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Abstract

There has been a growing need for expeditious modeling systems for urban environ-

ments in recent years. Applications include virtual city tours, location based services,

urban planning, among others.

Creating urban models that are accurate representations of the real world can be

extremely difficult. Expeditious modeling typically suffers from a lack of complete

and reliable data to generate the models or requiring too much time from skilled

professionals. An often acceptable compromise is the use of procedural modelling

where sets of rules with results bearing close resemblance to the real world are applied

to generate the virtual environment.

Parametrizing procedural modelling rules is still an open problem. The work described

in this thesis focuses on solving this with the development of a hybrid meta heuristic

algorithm capable of optimizing the parameters to generate environments approxi-

mating to known data. These calibrated rules can then be applied to generate other

sections of the model containing missing data.

The meta heuristic developed adapts ideas from several nature based meta heuris-

tic algorithms such as genetic algorithms, simulated annealing and harmony search.

The new hybrid meta heuristic is configurable in an attempt to avoid typical meta

heuristic optimum search pitfalls such as the constraint to a local optimum or long

tail behaviour. The optimization algorithm was developed to solve parameterization

problems of both discrete and continuous parameter types.

To prove the concept of the system, as a viable solution in a neglected field of applica-

tion, this document presents several benchmark tests offering competitive performance

results under a standard batch of non-convex non-linear continuous parameter func-

tions. Additionaly a succesful real case application scenario was carried out with data

from the streets of Porto. Parameters of certain modeling rules were automatically

calibrated by using data from a small housing section from Rua do Almada. These rules
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were re-applied in other sections of Rua do Almada with similar housing characteristics.

These sections lacked complete data for a realistic modeling, but, by re-applying

the previously calibrated modeling rules, a realistic modeling of these sections was

obtained.
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Resumo

Recentemente tem-se sentido uma crescente necessidade de desenvolvimento dos sis-

temas de modelação expedita de ambientes urbanos. As aplicações destes sistemas

incluem visitas virtuais, serviços baseados na localização, planeamento urbano, entre

outros.

A geração de modelos urbanos que representam fielmente a realidade pode ser algo

extremamente dificil de alcançar em sistemas de modelação expedita. Sofrendo dos

t́ıpicos problemas de falta de conjuntos de dados que permitam uma geração integral

dos modelos, ou a necessidade de empregar trabalho de profissionais qualificados

durante longos peŕıodos de tempo. Um compromisso geralmente aceitável para atingir

resultados suficientemente reaĺısticos, evitando estes problemas, surge com a aplicação

de regras de modelação procedimental.

No entanto a determinação da melhor parameterização das regras de modelação pro-

cedimental continua a ser um problema. O trabalho descrito nesta tese pretende dar

solução a este problema através do desenvolvimento de um algoritmo meta heuŕıstico

h́ıbrido capaz de optimizar os parâmetros das regras de geração de modo a que

os modelos gerados se assemelhem bastante com a realidade. As regras calibradas

pelo optimizador através de comparações com dados conhecidos podem depois ser

re-aplicadas na geração de outras zonas com falta de dados necessários.

O algoritmo meta heuŕıstico desenvolvido adapta ideias de vários outros algoritmos

baseados em processos naturais como por exemplo os algoritmos genéticos, o ar-

refecimento simulado e a pesquisa harmónica. O algoritmo h́ıbrido desenvolvido é

configurável, de modo a poder evitar problemas t́ıpicos em algoritmos de optimização

como sendo a restrição em zonas de óptimos locais e o comportamento de cauda longa.

O algoritmo permite abordar problemas com parâmetros quer do tipo discreto quer

do tipo cont́ınuo.

Apoiando o sistema como uma solução viável num campo de aplicação negligenciado,
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neste documento apresentam-se testes de comparação de performance, com resultados

satisfatórios, que foram aplicados a conjuntos de problemas padrão do tipo cont́ınuo,

não convexo e não linear. Adicionalmente é apresentado um caso real de aplicação,

com sucesso, baseado em dados das ruas do Porto. Os parâmetros de certas regras de

modelação foram calibrados automaticamente usando dados de um pequeno conjunto

de habitações da Rua do Almada. Estas regras foram re-aplicadas em outras zonas

dessa que possúıam caracteŕısticas similares. Estas zonas tinham falta de dados para

realizar a modelação, mas, aplicando as regras de modelação calibradas previamente,

foi posśıvel modelar realisticamente estas zonas.
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2.12 Screenshot of Praça da Républica [CBSF07]. . . . . . . . . . . . . . . . 30

3.1 Solution quality landscape for a 2D optimization problem. . . . . . . . 34

4.1 Optimizer architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 XML configuration nodes scheme. . . . . . . . . . . . . . . . . . . . . . 63

4.3 Visualizer steps showing convergence of a 2D function. . . . . . . . . . 66

10



5.1 Rosenbrock function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Average results graph for the Rosenbrock function. . . . . . . . . . . . 73

5.3 Goldstein and Price function I. . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Average results graph for the Goldstein and Price function. . . . . . . . 75

5.5 Average results graph for the Goldstein and Price function II. . . . . . 77

5.6 Average results graph for the Wood function. . . . . . . . . . . . . . . 77

5.7 Screenshots of data flaw corrections rendered modeling. . . . . . . . . . 83

5.8 Comparative imagery of Rua do Almada real and calibration generated

housing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.9 Comparative imagery of Rua do Almada real and modeling generated

housing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11



Chapter 1

Introduction

This chapter presents an introduction to the contents of this thesis. It addresses

the usefulness of modeling virtual urban environments in general and the importance

of expeditious modeling methods in particular. This introduction also presents the

reader to certain fields of artificial intelligence and how they can assist in solving

certain problems associated with expeditious modeling. This chapter also states the

thesis objectives and how the document is structured through the following chapters.

1.1 Expeditious modeling of Virtual Urban Envi-

ronments

Virtual representations of scenes and objects have been thriving through the last

decade accompanying the technology growth of computing in general and 3D modeling

in particular. [CBSF07]

Being capable of accurately representing the cities we live in became a standard

requirement for many applications in the fields of historic reconstruction, location

based services and immersive interaction.

One of the main constraints from the use of virtual urban environments is the re-

quirement to previously model scene elements based on the real world by using 3D

modeling software. Using these programs requires access to skilled manpower for

plenty of hours. Additionally, to create realistic modeling of urban environments with

heavier complexity, such as cities for example, the required time and resources increases

dramatically.
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CHAPTER 1. INTRODUCTION 13

Expeditious modeling systems surged as an answer to the difficulties of manually

creating and modifying models that typically share common features. These systems

follow user defined rules to generate the geometry of the different elements of the

3D scene, avoiding the requirement of manual modeling the elements by professionals

using standard 3D modeling tools.

The clear advantage of expeditious modeling over traditional methods is in enabling

changes to the environment to take place without requiring a trained professional to

reshape the objects and execute time-intensive rendering. Instead, a few rules can be

altered and the entire environment quickly re-rendered.

The use and importance of expeditious 3D modeling of virtual urban environments

has increased significantly in the past years. Still many difficulties are associated with

the technology. Generating appropriate production rules with fine tuned parameters,

or the resources required in collecting georeferenced data for example, can easily

bottleneck the potential of the modeling system in achieving realistic results.

1.2 Applied Artificial Intelligence

Artificial intelligence is a term originally coined to represent the science and engi-

neering of intelligent machines [MMRS55]. In current days the term is also applied

to reference the study and development of intelligent or autonomous agents, “com-

putational systems that inhabit some complex dynamic environment, sense and act

autonomously in this environment, and by doing so realize a set of goals or tasks for

which they were designed” [Mae95] [Rei03].

Artificial intelligence bridges the areas of computer science, psychology, philosophy,

neuroscience, cognitive science, linguistics, operations research, economics, control

theory, probability, optimization and logic. Application fields involving artificial intel-

ligence include robotics, intelligent agents, multi-agent interaction, swarm behavior,

knowledge discovery and data mining, speech and facial recognition, control systems,

optimization algorithms, scheduling, etc.

One of the fields from artificial intelligence with particular interest to this thesis is

the research of meta heuristic algorithms for solving optimum search problems of

combinatorial nature. A heuristic is commonly defined as a method developed to

solve a given type of problem. A meta heuristic is an heuristic method developed to

solve the problem of problem solving. In layman terms, meta heuristics are algorithms
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that try to find the best combination to solve a given combinatorial problem.

A combinatorial problem can be roughly defined as a black box system with a certain

number of parameter inputs that will execute a simulation to generate a result. This

result is evaluated by a quality function. The combination of parameter inputs that

returns the best possible quality function result is considered the optimum solution.

The purpose of meta heuristic algorithms is to find the optimal solution in the least

amount of simulations. To achieve this objective, different meta heuristic algorithm

behaviors were conceptualized and improved through the years, such as random search,

hill climbing search, simulated annealing, tabu search, genetic algorithms, harmony

search, neural networks, particle swarm and ant colony based optimization. The

performance of the different algorithms in solving a given problem type largely varies

depending on its complexity in terms of convergence of the quality function.

Other sub-fields of artificial intelligence with interest to this thesis include knowledge

discovery, data mining and feature extraction. Research has been pursued in these

fields regarding clustering algorithms and smart extraction of useful information.

1.3 Problem Statement

Expeditious modeling systems are based on the application of production rules to

generate a geometric model from geographically referenced data. Several implemen-

tations of expeditious modeling systems can be found in the market, many of them

developed to solve specific problems by research teams. Expeditious modelers have

applications in the fields of cultural heritage, virtual city tour, computer graphics for

movie animations, military simulations, serious games, etc.

Defining and determining the specific set of rules to generate a certain urban en-

vironment can become a problem. Different methods can be applied to determine

the production rules. They can be based on empirical definitions or acquired by

observing how 3D modeling people model the objects. Especially in the field of urban

environments, the knowledge from architects and civil engineers is essential in defining

good production rules. There still is a need to correctly translate the human knowledge

into production rules. Finetuning the parameters of these production rules is also

a problem, often requiring mathematical and logical knowledge of the system and

many hours of trial and error. Depending on the complexity, manually adjusting the

parameters of production rules for optimum results can be extremly difficult.
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Another problem inherent to the system is the need to already have or acquire geo-

graphical referenced data. The data can often be non-existent or require unavailable

resources to gather. Sampling from the target area, for example, can greatly reduce

the complexity of the acquiring process, but in many cases accurate data will not ever

be accessible. This situation reduces the capacity of expeditious modeling systems to

solve certain problems.

1.4 Research Objectives

Fields of artificial intelligence, such as optimization algorithms and knowledge data

mining, can run simulations in search of optimum parameters and estimate data where

data is not obtainable. Applying these concepts to expeditious modeling systems can

drastically improve their capacity, performance and automation.

One aim is to develop a competitive meta heuristic algorithm capable of enhancing

functionality to an existing expeditious modeling framework. To certify performance

competitiveness of the algorithm, the thesis should document a comparison of results

of the developed solution with other optimization algorithms documented in the liter-

ature.

The system should also be able to discover an optimum solution for the unknown

parameters of a set of rules that will generate the georeferenced geometry and apply

these newly parametrized rules to other georeferenced areas lacking complete data to

generate realistic virtual models.

As proof of concept the thesis will present an implementation embedded in an existing

expeditious modeling system and showcase a real case scenario with data obtained

from the city of Porto.

1.5 Document Structure

This chapter contains an introduction to the document. It refers to areas of knowledge

involved in the thesis, a summary description of the problem and how it can be

approached. It ends with a short section describing the document structure.

The second chapter contains a short overview and references to the state of the art of

3D modeling systems in general and expeditious modeling systems for virtual urban
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environments in particular, focused on its applications and the most relevant reference

work in the field. An additional section is dedicated to the XL3D modeling system

due to its role in the thesis.

The third chapter refers to the state of the art of applied artificial intelligence, vaguely

covering the field of knowledge discovery and data mining and strongly focusing on

stochastic optimization and evolutionary computation. Special focus is given to the

limitations of standard local search meta heuristic algorithms and the advantages of

hybrid harmony search and real coded genetic algorithms.

The fourth chapter is devoted to the problem statement and architecture of the

implemented solution. This chapter describes the standard problems and limitations

of expeditious modeling systems of virtual urban environments, paying particular

emphasis to the drive of the thesis: developing a hybrid meta and hyper heuristic

optimizer system capable of automatically optimize the parameters of different types

of expeditious modeling rules. This chapter also lists the requirements of such a

system, the constraints it implies on the implementation and how to configure it for a

standard test. Additionaly, this chapter documents the main internal architecture of

the developed system.

The fifth chapter refers to test and evaluation of the proposed methodology. The

first part refers to a series of tests for comparative performance results of the meta

heuristic algorithm developed, benchmarking the performance of the algorithm against

a set of well documented global optimization mathematical equations. The second

part contains a proof of concept where the meta heuristic algorithm under different

possible configurations was applied to calibrate parameters of a given production rule

generating environments in the XL3D expeditious modeling system.

The sixth chapter presents the conclusions of this thesis. A short summary of what

was achieved including a reflection to in what way the development of this thesis

contributed to the state of the art in the covered area of application. A few additional

words present a short selection of ideas envisioned for further research and development

in the area of application in general and the project covered by this thesis in particular.



Chapter 2

Expeditious Modeling of Urban

Environments

Expeditious Modeling has grown into large importance in recent years. Especially

applied in the generation of realistic urban environments, the applications and exper-

imental groundwork to automate the technology have been immense. This chapter

aims to present a definition of what expeditious modeling of urban environments is,

where it came from, its importance and current state of the art. Also addressed are

the three fields of different methodologies used to generate realistic urban models:

3D modeling tools, image analysis and procedural modeling. This chapter lists some

reference work, doing a brief comparative analysis and exposing the key problems

with the methodologies related to this thesis. A more in depth description of the

XL3D modeling system is also presented in a final sub-chapter, having been given

more attention due to its involvement in the work developed for this thesis.

2.1 3D Modeling

In generic terms 3D modeling is a term coined for generating and shaping virtual

representations of 3D objects and scenes. With the progress of standard computation

technology, virtual representations of the real world thrived from the basic wireframe

3D vector graphics to low polygon object models with flat or smooth shading as seen in

the left side of Figure 2.1 into heavily complex and realistic scenes with huge quantity

of vertices and polygons, offering more detail to 3D objects as examplified in the right

side of Figure 2.2.
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Figure 2.1: Model of a smooth shaded duck.

Figure 2.2: Model of an assault vehicle.

