple initial contours (red contours) overlaid on the original MR images and right 

images indicate final segmentation results (green contours) after evolving initial contours. When 

you compare the initial contours and the final contours after the evolution process, some aspects 

are noticeable. Each contour has deformed individually and reached the boundary of the 

respective organ structure without overlapping with adjacent contours and together provide a nice 

decomposition of the given MR image. Only few parts in the images have remained uncovered 

which is more apparent in the second example in the figure and the reason is mainly due to the 

weak edge information in low-contrast areas. 
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Figure  5.19 : Evolving the initial contours to obtain final segmentation. Initial contours in red 

(left) Segmentation results in green (right) 
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In addition, to demonstrate the efficiency in convergence speed of the proposed algorithm we 

have provided a comparison with three aforesaid automatic initialization methods and analyzed 

the segmentation performance of all methods in terms of number of active contour models, 

number of iterations needed for convergence and the convergence time. The result summarized in 

the following figures and table, confirms that the proposed initialization and evaluation model 

reduces the computational efforts and improves the correctness of the segmentation results. 

Figure 5.20 to 5.25 present some examples of qualitative comparison results by performing 

evolution processes for initialized contour examples presented in figures 5.13 to 5.18. As may be 

clearly seen, the CoD model results in several small, outspread segments where small portions of 

different organs are extracted, leaving many parts uncovered. For the FFS model, by having 

several initial contours without taking individual objects into account make them evolve to the 

nearest boundaries without aiming for a certain object. Therefore we observe only few contours 

which have successfully evolved and segmented a single object or a portion of an object in the 

final segmentation. This approach also generates many noisy contours that were shown before in 

figure 2.10 and consequently provide very low segmentation performance on these MR images.  

Thus, it cannot be considered as a reliable model for decomposing MR image into constitutive 

organs. Indeed, the PIG and the proposed methods outperform these two methods and the main 

reason is that CoD and FFS initialize the active models far away from features of interest where 

the evolution models may get trapped in local minima and fail to capture the regions of interest. 

On the other hand, the PIG and our proposed method provide more meaningful initialization very 

close to the boundaries of regions, thereby allowing to obtain more relevant segmentation results 

localizing more objects correctly and providing better decomposition of MR image into 

constitutive structures and organs. However, the difference between these two is that our 

proposed method can provide effective segmentation by distinguishing correctly between 

adjacent regions by successfully analyzing the edge information during the initialization phase.  
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Figure  5.20 : Comparison of segmentation result corresponding to initialization in figure 5.13 

 

Figure  5.21 : Comparison of segmentation result corresponding to initialization in figure 5.14 
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Figure  5.22 : Comparison of segmentation result corresponding to initialization in figure 5.15 

 

Figure  5.23 : Comparison of segmentation result corresponding to initialization in figure 5.16 
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Figure  5.24 : Comparison of segmentation result corresponding to initialization in figure 5.17 

 

Figure  5.25 : Comparison of segmentation result corresponding to initialization in figure 5.18 
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Regarding the quantitative analysis of segmentation results, table 5.2 summarizes the comparison 

results in terms of number of models initialized using the four methods, the number of iteration 

and convergence time to reach the final segmentation for the aforesaid examples. It is notable that 

all experiments have been performed using MATLAB 11 and active model parameters including 

the edge map, the force field, smoothness parameters, and the convergence criteria, are chosen to 

be identical for all methods. The results in the table reveal that the CoD and FFS methods 

initialize more active models and many of these models are generated from noisy parts of the 

image and are therefore useless. Moreover, valid models are generated far from true organ 

boundaries, which take many iterations before convergence and therefore high convergence times 

are observed for these methods. On the other hand, the PIG and proposed methods generate 

reasonable number of models and require fewer iterations. Compare to the PIG method, the 

proposed method provides more models respecting separate parts that need to be extracted and 

the number of iterations and convergence time are most of the time lower than for the PIG 

method because of more appropriate initialization, closer to the true boundaries. 

