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Abstract

Automatic and accurate segmentation of the prostate and rectum in planning CT images is a 

challenging task due to low image contrast, unpredictable organ (relative) position, and uncertain 

existence of bowel gas across different patients. Recently, regression forest was adopted for organ 

deformable segmentation on 2D medical images by training one landmark detector for each point 

on the shape model. However, it seems impractical for regression forest to guide 3D deformable 

segmentation as a landmark detector, due to large number of vertices in the 3D shape model as 

well as the difficulty in building accurate 3D vertex correspondence for each landmark detector. In 

this paper, we propose a novel boundary detection method by exploiting the power of regression 

forest for prostate and rectum segmentation. The contributions of this paper are as follows: 1) we 

introduce regression forest as a local boundary regressor to vote the entire boundary of a target 

organ, which avoids training a large number of landmark detectors and building an accurate 3D 

vertex correspondence for each landmark detector; 2) an auto-context model is integrated with 

regression forest to improve the accuracy of the boundary regression; 3) we further combine a 

deformable segmentation method with the proposed local boundary regressor for the final organ 

segmentation by integrating organ shape priors. Our method is evaluated on a planning CT image 

dataset with 70 images from 70 different patients. The experimental results show that our 

proposed boundary regression method outperforms the conventional boundary classification 

method in guiding the deformable model for prostate and rectum segmentations. Compared with 

other state-of-the-art methods, our method also shows a competitive performance.
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1 Introduction

Prostate cancer is the second leading cause of cancer death among American males [1]. 

According to the American Cancer Society, approximately 233,000 new prostate cancer 

cases and 29,480 prostate-cancer-related deaths will occur in the United States in 2014. 

Image-guided radiation treatment (IGRT) is currently one of the major treatments to prostate 

cancer after a tumor is determined by the transrectal ultrasound guided needle biopsy [2–4]. 

In IGRT, the prostate and surrounding organs (e.g., rectum and bladder) are manually 

segmented from the planning image by physician(s). Then a treatment plan is designed, 

based on the manual segmentation, to determine how the high-energy x-ray beams are 

accurately delivered to the prostate, while effectively avoiding the surrounding healthy 

organs. However, manual segmentation of these pelvic organs in the planning image is a 

time-consuming procedure, and also suffers from large intra- and inter-observer variations 

[5]. As a result, inaccurate delineations of these organs could potentially lead to an improper 

treatment plan, thus, a wrong dose delivery. To ensure high efficiency and efficacy of the 

cancer treatment, automatic and accurate pelvic organ segmentation from the planning 

image is highly desired in IGRT. In this paper, we focus on the segmentation of the prostate 

and rectum.

Despite its importance in IGRT, automatic and accurate segmentation of the prostate and 

rectum in the CT image is still a challenging task due to the following reasons. For the 
prostate, although their shapes in different patients are relatively stable, the image contrast 

of the prostate is low (see both (a) and the blue area of (b) in Fig. 1). Besides, due to bowel 

gas and filling, the relative position of the prostate to its surrounding structures often 

changes across different patients (see the blue areas of both (b) and (c) in Fig. 1). For the 
rectum, its appearance and shape in different patients are highly variable due to uncertain 

existence of bowel gas (see the green areas of both (b) and (c) in Fig. 1).

To address these challenges, many pelvic organ segmentation methods have been proposed 

for the CT image. The methods in [6–9] use patient-specific information to localize pelvic 

organs. In these methods, images from the same patient are exploited to facilitate organ 

segmentation. Feng et al. [6] leveraged both population and patient-specific image 

information for prostate deformable segmentation. Liao et al. [7] and Li et al. [8] enriched 

the training set by gradually adding segmented daily treatment images from the same patient 

for accurate prostate segmentation. Gao et al. [9] employed previous prostate segmentations 

of the same patient as patient-specific atlases to segment the prostate in CT images. Since no 

images previously from the same patient are ready available in the planning stage, the 

methods proposed in [6–9] cannot be directly applied to the pelvic organ segmentation in 

planning CT images. Therefore, it is critical to develop a population-based segmentation 

method. In this way, Costa et al. [10] presented a non-overlapping constraint (from the 
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bladder) on coupled deformable models for prostate localization. Chen et al. [5] adopted a 

Bayesian framework with anatomical constraints of surrounding bones to segment the 

prostate. Martínez et al. [11] employed a geometrical shape model to segment the prostate, 

rectum and bladder under a Bayesian framework. These methods used simple image 

intensity or gradient as appearance information for organ segmentation. Due to low 

boundary contrast, it is not enough to accurately segment pelvic organs, i.e., prostate and 

rectum. Alternatively, Lu et al. [12] adopted a classification-based boundary detection for 

pelvic organ segmentation and achieved promising performance.

On the other hand, random forest [13], as an ensemble learning method, is becoming popular 

in image processing [14–18] due to its efficiency and robustness. Gall et al. [14] combined 

random forest and Hough transformation to predict a bounding box for object detection. 

Criminisi et al. [15] employed regression forest to vote organ locations in CT images. Chu et 

al. [16] adopted regression forest to detect landmarks in 2D cephalometric X-ray images. In 

all these methods, random forest is mainly used for rough object localization or landmark 

detection. Due to the robustness of random forest, these methods are often used as a robust 

initialization of later segmentation methods. Recently, Chen et al. [17] and Lindner et al. 

