23 research outputs found

    A Vernacular for Coherent Logic

    Full text link
    We propose a simple, yet expressive proof representation from which proofs for different proof assistants can easily be generated. The representation uses only a few inference rules and is based on a frag- ment of first-order logic called coherent logic. Coherent logic has been recognized by a number of researchers as a suitable logic for many ev- eryday mathematical developments. The proposed proof representation is accompanied by a corresponding XML format and by a suite of XSL transformations for generating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in a natural language form (formatted in LATEX or in HTML). Also, our automated theorem prover for coherent logic exports proofs in the proposed XML format. All tools are publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014

    Property-Based Testing via Proof Reconstruction Work-in-progress

    Get PDF
    International audienceProperty-based testing is a technique for validating code against an executable specification by automatically generating test-data. From its original use in programming languages, this technique has now spread to most major proof assistants to complement theorem proving with a preliminary phase of conjecture testing. We present a proof theoretical reconstruction of this style of testing for relational specifications (such as those used in the semantics of programming languages) and employ the Foundational Proof Certificate framework to aid in describing test generators. We do this by presenting certain kinds of " proof outlines " that can be used to describe the shape and size of the generators for the conditional part of a proposed property. Then the testing phase is reduced to standard logic programming search. After illustrating our techniques on simple, first-order (algebraic) data structures, we lift it to data structures containing bindings using λ-tree syntax. The λProlog programming language is capable of performing both the generation and checking of tests. We validate this approach by tackling benchmarks in the metatheory of programming languages coming from related tools such as PLT-Redex

    A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality

    Get PDF
    International audienceWe developed a formal framework for CDCL (conflict-driven clause learning) in Isabelle/HOL. Through a chain of refinements, an abstract CDCL calculus is connected to a SAT solver expressed in a functional programming language, with total correctness guarantees. The framework offers a convenient way to prove metatheorems and experiment with variants. Compared with earlier SAT solver verifications, the main novelties are the inclusion of rules for forget, restart, and incremental solving and the application of refinement

    On the Fine-Structure of Regular Algebra

    Get PDF
    Regular algebra is the algebra of regular expressions as induced by regular language identity. We use Isabelle/HOL for a detailed systematic study of the regular algebra axioms given by Boffa, Conway, Kozen and Salomaa. We investigate the relationships between these systems, formalise a soundness proof for the smallest class (Salomaa’s) and obtain completeness for the largest one (Boffa’s) relative to a deep result by Krob. As a case study in formalised mathematics, our investigations also shed some light on the power of theorem proving technology for reasoning with algebras and their models, including proof automation and counterexample generation

    Learning-Assisted Automated Reasoning with Flyspeck

    Full text link
    The considerable mathematical knowledge encoded by the Flyspeck project is combined with external automated theorem provers (ATPs) and machine-learning premise selection methods trained on the proofs, producing an AI system capable of answering a wide range of mathematical queries automatically. The performance of this architecture is evaluated in a bootstrapping scenario emulating the development of Flyspeck from axioms to the last theorem, each time using only the previous theorems and proofs. It is shown that 39% of the 14185 theorems could be proved in a push-button mode (without any high-level advice and user interaction) in 30 seconds of real time on a fourteen-CPU workstation. The necessary work involves: (i) an implementation of sound translations of the HOL Light logic to ATP formalisms: untyped first-order, polymorphic typed first-order, and typed higher-order, (ii) export of the dependency information from HOL Light and ATP proofs for the machine learners, and (iii) choice of suitable representations and methods for learning from previous proofs, and their integration as advisors with HOL Light. This work is described and discussed here, and an initial analysis of the body of proofs that were found fully automatically is provided

    ML + FV = ♡\heartsuit? A Survey on the Application of Machine Learning to Formal Verification

    Get PDF
    Formal Verification (FV) and Machine Learning (ML) can seem incompatible due to their opposite mathematical foundations and their use in real-life problems: FV mostly relies on discrete mathematics and aims at ensuring correctness; ML often relies on probabilistic models and consists of learning patterns from training data. In this paper, we postulate that they are complementary in practice, and explore how ML helps FV in its classical approaches: static analysis, model-checking, theorem-proving, and SAT solving. We draw a landscape of the current practice and catalog some of the most prominent uses of ML inside FV tools, thus offering a new perspective on FV techniques that can help researchers and practitioners to better locate the possible synergies. We discuss lessons learned from our work, point to possible improvements and offer visions for the future of the domain in the light of the science of software and systems modeling.Comment: 13 pages, no figures, 3 table
    corecore