 

Table  5-2 : Segmentation performance summary for four methods (CoD, FFS, PIG, and Proposed 

method) on a MR image series 

Examples 

# of Models Initialized # of Iterations Convergence Time (Second) 

CoD FFS PIG Proposed CoD FFS PIG Proposed CoD FFS PIG Proposed 

1 87 1472 10 25 273 177 129 81 11.25 14.26 4.30 2.36 

2 101 1010 23 30 408 234 153 135 13.20 14.15 6.50 4.71 

3 106 1173 12 29 444 243 111 93 12.28 14.34 3.32 2.82 

4 70 1496 8 34 273 165 84 309 8.44 13.36 2.52 3.69 

5 100 1213 10 18 363 255 162 69 9.57 19.56 3.60 2.00 

6 103 1081 19 33 513 642 120 69 13.01 19.81 3.16 3.27 
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In addition, for quantitative evaluation of the proposed segmentation framework, it is necessary 

to compare the segmentation results with manual segmentation by physicians. In this regard, we 

have used a dataset which consists of 50 MR images of human lumbar spine in the sagittal plane 

where the intervertebral disks have been segmented manually by a clinical expert using the 

commercially available SliceOmatic software (Tomovision, Montreal). Figure 5.26 indicates an 

example of these images presented by initialization and segmentation results of the proposed 

method for detecting intervertebral disks.  

 

Figure  5.26 : Original image of human lumbar spine, its model initialization, and segmentation 

(top), selected initialization and segmentation of intervertebral disks (bottom)  

 

At the top row of the figure we have shown the whole process of applying the proposed method 

on the image. Then we have selected the contours that belong to the intervertebral disks manually 

from the set of initial contours generated by the proposed initialization method and let them 

evolve to reach the final segmentation and compared the results with manual segmentation 
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provided by experts. The Dice Similarity Coefficient (DSC) has been used to evaluate the 

performance which is defined as: 

𝐷𝑆𝐶(𝑋, 𝑌)  =  
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 (5-2) 

Where 𝑋 and 𝑌 represent sets of pixels in an intervertebral disk resulting from the proposed 

method and manual segmentation. The 𝐷𝑆𝐶(𝑋, 𝑌) function returns values in the range [0,1] 

where 0 means no overlap and 1 means complete overlap between two segmentation results. It 

has been reported that DSC values greater than 0.7 are considered as a good segmentation 

performance [127, 128]. Figure 5.27 and 5.28 provide the results obtained from similarity 

measurements between the proposed segmentation and manual segmentation results. The mean 

and the standard deviation of DSC computed over all 50 cases are 0.8777 and 0.0408 

respectively. As can be seen, all DSC values are greater than the threshold for good segmentation 

performance. 

 

 

Figure  5.27 : Initial contour for an intervertebral disk (left), comparison between our 

segmentation in green and manual segmentation in white (right) 
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Figure  5.28 : Graph of Dice similarity results for all dataset 

 

From all of our comparison experiments, we can conclude that the proposed segmentation 

framework can provide an effective initialization for multi-object segmentation in the sense of 

generating a proper number of active models very close to the true boundaries of different organs 

which need fewer numbers of iterations to converge. It also can provide good segmentation 

results where the accuracy of the final segmentations is comparable to expert manual 

segmentation. 

 

5.4 General Discussion 

This chapter aimed to alleviate some limitations of existing methods for multi-object MR image 

segmentation. We have studied two aspects specifically, a) how to improve mesh-based image 

representation and b) how to use this mesh-based image representation to segment several organs 

and tissues from MR images automatically. The proposed methodology established several 

specific objectives that led to some original tools for assembling an automatic multi-object MR 

image segmentation framework. First, we have introduced a new metric computation approach 

for anisotropic mesh adaptation to bring improvement in mesh-based image representation. 
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Second, we have employed an anisotropic adaptive mesh for automatic active contour 

initialization which led to a more efficient approach for multi-object MR segmentation. The 

general discussion highlights the main improvements done in these steps and also relates them 

with previous works. 

An improvement was made in generating anisotropic adaptive mesh by using directional Hessian 

computation considering the neighbors along that direction. In comparison to the previous 

methods, there is a small reduction (less than 5%) in the number of mesh elements for those 

synthetic images that contain edges only in axis-aligned directions. This small difference is due 

to the size of the neighborhood (kernel size) used to compute the derivatives in each methods. 