[18] extended the idea of landmark detection for deformable segmentation. Specifically, 

Chen et al. [17] applied regression forest to predict each landmark of a shape model with 

geometric constraint, and further exploited landmark response maps to drive the deformable 

segmentation of the femur and pelvis. Lindner et al. [18] trained a regression forest for each 

landmark of a 2D shape model to iteratively predict the optimal position of each landmark 

for proximal femur segmentation. Although these methods show a promising prospect in 2D 

segmentation, in general, they cannot be directly applied to 3D segmentation due to the 

following reasons: 1) the number of vertices in 3D shape is often too great to simply train 

one landmark detector for each vertex, as each landmark detector often requires hours to 

train; 2) the training of each landmark detector also requires relatively accurate landmark 

correspondence, which is easy to be manually annotated in 2D images, but can be very 

difficult in 3D images. Although Chen et al. [17] performed a preliminary study to apply the 

method on a 3D dataset, due to the aforementioned problem, only a small number of key 

landmarks are employed to infer the entire organ shape for segmentation. Since the 3D 

shape cannot be well represented by a small number of landmarks, especially for the 

complex structure such as the rectum, its accuracy for 3D segmentation can be limited. 

When aggregating voting results from different context locations, these methods often 

disregard the distances from these context locations to the target object. Since voxels closer 

to the target object should be more informative than those far-away voxels, their votes 

should be more important and their respective weights should be larger than those of the far-

away voxels.

To address the limitations of these previous approaches, we propose a novel boundary 

detection method and further incorporate it into an active shape model for both prostate and 

rectum segmentation. Specifically, we first employ regression forest to train a boundary 

regression model, which can predict the 3D displacements from different image voxels to 

their nearest points on the target boundary, based on local image features of each image 

voxel. To determine the target boundary, regression voting is further adopted to vote the 

Shao et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nearest boundary point from different context locations using the estimated 3D 

displacements. Since the voxels far away from the target boundary are not informative for 

boundary detection, we particularly develop a local voting strategy to restrict votes from far-

away locations and only allow votes from near-boundary voxels. Then, we further integrate 

the regression forest with an auto-context model to increase the performance of our 

boundary regression. Finally, by taking the voting map of the target boundary as an external 

force, a deformable model is utilized for the precise organ segmentation with shape priors.

The contributions of our work are threefold. 1) We present a novel local boundary 

regression method by training only one regression forest to detect the entire target boundary. 

In this way, our method avoids training for a large number of landmark detectors in guiding 

the deformable segmentation, as well as the construction of 3D landmark correspondences 

for the shape model across training images, which is often difficult to be achieved in 

practice as mentioned above. 2) An auto-context model is adopted to exploit contextual 

structure information of images in order to improve the performance of our boundary 

regression. 3) Based on the predicted organ boundary, a deformable model is applied to 

incorporate shape priors for precise segmentation of each pelvic organ. In the experimental 

section, we compared our boundary regression method with the boundary classification 

method. The results show that our boundary regression method can achieve much higher 

segmentation accuracy than the boundary classification method for both prostate and 

rectum.

The remainder of the paper is organized as follows. Section 2 gives an overview of the local 

boundary regression method, followed by details of each component in our method. Section 

3 presents the experimental results. Finally, the paper concludes with Section 4.

2 Method

Our method aims to accurately segment pelvic organs from the planning CT images via a 

novel boundary detection method. Specifically, we first automatically detect several key 

landmarks on the organ boundary (by a regression-based detection method [19]) to initialize 

the organ shape (as demonstrated in Fig. 2(a)). Based on the initialization, we know the 

rough location of the organ boundary and define a local region near that potential organ 

boundary. Second, we propose a local boundary regression method (as shown in Fig. 2(b)) 

to vote the organ boundary from the image voxels within the estimated local region. Thus, a 

boundary voting map can be obtained to enhance the entire organ boundary in the CT image 

(as indicated in Fig. 2(c)). Third, to boost the performance of our boundary regression 

method, we further combine our regression forest with the auto-context model [20] to 

improve the quality of the boundary voting map (as shown in Fig. 2(d)). Finally, a 

deformable model, learned in the training stage, is applied to the obtained boundary voting 

map for the final organ segmentation (as demonstrated in Fig. 2(e)).

2.1 Regression Forest

Recently, regression forest achieved promising results in image processing [14, 15, 17, 18, 

21–23] due to its efficiency and robustness. Essentially, regression forest is a non-linear 

regression model that can learn the mapping embedded between input variables and 
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continuous targets. In this paper, the inputs to regression forest are local appearance features 

(e.g., average intensities of blocks, or their differences, within a CT image patch), and the 

outputs (i.e., regression targets) are the 3D displacements from image voxels to an organ 

boundary or a specific boundary point. In general, regression forest consists of a set of 

decision trees. Based on the bootstrapping of training samples, each decision tree grows by 

recursively splitting the selected training samples into left and right child nodes. Here, the 

splitting of each node is determined by an optimal feature among local appearance features 

and a corresponding threshold, which are achieved by exhaustively searching over a large 

number of randomly-selected features and randomly-generated thresholds. The best splitting 

amounts to the maximum variance reduction of regression targets after node splitting, as 

defined below.

(1)

(2)

where Gi is the variation reduction of the i-th node after splitting, Oi is the i-th node, which 

contains displacements (regression targets) of training samples falling into this node, Oi,j 

(jε{L, R}) is the left and right child nodes of Oi, H(·) indicates the displacement variance of 

training samples in a node, d is one of the displacements in Oi, and d̅ is the mean of 

displacements in Oi. The node splitting stops when the maximum depth of a decision tree or 

the minimum number of training samples in a node is reached. In this paper, each leaf node 

of a decision tree stores the mean displacement of training samples in that leaf.

Given a testing sample, each decision tree of a trained regression forest individually predicts 

a 3D displacement to the potential target boundary. The predictions of all decision trees are 

then averaged to make a final prediction.

(3)

where D is the number of decision trees, and d̂
i is the prediction from the i-th decision tree.

2.2 Shape Initialization by Landmark Detection

To effectively detect organ boundaries and segment pelvic organs by deformable models, we 

need to perform shape initialization for each organ on a new image. The shape initialization 

consists of two parts: landmark detection and shape initialization, which are detailed in the 

following sub-sections.