Computer display adapters date back to the 1960s when the first video monitors were

developed. It would still take years of advances in the field of micro processors to

enabled 3D acceleration floating point graphics processor units (GPU) to enter the

user market in the late 1990s. Hardware 3D acceleration graphics cards became a

standard for most desktop computer in the late nineties. Similarly, new models of

laptop computers from recent years all have 3D acceleration chips inbuilt. Even latest

models of mobile technologies such as mobile phones and PDAs are now embedding

3D acceleration chips to their hardware.

These advances have converged to allow faster real time rendering of virtual 3D scenes,

enabling higher realism to be incorporated in real-time applications with every passing

year taking advantage of the latest rendering pipeline hardware capacity.
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Figure 2.3: Screenshot of the computer animated movie ”Final Fantasy: The Spirits

Within”.

Still, generating realistic 3D data with high resolution and attention to detail can be

quite time consuming and require highly trained people using expensive 3D modeling

tools. Many thriving industries however demand this level of high quality 3D modeling

at low cost and quick creation period.

An example is the ever growing industry of computer video games development. Titles

of best-selling genres such as first person shooters, sports simulations and massive multi

player on-line role playing games have grown into multi million euro entertainment

selling industries. Most of the high profile video games sold require real time rendering

of highly realistic 3D modeling.

Another industry in demand for high quality 3D modeling is the so called serious

games industry. In serious games, applications based on the same technologies as

computer video games, are developed especially aimed to assist in training people,

testing reactions and skills, or confronting users with specific scenarios. The use of

these applications ranges amply including military simulation, specialized training, or

treating certain phobia pathologies.

A non real-time application of 3D modeling can be found in the movie industry.

Advances in motion tracking enabled layered objects and special effects to fit har-

moniously into a pre-recorded scene. Some popular animation movies have been com-

pletely made solely using 3D virtual worlds and characters, some of which achieving

extremely realistic results as seen in Figure 2.3, a screenshot of the movie ”Final

Fantasy: The Spirits Within” dating back to 2001.
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A slightly different approach to film making that uses video game engines is coined as

machinima [Mar04]. Mostly consisting of independent short film movie makers who

have discovered a healthy budget cut in using video game engines to direct their movies

and animated series.

2.2 Expeditious Modeling of Virtual Urban Envi-

ronments

Even if visualizing the 3D model is already fast enough to present realistic camera

motion of highly complex scenes, the data for these scenes still needs to be pre-

generated accurately enough to match the real world. Creating a realistic 3D model of

the real world requires a heavy amount of human and logistic resources. In this sense,

expeditious modeling systems can offer invaluable help to projects with tight budgets,

schedules or special restrictions.

Expeditious modeling is a term referring to fast generation of 3D models. Systems

capable of generating complex models from production rules and prototypes are an ex-

ample. There are many intrinsic difficulties inherent to expeditious modeling systems.

The most common are: obtaining an accurate 2D topography; gathering geographically

referenced modeling data; defining modeling rules capable of generating areas out of

essential missing information; calibrating the modeling rules parameters.

Getting an accurate 2D topology of a city can be troublesome, even though 2D maps

are often commonly available, their level of detail usually does not go much beyond

separating streets, building and garden boundaries. Crucial additional details may

well be unexistant but required to realistically render a model of the city. Verifying

data on location can become a heavy burden in terms of resources. Municipalities may

often have such data already collected in a semi regular basis but tend to be typically

burocratical towards allowing free and full access.

Additionally to acquiring a 2D topography, it’s necessary to gather its georeferenced

data, not only the geographical delimitations of the different urban elements but also

their assigned characteristics. A road can be of different types: dirt, stone paved,

freeway. Similarly, buildings can have many different characteristics associated with

them in terms of composition, including everything from the simple height of the

building to its architectural composition. This kind of information is much harder to

obtain than the simple topology and is also more prone to changes through time.
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Modeling large areas without a complete georeferenced set of information becomes one

of the most important challenges for expeditious modeling. Correctly estimating data

to replace missing information is vital to ensure the realism of the virtual model.

Another difficulty lies in defining the set of rules that will be applied to generate

each object of the virtual scene. Creating non calculus intensive rules that enable

enough detail and realism to show in the urban model requires some base knowledge

in architecture and optimized 3D modeling. Calibrating parameters for the set of rules

applied is a difficult task at hand.

These are the difficulties an expeditious modeling system must avoid, but to create it

there are several approaches to obtaining a 3D model, these are:

1. Generating the data manually using 3D modeling tools;

2. Acquiring data through image analysis;

3. Procedural modeling.

2.2.1 3D Modeling Tools

Generating the 3D data manually can be achieved with the use of specially designed

software tools. These are typically referred to as 3D modeling tools. Their matured

development allows good results but they require expertize which is often a big detering

factor for less savvy computer users. To accomplish even relatively simple modeling

tasks the user is required to really get to know the tool first, often requiring a few

sessions of manual reading and tutorial follow-ups.

Modeling complex objects with high attention to detail can grow extremely time

consuming even for experienced users. Many technological developments have been

implemented in the 3D modeling tools available in the market that attempt to facilitate

usability and handling of complex scenes. Distributing objects by layer in a scene for

example can help focus on the important details while quickly shutting off from the

unimportant parts. Instantiating the same object over distinct locations instead of

duplicating its geometry is another example of a way to save memory and speed up

rendering time.

Despite some, among many more, of these advances in 3D modeling tools, to model

a realistic city, for example, still requires a team of expert professionals and plenty of

work hours.
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Popular freeware systems like POV-Ray developed in the early 1980’s paved the way for

more demanding commercial applications such as Autodesk 3D Studio Max, NewTek

Lightwave 3D, Maxon Cinema 4D, DAZ 3D Bryce and Autodesk Maya, just to name

a few most prominent names. Other software tools such as Nevercenter Silo, Pixologic

ZBrush, Luxology Modo and Blender also have a place in the market with a niche

demand for cheaper licenses, simplified usability and specified field of application.

It’s beyond the scope of this thesis to dwell much deeper into what 3D modeling tools

are available in the market and comparing them in terms of performance, complexity,

usability, price, support, etc. Will suffice to note that many exist, are amply available,

capable of great results given a sufficient amount of training work hours and skilled

tutoring, but will not play any role in the work to be described in the following

chapters. More comprehensive studies can easily be found on the internet comparing

the most popular solutions. Two worth mentioning links are an article by Benoit

Saint-Moulin entitled 3D applications 2007 comparisons table 1 and a communitary

wiki page Comparison of 3D tools at CGSociety website 2.

2.2.2 Image Analysis

A way to obtain 3D model data automatically is by analysing and interpreting 2D

images of the real world. A well active part of modern science literature refers new

progresses in acquiring 3D data out of 2D still and motion imagery. This field of

research is often referred to as computer vision. Some of its applications include

object recognition, eyes and face detection, fingerprint comparison, assisted medical

diagnostics, military simulations, automated guiding systems, etc.

Beyond acquiring or recognizing 3D objects from 2D still images, a connected field

of research referred to as motion tracking shares similar principles by recognizing key

points and 3D objects from video motion frames. Both of these fields are still thriving,

their references in the literature date back to little more then a couple decades, with

big developments being documented every year.

One of the hardest difficulties the robustness of these processes face is the dynamic

variation of the lightning conditions from the real world. Scenes that look the same

under a human vision accustomed to rapidly variable lighting conditions, can be very

hard to compare to a computer algorithm processing a digital signal.

1http://www.tdt3d.be/articles viewer.php?art id=99
2http://wiki.cgsociety.org/index.php/Comparison of 3d tools
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The work of Pollefeys [PPK+98] demonstrates an application in reconstructing ar-

chaeological sites in virtual reality. This is achieved by using automatic 3D surface

acquisition systems over the Roman site of Sagalassos in Southwest Turkey.

Other examples dating to the same period come from Faugeras [FLR+95] and Gruen

[GW98] with a higher focus on acquiring city buildings topology from aerial pictures.

These studies refer to the basis of 3D model extraction from 2D imagery by identifying

key points and attempting to group them to form faces of planar regions as can be seen

in Figure 2.4. These techniques offered some acceptable result but still required heavy

supervision and human interaction. More recently, the work of Zedebin [ZKGGK06]

still pursues automatic 3D modeling of cities by aerial topographic imagery analysis.

Figure 2.4: Screenshots of key point acquiring and planar regions determination

[FLR+95].

Another strong reference in the area of image analysis is the thesis of Debevec ”Mod-

eling and Rendering Architecture from Photographs” [Deb96]. Presenting an ap-

proach for modeling and rendering existing architectural scenes from sparse sets of

still photographs. The authors modeling approach combines both geometry-based

and image-based techniques in two components. “The first component is an interactive

photogrammetric modeling method which facilitates the recovery of the basic geometry

of the photographed scene. The photogrammetric modeling approach is effective,

convenient, and robust because it exploits the constraints that are characteristic of

architectural scenes. The second component is a model-based stereo algorithm, which

recovers how the real scene deviates from the basic model.” The author claims that

by making use of the model, the technique could robustly recover accurate depth from

widely-spaced image pairs allowing it to model large architectural environments with

far fewer photographs than image-based modeling approaches.

More recent advances in depth recognition in monocular images by Saxena [SSA07]

have equally pushed the envelope to automatic 3D object reconstruction. With the
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use of a Markov Random Field, Saxena has proved possible to obtain the 3D locations

and orientation of several small planar regions as can be seen in Figure 2.5.

Figure 2.5: Screenshots of monocular 3D reconstruction [SSA07].

2.2.3 Procedural Modeling

Despite the high quality capacity of some of the presented automated solutions for

acquiring 3D data out of 2D imagery, most of them still require human interaction or

supervision at some level in order to achieve optimum results.

Procedural modeling is a term refering to solutions that typically apply modeling rules

to georeferenced data in order to automate and simplify the 3D modeling process.

Production rules can be applied to georeferenced data to generate complete urban

environments with roads, gardens and all sorts of different types of buildings.

For example, 3D prototypes can be modeled manually by an expert with 3D modeling

tools and get invoked by a procedural modeling process. This can be useful to clone

reoccurring objects or for replacing more important buildings with versions containing

greater complexity only achieved through manual modeling.

Other procedural modeling systems imply obtaining data by image analysis processes

already discussed previously in this chapter. This data can partially construct an

object and define guidelines that may facilitate the remaining reconstruction process.

An highly interesting example of one of these techniques can be found in the work

of Shlyakhter et al [SRDT01]. The realistic modeling of vegetation adds a signifi-

cant dimension of realism to a scene. Trees, in particular, form an integral part of

architectural landscapes. Shlyakhter et al developed a procedural modeling method
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Figure 2.6: Screenshot of large generated city [PM01].

to create 3D tree model resembling a specific foliaged tree from a set of instrumented

photographs.

The system is capable of extracting the basic structure of a tree from image analysis

of several photographs taken under different perspectives. Having the basic structure

the system applies L-System concepts originally documented by Lindenmayer [Lin68]

and Prusinkiewicz [Pru86] to produce branches and foliage with some resemblance to

the original.

The work of Parish [PM01] proposed at SIGGRAPH3 an engine for generating a city

based on production rules similarly adapting L-System concepts to 3D modeling,

vaguely resembling work done by Shlyakhter et al adapted to more global urban

modeling as can be observed in Figure 2.6. Authors claim that from various image

maps given as input, such as land-water boundaries and population density, the system

could generate a system of highways and streets, dividing the land into lots, and

creating the appropriate geometry for the buildings on the respective allotments.

Additionaly, for the creation of city street maps, L-Systems were extended with

methods that would allow the consideration of global goals and local constraints and

reduce the complexity of the production rules.

Continuing the work presented by Parish, a few years later Wonka et al [WWSR03]

presented at SIGGRAPH 2003 a system capable of generating instant realistic archi-

tecture by exploiting vertical and horizontal coherence of buildings facades as can be

seen in Figure 2.7. The authors developed a new method for the automatic modeling

of architecture. “Building designs are derived using split grammars, a new type of

3http://www.siggraph.org - one of the most reknown computer graphics conferences
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Figure 2.7: Screenshot of facade generation [WWSR03].

Figure 2.8: Screenshot of detailed generated city [MWH+06].

parametric set grammar based on the concept of shape. The paper also introduces an

attribute matching system and a separate control grammar, which offer the flexibility

required to model buildings using a large variety of different styles and design ideas.

Through the adaptive nature of the design grammar used, the created building designs

can either be generic or adhere closely to a specified goal, depending on the amount

of data available.”

A few years later Muller et al [MWH+06] present further developments of the system,

now applied to the instant modeling of more complex buildings and structures as

can be seen in Figure 2.8. The authors claim to have built on the idea of the split

rule originally presented by Wonka [WWSR03] as an “important ingredient for CGA
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shape. As split grammars maintain a strict hierarchy, modeling is fairly simple, but

also limited. However, after introducing rules for combinations of shapes and more

general volumetric shapes such as roofs, the strict hierarchy of the split-grammar

can no longer be enforced. We can confirm, that the idea of split rules is a very

suitable primitive to generate facade details, but we did not find it suitable for many

forms of mass modeling. We made use of the control grammar to generate procedural

variations together with simple stochastic rules. We believe that our model of context

sensitive shape rules, together with the interplay of one, two, and three dimensional

modeling is an elegant and efficient solution to a challenging problem. Besides this

major conceptual contribution, we are also the first to address application related

details, such as the definition of the most important shape rules, the concise notation,

and modeling examples detailing various modeling strategies.”

A recent paper (May/June 2008) by Finkenzeller [Fin08] presents different approaches

to ”Detailed Building Facades” also following the work of Muller. In the same publica-

tion an article titled ”Procedural Urban Modeling in Practice” written by Watson et

al [WMW+08] presents a good state of the art on procedural urban modeling, refering

to the previous work of Parish, Wonka and Muller and additionally refering to an

application of the engine in recent video game titles published by Electronic Arts such

as ”Need For Speed”, seen in Figure 2.9.

Figure 2.9: Screenshot of the video game ”Need For Speed”.

A related SIGGRAPH 2008 contribution which is also worth mentioning is the article

by Lipp et al ”Interactive Visual Editing of Grammars for Procedural Architecture”

[LWW08].

It’s important to stress that other expeditious modeling procedural systems exist pre-

senting similar work, Schilling [SC03] for example, developed a system which demon-
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Figure 2.10: Scenes from the 177kb demo ”fr-041: debris.” by Farbrausch.

strated how integrating existing 2D and 3D data automatically through procedural

rules can easily generate credible representations of a city. In this case, the purpose

and demonstration of the system was the generation of a virtual 3D-tour through the

city of Heidelberg.