However, the real potential of the proposed method manifests itself for those images that contain 

non-axis-aligned edge directions. The proposed directional metric computation leads to a 

considerable reduction (more than 20%) in mesh elements. Another important observation is the 

increase of element anisotropy and their alignment to the image content. As can be seen in figure 

5.5 and 5.7, we have extracted the elements with aspect ratio greater than 2, there are two 

improvements using the proposed approach. The first one is that the great numbers of anisotropic 

elements are located where the image edges are found and they are aligned adequately with the 

edge directions. The second one which can be seen from the histograms is that the total number 

of elements with higher aspect ratio is increased compared to other approaches. Thus, the 

proposed method has presented the anisotropic features of the image with highly elongated 

elements and adequate alignment which is desired in the anisotropic mesh adaptation. These 

properties indicate that the proposed mesh-based image can provide a better representation for a 

given image. The test for regaining the original image from the corresponding mesh confirms that 

the original image can be recovered from the proposed anisotropic mesh with less error compared 

to other approaches. 

Another aspect of the proposed methodology is automatic active contour initialization by using 

anisotropic adaptive mesh. We have shown that anisotropic adaptive meshes constructed from 

MR images contain high-level information about MR image content which can be used to 

localize different organs and tissues in the image. Based upon this localization we can initialize 

several active contours for determining the MR image structures automatically. According to the 

comparison with other automatic active contour initialization methods (table 5-2), the proposed 

method has presented a reasonable number of active contours for a given MR image. Unlike the 
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other methods, the proposed initialization approach can handle noise in the image more properly 

and can localize the objects in the image more accurately as can be seen in the example images. 

This appropriate initialization leads to better segmentation results in terms of speed and accuracy. 

Table 5-2 expresses that having such initial contours close to the exact boundaries of the objects 

has reduced the number of iterations and consequently reduced the convergence time. On the 

other hand, segmentation validation with ground truth using Dice coefficient and obtaining DSC 

average 0.8777 with standard deviation 0.0408 across the 50 cases, acknowledge that the 

proposed method has achieved good segmentation performance. 

 

5.4.1 Limitation 

Notwithstanding the advantages of the proposed method for automatic multi-object MR image 

segmentation; there is a limitation that was not fully investigated.  

Low contrast area: In some of the MR images there are some parts which have not been 

detected due to the very low contrast between these parts and the surrounding tissues. It seems 

the metric construction based on Hessian information is not very successful to reveal anisotropic 

features of the low contrast areas or weak edges. For example in the figure 5.29 the two bone 

structures indicated with white contours are not captured during the localization process and 

therefore there are no initial contours for these parts. It is clear that further work remains to be 

done toward a better MR image parsing for these cases. 

 

Figure  5.29 : Original image (left) and its proposed initialization with white contours 

superimposed on it to indicate the missing parts (right) 
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It is notable that this limitation also exists for the other three mentioned methods for active 

contour initialization (figure 5.30). 

 

 

Figure  5.30 : The other three methods also failed to capture the bone structures in the example 

image in figure 5.29 

 

 Limited to 2D: the proposed algorithm is designed for 2D image where we generate 2D meshes 

construct curves to initialize active contours. Extending the algorithm to 3D and deal with 

volumetric images directly will need generating 3D meshes and constructing active surfaces 

which are not trivial and computationally efficient tasks. Therefore the recommended way for 

building 3D model is to discretize the contours and connects the corresponding nodes from 

successive slices. 

Topology change: Since we have implemented the algorithm using parametric deformable 

models, there is no automatic handling of topology change. We have not provided any solution to 

handle topology change and if there are adjacent active models belong to the same part which can 

be merged together, the method just output them as separate contours. 
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CHAPTER 6 CONCLUSION 

 

This thesis has addressed the general problem of automatic multi-object MR image segmentation 

by incorporating anisotropic mesh adaptation. The literature, reviewed in Chapter 2, highlighted 

the challenges of finding appropriate methods for MR image segmentation and challenges of 

extracting multiple organs and tissues within the image automatically and also revealed the 

current limitations of the state-of-the-art. Further, mesh-based image representation methods with 

their advantages and limitations in image analysis area are described. 