2.2.1 Landmark Detection—To locate the prostate and rectum, we first automatically 

detect six prostate landmarks (positioned at six utmost points, namely superior, inferior, left, 

right, anterior, and posterior points of the prostate) and five rectum landmarks (positioned 

evenly along the central line of the rectum) by a regression-based landmark detection 

Shao et al. Page 5

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method [19]. Specifically, in the training stage, a regression forest Rl (l = 1,2, …, 11) is 

trained for each landmark to predict the landmark location from image voxels. The 

regression target of each regression forest is the 3D displacement vector from an image 

voxel to the interested landmark. Each image voxel is represented by the extended Haar 

features, which are obtained by convoluting the image with randomized Haar-like filters in a 

local patch (Fig. 3).

Each randomized Haar-like filter consists of one or more blocks with different polarities 

defined as follows:

(4)

(5)

where U is the number of blocks, and B(·) represents a block, the size of which is  ai and ci 

are the polarity and center of the i-th block, respectively. To fully utilize all information 

within the patch, the number of blocks (U), the center of each block (ci), and the size of each 

block (  are all randomly determined. In our implementation, the extended Haar features 

extract two types of appearance information from a patch. The first type is one-block Haar 

features (U = 1), which extract the average intensity around a particular location within the 

patch. The second type is two-block Haar features (U = 2), which extract the average 

intensity difference between two particular locations within the patch. Since the convolution 

of a Haar-like filter with the image will sum the voxel intensities covered by each block, the 

large size of each block cannot accurately localize the organ boundary, while the small size 

of each block could be disturbed by strong noises in CT images. Hence, the size of each 

block is randomly selected as either 3 or 5 with the organ size considered.

The reason we adopt the extended Haar features is that, the tissue in CT images appears to 

be more homogenous and less textural than that in other modalities, such as MRI. The 

extended Haar features can characterize both intensity and gradient information robustly by 

taking average intensities and average intensity differences of image blocks. Moreover, the 

extended Haar features can be efficiently computed by using the integral image. Even 

though the extended Haar features may include invalid features, these uninformative 

features will be filtered out during the supervised training of random forest; therefore, they 

will not affect the boundary displacement regression later.

During the testing stage, the learned regression forest Rl is used to predict the displacement 

vectors from image voxels to the potential location of landmark l. Then, these displacement 

vectors are used to vote for the l-th landmark location based on the respective image voxels. 

The position with the maximum vote in the landmark voting map is considered as the target 

landmark location. To ensure the robustness and efficiency of shape initialization, we adopt 

a multi-resolution strategy to detect the landmarks. Specifically, in the coarse resolution, we 

predict 3D displacement for every voxel in a down-sampled image. In the fine resolution, 
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we only predict 3D displacements of the voxels near the initialization determined by the 

coarse resolution. (The details of the multi-resolution strategy are descripted in [24].) The 

landmark detection results are demonstrated in Fig. 4.

2.2.2 Landmark-Based Shape Initialization—To initialize the organ shape with 

detected landmarks, we first compute a mean organ shape based on all training shapes. 

Specifically, a typical training shape is selected as a reference shape. Then, coherent point 

drift (CPD) [25] is used to warp this reference shape onto other training shapes for building 

the vertex correspondence across training shape meshes. For the rectum, there are several 

cases where CPD surface registration fails. For those cases, we use an in-house tool to 

deform the reference rectum mesh onto the rectum mask image, with human interaction, for 

building the vertex correspondence. Once the vertex correspondence is built for all training 

shapes, we affine align all these training shapes to a common space and then average the 

aligned training shapes to obtain a mean organ shape 𝒮̅. (See Section 2.5 for more details) In 

the testing stage, the mean organ shape 𝒮̅ is affine transformed onto the testing image based 

on the detected landmarks. The affine transformation is computed between the detected 

landmarks, in the testing image, and their counterparts in the mean organ shape as below:

(6)

where LM denotes landmark, ALM ∈ ℝ4×11 denotes the coordinate matrix of the detected 

landmarks in the testing image, T ∈ ℝ4×4 is an affine transformation matrix to be estimated, 

ELM ∈ ℝ4×11 is the coordinate matrix of corresponding landmarks from the mean organ 

shape. Therefore, the initial organ shape for the testing image can be obtained by applying 

the estimated affine transformation TLM on the mean organ shape.

(7)

where Sinit is the estimated initial organ shape for the testing image, and 𝒮̅ is the mean organ 

shape.

2.3 Local Boundary Regression

Motivated by point regression in deformable segmentation [21], we propose a local 

boundary regression to vote pelvic organ boundaries. Specifically, a regression forest is used 

to learn the non-linear mapping from local patch of each image voxel to its nearest target 

boundary point. Note that, compared with the landmark detection, each image voxel is still 

being represented by the extended Haar features extracted from its local patch (see Section 

2.2); however, the regression target is being defined as a 3D displacement vector from an 

image voxel to its nearest boundary point on a specific target organ.

In the training stage, from each training image, we first randomly sample a large number 

of image voxels pi (i = 1,2, …, M) around the manually-delineated organ boundary. Each 

sampled voxel pi is characterized by the randomly-generated extended Haar features F, 

extracted from its W × W × W local image patch. The corresponding regression target di is 

also defined as the 3D displacement from the sampled point pi to its nearest boundary point. 

Since the image voxels near the boundary are more informative than those far away from the 
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boundary, we sample the image voxel pi using a Gaussian distribution around the target 

boundary as follows:

(8)

(9)

where q is a boundary point randomly selected on the manually-delineated organ boundary, 

N(q) is the normal of q at the manually-delineated organ boundary, and r is a random offset 

along the normal direction, which is determined by a Gaussian distribution (0, τ). In this 

way, most sampled voxels are located around the target boundary, which makes our 

regression model specific to the target boundary. In this paper, we take 10000 training 

samples/voxels for each training image with τ = 16mm. Fig. 5(a) shows one example of our 

sampling pattern.