Another good example of use of procedural modeling for the generation of expeditious

urban environments is a recent production released in the demoscene [TSS04], it’s

called ”fr-041: debris.” and was presented in 2007 by the group Farbrausch4. They

present a 7 minute realtime presentation generated from a 177kb executable without

use of external data. All sound, textures and 3d models as seen in Figure 2.10 are

procedurally generated.

2.3 The XL3D Modelling System

Another contribution to procedural modeling is named XL3D (Extensible L-System

based 3D modeling system) proposed by António Coelho [CBSF07]. This technology

will be used in the methodology proposed in further chapters of this document and as

4http://www.farbrausch.de/ - group of friends active in the demoscene for the last 10 to 15 years,
most of which work in the game development industry
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such lends itself to a more detailed description in this section.

The XL3D modeling system operates automatically from a modeling specification.

This specification defines the location of the relevant data, the structure of the required

3D models and a set of geospatial production rules representing the required knowledge

to model the structure as an L-System. The process is specified declaratively through

an XML document based on an XML schema specially developed for this modeling

system and homonymously refered to as XL3D. The architecture of the system can be

seen in Figure 2.11.

Figure 2.11: XL3D architecture.

Each XL3D document is composed by a modeling project that defines the wanted

models, the data sources, the modeling processes and the prototypes used for their

graphical interpretation.

Each model is structured hierarchically as an modeling entity tree. Each modeling

entity reflects a user defined concept pertaining to the problem. Each entity is

modeled through modeling procedures which after beeing parameterized with the

data source references and the interpretation prototypes, automatically generate the

corresponding three dimensional models as the one seen in Figure 2.12. The modeling

procedures encapsule a set of production rules which define the geospatial L-Systems.

The prototypes interpret the resulting modeling process string, generating the X3D
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models. The data sources refer the data location and how the relevant information

can be converted into geospatial strings which can be used to form axioms.

Figure 2.12: Screenshot of Praça da Républica [CBSF07].

2.4 Summary

This chapter offers the reader a brief insight on the state of the art of 3D modeling in

general and expeditious modeling for virtual urban environments in particular. Listing

some of the most important tools and modern methodologies to generate realistic

virtual models of urban environments from the real world.

This chapter relates to the thesis in the sense that it offers perspective insight to the

field of 3D modeling in general and lists some of the common problems of expeditious

urban modeling systems. These common problems will be addressed later in this thesis

and solved by applying techniques derived from the field of artificial intelligence.



Chapter 3

Combinatorial Optimization

Artificial intelligence is a term originally coined to represent the science and engineer-

ing of intelligent machines, as for example defined by McCarthy et al [MMRS55]. in

modern days the term artificial intelligence is more commonly applied in reference to

intelligent autonomous agents - defined as computational entities with some degree of

awareness and interaction of its environment, including the capacity to communicate

in multi agent systems [Wei99]. But the original definition of artificial intelligence also

includes the research and development of computational systems capable of demon-

strating behavior that can be perceived as inteligent by humans. This behavior

includes traits of reasoning, knowledge, planning, learning, communication, perception

and object interaction [RN03].

As such, artificial intelligence bridges the areas of computer science, psychology, phi-

losophy, neuroscience, cognitive science, linguistics, operations research, economics,

control theory, probability, optimization and logic. Application fields include robotics,

intelligent agents, multi-agent interaction, swarm behavior, knowledge discovery and

data mining, speech and facial recognition, control systems, search algorithms, opti-

mization, scheduling, etc.

One of the fields of artificial intelligence relevant to solving the problem addressed by

this thesis is the field of knowledge discovery and data mining. Knowledge discovery

and data mining is a relatively recent area of research [CHS+97], it consists in extract-

ing useful knowledge from large amounts of data, solving problems of classification,

clustering and predicting future behavior. Despite the application of some knowledge

discovery and data mining principles to this thesis, they do not play a significant

primary role that might warrant deeper analysis.

31
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A field of artificial intelligence with key importance to this thesis however, is the field

of optimal search algorithms and parameter optimization. The field of optimal search

is based in researching methodologies that can solve combinatorial problems more

efficiently.

3.1 Parameter Optimization

An optimization problem can be defined in general terms as determining the optimum

combination of parameter values of a given vector ~v = (v1, ..., vn) ∈ M that best

satisfies a given objective function f : M → < by minimization (or maximization)

f(~x) → max.

A similar but slightly more formal description, taken from wikipedia1:

“In mathematics and computer science, an optimization problem is

the problem of finding the best solution from all feasible solutions. More

formally, an optimization problem A is a quadruple (I, f, m, g), where

• I is a set of instances;

• given an instance x ∈ I, f(x) is the set of feasible solutions;

• given an instance x and a feasible solution y of x, m(x, y) denotes the

measure of y, which is usually a positive real.

• g is the goal function, and is either min or max.

The goal is then to find for some instance x an optimal solution, that is, a

feasible solution y with m(x, y) = g {m(x, y′)|y′ ∈ f(x)}”

The set of feasible solutions is commonly refered to as the search space. Each combi-

nation of values a solution which has an associated so called fitness or quality value.

Obtaining the quality value for each solution typically involves a computer simulation

processes, where a model must be first generated following the given vector parameter

combination and only then the objective function can evaluate the quality of the

solution.

The system can also have a stochastic nature, meaning that it can return different

quality values for the same solution input parameters. The impact of this factor can

often be reduced by applying statistic methods and error compensation techniques.

1http://en.wikipedia.org/wiki/Optimization problem - 2nd July 2008
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These special cases will not be approach any deeper in this document, since they go

beyond the scope of this thesis.

Combinatorial problems can be under the influence of several parameter and multi ob-

jective constraints. A more formal mathematical definition of complex combinatorial

optimization problems can be consulted under the work of Bäck [Bac96].

The input parameters can be of two fundamental types: discrete and continuous. Some

of the different approaches and techniques applied to solve combinatorial problems

impose a discretization of any continuous nature of parameters prior to their applica-

tion. However, discretizing continuous values to reduce the search space and allow the

application of discrete methodologies can impose unwanted constraints. Optimization

algorithms that handle continuous (also called real based) parameters have thrived in

the literature as well documented by Pardalos [PR02] [DP05].

Even when only dealing with discrete values of parameters, it is often impractical

to simulate every possible combination of ~v to ascertain the optimum solution. The

quantity of different parameters and corresponding search range of each parameter

easily increases the complexity and search space of the problem exponentionally. Each

simulation process usually takes a lengthy time to conclude, and as so, it is important

to avoid extensive search. Preferably we would like to unravel the optimum solution

by searching only a fraction of the entire search space.

In continuous problems, the quality landscape of the search space is typically shaped in

the form of one or several hills depending on how the parameters are related, as can be

seen in Figure 3.1. Considering certain small constrained sections of the search space

the optimum value may change, the best value in these local sections is refered to as a

local optimum, whereas the best global value of the entire search space is refered to as

global optimum. One of the strongest concearns for performance of certain optimizaion

algorithm, depending on the complexity of the problem, is that they should not get

caught in a local optimum believing to have found the global optimum.

Considering the problem as a black box, where there is no knowledge on the correlation

between the input parameters and the quality value of the solution, the only way to

determine the optimal combination of the problem is to test several solutions from

the search space. The solutions are selected by the algorithm considering the solution

quality history and the known complexity of the problem in terms of convergent search

space.

Several algorithms have been widely documented in the literature as capable of re-
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Figure 3.1: Solution quality landscape for a 2D optimization problem.

ducing the required number of iterations and increasing the probability that a global

optimum, or very near optimum, solution, is reached while testing only a limited

fraction of the search space.

The performance of the individual algorithms varies depending on the characteristics

of the problem. The selected algorithm must have a good balance of interests: On one

hand ensuring a minimal iterations will be required to find the optimum; on the other,

keeping to a low probability the danger of converging to a local optimum instead of

the global optimum.

3.2 Local Search

One of the simpler families of algorithms developed to solve combinatorial problems

is referred to as local search (LS). Some authors in the literature also commonly refer

to these algorithms as random search algorithms (due to their stochastic nature of

educated guessing) or more simply meta heuristic algorithms [GK03].

LS methodologies consist of combinatorial problem optimization algorithms that seek

to find an optimum solution by recursively analysing neighboring solutions within the

search space. Traditionaly a solution is considered neighbor to another when sharing

some or most of their features that define the search space, in some discrete problems

a neighbour solution is considered every feasible solution that can be reached from the

current solution by a move or swap operand. In continuous search space the neighbor

solution is defined by sharing a fixed number of parameters among both solutions or

being within a certain parameter vicinity scope. The general protocode for a typical

minimization problem using LS is presented in Algorithm 1.
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bestSolution = SelectRandomSolution(searchSpace);

while (!Stop Criteria) do
thisSolution = SelectNeighbourSolution(thisSolution, searchSpace);

if (thisSolution.quality ≤ bestSolution.quality) bestSolution = thisSolution;

end
Algorithm 1: Local search base code

The stop criteria for LS algorithms is usually adapted to the problem and taking

advantage of the properties of the chosen heuristic methodology. The most common

stop criteria for an LS algorithm usually are:

• surpassing a certain number of total iteration steps;

• repeating a certain number of iterations without significant improvement of

quality;

• reaching a certain quality threshold.

3.2.1 Random Search

There are several definitions of random search (RS) found in the literature. Some

authors generally refer to RS as the LS family of algorithms. The definition we wish

to present in this sub-section actually pertains to the pure stochastic method for

analysing combinatorial problems search spaces, and can in itself be considered a

variant of an LS algorithm.

RS follows a stochastic logic. It systematically tests the quality of new randomly

selected candidate solutions from the search space until a certain criteria is met,

comparing each tested solution with the best solution found so far and replacing it

when having found a better quality one. The base protocode can be seen in Algorithm

2, again for a minimization problem.

bestSolution = SelectRandomSolution(searchSpace);

while (!Stop Criteria) do
thisSolution = SelectRandomSolution(searchSpace);

if (thisSolution.quality ≤ bestSolution.quality) bestSolution = thisSolution;

end
Algorithm 2: Random search base code
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This stochastic methodology based on random chance can deliver acceptable results

in some types of combinatorial problems but the heavy number of iterations that it

might require to ensure having found the optimum solution is unacceptable in other.

As such, RS is only occasionally used to offer a vague overview of the search space or to

find a decent quality initial candidate solution as a starting point for other algorithms

to base their search upon.

3.2.2 Hill Climbing

One of the simplest LS algorithms is referred to as the hill climbing (HC) algorithm.

The HC algorithm pursues the neighbors of the best possible solution found so far.

Literature regarding HC can be consulted on the works of Rich [RK90] and more

recently Russel [RN03]. HC type of algorithms can be very effective in problems with

linearly dependent constraints. Their performance depends greatly on the definition

of neighboring solution. A big problem with the use of HC algorithms is their inability

to guarantee reaching the optimal value in problems of many local optimums.

Another important limitation of the HC algorithm includes the possibility of reaching

fitness quality plateaus, where all neighboring solutions share a very close quality

value, often causing the algorithm to wander through the local search space not being

capable finding, or taking too many iteration steps discovering, the best direction

converging towards the optimum.

The most basic form of HC will simply test all, or just a few randomly chosen,

neighboring candidate solutions from the current best solution and replace it by the

best of the neighboring solutions tested. Repeating the process for the next local search

space of neighboring solutions until a certain stop criteria is met, typically that no

better quality solutions could be found in the local search space of the neighborhood.

The base protocode can be seen in Algorithm 3. The most common stop criteria for

hill climbing is having no better quality neighbour.

bestSolution = SelectRandomSolution(searchSpace);

while (!Stop Criteria) do
thisSolution = SelectBestNeighbourSolution(bestSolution, searchSpace);

if (thisSolution.quality ≤ bestSolution.quality) bestSolution = thisSolution;

end
Algorithm 3: Hill climbing base code
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There are a few variations of the basic HC algorithm principle, one of them is referred

to in the literature as the steepest ascent hill climbing (SAHC) algorithm. SAHC

acts similarly to the previously described standard HC algorithm, its difference is that

it probes all possible neighboring solutions of the entire search space path found so

far before choosing the best one and repeating the process iteratively. This allows a

certain form of smarter back-tracking to the search process of the original HC.

Another variant, that seeks to minimize the risk of having found a local optimum

instead of a global one, is the random start hill climbing (RSHC). RSHC will restart

itself with a new initial candidate solution a few times whenever it reaches a quality

improvement dead end. This will improve the probability of having found a search

path that will lead to the global optimum.

Yet another variant, the stochastic hill climbing (SHC) algorithm, choses the next best

solution randomly from a list of all the higher quality neighbors available. In some of

its implementation the probability of choice may depend on the steepness of the uphill

move.

Other variants of HC have also been documented in the literature with successful

results. As most optimal search algorithms the quality of their performance depends

largely on the problem they are required to solve. A recent comparative study can be

found in the work of Jacobsen and Yucesan [JY04].

3.2.3 Tabu Search

A variant of LS algorithms is referred to as tabu search (TS). This methodology,

credited to Glover and Laguna [GL02], differs from the remaining algorithms by

maintaining in memory a list of recently tested candidate solutions with the purpose

of avoiding unnecessary retesting. The tutorials of Hertz [HTdW95] and Gendreau

[Gen03] provide valuable conceptual information on the basic, intermediate and more

advanced forms of TS.

Authors claim that that basic TS can be seen as simply the combination of LS with

short-term memories. “Usually only a fixed and fairly limited quantity of information

is recorded. In any given context, there are several possibilities regarding the specific

information that is recorded. One could record complete solutions, but this requires

a lot of storage and makes it expensive to check whether a potential move is tabu

or not; it is therefore seldom used. The most commonly used tabus involve recording

the last few transformations performed on the current solution and prohibiting reverse
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transformations; others are based on key characteristics of the solutions themselves or

of the moves.”

