7 research outputs found

    Automatic parameterization for expeditious modelling of virtual urban environments - a new hybrid metaheuristic

    Get PDF
    Expeditious modelling of virtual urban environments consists of generating realistic 3d models from limited information. It has several practical applications but typically suffers from a lack of accuracy in the parameter values that feed the modeller. By gathering small amounts of information about certain key urban areas, it becomes possible to feed a system that automatically compares and adjusts the input parameter values to find optimal solutions of parameter combinations that resemble the real life model. These correctly parameterized rules can then be reapplied to generate virtual models of real areas with similar characteristics to the referenced area. Based on several nature inspired metaheuristic algorithms such as genetic algorithms, simulated annealing and harmony search, this paper presents a new hybrid metaheuristic algorithm capable of optimizing functions with both discrete and continuous parameters and offer competitive results in a highly neglected field of application

    Hybrid optimizer for expeditious modeling of virtual urban environments

    Get PDF
    Tese de mestrado. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 200

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar

    Get PDF
    The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Hybrid nature-inspired computation methods for optimization

    Get PDF
    The focus of this work is on the exploration of the hybrid Nature-Inspired Computation (NIC) methods with application in optimization. In the dissertation, we first study various types of the NIC algorithms including the Clonal Selection Algorithm (CSA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing (SA), Harmony Search (HS), Differential Evolution (DE), and Mind Evolution Computing (MEC), and propose several new fusions of the NIC techniques, such as CSA-DE, HS-DE, and CSA-SA. Their working principles, structures, and algorithms are analyzed and discussed in details. We next investigate the performances of our hybrid NIC methods in handling nonlinear, multi-modal, and dynamical optimization problems, e.g., nonlinear function optimization, optimal LC passive power filter design, and optimization of neural networks and fuzzy classification systems. The hybridization of these NIC methods can overcome the shortcomings of standalone algorithms while still retaining all the advantages. It has been demonstrated using computer simulations that the proposed hybrid NIC approaches are capable of yielding superior optimization performances over the individual NIC methods as well as conventional methodologies with regard to the search efficiency, convergence speed, and quantity and quality of the optimal solutions achieved

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar

    Get PDF
    The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Reinforcement Learning Approach for Autonomous UAV Navigation in 3D Space

    Get PDF
    In the last two decades, the rapid development of unmanned aerial vehicles (UAVs) resulted in their usage for a wide range of applications. Miniaturization and cost reduction of electrical components have led to their commercialization, and today they can be utilized for various tasks in an unknown environment. Finding the optimal path based on the start and target pose information is one of the most complex demands for any intelligent UAV system. As this problem requires a high level of adaptability and learning capability of the UAV, the framework based on reinforcement learning is proposed for the localization and navigation tasks. In this paper, Q-learning algorithm for the autonomous navigation of the UAV in 3D space is implemented. To test the proposed methodology for UAV intelligent control, the simulation is conducted in ROS-Gazebo environment. The obtained simulation results have shown that the UAV can reach the target pose autonomously in an efficient way

    Reinforcement Learning Approach for Autonomous UAV Navigation in 3D Space

    Get PDF
    In the last two decades, the rapid development of unmanned aerial vehicles (UAVs) resulted in their usage for a wide range of applications. Miniaturization and cost reduction of electrical components have led to their commercialization, and today they can be utilized for various tasks in an unknown environment. Finding the optimal path based on the start and target pose information is one of the most complex demands for any intelligent UAV system. As this problem requires a high level of adaptability and learning capability of the UAV, the framework based on reinforcement learning is proposed for the localization and navigation tasks. In this paper, Q-learning algorithm for the autonomous navigation of the UAV in 3D space is implemented. To test the proposed methodology for UAV intelligent control, the simulation is conducted in ROS-Gazebo environment. The obtained simulation results have shown that the UAV can reach the target pose autonomously in an efficient way
    corecore