Up to this stage, we can learn a regression forest ℜ0 by recursive node splitting (as described 

in Section 2.1), based on all pairs of Haar feature representation and 3D displacement, i.e., < 

F(pi), di > from all training images. For the learned regression forest, the features F̃(pi) ⊂ 

F(pi), which are used in the best splitting of decision trees, are considered as optimal 

features and then recorded tree-by-tree for the later testing stage.

In the testing stage, given a testing image, we use all image voxels in a region of interest 

(ROI) for local boundary regression. The ROI is defined as a ring-shaped local region on the 

testing image, centered at the initial shape of an organ, as shown in Fig. 5(b). Here, the 

initial shape of the organ is achieved by warping the mean organ shape onto the testing 

image, according to the previously detected landmarks (see Section 2.2). Since regression-

based landmark detection could achieve robust shape initialization with reasonable overlap 

ratio (i.e., the overlap ratios [26] between the initial shapes and the manual segmentations of 

the prostate and rectum are 0.78 and 0.71, respectively, according to our experiment), the 

ring-shaped local region can be considered near the organ boundary. Then, a boundary 

voting map of the testing image can be obtained by voting from all image voxels within this 

local region. Specifically, for each image voxel p̂ in the local region, its optimal Haar 

features F̃ (p̂) can be extracted, as recorded in the training stage. Then, the respective 

displacement d̂ = ℜ0 (F̃(p̂)) can be predicted by the trained regression forest ℜ0. Based on all 

estimated 3D displacements, we can transform the testing image into a displacement map. 

Finally, a voting strategy is used to vote the target boundary from different context 

locations. For each image voxel p̂ and its corresponding estimated displacement d̂, a 

weighted vote will be accumulated at the position p̂ + d̂ in a 3D boundary voting map V.

(10)

(11)
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where ω(p̂) is a weighted vote from the image voxel positioned at p̂, DIST (p̂) is the 

Euclidean distance from p̂ to the potential target boundary determined by the initial shape 

(mentioned in Eq.(7)), δ is the radius of the ring-shape region, and σ is a control coefficient. 

In this way, we can get a boundary voting map for a target pelvic organ. A typical example 

of the prostate is shown in Fig. 2(c).

2.4 Refinement of Boundary Voting Map by Auto-Context Model

Recently, the auto-context model [20] is becoming popular, due to its capability to 

iteratively refine the classification/labeling result. Under the auto-context model, for a 

typical binary classification, a classifier can be trained to label each image point based on its 

local appearance. Then, the learned classifier can be employed on a testing image to obtain a 

probability map, where each image point has its probabilities belonging to the foreground 

and background. This probability map can be treated as another image modality for 

extracting new types of local features. Based on both the new features (namely the context 

features) from the probability map and the conventional appearance features from the 

intensity image, a new classifier can be trained to label the image again. This procedure can 

be repeated based on the iteratively-updated probability map.

In our work, we extend this idea to regression for refining our estimated displacement map. 

Specifically, we adopt the auto-context model to iteratively train a sequence of regression 

forests, by integrating both the appearance features extracted from the intensity image and 

the context features extracted from the intermediate displacement map from the previous 

regression forest. Here, the type of context features is also the extended Haar features, as 

shown in Fig. 3. The iterative procedure of the auto-context model is shown in Fig. 6. Since 

the testing stage of an auto-context model follows the same pipeline as the training stage, we 

take the training stage of the auto-context model as example (see Fig. 6).

In the training stage, we learn a sequence of regression forests ℜt (t = 0,1, …, K) by using 

the same technique as Section 2.3. Specifically, the regression forest ℜ0 is trained by using 

only appearance features (i.e., extended Haar features) extracted from intensity training 

images Ij (j = 1,2, …, N) (i.e., the original training images). Then, to learn the successive 

regression forests ℜt (t = 1,2, …, K), we extract appearance features from the intensity 

training images Ij (j = 1,2, …, N), and context features from the displacement maps t−1,j (j 

= 1,2, …, N) of those training images in the previous iteration. These two types of features 

are further combined to learn a new regression forest. In an iterative way, a set of regression 

forests can be trained to refine the boundary regression.

In the testing stage, given a testing image, the learned regression forests are sequentially 

employed to estimate refined displacement maps to achieve an accurate boundary voting 

map. Specifically, the regression forest ℜ0 is first adopted to predict the first displacement 

map, using only local appearance features from the testing image. Then, appearance features 

are extracted from the intensity testing image, while context features are extracted from the 

displacement map t−1 (t = 1,2, …, K) of the testing image in the previous iteration. By 

combining these features, the learned regression forest ℜt (t = 1,2, …, K) can gradually 

refine the boundary displacement map, which leads to a better boundary voting map in the 

end. The main reason why auto-context works is that, by using context features, the 

Shao et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlation between the displacement of the current voxel and the displacements of 

neighboring voxels can be captured in the learned regression model. This structure 

information helps improve the 3D displacement estimation, which then refine the boundary 

voting map. The refined boundary voting maps are shown in Fig. 7 (where we take the 

prostate as an example). To determine the iteration number K of the auto-context model 

during this procedure, initially we set K to a relatively large number, i.e., 10. Then, we 

observed that the training performance of our method converges by 5 iterations. Thus, we 

finally adjusted K to 5 iterations.

Joint Boundary Regression of the Prostate and Rectum—Since the prostate and 

rectum are nearby organs, in the auto-context model, we extract context features, not only 

from the previous displacement map of itself, but also from the previous displacement map 

of its nearby organ. Specifically, to estimate the prostate displacement map in the i -th 

iteration, we extract context features from the prostate displacement map in the (i − 1) -th 

iteration, and context features from the rectum displacement map in the (i − 1)-th iteration. 