The most basic implementation of the TS algorithm for a minimization problem can be

consulted in Algorithm 4. More complex variants of TS typically have more than one

tabu list assigned to different problem knowledge specifications for example. Also a

parameter defined as aspiration criteria is designed to either prevent a certain solution

from either entering a tabu list or removing it from the list when certain parameters

have been met. This logic allows the algorithm to move into neighbourhood solutions

which have some of their parameters defined as tabu but might hold an improvement

in quality. The stop criteria is similar to other LS heuristics (maximum number of

iterations, maximum number of recent iterations without improvement, reaching a

threshold) but in complex tabu schemes the search is usually stopped after completing

a sequence of phases, the duration of each phase being determined by one of the

traditional stop criterias mentioned.

tabuList = emptyList;

bestSolution = SelectRandomSolution(searchSpace);

while (!Stop Criteria) do
thisSolution = SelectNeighbourSolution(bestSolution, tabuList, searchSpace);

if (thisSolution.quality ≤ bestSolution.quality) bestSolution = thisSolution;

UpdateTabuList(thisSolution, tabuList);

end
Algorithm 4: Tabu search base code

Also present in more advanced implementations of TS are the concepts of intensi-

fication and diversification. Intensification serves to ocasionally shift the algorithm

focus into a specific neighbourhood family that might hold improved quality, while

diversification attempts to ensure the entire search space is beeing considered.

“The idea behind the concept of search intensification is that, as an

intelligent human being would probably do, one should explore more thor-

oughly the portions of the search space that seem “promising” in order to

make sure that the best solutions in these areas are indeed found. From

time to time, one would thus stop the normal searching process to per-

form an intensification phase. In general, intensification is based on some

intermediate-term memory, such as a recency memory, in which one records

the number of consecutive iterations that various “solution components”
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have been present in the current solution without interruption. (...) One

of the main problems of all methods based on Local Search approaches,

and this includes TS in spite of the beneficial impact of tabus, is that they

tend to be too “local” (as their name implies), i.e., they tend to spend

most, if not all, of their time in a restricted portion of the search space.

The negative consequence of this fact is that, although good solutions may

be obtained, one may fail to explore the most interesting parts of the

search space and thus end up with solutions that are still pretty far from

the optimal ones. Diversification is an algorithmic mechanism that tries

to alleviate this problem by forcing the search into previously unexplored

areas of the search space. It is usually based on some form of long-term

memory of the search, such as a frequency memory, in which one records

the total number of iterations (since the beginning of the search) that

various “solution components” have been present in the current solution

or have been involved in the selected moves.”

Additionally it is worth noting that many positive results have been documented

in the literature regarding hybrid implementations of TS with other meta heuristic

algorithms to increase their standard performance. Two examples are the work of

Youseff [YSA01] and Mishra [MPT+05].

3.2.4 Simulated Annealing

Simulated annealing (SA) is based in the natural process of annealing of metallurgic

materials. A slower cooling process would typically originate stronger ligaments than

by rapid cooling process. This is explained at an atomic level by the fact that slower

cooling allows larger elements to arrange themselves in a more efficient configuration

before the remaining elements connect around them. Generating a tighter configura-

tion with stronger connections.

The algorithm was first presented by Kirkpatrick [KGV83] originating from an adap-

tation of the Monte Carlo methodology applied to thermodynamic systems that would

become referred as the Metropolis-Hastings algorithm [MU49]. The term monte

carlo dates back to physicists working on nuclear weapon projects in the Los Alamos

National Laboratory in the 1940s, refers to the use of random values and applied

probabilistic comparisons to assist solving non deterministic problems.

Kirkpatrick, Gelatt and Vecchi [KGV83] defined simulated annealing as a meta heuris-



CHAPTER 3. COMBINATORIAL OPTIMIZATION 40

tic algorithm that would search for new neighboring solutions of the combinatorial

problem and accept them based on a probability ratio. This probability ratio varies

depending on the quality difference of the solutions and a global decreasing tempera-

ture value defined by a special formula defined in Equation 3.1.

p(∆f, T ) =

 e
−∆f

T ∆f ≤ 0

1 ∆f > 0
(3.1)

The stopping criteria for SA is usually passing a certain temperature threshold, given

that the temperature value T decreases on each passing iteration by a certain rate

which can be variable to better fit the specific problem. As shown in the protocode

of Algorithm 5, the probability of accepting a solution of lower quality decreases with

the temperature. This process gives room for solutions to wander through a wider

range of the search space during initial iterations and slowly reduce that wandering

capacity, turning the algorithm into a standard hill climbing in the final iterations.

This behaviour helps avoiding a typical flaw where the optimization process gets stuck

in a local optimum neighborhood.

currentSolution = bestSolution = SelectRandomSolution(searchSpace);

while (!Stop Criteria) do
thisSolution = SelectNeighbourSolution(currentSolution, searchSpace);

if (thisSolution.quality ≤ bestSolution.quality) bestSolution = thisSolution;

∆f = bestSolution.quality - thisSolution.quality;

if ( p(∆f, T ) > random() ) currentSolution = thisSolution;

UpdateTemperature(T );

end
Algorithm 5: Simulated annealing base code

The downside of SA is the inability to guarantee that a global optimum, instead

of a local optimum, can always be reached or how many iteration steps it can take

to guarantee it. These questions highly depend on the complexity of the problem

and the linear dependency between the parameters and the quality function. The

temperature descent ratio is also required to be fine tuned paying special attention

to the characteristics of the problem. Uncareful parameter tuning can easily affect

the performance of the algorithm, reducing it to the same of a basic hill climbing

implementation.

Some authors have achieved higher performance by combining implementations of

SA with the previously described tabu search (TS) algorithm. The work of Mishra

[MPT+05] for instance is a good example of such a successful application.
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3.3 Population Based

A cluster of optimization algorithm is refered to as population based (PB), they differ

from LS algorithms in the sense that each passing iteration shall test a family of

solutions instead of one. This enables a different mindset where parallel evolution

plays a more important role over the solution history or the stochastic balance of the

algorithms previously analysed. The biggest downside of PB algorithms in comparison

to LS is having to additionaly balance the number of solutions per iteration to ensure a

reliable convergence minimizing the required iteration steps and probability of reaching

a local optimum instead of the global optimum.

Several algorithms documented in the literature can be classified as PB such as the

more recent work of Yang [Yan05] and Grosso et al [GLS07]. This document focuses

on two PB families specifically, genetic algorithms and harmony search: Genetic

algorithms being inspired by nature evolution, is one of the most popular families

of PB, harmony search being inspired by musical search for perfect combined melody.

3.3.1 Genetic Algorithms

Genetic algorithms is the name given to the nature inspired system based on the

Darwinian concept of the survival of the fittest, where each solution to our combina-

torial problem is uniquely encoded and part of a group or family of solutions which

evolves by each passing generation. The individual solutions are crossbred and mutated

to give birth to new generations of solution families sharing traits with the original

parent family of solutions. Original reference to this algorithm dates back to the work

of Holland in 1975 [Hol92]. A more modern reference can be found in the work of

Goldberg [Gol02].

Several implementations of the algorithm exist. Most implementation found in the

literature follow the original concept of binary encoding and elitist selection of each

new generation. The standard implementation refers to the problem’s parameters

being encoded into a binary dna string. Each possible parameter combination - our

solution - is defined by a unique dna string which can be crossbred with other dnas

or mutated alone to generate new dna solutions, yielding composite traits from the

parents.

There are quite many variants discussed in the literature referring to the many possible

ways to crossbreed the binary encoded solutions and the influence of the mutation
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factor in different types of problems. A comparatively recent and quite interesting

new approach to the original genetic algorithms concept is the so called real-value

(also referred to as real coded or real based) variations of the algorithm handling

continuous parameters.

Real based genetic algorithms have been taking a strong interest in the past decade,

the hand book of genetic algorithms by Davis [Dav01] contains a good general reference

and some new developments to the work on this area made by Michalewicz [Mic94].

Additionally, the work of Arumugama [ARP05] is worth consulting for some informa-

tion regarding new real based cross breeding techniques and their comparative work.

Also worth mentioning are new real based mutation factors presented and analysed

comparatively under the work of Deep and Thakur [DT07b] and the recent simulated

annealing inspired hybrids documented the works of Wang et al [WWR05] and He and

Hwang [HH06].

For the purpose of this thesis, there is a higher interest in the real based implemen-

tations of genetic algorithms. In real based genetic algorithms the fundamental steps

are still present alike their original binary implementation, despite a few conceptual

modifications to handle real-based parameters, these fundamental steps are:

• Parent Selection;

• Cross Breeding;

• Mutation;

• Validation.

Parent Selection Parent selection typically involves choosing which solutions of the

current generation are fit enough to breed into the next generation. Parent selection

is an important phase of the algorithm since it controls the elitism factor of the

process, elitism is usually the main force what drives the generations of algorithm

into a neighborhood of optimum solutions.

Allowing too many solutions to get selected for the next step of the algorithm could

generate a logistic overflow, making the algorithm test many unnecessary new solutions

with a low probability of offering any improved quality. A careful balance is required

to avoid wasting resources but still ensure we are selecting enough parents to avoid a

premature convergence to local optimum.
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The most basic selection criteria is the random selection of a fixed number of solutions

from the population. Another common variant is the elitist selection, where simply

the first n top quality solutions from the population are selected. A more modern

approach is the so called roulette wheel selection, where each solution is assigned a

space on the roulette wheel proportional to its quality and the solutions with the

largest portion on the wheel have the greatest probability to be selected from the

population. Another popular selection method is referred to as tournament selection,

where a certain number of solutions is chosen randomly from the population and the

best solution from that group is selected as a parent, the process repeating itself until

the complete new population is filled.

Many selection criteria are documented in the literature. It’s worth noting that the

use of hybrid versions where different criteria are applied to select a given percentage

of the population is also not at all uncommon.

Cross Breeding Cross breeding (also referred by some authors as cross over) is the

process of creating a new solution based on the traits of the selected population,

it can surge from two or more parents. There are many different techniques for

crossbreeding solutions, the most basic types are single point crossbreeding and multi

point crossbreeding. These are applicable to binary encoding of solutions only. Real

based genetic algorithms apply other crossbreeding methods.

Single point crossbreeding refers to a single point of a dna string that will be randomly

selected as the trimming point. One half of the new dna string will belong to one of

the parents, the other half to the other parent. Multi point crossbreeding works

similarly to single but selecting several points which define several strings of dna that

get exchanged. Multi parent crossbreeding has also been known to offer good results.

Basic implementation involves selecting a short random number of parents and multi

point crossbreed several dna sections between them.

Real based genetic algorithms require different crossbreeding methods from binary

genetic algorithms. Arithmetic cross-over for example follows a linear recombination

of two vector solutions affected by a certain random factor as can be seen in Equation

3.2.

x′ = λx + (1− λ)y (3.2)

y′ = (1− λ)x + λy (3.3)

An extremely popular real based cross breeding method is referred to as average convex
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cross-over. It’s basically a pondered average between the parameters of two parent

solutions. The weighted average of two vectors x1 and x2 are calculated as λ1x1 +λ2x2

where the multipliers are restricted to λ1 + λ2 = 1; λ1 > 0; λ2 > 0 Depending on the

restrictions applied to the multipliers on the arithmetic equations, these methods are

referred to as three kinds: convex cross-over, affine cross-over, and linear cross-over.

The special case of λ1 = λ2 = 0.5 is the one referred to as average convex cross-over

or intermediate cross-over by other authors.

Another cross breeding method worth mentioning is the direction based cross over.

This operand, also known as heuristic cross over, has awareness of the quality of the

solutions and creates the offspring under a weighted average tipping to the top quality

parent. The method respected the following arithmetic rule x′ = r(x2 − x1) + x2

between the higher quality parent x1 and the lesser quality parent x2, where r is a

random number between 0 and 1.

Many other more recently proposed cross over operands exist, another worth men-

tioning is the work of Deep and Thakur [DT07a] with the so called Laplace crossover.

This method consists of generating a number β following the Laplace distribution as

described in Equation 3.4 and applying it arithmetically with both parent solutions,

generating two offspring described in Equation 3.5.

β =

 a− b loge(u) u′ ≤ 1
2

a + b loge(u) u′ > 1
2

(3.4)

x′ = x + β|x− y| (3.5)

y′ = y + β|x− y| (3.6)

Variants and hybrids of these cross-over methods arent at all uncommon in many

scenario applications. One common modification with promising results is achieved

by modifying the multiplier values of some of these cross-over methods into a dynamic

form. Another common implementation is a hybrid version or variation where the

different methods are applied in different percentages to the population. Also recently

popular are multi-parent cross over methods where the offspring has its solution vector

influenced by more then two parents at a time.

As in most optimizer algorithms, these variations can offer good results in certain

applications, but their overall performance is largely influenced by the complexity and

co-relation of the parameters from the problem that is being solved.
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Mutation The mutation step in the algorithm sequence is considered as essential

step in forcing the search process to search outside the limits imposed by the initial

population. Mutation operands of the standard genetic algorithm implementation

consist of modifying some of the binary bits of the dna string solution in a more or

less controlled yet random manner.

Due to their nature, the real based genetic algorithms mutation operands are signifi-

cantly different from their binary dna string counter parts. Comparatively speaking,

most cross over operands for real based genetic algorithms take away some of the

importance that the mutation operand had in the binary genetic algorithms. Some

authors disagree and did focus research in new mutation operands capable of improving

performance under an adequate selection of the remaining parameters facing the

problems complexity.

Michalewicz [Mic94] proposed several mutation operands, one of which is most worth

mentioning due to its popularity is the so called non-uniform mutation. It functions

as described in Equation 3.7 generating point xt+1 from xt on each passing iteration.

t is current generation number, r is a uniformly distributed random number between

0 and 1. x1
i and xu

i are lower and upper bounds of the ith component of the decision

vector, u is a uniformly distributed random number in the interval [0, 1], T is the

maximum number of generations and b is a parameter determining the strength of the

mutation operator. Due to its mathematical constraints the algorithm has a broader

search space in the first iterations and a more locally concentrated around the parents

search space in the final iterations of the process.

xt+1
i =

 xt
i + (xu

i − xt
i)(1− u(1− t

T
)b
) if r ≤ 0.5,

xt
i − (xt

i − x1
i )(1− u(1− t

T
)b
) if r > 0.5,

(3.7)

A more recent mutation operand also worth referring is the power mutation proposed

by Deep and Thakur [DT07b]. This operand is based in power distribution. Its

distribution function is given by f(x) = pxp−1, 0 ≤ x ≤ 1 and its density function is

given by F (x) = xp, 0 ≤ x ≤ 1 where p is the index of the distribution. To generate the

mutated point y from the original parent x, a random number s is created following

this distribution and the Equation 3.8 where t = x−x1

xu−x1 and xl and xu are lower and

upper bounds of the decision variable and r is a uniformly distributed random number

between 0 and 1. The strength of mutation is governed by the index of the mutation p

which can be configured to vary between 0 and 1. For small values of p less perturbance
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in the solution is expected and for large values of p more diversity is achieved.

y =

 x− s(x− x1) if t ≤ r,

x + s(xu − x) if t > r,
(3.8)

Many other real based mutation operands have been presented in the literature,

however, the interest of this thesis lies solely on the more popular and recent, not

a complete overview on the state of the art.