According to the literature, deformable models have been proven very successful methods for 

challenging multi-object MR image segmentation. The main limitation for these methods toward 

general-purpose automatic segmentation is in their initialization phase. A suitable initialization 

can prevent failure caused by entrapment in local minima and help capture the boundary of 

objects. It will also reduce the number of iterations that the method needs to converge. The 

existing automatic active contour initialization methods are not found so efficient for detecting 

multiple organs and tissues from MR data. Therefore during the thesis we have proposed a new 

automatic active contour initialization approach by employing anisotropic adaptive meshes. We 

have concluded that anisotropic adaptive mesh can be used to reveal more robust and accurate 

information about edge structure and orientation from eigenvalues and eigenvectors of the 

defined metric. In other words, anisotropic adaptive mesh constructed from MR image contains 

higher level, abstract information about anatomical structures of the organs and tissues within the 

image retained as the elements shape and orientation. Using this information we have localized 

different anatomical structures in a given MR image and automatically initialized several active 

contours using B-Spline curves. This initialization step followed by contour evolution based on 

VFC external force field leads to a final segmentation with better performance and accuracy. 

Also we have shown that we can improve the mesh-based image representation by introducing a 

new metric computation approach. Based on the experiments, the existing anisotropic adaptive 

meshes which are used for mesh-based image representation are not very efficient. The main 

limitation of constructing metric tensors using these methods manifests itself in inadequate mesh 

element alignment to inclined edges of the image. Therefore, a new metric computation based on 

directional Hessian matrix considering neighbors along the edge direction was proposed which 
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has improved the mesh anisotropy along non-orthogonal edges for anisotropic mesh adaptation. 

The results and improvements from the research objectives have been discussed individually in 

Chapter 5. The main finding and contributions are briefly reminded in the following. 

 

6.1 Contributions     

The work described in this thesis, which incorporates anisotropic adaptation technique into a 

deformable model-based segmentation for detection of multiple organs in MR images, presents 

the following major contributions: 

1. Improving mesh anisotropy along inclined edges in a mesh-based image 

representation. This leads to an adaptation process that can: align adequately element 

edges with the edges present in an image, regardless of the edge direction, improve the 

quality of the anisotropic meshing and reduce the number of mesh elements which are 

considered as important properties in mesh-based image representation and related 

numerical simulations application in biomedical engineering. The originality of this 

representation lies in our new metric computation for anisotropic adaptation process. 

2. Introducing mesh-based active contour initialization. This leads to an automatic 

initialization of several active models by exploiting an adaptive mesh generation 

technique. This enables us to extract initial object boundaries close to the exact 

boundaries of multiple objects simultaneously, which speeds up the evolution process and 

prevents the model to converge to local minima. The originality of the proposed 

initialization is in incorporating anisotropic mesh adaptation in active contour 

initialization. 

3. Introducing a multi-object MR image segmentation framework. This represents an 

automatic mesh-based segmentation method that allows evolving several active contours 

simultaneously using vector field convolution as an external force. Experiments and 

comparisons show the advantages of the new method in detecting multiple organs in MR 

images.   

 



93 

 

Solving the aforesaid problems has many practical and clinical applications in MR image 

analysis especially when the exact shape of the anatomical structures is of great interest. One of 

the most demanding examples of such applications is the segmentation of MR images of the 

human trunk. An important clinical usage of this segmentation is to create a 3D patient-specific 

model of anatomical structures for simulation purposes. In this regard, a sequence of 2D 

transversal slices is segmented to extract the contours of different anatomical structures. Then the 

contours are discretized to a number of nodes, and the corresponding nodes from successive 

slices are connected to create a tetrahedral mesh as a 3D model. 

The next section now establishes the main recommendations, based on the contributions found in 

the thesis. 

 

6.2 Recommendations and Perspectives 

In our approach for anisotropic mesh adaptation, the metric is rather simple: It is constructed 

from Hessian matrix containing second partial derivatives of image pixels. This metric permits 

fast implementation and work fairly well in our approach; however it failed to reveal anisotropic 

features in the areas with low contrast. As future work, we recommend to construct a metric from 

more advanced techniques such as Shearlet [129] to extract anisotropic features from an image 

and perform multiresolution analysis to alleviate this limitation. 

Also the idea presented for segmenting multiple organs and tissues from MR images can be 

applied to other medical image modalities such as CT images, etc. where the boundaries of the 

organs need to be well defined. 

In our model, we have used an explicit representation for deformable models and presented active 

contour models by parametric B-Spline curves. This representation allows direct interaction with 

the model and provides the advantages of high computational efficiency and simple 

implementation. However, topology changes such as splitting or merging contours during the 

deformation can be difficult to cope with. Therefore, it is worth also implementing the models 

implicitly with geometric deformable models which have the advantage of naturally handling the 

topology changes. 
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