The same situation applies to the rectum. In this way, the displacement maps of both organs 

are jointly predicted. The joint boundary regression can enforce non-overlapping constraint 

on the displacement maps, hence, alleviating the overlapping issues on the segmentation of 

nearby organs. The details are shown in Algorithm 1.

Algorithm 1

Joint boundary regression on Prostate and Rectum by Auto-Context Model

Input: Itest - a testing image

ℜt - trained regression model of the prostate at the t-th iteration

ℜ′t - trained regression model of the rectum at the t-th iteration

Sinit - initial shape of the prostate for the testing image (Section 
2.2)

S′init - initial shape of the rectum for the testing image (Section 
2.2)

K - number of iterations in the auto-context model

Output: Refined Boundary Voting Maps

Determine a ring-shaped local region for the prostate on the testing image Itest, based on the initial shape Sinit.

Determine a ring-shaped local region for the rectum on the testing image Itest, based on the initial shape S′init.

for each t in {0,1, …, K} do

  for each p̂ in voxel set within the ring-shaped local region of the prostate do

1 Predict the displacement vector d̂ at p̂ using ℜt, based on the appearance features from Itest and also the 
context features from both the previous prostate displacement map t−1 and the previous rectum 
displacement map t−1.

2 Cast a weighted vote at the position p̂ + d̂ of the boundary voting map Vt.

  end for

  Achieve the current prostate displacement map  t.

  for each p̃ in voxel set within the ring-shaped local region of the rectum do

1 Predict the displacement vector d̃ at p̃ using ℜ′t, based on the appearance features from Itest and also the 
context features from both the previous rectum displacement map t−1 and the previous prostate 
displacement map t−1.
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2 Cast a weighted vote at the position p̃ + d̃ of the boundary voting map V′t.

  end for

  Achieve the current rectum displacement map  t.

end for

Return: Final Boundary Voting Maps VK and V′K

Here, −1 and −1 are both null, which means that, if t = 0, the displacement vector prediction depends only on Itest.

Note that, instead of the traditional radiation-like features [20] (as shown in Fig. 8), the 

context features in our paper are randomly-generated extended Haar features (as shown in 

Fig. 3), extracted from the local patch of the estimated intermediate displacement map. This 

is because the traditional radiation-like features only consider the appearance characteristics 

of some fixed positions along radiation directions, while the extended Haar features can 

consider the appearance characteristics of any position within a local image patch. Besides, 

the randomly-generated extended Haar features provide much richer feature representations 

for learning the regression forest, since the extended Haar features take into account a large 

number of feature patterns by randomly selecting the parameters in Eqs. (4)–(5). Thus, by 

combining the appearance features (from the original training images) and the context 

features (from the displacement map of previous regression forest), the auto-context model 

can iteratively refine the prediction of 3D displacement vectors for the testing image, and 

finally obtain a more accurate boundary voting map.

2.5 Deformable Segmentation based on the Boundary Voting Map

Up to this stage, the boundary voting map for the pelvic organ is achieved by using the local 

boundary regression with the auto-context model. Since the estimated boundary voting map 

highlights the potential organ boundary by votes, it can be used as an external force to guide 

the deformable model [27, 28] for pelvic organ segmentation.

In the training stage, we first extract the dense surface meshes for the prostate and rectum 

from manually-delineated binary images by the marching cube algorithm [29]. Then, one 

typical surface mesh is selected as a reference mesh, which is further smoothed and 

decimated to obtain good quality. In this paper, the number of surface vertices for the 

prostate and rectum are 931 and 1073, respectively. Afterwards, the surface registration 

method [25] is used to warp this surface onto other dense surface meshes to build vertex 

correspondence. Once the vertex correspondence is built, all surfaces have the same number 

of vertices, and vertex correspondences. All these surfaces of training images can be affine 

aligned into a common space. By taking the vertex-wise average of all aligned surfaces, we 

can obtain a mean shape 𝒮̅. Furthermore, by using PCA on the aligned shapes with 98% 

variation, we can also achieve a PCA shape space.

Shao et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where  is a shape in the PCA shape space, 𝒮̅ is the mean shape of all aligned training 

surfaces,  includes a set of major modes of shape variation, and b is the parameter of the 

shape space to control the shape .

In the testing stage, based on the initial shape inferred by the detected landmarks in Section 

2.2, each vertex in the shape model can be independently deformed on the boundary voting 

map. Since the appearance of each image is simplified by the boundary regression voting, 

the shape model deforms along each model point’s surface normal, to a position with the 

maximum boundary votes. In the meantime, the deformed shape Sdfm is refined by the 

learned PCA shape model. Specifically, we project the deformed shape Sdfm into the 

parameter space, i.e., b = T (T−1 Sdfm − 𝒮̅), and then limit each eigen-coefficient bi of b 

into a range of , to obtain a new parameter b̂. Here, λi is the eigenvalue 

regarding the i-th mode of the shape variation. T−1 is a transformation to project the 

deformed shape into the PCA shape space. With an inverse transformation T, a refined shape 

Sref can be achieved by Sref = T(𝒮̅ +  b̂). The weighted sum of the refined shape Sref and 

the deformed shape Sdfm is considered as the finally deformed shape of this iteration. During 

the segmentation, the weight of the PCA refined shape is gradually decreased from 1 to 0 

with the increase of iteration. Initially, we solely rely on the shape constraint. When linearly 

combining the tentatively deformed shape and the PCA refined shape, we use only the PCA 

refined shape. In the later iterations, the weight for the PCA refined shape is linearly 

decreased to make the model more adaptive to the boundary voting map. In the last 

iterations, when the model is close to the target boundary, the weight for the shape constraint 

becomes zero, and, thus, the model is purely guided by the boundary voting map. This 

weight-adaptive strategy is especially important for those not-well-initialized cases, since 

the initial focus of shape constraint can largely relieve the dependency on good initialization 

of the deformable model. By alternating the model deformation and shape refinement, the 

shape model can be gradually driven onto the organ boundary under guidance from both the 

boundary voting map and the PCA shape space. If the intermediate deformed shape no 

longer changes, the deformable model will converge.