Validation Validation is the final step of genetic algorithms. It verifies if the mu-

tated offspring is within valid parameters of the problem. In binary implementations

of genetic algorithms it had a more crucial role to the entire process, since most of the

cross over and mutation algorithms functioned unaware of the encoding applied to the

dna string which getting scrambled would often result in non-sensical representations.

For real based genetic algorithms the validation step is not so comparatively important

but is still applicable. All values of the vector must fall within the assigned range.

Certain problems also have specific constraints amongst the vector parameters which

can be checked in the validation step.

3.3.2 Harmony Search

Harmony search (HS) is a fairly recent meta heuristic, population based, algorithm. It

takes its principle from musician improvisation sessions where musicians try different

note combinations to find the best melody. Its theory and industry applications are

fairly well documented in the literature by Geem [GKL01], Lee [LG05] and Mahdavi

[MFD07].

HS is applicable to problems handling discrete and continuous variables alike, fitting

a middle range of applicability where most meta heuristic algorithms can only handle

discrete values and gradient-based mathematical algorithms can only be applied to

continuous variables.

The algorithm works by initializing a random population of possible vector melody

solutions, each solution is a combination of notes under a certain possible range. The

algorithm uses a probability threshold to decide if part of the new solution vector is

copied from previous memory of good performances or instead randomly improvised.

Additionally, each note can have its pitch slightly randomly adjusted, within a certain

pitch bandwidth, depending on another probability threshold. Improved solutions are
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kept in memory and the process is repeated a certain number of iterations. The base

protocode can be seen in Algorithm 6.

population = GeneratePopulation(searchSpace);

while (!Stop Criteria) do
thisSolution = NewRandomSolution(searchSpace);

foreach (note in thisSolution) {
if (copyNoteProbability > rand()) note = CopyNote(population[rand()]);

if (adjustPitchProbability > rand()) note ±= bw * rand();

}
UpdatePopulation(thisSolution,population);

end
Algorithm 6: Harmony search base code

Some implementations of the HS algorithm vary the threshold probabilities or the pitch

bandwidth during the iterative process to condition the algorithm into a simulated an-

nealing alike behavior. Depending on the characteristics of problem, this variation can

be very effective in providing improved results over the standard HS implementation.

3.4 Other Algorithms

Many other meta heuristic and non meta heuristic algorithms have been documented in

solving combinatorial problems of optimal search. There is no best algorithm to solve

all types of combinatorial problems. Their performance varies depending on the type

and complexity of the problem and the constraints of the parameters. Often certain

properties and characteristics of a particular algorithm can be applied to another

algorithm to generate hybrid form with improved performance for the problem at

hand alone. Several schools or families of algorithms have been documented regarding

these issues. Considering this, even if this thesis will not approach them directly, it

is important to note the characteristics and describe the common traits of these other

optimization algorithms commonly applied in solving combinatorial problems.

Ant Colony Optimization Proposed by Dorigo [Dor92], ant colony optimization

is based in the natural process of ant hill dynamics searching for food. In the real

world, the ants typically wander randomly by trails leaving a pheromone trail, this

trail tends to evaporate over time but is reinforced when the ant returns with food
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sooner than to be expected, other ants when encountering heavier concentration of

pheromones will follow the trail to collect the food reinforcing the trail some more.

This behavior is mapped to a virtual scenario where simulated ants walk combinatorial

problem graphs attempting to find the shortest connection.

There are several variants of the algorithm, the most known are the elitist ant system,

the max-min ant system and the rank-based ant system. What varies between them

is mostly the method in which the pheromones are dropped along the trails in order

to control the probability ratio of other ants following always the same trail or scatter

more easily. Ant colony optimization algorithms are particularly interesting for dy-

namic scenarios where the connections between the optimum solution can easily break

and the algorithm is forced to find an alternative path without restarting the entire

analysis of the problem. Successful applications have been documented in network

routing and urban transportation systems.

Constraint Programming Constraint Programming (CP) [Dec03] [Apt03] is a

programming paradigm where relations between variables are stated in the form of

constraints on variables over a given domain. A solution for a Constraint Satisfaction

Problem using CP is an assignment of a value to each of the variables that satisfies all

the problem constraints. CP is typically used for solving decision problems but can also

be extended to solve optimization problems by defining an evaluation function that

maps the problem variables into a real value. The optimization process consists in a

process that, after achieving a given valid solution, posts a new constraint stating that

a new solution must have a higher/lower value (maximization/minimization problems)

that the one previously achieved.

CP is typically more tailored for solving decision problems and not optimization prob-

lems like the ones analyzed on this paper. CP has been successfully applied in solving

problems in different areas of application such as automated timetable assignments,

digital circuit verification, air traffic control and several fields of engineering.

Cross-Entropy Method Proposed by Rubinstein [RK04], the cross-entropy method

is a general monte carlo approach to continuous optimum search combinatorial prob-

lems. The method originated from the field of rare event simulation, where very

small probabilities need to be accurately estimated. The method works by generating

candidate solutions via a parameterized probability distribution. The parameters are

updated via cross-entropy minimization, so as to generate better samples in each
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passing iteration.

Cultural Algorithm The term cultural algorithm was originally introduced by

Reynolds [Rey99] as a parallel approach to genetic algorithms. The difference is that

the population of solutions in cultural algorithm includes a sense of belief in the

population, where knowledge of several types (domain specific, situational, temporal,

spatial) is updated by the best solutions after each iteration and communicated to

other solutions leading them to alter their behavior or genome itself.

Covariance Matrix Adaptation Evolution Strategy A recent algorithm intro-

duced by Nikolaus Hansen with competitive results [Han06] is refered to as Covariance

Matrix Adaptation Evolution Strategy (CMA ES). Originally developed for solving

multi dimensional non-linear non-convex local optimization problems, the algorithm

was adapted with competitive results to also solve rugged search space global opti-

mization and multi-objective problems [IHR07].

The algorithm follows a population based architecture that converges by determining a

covariance matrix from of a multivariate normal distribution. The covariance matrix

is adapted in each generation step to follow the sampled search space convergence.

Higher population count provides a more reliable matrix adaptation but increases the

number of required solution tests.

The CMA ES algorithm is a good state of the art example of evolution strategies

algorithms thriving in the field of optimization.

Evolution Strategies Evolution strategies [Rec71] is another methodology that

operates in shared grounds with genetic algorithms, analysing the quality / fitness

values of possible generated solutions to alter the selection parameters. Generating

new solutions by mutation and selection of existing ones. The interesting trait from

this methodology is the self-adaptation process applied to adjust the internal selection

parameters dynamically.

Gradient Descent Gradient descent and gradient ascent are terms coined for an

optimization algorithm based on the mathematical relation of the gradient of the

function, following base guidelines of the Newton’s method for finding the root value

of n-dimensional equations, applied to optimization. It’s only applicable to functions

(or estimations of functions) whose derivatives, or gradients, can be calculated.
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To find a local minimum of a function using gradient descent, one takes steps propor-

tional to the negative of the gradient (or the approximate gradient) of the function

at the current point. One of the most known implementations of the methodology is

referred to as the Broyden-Fletcher-Goldfarb-Shanno(BFGS) method [Bro70] [Fle70]

[Gol70] [Sha70].

Memetic Algorithms Presented by Moscato [Mos89], the term memetic algorithms

refers to a whole family of hybrid versions of genetic algorithms which apply traits

of local search algorithms to customize the heuristic process to the problem at hand.

Generally speaking it is a school of meta heuristics focused on fitting domain knowledge

local search processes into population based systems. It can be argued by some authors

that this family of algorithms includes the previously mentioned cultural algorithm.

Nested Partitions Nested partitions was originally proposed by Shi and Olofsson

in 2000 [SO00] as a search space segmentation based approach to global optimization.

In their work the authors “propose a new randomized method for solving global

optimization problems. This method, the Nested Partitions (NP) method, system-

atically partitions the feasible region and concentrates the search in regions that are

the most promising. The most promising region is selected in each iteration based

on information obtained from random sampling of the entire feasible region and local

search. The method hence combines global and local search.”

Their upcoming book “Nested Partitions Method, Theory and Applications”, dated

for release in 2009 [SO09], might also be worth consulting.

Neural Networks Artificial neural networks [Hay99] have also been applied in

solving optimization problems. Artificial neural networks consists of simulating the

learning process of neurons of the brain. Biologically speaking in crude terms a web

of neurons exchange electro-chemical synapses to shape an output recognition signal.

This network of connections is somehow adapted to the characteristics of the input

information. Artificial neural networks simulate this behavior by connecting several

layers of simulated neurons which bear weights of influence among each other. The

weights of the networks are adjusted by a process of training using series of pre-

categorized examples. The literature is rich in different methods of training (also

referred by some authors as learning) and network configurations.
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Particle Swarm Optimization Particle swarm optimization (PSO) was originally

coined by Kennedy and Eberhart [KE95], and further developed by Clerc [Cle06]

as a stochastic, evolutionary and population based methodology. PSO applies the

concepts of swarm intelligence to the global optimization paradigm. Swarm intelligence

is referred to as the collective behavior of decentralized, self-organized systems of

simple agents interacting locally with one another and with their environment. These

systems follow very simple rules, and although there is no centralized control structure

dictating how individual agents should behave, local interactions between such agents

lead to the emergence of complex global behavior.

In PSO each member of the population has its position and directional velocity

properties. Each generation of new solutions is calculated based on these properties.

Their values alter depending on factors such as proximity distance to other particles,

the neighbouring particles best quality solution, the global particles best quality

solution. By scattering and regrouping the swarm explores the search space. By

maintaining flock proximity the swarm converges to the optimum. Some variants of

PSO assign global and local swarm leaders to have a stronger influence on the flock.

Hybrid variations of PSO have been documented in the literature, with good results,

by applying technics derived from other heuristics to customize PSO to a specific

problem. Variants include processes of discretization of the search space, principles

of repulsion, co-evolution and stochastic memetic algorithms. The population based

parallelism of PSO offers a good starting point for many hybrid experiments.

3.5 Summary

This chapter presented a generic introduction to the field of artificial intelligence based

optimization techniques. Specific attention was given to the optimization algorithms

used later in the thesis: local search algorithms random search, hill climbing and sim-

ulated annealing; and the population based methods genetic algorithms and harmony

search. Other algorithms were also referred in this chapter, either for their known

importance in the field of optimization algorithms or their direct influence in some of

the decisions documented in this thesis.

It is important to extract from this chapter the diversity of options when it comes to

optimization methods in search for the optimum in combinatorial problems. There

is no single best choice. The performance of optimization algorithms is often related

to the type and complexity of the problem in question. Bad configurations of good
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algorithms can easily undermine the convergance performance. Pondered decisions

must be taken and expert analysis considered before deciding what algorithm under

what configuration should be applied to solve each certain type of problems.

Some of the typical pitfalls of optimization methods that should be taken into consid-

eration include either overly restricting or overly widening the neighbor solution search

space scope, respectively leading to either getting stuck in local optimum search space

hills, or requiring too many iterations to find the global optimum. Another typical

pitfall of optimization algorithms is the so called long tail behavior, where badly

configured neighbor search space scope relations cause inner constrains that will not

allow the algorithm to converge to the global optimum, instead causing the iteration

process to wander in plateaus of local optimum. When developing a new optimization

algorithm or configuring optimization algorithms a balance must always be kept in

mind in order to ensure the algorithm will perform in a robust and reliable manner,

capable of avoiding these pitfalls in problems of different type and complexity.



Chapter 4

Parameter Optimizer for

Expeditious Modeling

Expeditious modeling of urban environments is an area where procedural modeling

applying pre-defined rules is common. The modeling rules applied can often grow large

in complexity and their parameters difficult to tune. In this regard, by applying knowl-

edge from the artificial intelligence fields of stochastic optimization and evolutionary

computation we can obtain automatic systems to determine the optimum parameter

combinations for different types of combinatorial problems, improving expeditious

modeling systems to a higher standard of automation, reliability and realism.

4.1 Problem Statement

The global objective is to minimize the cost and time of resources required to generate

realistic virtual models of urban environments. To achieve this there are several tools

and methodologies which can be applied and followed, as described in Chapter 2.

Image analysis methods can assist in modeling, however they can’t always be applied

due to lack of proper equipment or direct access to the real world model. Pure manual

3D modeling approaches also have logistic problems, requiring heavy learning curves

to master the tools and a great number of work hours to develop models that resemble

the real world in high detail.

Procedural modeling methodologies have been developed to allow a georeferenced

pipeline where the modeling process occurs based on acquired data and sets of pro-

53
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duction rules. These methodologies have the advantage of being capable of reapplying

the same generation rules to different locations and datasets without requiring heavy

manual 3D modeling. Access to reliable datasets of georeferenced data grows in

importance. The development of relevant production rules and fine tunning of their

variable parameters becomes extremely important.

For example, it often occurs that it is impossible, very troublesome or highly cost-

ineffective to acquire complete accurate data for an entire city we are trying to

model. However it is often possible, and relatively accessible to gather information

from certain key-defining areas within a city and assign the data to a georeferenced

database. Production rules can be optimized with the data collected to generate

models resembling the real world area of gathered information. Such production rules

can then be reapplied on areas of similar characteristics and more limited information

in order to generate realistic models.

4.2 Requirements, Methodology and Implementa-

tion

The solution envisioned to solve this problem is the development of a hybrid meta

heuristic algorithm capable of calibrating parameters of typical procedural modeling

systems specially developed for expeditious modeling of virtual urban environments.

Optimization problems in this specific area can vary significantly in type and com-

plexity but share enough of a common ground on limitations and requirements that

warrant special attention to the applied methodology.

4.2.1 Requirements

Several requirements were identified with specific importance to expeditious modelling

systems of urban environments. Their importance, best envisioned methodology to

satisfy them and the additional implementation constraints that surged from the proof

of concept test case application are addressed in the following paragraphs.

Domain Knowledge The term domain knowledge refers to extra information that

might be available or estimatable from optimization problem at hand. Some algorithms

such as the school of memetic algorithms [Mos89] are known to take advantage of
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domain knowledge to constrain the problem or its search space and thus improve the

performance of the optimization process. Similarly, gradient based approaches require

mathematical knowledge of the problem which might not be available in some cases.

In these cases, domain knowledge for gradient based systems can be estimated but it

is not always possible.

Parameter optimization problems for expeditious modeling can include a broad range

of problems in terms of complexity. Even though some simpler problems can ocasion-

ally have some clear domain knowledge that could facilitate resolving the problem,

this knowledge is often either unavailable for more complex problems or can simply be

applied to redefine the problem in itself, altering the significant input parameters to

reduce the complexity or changing the evaluation function of the problem to a more

convergent search space.

Considering the ensivioned optimizer should be capable of solving different types of

optimization problems with known or unknown domain knowledge alike, the proposed

methodology assumes all domain knowledge is void focusing on the convergence of the

hyper heuristic and meta heuristic.

As such, the proof of concept system assumes that no domain knowledge can ever

be gathered from the optimization problem. Similarly, any possible dependency or

co-relation in between the parameters and the quality function is considered unknown

a priori.

Input Parameter Types A standard limitation to optimization algorithms is the

type of input parameters they take. Some algorithms only operate with discrete values

while others have been developed to function with continuous values. Optimization

problems for expeditious modeling may require inputs of binary, discrete and contin-

uous parameter types.

To satisfy this requirement the optimizer system must handle the input of boolean,

integer and float types alike. This could be achieved by implementing a real coded

meta heuristic algorithm, in detriment of algorithms that can only handle binary,

discrete values or graph-like structures. The proposed methodology to support this

requirement with competitive performance is to develop a hybrid optimization system.

In the proof of concept implementation a hybrid system inspired by generic real coded

genetic algorithms (RCGA) was adapted to also handle boolean and discrete input

parameters. The hybrid system was developed to allow the configuration of local search
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methodologies such as random search and hill climbing which may sometimes perform

better in deterministic search space. Additionaly, characteristics trais from simulated

annealing (SA) and harmony search (HS) were applied to the parent selection, cross

breeding and mutation operands of RCGA, this improves the adaptability of the

algorithm to different problem complexity scenarios which could be caused by having

different types of input parameters with unknown corelation.

Performance A third requirement was defined regarding the performance of the

algorithm. An optimizer without a competitive performance is not very useful to

any system. Parameter optimization problems for expeditious modeling can include

a broad range of problems in terms of complexity. It’s imperative that the developed

optimizer performs competitively to other documented algorithms regardless of its

complexity.

Solving linearly constrained problems (with lack of local optimums) the algorithm

must outperform simple brute force or local search meta heuristic algorithms such as

the random search or hill climbing. Solving non linearly constrained problems (with

co-related parameters and many local optimums) the algorithm must perform on par

with modern implementations of RCGA and HS.

There are at least two distinct methods to approach this limitation. The first method

would be to develop an intelligent hyper heuristic that could select the adequate

heuristic to apply by analysing the constraints of the problem, this approach could

prove difficult considering the no domain knowledge requirement previously identified,

it would also not be a very elegant approach when applied to solve more lightweight

types of problems.

The second method to tackle this limitation would be to develop a hybrid meta

heuristic method in itself, which could be adapted for hyper heuristic performance

if required, but mainly aimed for solving lightweight problems initially configured by

generic common sense from previous experiences configuring the system for different

optimization problems.

The proof of concept implemented the later with additional performance measurement

log and visualizer system to assist in the analysis and fine tune configuration of the

algorithm dealing with different types of complexity problems in itself, including hyper

heuristic behaviour.
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Reconfigurability In order to support optimization problems of different com-

plexity, a very important requirement to the system is the capacity to be easily

configurable, allowing simple, fast and/or automated reconfiguration of the optimizer,

adapting itself to the specifics of problem at hand.

The methodology to satisfy this requirement involves defining configuration standards

that can be verified or easily altered, plus enabling the system to self-adapt or alter

itself somehow to follow the needs of a specific problem.

In the proof of concept implementation a special XML schema, deeply described

further ahead in this document, was developed to validate configurations that the

algorithm can interpret automatically. Additional hyper heuristic capabilities were

implemented to demonstrate the capacity of simplified reconfiguration of the system.

The hyper heuristic trait and a selection of internal dynamic operands that determine

the behaviour of the algorithm enables the optimizer some degree of self-adaptation.

Integration A final important requirement of the optimizer is that it must be easy to

integrate with different expeditious modeling system. Facilitated integration capacity

can be generally achieved with careful architecture and class structure choices.

To address this concearn special attention should be given to the optimizer invocation

and solution evaluation functions of the optimizer. Smart implementation of these

functions allows the optimizer to either be invoked externally to the system or be

embebbed into the source code directly. Ideally only the two key steps to define any

optimization problem should be required to be implemented in the system:

1. Define the generating function (type and scope of the input parameters)

2. Define the evaluation function (determine the quality fitness of the solution)

In the proof of concept implementation, as expected, special attention was given to

the architecture of the system and its class structure, described more in depth further

ahead in this document. The developed optimizer was embebbed into the XL3D

system [CBSF07], previously documented in Chapter 2 and can be invoked under

specific configurations. The two key steps of the optimization problem are addressed

by:

1. Writting the adequate XML configuration file that defines the problem. If

required additionally programming a special function to invoke the expeditious

modeling system with the defined parameters.
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2. Programming a function that analyses the expeditious modeling system output

and rates it accordingly.

4.2.2 Architecture

The foundations of the system rely on basic principles of RCGA and then incorporates

other concepts derived from SA and HC. There are two families of populations resident

in memory at all times. These are referred to as the originalparent family and the

toplist family as can be seen in Figure 4.1.

Figure 4.1: Optimizer architecture.

Each of both OptimizerFamilies contain a list of solutions. Each solution represents a

combination of values for each of the input parameters of the problem. Each parameter
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contains information regarding its type (boolean, integer, float) and scope (minimum

and maximum values).

Each iteration step of the meta heuristic algorithm consists of creating an entire new

generation of the originalparent family. As so, the originalparent family contains the

newly generated solutions. While the toplist family contains the best solutions ever

found so far, sorted by their quality. This shares traits with most standard population

based heuristic systems. Each solution stores values for all parameters that are being

calibrated.

The values for the entire first generation of the originalparent family are randomly

calculated within the parameter scope. The first generation of the toplist family is

obtained by sorting the first generation of originalparent family. Each new generation

is obtained by cross-breeding the originalparent family with a chosen member of the

toplist family. This method inspired by RCGA ideals, ensures an elitist selection

behavior that will push the families to reach an optimal solution. The cross-breeding

methodology for our algorithm shares traits with most standard implementations of

RCGA with a concept similar to the known non uniform cross over operand.

4.2.3 Thresholds

There are several thresholds present that embody generalist monte carlo [MU49]

stochastic optimization and specific SA ideology into the hybrid algorithm developed.

As documented previously in this chapter, these thresholds can be configured to be

either fixed valued or to follow a dynamic rule, the only implemented dynamic behavior

so far is a simple formula of diminishing a value with each passing iteration alike the

SA ideology. The value of these thresholds following the monte carlo reference is

counter-measured against an always randomized value, which generates a probability

of acceptance for a given action of the algorithm.

There are a total of eight threshold and two operand parameters which must be pre-

configured accordingly considering the complexity of the problem. There are several

problem characteristics to be taken into account when tuning these thresholds: the

number of parameters to tune, the scope of type values serving as input to the

problem, the correlation among the parameters, and if the problem is linearly or non

linearly constrained. When dealing with black box type of problems, most of these

characteristics are unknown and as such any configuration initially selected could only

be improved by applying hyper heuristic principles to the problem.
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Some of these thresholds are affected by the slow rise of entropy in the system, this

allows our hybrid system to have different degrees of mutation. This dynamic property

is a branded trait of SA which is often neglected in population based meta heuristics to

a fixed value. Special implementations fluctuating the decision probabilities and pitch

bandwidth in HS have been documented in the literature in the past. Similarly, special

variations of a dynamic mutation operand in RCGA implementations are uncommon

but have also been documented in the literature.

In our new hybrid meta heuristic system an internal value, referred to as globalentropy,

increases by every generation and is calculated as a ratio corresponding to the max-

imum number of iteration steps applied to the optimizer, as described by (4.1). The

globalentropy slowly rising controls the levels of mutation allowed by the algorithm

described further ahead.

globalentropy = iterationstep/maxsteps (4.1)

Threshold Random New Struct trns scopes real based values between 0.0 and

1.0, affecting the probability of choosing a completely random new solution. The higher

this value the more probable it becomes to occur a total random creation of a new

solution. A value of 0 implies that new solutions will never be random. A value of 1.0

implies that new solutions will always be random, solely depending on globalentropy.

How this threshold is mathematically applied can be consulted in formula (4.2). HS

as a similar probabilistic threshold to occasionally select entirely new solutions.

rand() ∗ globalentropy < trns : randSol() (4.2)

Threshold Random New Type trnt scopes real based values between 0.0 and

1.0, affecting the probability of choosing a completely random new value for each of

the solution parameter types. The higher this value is the more probable it is to

occur a totally random new value for the current parameter type of the solution. A

value of 0 implies new solutions will never be random. A value of 1.0 implies that

new solutions will always be random, solely depending on globalentropy. How this

threshold is mathematically applied can be consulted in formula (4.3).

rand() ∗ globalentropy < trnt : randType() (4.3)

Threshold Toplist Dispersion ttld scopes real based values between 0.0 and 1.0,

affecting the probability of choosing lower ranking toplist parents to cross the solution
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with. The higher this value the wider the scope of choice. A value of 0 is no

dispersion, will always breed with best solution from toplist. An intermediate value of

0.5 is half dispersion, randomly choosing a member from the better half of the toplist

family. A value of 1.0 is full dispersion, randomly selecting a member from the entire

toplist family. The threshold value can be replaced with that of a function inversely

proportional to the globalentropy. How this threshold is mathematically applied can be

consulted in formula (4.4). This formula can be somewhat comparable to the roulette

wheel parent selection method of RCGA [Mic94].

victim = (rand() ∗ ttld ∗maxFamilySize) (4.4)

Threshold Typevalue Dispersion ttvd scopes real based values between 0.0 and

1.0, affecting the parental gene influence for each value of the parameter types of the

solution. The higher this value is, the higher will be the influence from the toplist

parent. A value of 0 means no dispersion, selecting the value entirely from the original

parent (orv). A value of 0.5 means half dispersion, average value between the toplist

parent and the original parent. A value of 1.0 means full dispersion, selecting the

value entirely from the toplist parent (tlv). The threshold value can be replaced with

that of a function inversely proportional to the global entropy. How this threshold

is mathematically applied can be consulted in formula (4.5). This formula can be

somewhat comparable to a hybrid version of the RCGA operands of average convex

cross over and direction based cross over [Dav01].

newvalue = (ttvd ∗ orv) + ((1− ttvd) ∗ tlv) (4.5)

Threshold Typevalue Entropy ttve scopes real based values between 0.0 and 1,

affecting the probability of scope jitter for each value of the parameter types of the

solution. The higher value, the broader the scope range will be. A value of 0 means no

entropy, the final value won’t jitter. An intermediate value of 0.5 means half entropy,

the final value will jitter within 50% of the parental value difference scope. A value of

1.0 means full entropy, the final value jitters full scope. The threshold value can be

replaced with that of a function inversely proportional to the global entropy. How this

threshold is mathematically applied can be consulted in formula (4.7). This threshold

can be compared to the pitch adjustment of HS and several recent RCGA mutation

operands described in the literature.

scope = ‖(OParentV alue− TLParentV alue)‖ (4.6)

igl = (1.0F − globalentropy) (4.7)
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ttvss = ttvss ∗ ttvsv ∗ igl (4.8)

range = MaxParamV alue−MinParamV alue (4.9)

scope < ttvss ∗ range : maxscope = range ∗ ttvsv (4.10)

scope > ttvss ∗ range : maxscope = scope ∗ ttve (4.11)

maxscope = scope ∗ rand() (4.12)

newvalue = newvalue + scope− (maxscope/2) (4.13)

Other Thresholds and Operands Three other thresholds and two operands were

implemented to the configuration of the algorithm with minor importance to the

capacity of the algorithm or the work developed in this thesis.

• Threshold Typevalue Scope Scope (ttvss)

• Threshold Typevalue Scope Value (ttvsv)

• Threshold Nested Partition (tnp)

• Crossover Operand (co)

• Mutation Operand (mo)

Both ttvss and ttvsv are only applied in formulas 4.9 and 4.11, affecting slightly how

the mutation operand jitters the final solution. For most of the tested development of

the algorithm their values have been default to following globalentropy. Altering their

behavior for other dynamic formulas might offer interesting results following some of

the properties of certain documented RCGA operands.

The nested partition threshold refers to a yet experimental implementation of nested

partition ideals applied to dynamically reducing the search space to areas with inter-

esting results in an attempt to diminish the number of test solutions that never yield

interesting results. The danger lies in configuring the algorithm to over restrict the

search scope, unwantedly cutting off from the search space the global optimum. Tests

with this threshold were disregarded for the scope of this thesis.

The crossover and mutation operands are design decisions aimed at further devel-

opment of the algorithm to allow direct comparative work of the hybrid with some

previously documented or newly conceptualized operands of RCGA and HS literature.

The multiplicity of possible operands play no part on this thesis.
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4.2.4 XML Configuration Schema

To satisfy the reconfigurability requirement of the optimizer, the proof of concept

implementation supports a newly defined XML schema to read and interpret the

configuration files. This section describes the implementation and provides a good

introduction to the internal workflow of the optimizer system and its architecture.

A valid XML configuration file has a single OptimizerConfig type with the element

name identifying the configuration. Each OptimizerConfig includes eight subnode

types as seen in Figure 4.2.

Figure 4.2: XML configuration nodes scheme.

The Filename type is optional, applicable only for invoking hyper heuristic configura-

tions, using its name element to identify the XML template that should be modified.

The Function type is required to identify the internal function type that will be

executed in the algorithm and the number of repeat trials before re-attempting a

new combination when handling problems with post-calc constraints.

The MaxCounter type defines how the iteration process of the algorithm operates,

its type indicates different operation modes, 0 or 1 implies an counts incremental or
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decremental a certain value of steps respectively, a type value of 2 or 3 implies the

process will repeat iteratively until the quality value drops below the value described.

The SetToggles type pertains to configure the threshold type of the algorithm. for

the 8 thresholds it operates as 0 for static threshold value and 1 for a dynamic value

variation following the globalentropy value described further ahead in this chapter.