3 Experiments

To evaluate the performance of our proposed method, we conduct experiments on a pelvic 

organs dataset acquired from the North Carolina Cancer Hospital. The dataset consists of 70 

planning CT images from 70 different patients, all with prostate cancer. Each image has 

voxel size 0.938×0.938×3.0 mm3, and was isotropically resampled to 2.0 × 2.0 × 2.0 mm3 

for the experiment. A clinical expert manually delineated the prostate and rectum in all 70 

images, which we use as the ground truth in our experiment.

To quantitatively evaluate our proposed method, we employ five commonly used metrics:

1. Dice similarity coefficient (DSC) [26] is an overlap measure between the 

segmented organ and the manual ground-truth.

(12)

Shao et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where TP is the number of correctly labeled organ voxels, FP is the number of 

falsely labeled organ voxels, and FN is the number of falsely labeled background 

voxels.

2. False Positive Ratio (FPR) is the proportion of wrongly labeled voxels in the 

automatic segmentation.

(13)

3. Positive Predictive Value (PPV) is the proportion of correctly labeled voxels in the 

automatic segmentation.

(14)

4. Sensitivity (SEN) is the proportion of correctly labeled voxels in the organ.

(15)

5. Average surface distance (ASD) is the average distance between the surface of 

automatic segmented organ (SEG) and that of the manual ground-truth (GT).

(16)

where d (z, GT) is the minimum distance of voxel z on the automatic segmented 

organ surface SEG to the voxels on the ground-truth surface GT, d (u, SEG) is the 

minimum distance of voxel u on the ground-truth surface GT to the voxels on the 

automatic segmented organ surface SEG, and |․ | is the cardinality of a set.

In the experiments, we use four-fold cross-validation to evaluate our method. In each fold, 

the landmark detectors, boundary regression forests, and PCA shape models are trained with 

images from different folds. The accuracies of four folds are finally averaged to achieve the 

reported results. The parameter setting of our method is as follows: the number of trees D in 

each regression forest is 10; the maximum depth of each tree is 15; the number of candidate 

features for node splitting is 1000; the minimum number of training samples in each leaf is 

5; the patch size W for extracting Haar features is 60mm; the number of samples drawn near 

the pelvic organ boundary in each training image is M = 10000; the number of iterations in 

the auto-context model is 5 (i.e., K = 4); the number Y of iterations used for deformable 

model is 20. The sigma in Gaussian weighted local voting strategy, (i.e., σ in Eq. (11)) is 8. 

The local region for the boundary regression voting is determined by a ring of 16mm width 

near the initial shape of the deformable model.
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3.1 Parameter Setting

In this paper, most parameters in random forest are learned from [15, 18, 21, 30]. In [25], the 

authors provided a comprehensive sensitivity analysis of random-forest parameters, which 

we found also applicable to our method. Besides, we also perform sensitivity analyses of 

other key parameters, such as patch size, deformation iterations, and sigma in the Gaussian 

weighting. Fig. 10 shows the segmentation accuracy of our method with respect to 1) the 

patch size of Haar features, 2) the number of deformation iterations, and 3) sigma values in 

Gaussian-weighted local voting, respectively. As we can see, the optimal patch size is 60 × 

60 × 60mm, and both smaller and larger patch sizes lead to inferior performances. The 

number of deformation iterations should be set to be greater than 15, to ensure convergence. 

The optimal sigma is between 4 and 10. Smaller sigma causes insufficient votes, which 

leads to unreliable boundary voting maps, while larger sigma introduces noisy votes from 

far-away regions, which lowers the specificity of boundary voting maps.

3.2 Intensity Image vs Boundary Voting Map

To validate the effectiveness of our boundary voting map for deformation segmentation, we 

apply the deformable model on the intensity image and the boundary voting map to compare 

their segmentation results. On the intensity image, the deformable model searches the 

maximal gradient magnitude along the surface normal of each model point; while on the 

boundary voting map, the deformable model finds the maximum boundary votes along the 

surface normal of each model point. Note that, the deformable model on the intensity image 

uses the same initial shape, same shape constraint, and same number of iterations as those on 

the boundary voting map.

From Table 1, we can see that, the segmentation results on the intensity image are 

significantly worse than those on the boundary voting map. The reason is that the image 

contrast of pelvic organs is low in CT images, which tends to result in boundary leakage of 

the segmentation results on the intensity images. In contrast, our boundary regression 

method provides a much clearer boundary voting map for guiding deformable segmentation, 

which produces much higher segmentation accuracy.

3.3 Boundary Regression vs Boundary Classification

Classification and regression are the two common ways to detect anatomy [31]. To evaluate 

the effectiveness of our boundary regression method, we conduct a comparative experiment 

with the boundary classification method [12, 32].

• In the boundary classification method, we employ classification forest as a 

classifier, by using the same setting as boundary regression, to estimate the 

probability of each voxel belonging to the target boundary. We dilate the manually-

delineated boundary by one voxel to take into account the near-boundary region. In 

this region, we randomly draw samples to get positive samples. To separate the 

positive and negative samples, we set a neutral region between the positive and 

negative samples where no samples are drawn. Then, in another region, such as 3 to 

8 voxels from the manually-delineated boundary, we randomly select the same 

number of negative samples as that of positive samples. Finally, we randomly draw 
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a few negative samples in the rest region. Consequently, the total proportion 

between the positive and negative samples is 1:1.5. Since the majority of samples 

are close to the target boundary, the learned classification model is specific to the 

target boundary detection. After classification, the generated boundary 

classification map can be used to guide a deformable model onto the target 

boundary by finding the maximum response along the normal direction of each 

model point. It is worth noting that, in our boundary classification method, the 

image patch sampled at each voxel is not aligned with the shape normal. While, 

there are other boundary classification methods [33, 34] that can leverage the 

available shape normal information for sampling image patches. This facilitates the 

training of a better boundary detector using steerable features, since boundary 

voxel patterns are much better aligned with the shape normal.