Higher values for these 8 thresholds are reserved for other dynamic operands that

are not yet implemented on the system. The co and mo elements pertain to the

crossover operand and mutation operand type selected, envisioning future development

to implement specific operands documented for real coded genetic algorithms and

harmony search implementations, among other possibilities this would allow an easy

and improved comparative analysis to take place in the future.

The SetThresholds type registers the values for the 8 thresholds available for configu-

ration in the algorithm, with values typically ranging between 0.0 and 1.0. How these

values affect the algorithm also depends on the toggle values described on the previous

paragraph and of course the internal algorithm which shall be addressed further ahead

in this chapter.

The Parameters type englobes one or several subnodes of Parameter types. These

Parameter types contain several elements, an id and a name to identify them sepa-

rately, a type defining if the parameter is of boolean (0), integer (1) or float (2) type.

An optional element n used for functions where the same parameter can have several

instances, being that the n would indicate the number of instances, the default by

omission is of course 1 instance per parameter. Additionaly the min, max and sub

fields determine the scope of the parameter, being that the min and max must be

ranged in positive numbers only due to internal convergence calculus requirements,

and the sub element indicates how much should be subtracted to this allocated range

to displace the scope to the desired range, shall only be any different of 0.0 in case of

negative scopes.

The Generation and Topslist types have a single element size defining the dimension of

the originalparent and toplist family sizes respectively. Their relation to the algorithm

will be described further ahead in this chapter.

An example of a valid XML configuration used by the Optimizer follows.

<?xml version="1.0" encoding="UTF-8"?>

<OptimizerConfig name="gp1_h1n">

<Function type="2" repeat="10"/>
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<MaxCounter type="0" value="100"/>

<SetToggles trns="0" trnt="0" ttld="0" ttvd="1" ttve="0"

ttvss="1" ttvsv="1" tnp="0" co="0" mo="0"/>

<SetThresholds t1="0.01" t2="0.01" t3="0.1" t4="0.0"

t5="0.1" t6="0.0" t7="0.0" t8="0.0"/>

<Parameters>

<Parameter id="x1" name="x1" type="2"

min="0.0" max="10.0" sub="5.0"/>

<Parameter id="x2" name="x2" type="2"

min="0.0" max="10.0" sub="5.0"/>

</Parameters>

<Generation size="20"/>

<Topslist size="30"/>

</OptimizerConfig>

The example of the optimizer configuration above will execute 100 iterations with

a originalparent family size of 20 and a toplist family size of 30, optimizing two

parameters of a well known mathematical function first presented by Goldstein &

Price [GP71] for benchmarking global optimization problems. This function takes 2

parameters, both scoping between -5 and 5.

4.2.5 Performance Monitoring

The optimizer was developed to output a series of logs where the parameter and

quality values of each tested solution is registered in physical memory by the saveStatus

method. Also registered in physical memory are the contents of both originalparent

and toplist family of solutions for each iteration step. This allows the user to analyse

the data generated and determine how the algorithm is converging to the optimum.

An additional wrapper log was developed to calculate the average values of several runs

of the optimizer under the same configuration. This allows the performance between

different configurations to be compared statistically, analysing the progression of the

algorithm through the iterative steps with information regarding their algorithmic

mean and standard deviation. This information is useful to help calibrate and justify

performance enhancement theories between the different configurations.

The complete history of the optimizer can also be loaded and saved into physical

memory. A simple visualizer was embebbed to allow easier supervision of convergence



CHAPTER 4. PARAMETER OPTIMIZER FOR EXPEDITIOUS MODELING 66

performance characteristics of the algorihtm executing under different configurations.

The visualizer, seen on Figure 4.3, was developed for viewing functions with 2 input

parameters only. The screenshots from different step iterations show in red dots the

toplist family members, in black the newly calculated original parent family members

and with blue lines the position of the parents that originated the current solution

marked with the black dot.

Figure 4.3: Visualizer steps showing convergence of a 2D function.

4.3 Summary

This chapter described the optimizer solution developed to assist in expeditious mod-

eling of virtual urban environments. It refers the importance and the context of the

application field. It also approaches the defined requirements and how they conditioned

the methodology and the proof of concept implementation of the optimizer. Finally

it covers how the system can be configured, its basic architecture, internal algorithm

thresholds and how the performance can be monitored.
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The optimizer algorithm is an hybrid version of real coded genetic algorithms with

traits of simulated annealing and harmony search. The algorithm was developed

aiming to solve global optimization problems that have no access to domain knowledge

information and require support for boolean, integer and float type of input param-

eters. The algorithm was expected to perform competitively with other standard

implementations of similar algorithms.

This chapter is crucial to this document as it exposes the context, requirements,

methodology and proof of concept implementation specifics of a system developed

to simplify and automate the optimum parameterization of production rules in expe-

ditious modeling systems of virtual urban environments.



Chapter 5

Evaluation

In order to test the capacity and performance of the system, several benchmark tests

were conducted. This chapter is divided in two sections, the first regarding the

performance evaluation of the developed system under different configurations and

sets of standard non-convex non-linear global optimization problems. The second

section documents how the system was used in a real test case scenario. Detailing

the process of calibration by parameterization of an estimated modeling formula and

the results obtained by reapplying that formula in other modeling areas with missing

data.

5.1 Optimizer Benchmark

Some tests were performed to guarantee with some degree of certainty that the new

meta heuristic algorithm offers competitive results against other types of algorithms.

These tests compare results of different configurations of our algorithm under four

well documented equation minimization problems. Due to its nature, the optimizer

system allows for different configurations of the thresholds. When selected carefully

these threshold configurations mimic the behavior of basic optimum search algorithms

and serve as a general comparative term with the hybrid.

The first sub section lists what configurations of the algorithm were tested. The

following four sub sections present the global optimization functions used to prelimi-

nary test the performance of the algorithm during development, presenting results for

each of the tested configurations. the final sub section is dedicated to analysing the

68
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performance of the algorithm in some of the problems from the CEC’051 set [SHL+05].

5.1.1 Tested Configurations

We selected a total of 7 different configurations of the meta heuristic algorithm to test

the performance on distinct combinatorial problems. These configurations all shared

a fixed toplist family size of 20, iterating 50 generations each.

Each configuration was labeled accordingly. The configuration labeled as rnd for

example represents a pure random search algorithm configuration where each next

solution is selected randomly out of the entire solution universe.

The configuration labeled as hhc, referring to a hybrid hill climbing, behaves as

a standard hill climbing version of local search algorithm, always generating next

solutions based on the best solution found so far and using a very close quartered

neighbor solution scope.

The configuration labeled as hsa, hybrid simulated annealing, represents a standard

local search algorithm and behaves diminishing the acceptance rate of other solutions

beyond the best and also diminishing the neighbor scope progressively, so that in the

beginning of the iteration a broader search range is available and the next solution

isnt always calculated based on the best solution found so far, as more iteration steps

occur their probability diminishes progressively mimicking the behavior of simulated

annealing.

Other four configurations were tested with parameters previously known to offer some

good results under all different kind of combinatorial problems. These were labeled as

h1n, h2n, h3n and h4n. They attempt to take advantage of the hybrid nature of the

algorithm representing hybrid versions of semi-elitist genetic algorithm behavior and

some principles behind harmonic search. The parameters of all these configurations

can be consulted in table 5.1.

To determine the efficiency and robustness of our meta heuristic algorithm we tested its

configurations performance against a batch of well documented combinatorial problems

originally defined by Rosenbrock [Ros60], Goldstein and Price [GP71] and Colville

[Col68]. The choice for this batch of problems follows Lee’s 2005 paper ”a new meta

1IEEE Congress on Evolutionary Computation 2005 Special Session on Real-Parameter Opti-
mization, often used in recent literature to compare performance between state of the art global
optimization algorithms
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Table 5.1: Tested configurations

config trns trnt ttld ttvd ttve

rnd 1.0 1.0 0.0 0.5 0.5

hhc 0.001 0.001 0.0 0.0 0.1

hsa 0.01 0.01 0.0 ge ge

h1n 0.01 0.01 0.1 ge 0.1

h2n 0.001 0.001 0.4 0.15 ge

h3n 0.001 0.001 0.1 0.1 ge

h4n 0.001 0.001 0.01 0.01 0.01

heuristic algorithm for continuous engineering optimization HS theory and practice”

[LG05] regarding the applicability of HS in solving combinatorial problems effectively.

The optimal solution for each of the four tested functions can be consulted in table

5.2

Table 5.2: Tested Functions
Functions Optimal Solutions

Rosenbrock function (5.1) f ∗(x) = 0.0, x∗
1 = 1.0, x∗

2 = 1.0

Goldstein and Price function-I (5.2) f ∗(x) = 3.0, x∗
1 = 1.0, x∗

2 = −1.0

Goldstein and Price function-II (5.3) f ∗(x) = 1.0, x∗
1 = 3.0, x∗

2 = 4.0

Wood function (5.4) f ∗(x) = 0.0, x∗
1 = 1.0, x∗

2 = 1.0, x∗
3 = 1.0, x∗

4 = 1.0

The results presented in the following subsections were obtained by calculating the

average values of 200 simulations for each tested configuration. Each of the 200 simu-

lations executing 100 iterations of the algorithm under the corresponding configuration

with a original parent family size of 20 and a toplist parent family size of 30. The

values on the following Tables pertain to the quality value of the best solution found at

0%, 40%, 80% and 100% of the 100 iteration steps. The third and the final column of

these tables refers to the standard deviation calculated for the initial and final iteration

step of the 200 simulations.

An additional hybrid hyper heuristic configuration hhh was determined for each func-

tion by applying the algorithm recursively in hyper heuristic fashion under the thresh-

old configuration of {0.001, 0.001, 0.4, 0.15, ge}, executing 50 iterations with original

parent family size of 20 and toplist parent family size of 30. The threshold configura-

tion was estimated as having a good performance by user experience obtained while

implementing the system but also largely inspired by several documentats refering to

the performance between variants of SA, RCGA and HS considering their different
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Table 5.3: Hyper heuristic configurations

function trns trnt ttld ttvd ttve

ros 0.0007 0.0005 0.165 0.1397 ge

gp1 0.001 0.0005 0.3644 ge ge

gp2 0.0015 0.0014 0.1346 0.0559 ge

wood 0.0006 0.0007 0.276 0.1561 ge

ratios that are embebbed into the hybrid system.

For each of the test functions described ahead, each of the solutions tested (500 per

function) had their fitness valued as the final value average from 10 configuration

simulations each. The scope of the variable configuration parameters on the hyper

heuristic were as follows: trns [0.0005..0.002], trnt [0.0005..0.002], ttld [0.1..0.4], ttvd

[0.05..0.2]. Scope limits to these parameters were applied to speed the process of

convergence. The best hyper heuristic configuration found for each of the test functions

can be consulted in table 5.3

5.1.2 Rosenbrock Function

f(x) = 100(x1− x22)2 + (1− x1)2 (5.1)

Rosenbrock introduced the function shown in 5.1 in his article ”An Automatic Method

for Finding the Greatest or Least Value of a Function” [Ros60] which has grown to be

one of the most known equations for benchmarking continuous parameter optimum

search algorithms.

This equation is interesting due to its valley like shape as seen in Figure 5.1. Due to

this property, the traditional hill climbing behavior algorithms usually require a great

number of iterations to converge to the optimum solution. The optimum minimum

solution for the Rosenbrock algorithm is x∗ = (1.0, 1.0) with a quality function value

f ∗(x) = 0.0.

The algorithm was applied to the Rosenbrock function problem with scope of -10, 10

for both of the variable parameters, x1 and x2. Results are presented in Table 5.4.

The initial iteration µ and σ columns offer us a general overview of how widely

parameter scoped and fluctuating quality the Rosenbrock function search space truly

is. All configurations quickly converge to a local search area surrounding the optimum.

Due to the small dimension of the solution space, even a pure random search can offer,
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Figure 5.1: Rosenbrock function.

Table 5.4: Average results of optimizing the Rosenbrock function under the different

configurations

config init µ init σ 40% µ 80% µ final µ final σ

rnd 259.62 442.48 1.1367 0.6801 0.61382 1.48371

hhc 305.13 525.05 0.5510 0.0212 0.00768 1.61623

hsa 256.39 406.75 1.3273 0.0370 0.00556 1.42254

h1n 331.74 585.03 0.9108 0.0574 0.01156 1.70605

h2n 294.98 480.78 0.7082 0.0325 0.00305 1.54659

h3n 308.88 507.20 0.6136 0.0168 0.00396 1.58852

h4n 284.30 521.83 0.4242 0.0864 0.03647 1.61127

hhh 260.85 425.16 0.6576 0.0327 0.00827 1.45438

in average, decent results under small number of iterations. To achieve more accurate

results the balanced non elitist centered configurations such as h2n and h3n seem to

be more reliable when roaming the search space, especially in comparison with elitist

centered configurations such as h4n as seen in Figure 5.2. The performance of hhh

suggests that even though hyper heuristic can be helpful in finding good solutions, the

configuration found is still somewhat far from the global optimum.
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Figure 5.2: Average results graph for the Rosenbrock function.

5.1.3 Goldstein and Price Function I

In [GP71] Goldstein and Price introduced an eight order polynomial function of two

variables and four local minima as seen in Figure 5.3

Figure 5.3: Goldstein and Price function I.
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Table 5.5: Average results of optimizing the Goldstein and Price function under the

different configurations

config init µ init σ 40% µ 80% µ final µ final σ

rnd 1615.42 3805.92 19.8780 10.3636 9.11594 4.35143

hhc 1454.01 3263.58 5.2758 3.0035 3.00001 4.02948

hsa 1599.58 4619.95 22.2146 3.1502 3.00003 4.79425

h1n 1511.71 3741.57 14.2214 3.1206 3.00003 4.31449

h2n 1474.86 3234.23 10.7610 3.0510 3.00005 4.01132

h3n 1612.40 3984.30 11.2939 3.0263 3.00001 4.45223

h4n 1543.38 3124.26 6.0594 3.0016 3.00001 3.94254

hhh 1359.91 3990.07 14.0894 3.0924 3.00020 4.45546

This function, described mathematically in Equation 5.2, has an optimum solution

of x∗ = (0.0,−1.0) with a quality function value f ∗(x) = 3.0. The local minima are

located at x∗ = (1.2, 0.8), x∗ = (1.8, 0.2) and x∗ = (−0.6,−0.4) with quality function

values of f ∗(x) = 840.0, f ∗(x) = 84.0 and f ∗(x) = 30.0 respectively. The search

space for the problem have been limited with scope of -10, 10 for both of the variable

parameters.

f(x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)) (5.2)

× (30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2))

From the results in Table 5.5 we can conclude that despite very steep quality values

when randomly sampling the solution search space, all configurations of the algorithm

quickly converged to the optimum. Opposed to the results for the Rosenbrock function,

in the Goldstein and Price function more elitist configurations such as hhc and h4n

offer slightly superior results when compared to the other non elitist configurations.