• In our boundary regression, we just use the sampling scheme, as shown in Eqs. 

(8)–(9). Here, the proportion between positive and negative samples is 1:1. After 

regression voting, the obtained boundary voting map is employed to drive the 

deformable segmentation by searching the maximum boundary votes along the 

normal direction of each model point.

• Note that, both methods use the same features, same shape models, and same auto-

context strategy.

To visually compare our boundary classification and regression methods, Fig. 11 shows the 

boundary classification maps and the boundary voting maps for the prostate and rectum, 

respectively. Due to the ambiguous boundaries of both organs (especially at the apex and 

base), the boundary classification maps of both organs do not agree well with the manually-

delineated boundaries (as shown in column (d) of Fig. 11), while the boundary voting maps 

of both organs agree better with the manually-delineated boundaries (as shown in column (e) 

of Fig. 11). This is because the boundary classification methods aim to voxel-wisely label 

the target boundary according to its local appearance, which is difficult due to the 

ambiguous boundaries of both the prostate and rectum, and possibly results in the incorrect 

classification of boundary voxels. In contrast, our boundary regression employs voxels near 

the target boundary to vote the boundary location, which provides rich context information 

to overcome the limitation of indistinct boundary appearances.

Table 2 quantitatively compares the segmentation accuracies of these two methods. As we 

can see, our boundary regression method gives better segmentations, in terms of higher DSC 

and lower ASD, than the boundary classification method. It is worth noting that, the much 

inferior accuracies of rectum segmentation by the classification method is because the 

boundary appearance is complex at the apex and base of the rectum, which results in a great 

challenge for the classification method. In summary, both qualitative and quantitative results 

show that our regression method is more effective than the classification method for 

boundary segmentations of the prostate and rectum in CT images.

3.4 Effectiveness of the Auto-context Model

To evaluate the importance of the auto-context model, we refine the boundary voting map 

using both the appearance features of intensity training images and the context features of 
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intermediate displacement maps iteratively. In Fig. 7 above, we took the prostate as an 

example to show the boundary voting maps estimated with the auto-context model at the 1st, 

3rd and 5th iteration, respectively. As we can see, with the increase of iteration, the estimated 

prostate boundary becomes much clearer and closer to the manually-delineated prostate 

boundary.

To quantitatively evaluate the auto-context model, at each iteration, we perform deformable 

segmentation on the boundary voting map, and then measure the performance using the 

average segmentation accuracy across four-fold cross-validation. It is worth noting that, 

according to our observation, the training performance of our method converges with 5 

iterations. As shown in Fig. 12, the DSC values of both the prostate and rectum increase 

with iterations, while the ASD values of both the prostate and rectum decrease with 

iterations. These results also show the iterative improvement with the auto-context model, 

which demonstrates the effectiveness of the auto-context model in enhancing the boundary 

voting map.

3.5 Comparison with Other State-of-the-art Methods

To justify the effectiveness of our proposed method in prostate and rectum segmentations, 

we also compare our method with other pelvic organ segmentation methods. However, since 

none of the state-of-the-art methods [5, 10–12] published their source codes or binary 

executables, it is difficult to conduct fair comparisons using the same dataset. To obtain a 

rough accuracy assessment of our method in CT pelvic organ segmentation, we list the 

performances achieved by the state-of-the-art methods [5, 10–12] in Table 3 and Table 4, 

respectively. Since different methods use different metrics to evaluate their segmentation 

results, in this section, we have computed seven metrics to evaluate our method and perform 

comparison with other methods.

As can be seen from Table 3 and Table 4, our method achieves competitive performance on 

both the prostate and rectum to other segmentation methods under comparison. Since Costa 

et al. [10] did not included results on the rectum segmentation, this method is not listed in 

Table 4.

To further justify the effectiveness of our method, we also implement a multi-atlas based 

segmentation method on the same dataset for comparison. Specifically, we first uniformly 

select 26 atlases from training images. Given a testing image, we detect landmarks for each 

organ (i.e., 6 landmarks for the prostate and 5 landmarks for the rectum) by the method 

described in Section 2.2, and then warp those 26 atlases onto the testing image with their 

affine transformations, estimated between the detected landmarks and the corresponding 

vertices of prostate and rectum surfaces in the atlas images. After all atlases are affine 

aligned onto the testing image, a majority voting strategy is then adopted to fuse the labels 

from the warped atlases. From Table 3 and Table 4, we can see that, our method 

outperforms the multi-atlas based segmentation method for both the prostate and rectum on 

the same dataset.
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4 Conclusions

We have presented a novel boundary detection method for both prostate and rectum 

segmentations in planning CT images. Compared with previous regression methods, which 

train one regression forest for each point on the deformable model, we learn a local 

boundary regression to predict the entire boundary of each target organ. To boost the 

boundary regression performance, we further combine the regression forest with the auto-

context model to iteratively refine the boundary voting map for both the prostate and rectum. 

Finally, the deformable model is adopted to segment the prostate and rectum under guidance 

from both the boundary voting map and the learned shape space. Validated on 70 planning 

CT images from 70 different patients, our boundary regression method achieves 1) better 

segmentation performance than the boundary classification method, and 2) competitive 

segmentation accuracy to the state-of-the-art methods under comparison.

In the future, we will further perform the following investigations:

• In our current implementation, the prostate and rectum are not completely jointly 

segmented. We manually checked all of our segmentation results, and found that 

only 15 out of 70 images have slight overlapping issue for the segmented prostate 

and rectum, with at most 1–2 voxels overlapping in the touching boundary. It may 

be caused by the use of joint boundary regression, which takes context features of 

both organs into account for boundary localization and has less overlapping issue. 

In future works, we plan to explicitly address this overlapping issue as what 

Kohlberger et al. [35] did in their paper.

• In this paper, we voted the nearest boundary point from image voxels by utilizing 

the local appearance. If there is a deep concave on the organ boundary, e.g., rectum 

boundary, it is likely to cast no votes at the valley of the concave, which results in 

the disconnection of the voted organ boundary. This is the main reason that we 

employed the shape-constrained deformable model to achieve the final 

segmentation. A potential solution is to vote multiple nearest boundary points 

(instead of only 1 boundary point) for each image voxel to alleviate the issue.

• So far, we mainly focused on the segmentation of the prostate and rectum in CT 

images. We also tested our method on segmenting the bladder in CT images, and 

obtained 0.86±0.08 for DSC and 2.22±1.01 mm for ASD. However, due to the 

variable shape of the bladder, it is difficult to define anatomical landmarks with 

reliable appearance on the bladder, which prevents us from achieving robust 

initialization for the deformable model. This also accounts for the large standard 

deviation in our segmentation results on the bladder. In future works, we will 

investigate the joint segmentation of all three pelvic organs to address this 

limitation.
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Highlights

• We present a novel boundary detection method to segment prostate and rectum 

in CT images with deformable model.

• This is achieved by using local boundary regression to vote the target boundary 

from a near-boundary local region.

• Auto-context model is integrated to iteratively improve the voted target 

boundary.

• This is the first work to vote the whole target boundary by one regression forest.

• Our method is competitive to the state-of-the-art methods under comparison.
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Fig. 1. 
Typical CT images. Images (a) and (b) are from the same slice of the same patient, while 

image (c) comes from the corresponding slice of a different patient. The blue and green 

areas indicate the manual segmentations (ground truth) of the prostate and rectum, 

respectively. The red arrows indicate the bowel gas, while the cyan arrows indicate the 

indistinct rectum boundary.
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Fig. 2. 
A demonstration of our segmentation method for the prostate. (a) shows the original image 

overlaid with an initial shape (green curve), which is warped from the mean shape according 

to the detected key landmarks (as detailed in Section 2.2). (b) demonstrates the local 

boundary regression by the near-boundary image patches (blue cubes), where three red 

arrows indicate the displacement vectors (regression targets) from the centers of the image 

patches to their corresponding nearest boundary points. (c) shows the boundary voting map 

by our local boundary regression method using only image appearance features. (d) shows 

the refined boundary voting map by the auto-context model, integrating the context features. 

(e) shows the final prostate segmentation (green region) by the deformable model.
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Fig. 3. 
Illustration of typical Haar-like filters. The cyan rectangle indicates an image patch. The red/

blue cube indicates a block in the image patch with positive/negative polarities.

Shao et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Illustration of landmark detection for prostate (image (a), in transverse view) and rectum 

(image (b), in sagittal view). The green + crosses indicate the ground-truth landmarks 

manually annotated by an expert, while the red × crosses are the detected landmarks by the 

regression based landmark detection method.
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Fig. 5. 
Illustration of both our sampling scheme for a target organ (a) and the region of interest for 

local boundary regression (b). In (a), the green curve indicates the manually-delineated 

organ boundary, and the white points show the randomly sampled voxels. In (b), the green 

curve indicates the near-boundary initial shape of an organ, and the white region represents a 

ring-shaped local region.
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Fig. 6. 
Flowchart of the auto-context model in our proposed method.
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Fig. 7. 
Boundary voting maps of a patient generated by the auto-context model. The green curves 

indicate the manually-delineated organ boundaries. With iterative refinement, we can see a 

more and more accurate boundary voting map.
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Fig. 8. 
Traditional radiation-like context features. For a specific point (the cyan rectangle), multiple 

rays in equal intervals are extended from the point in different directions, and the context 

locations are sparsely sampled on these rays (as the colorful points show). The average 

(probability) of a small block centered at each context location is usually considered as a 

feature to represent this context location.
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Fig. 9. 
Flowchart of boundary-voting-guided deformable segmentation. Here, we take the prostate 

as an example. The red crosses indicate the detected landmarks.
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Fig. 10. 
Segmentation accuracy with respect to (a) the path size of Haar features, (b) the number of 

iterations in deformable model, and (c) sigma values in Gaussian-weighted local voting, 

respectively.
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Fig. 11. 
Results of boundary classification and boundary regression for the prostate (top row) and 

rectum (bottom row) in sagittal view. The red and green contours denote the automatically-

segmented and manually-delineated boundaries, respectively.
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Fig. 12. 
Iterative improvement of organ segmentation accuracy (using the DSC and ASD metrics) 

with the use of the auto-context model. The unit of ASD is mm.
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Table 1

Quantitative comparison of deformable segmentations on the intensity image and boundary voting map, 

respectively.

Method DSC ASD (mm)

Intensity image
Prostate 0.80±0.06 2.58±0.67

Rectum 0.74±0.10 3.58±1.09

Boundary voting map
Prostate 0.88±0.02 1.86±0.21

Rectum 0.84±0.05 2.21±0.50
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Table 2

Quantitative comparison of boundary classification and boundary regression.

Method DSC ASD

Boundary classification
Prostate 0.82±0.07 2.37±0.95

Rectum 0.76±0.06 3.36±0.09

Boundary regression
Prostate 0.88±0.02 1.86±0.21

Rectum 0.84±0.05 2.21±0.50

The unit of ASD is mm.
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