Overall all the configurations offer very good and close results as can be better observed

in Figure 5.4.

5.1.4 Goldstein and Price Function II

f(x) = exp
{

1

2
(x2

1 + x2
2 − 25)2

}
+ sin4(4x1 − 3x2) +

1

2
(2x1 + x2 − 10)2 (5.3)

Another interesting function introduced by Goldstein and Price [GP71] is described

mathematically in Equation 5.3. This function has many local minima, the optimum
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Figure 5.4: Average results graph for the Goldstein and Price function.

solution is x∗ = (3.0, 4.0) with a quality function value f ∗(x) = 1.0. The search

space for the problem have been limited with scope of -5, 5 for both of the variable

parameters.

From the results in Table 5.6 we can conclude that despite an extremely steep quality

values shift in the quality function of the solution space, all configurations of the

algorithm offer good results. These results can be better observed in Figure 5.5.

5.1.5 Wood Function

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3)
2 + (1− x3)

2 (5.4)

+ 10.1
[
(x2 − 1)2 + (x4 − 1)2

]
+ 19.8(x2 − 1)(x4 − 1)

The fourth function tested is referred to as the Wood function. As mathematically

described in Equation 5.4, this is a fourth degree polynomial function. It has been

heavily used as an important convergence test in the past due to its similarity with

many physics problems [Col68]. The optimum solution is x∗ = (1.0, 1.0, 1.0, 1.0) with

a quality function value f ∗(x) = 0.0. The search space for the problem have been

limited with scope of -5, 5 for all four of the variable parameters.
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Table 5.6: Average results of optimizing the Goldstein and Price function II under the

different configurations

config init µ init σ 40% µ 80% µ final µ final σ

rnd 249.10 1719.64 1.2596 1.1738 1.15081 2.92496

hhc 318.92 1980.36 1.0474 1.0347 1.03433 3.13887

hsa 401.09 2207.65 1.0581 1.0414 1.03470 3.31411

h1n 180.21 1408.29 1.0529 1.0425 1.03417 2.64697

h2n 180.69 1408.68 1.0482 1.0369 1.03438 2.64733

h3n 324.90 1979.74 1.0509 1.0382 1.03619 3.13838

h4n 531.06 2598.78 1.0454 1.0375 1.03510 3.59573

hhh 180.71 1408.68 1.0499 1.0365 1.03489 2.64733

Table 5.7: Average results of optimizing the Wood function under the different

configurations

config init µ init σ 40% µ 80% µ final µ final σ

rnd 776.37 635.20 41.9352 26.1354 22.16171 1.77769

hhc 779.56 617.26 16.4876 2.7164 2.03788 1.75241

hsa 832.14 628.99 30.1377 3.6724 2.52855 1.76899

h1n 727.10 660.86 28.1528 3.1471 1.91683 1.81324

h2n 774.08 686.43 17.7773 2.2228 1.18706 1.84799

h3n 810.51 669.87 21.3257 2.4911 1.71672 1.82556

h4n 779.16 635.44 16.8759 3.1982 2.39205 1.77803

hhh 801.21 638.09 15.8935 2.6514 1.75467 1.78173
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Figure 5.5: Average results graph for the Goldstein and Price function II.

Figure 5.6: Average results graph for the Wood function.

By looking at Table 5.7 we can conclude that despite offering results much superior

to the standard random search configuration rnd, all the remaining configurations
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don’t quite manage to achieve satisfactory results close to the optimum quality. The

Wood function’s increased convergence complexity, comparatively to the other three

problems tested, requires a lengthier iteration period of convergence to present good

results regardless of the characteristics of the used configuration. The results can be

better observed in Figure 5.6.

5.1.6 CEC 2005

To satisfy further academic requirements the performance of the system was addition-

aly tested against some of the standard batch of non-convex non-linear continuous

problems from the IEEE Congress on Evolutionary Computation 2005 Special Session

on Real-Parameter Optimization [SHL+05].

The configuration for the hybrid algorithm was first over fitted to one of the standard

problems, the Rosenbrock at D = 10 dimensions2. The configuration was then tested

in the Sphere, Schwefel 1.2, Rosenbrock, Rastrigin and Weierstrass problems at D = 10

and D = 30 dimensions each.

The average results of 25 runs of each problem can be consulted in Table 5.8. The

first column shows the name of the test problem while the following columns show

the average from 25 runs at the steps of 2%, 40%, 80% and 100% of the optimization

process. The first 5 problems were executed at D = 10, with a generation of 10,

executing 10 ∗ 105 function evaluations, the last 5 were executed at D = 30, with a

generation of 30, executing 30 ∗ 105 function evaluations.

The original CEC’05 Special Session on Real-Parameter Optimization [SHL+05] con-

sisted of benchmarking 11 algorithms each optimizing 25 different test functions under

D = 10 and D = 30. Measuring which ones would solve the given problems under the

target precision error of 10−8 under each function for D ∗ 105 function evaluations.

The presented table does not relate directly to the results obtained from CEC’05

session [Han06] but analysing those results and comparing them to the performance of

our algorithm allows us to conclude that despite performing below the state of the art,

the hybrid system has an acceptable performance optimizing non-convex non-linear

types of problems.

2all global optimization problems from the CEC’05 batch are designed as calculus sums of finite
dimensions, increasing the number of dimensions exponentially increases the complexity of the
problem
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Table 5.8: Average quality function at different stages of the convergence.

problem 2% µ 40% µ 80% µ final µ

Sphere 2.880249e+004 5.069603e-007 7.443773e-010 2.746327e-016

Schwefel 1.2 4.834547e+005 3.512164e-006 6.751018e-009 1.194683e-015

Rosenbrock 3.028539e+010 1.190515e+003 3.619151e-002 3.720837e-005

Rastrigin 1.533455e+002 3.236556e-005 9.360353e-008 3.327253e-014

Weierstrass 1.463048e+001 2.082120e-001 4.062040e-002 2.013143e-002

Sphere 1.133168e+005 7.510152e-005 7.610557e-008 5.908891e-012

Schwefel 1.2 2.520423e+007 1.522236e-002 1.362870e-005 6.535891e-010

Rosenbrock 1.412603e+011 4.283153e+002 9.933642e+000 3.956425e+000

Rastrigin 5.652055e+002 7.956591e-001 8.582548e-006 6.416542e-010

Weierstrass 4.915724e+001 1.468030e+000 4.400829e-001 1.226722e-001

These results are satisfactory since the aim for the development of the hybrid system

was to develop a new functional implementation of an interoperable algorithm, not

an algorithm competitive with the state of the art. Despite not testing all of the

IEEE CEC 2005 proposed problem set, the comparative analysis shows that the

developed hybrid algorithm is capable of solving these problems despite not having

been developed strategically as a state of the art pure non-convex non-linear global

optimization algorithm, but as a lightweight, portable, reconfigurable and flexible new

prototype to embed in expeditious modeling systems.

As previously stated, expeditious modeling systems have additional requirements be-

yond performing competitively against pre-defined sets of non-convex non-linear prob-

lems of continuous nature. Expeditious modeling optimizer systems are required to

equally assist competitively in solving problems of different type and complexity, with

mixed discrete and continuous parameters. Overall, the system was aimed to provide a

solution capable of performing both the bluntly configured short iteration phases aimed

to determine generic guidelines to solve an optimization problem, and the extremely

fine tuned configuration for long run convergence for obtaining the global optimum of

complex problems.

5.2 Test Case Application

A test case was prepared with XL3D modeler involving the parameterization of pro-

duction rules to determine missing height values from a collection of data. The known



CHAPTER 5. EVALUATION 80

information for each georeferenced building included the values of the perimeter, area

and bottomzvalue.

The production rule used to estimate the height of a building implies a possible

relation between the building’s area (5.5), the building’s perimeter (5.7) and the

building’s bottomzvalue (5.6) to the building’s height. The exact formula is described

mathematically in (5.8).

av = (cra− 1) ∗ fca ∗ area (5.5)

ab = (crb− 1) ∗ fcb ∗ bottomzvalue (5.6)

ap = (crp− 1) ∗ fcp ∗ perimeter (5.7)

topzvalue = avgz + disp ∗ (av + ab + ap) (5.8)

The formula has a total of 8 unknown fields that can be parametrized:

- avgz ∈ [100.0..120.0], the average height for all the buildings;

- disp ∈ [0.0..1.0], the dispersion rate from the average height;

- cra ∈ [0..3], area correlation signal;

- crb ∈ [0..3], bottomzvalue correlation signal;

- crp ∈ [0..3], perimeter correlation signal;

- fca ∈ [0.0..1.0], area correlation factor;

- fcb ∈ [0.0..1.0], bottomzvalue correlation factor;

- fcp ∈ [0.0..1.0], perimeter correlation factor.

This formula is a basic empiric trial. Clearly the features of a building will never

all follow this formula. In that sense more complex formulations could easily be

devised with architectural knowledge and historic region background to obtain better

results. This formula is merely a demonstration that under a working system, even

basic relational formulas can assist in producing realistic values with a more sensible

methodology compared to common trial and error sessions.
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5.2.1 Calibration

A calibration test was carried out to compare the performance of different configura-

tions under the complexity of the specific problem formula.

This test compared some of the optimization configurations previously presented. The

parameters of the different configurations of this specific test can be consulted in Table

5.9. Each configuration of the meta heuristic algorithm was tested with a fixed toplist

family size of 20. Each test iterated 50 generations with a family size of 8.

Table 5.9: Threshold parameters of the different configurations.

config trns trnt ttld ttvd ttve

rnd 1.0 1.0 0.0 0.5 0.5

h1n 0.01 0.01 0.1 1.1 1.1

h2n 0.001 0.001 0.4 0.15 1.1

h3n 0.001 0.001 0.1 0.1 1.1

hhc 0.01 0.01 0.0 1.0 0.1

hsa 0.01 0.01 0.0 1.0 1.1

The quality function used was calculated as a weighted sum of the height difference

from 30% randomly selected buildings from the dataset. An additional weight to the

quality function was the global average height difference of the buildings from the

dataset without any data flaws.

All simulations were performed twice to present a glimpse on how deeply the perfor-

mance of the meta heuristics algorithm could be affected by its stochastic nature. Two

runs are clearly not significant from a valid statistical reference point of view but a

compromise had to be made considering the long execution time of each run. In this

sense, results from two executions offer significant more information then one single

run of each configuration.

Table 5.10 displays the progressive results obtained from our test case. Similarly to

the mathematical test functions previously presented this table of results shows the

quality value of the best solution found at 2%, 40%, 80% and at the end of the iteration

process, allowing us to speculate on how each configuration depended on the initial

state and perform comparatively to known random search, hill climbing and simulated

annealing algorithms.

The results allow us to conclude that our hybrid meta heuristic algorithm, in this

specific problem, when tuned the right way, can outperform standard random search
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Table 5.10: Progressive solution quality results from the different configurations.

config 2% 40% 80% final

rnd-1 163.95 54.254 44.854 44.854

rnd-2 373.90 98.338 14.557 14.557

h1n-1 272.53 9.319 9.319 9.319

h1n-2 29.479 10.910 8.972 8.972

h2n-1 438.53 24.047 14.425 14.425

h2n-2 1038.61 1.758 1.758 1.758

h3n-1 22.164 6.418 0.175 0.175

h3n-2 288.56 3.934 0.798 0.798

hhc-1 117.35 47.728 47.728 32.145

hhc-2 1069.77 427.75 232.77 104.08

hsa-1 1207.92 75.354 40.354 40.354

hsa-2 315.95 137.05 42.689 9.804

rnd, hill climbing hhc and simulated annealing hsa implementations. The different

hybrid configurations of h1n, h2n and h3n also demonstrate how the fine tune of the

thresholds can largely influence the resulting quality of the results.

5.2.2 Data Correction

Further tests have been carried out aiming to demonstrate the applicability of the

methodology in assisting expeditious modeling in sets where some part of the infor-

mation data is corrupt or non existent.

The procedural rule optimized in this specific test case was the same formula previously

used, each parameter under the same constraint. However the tested configuration

differ from the calibration tests previously described. The test was run with both,

toplist and originalparent, family sizes of 20. Each test iterated 800 generations with

a quality function evaluating the height differences of buildings of the correct height

data.

The test determined the following optimum parameterization for the proposed proce-

dural formula:

108.5729 + 0.9862 ∗ (perimeter ∗ 0.2155)

Figure 5.7 shows several screenshots of different modeling processes applied to the same

flawed data source. The top left image shows the direct modeling using the original
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database values where corrupt data causes the visual glitches seen in the modeling.

The top right image displays a crude approach at hiding this problem by replacing the

corrupt height data with random values between the minimum and maximum height

of buildings in the set. The buildings calculated with this method are rendered in

blue. The buildings rendered in red are the ones that follow the optimized parameters

determined by the optimizer. In the bottom left image the formula is applied to the

entire dataset. In bottom right the formula is only applied to the buildings with known

corrupt height values.

Figure 5.7: Screenshots of data flaw corrections rendered modeling.

It is clear that the formula does not enable complete perfect matches, as can be

concluded by comparing both images on the left, but it demonstrates that by using

crude relational functions it is possible to determine important relations within the

data set universe, enabling a more realistic replacement of missing, or corrupt, data

from the set. So despite the calculation overhead, this methodology may prove useful

for cases where domain knowledge of the procedural rules is vague and/or a trial and

error methodology would be too time consuming.

5.2.3 Modeling Re-Application

Another test was conducted to analyse the re-application of the procedural rules in

areas other than the one used for calibrating the parameters. This can only be applied

to areas that share certain characteristics with the calibration area.

In this specific test a short calibration was executed on a very small area with data

collected from the center of Porto. In Figure 5.8 we have on the left a satellite overview
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image of the actual area obtained from Microsoft Visual Earth3 and on the right the

rendered model screenshot used to calibrate the topzvalue function.

Figure 5.8: Comparative imagery of Rua do Almada real and calibration generated

housing.

The calibration was carried out over a set of half a dozen typical buildings from a

corner of Rua do Almada using a more constrained configuration than previous test

cases. The scope of the parameter values was slightly reduced in an attempt to increase

the ratio of convergence to the optimum, these reductions were applied considering

the results of the previous tests. To speed up the calculation period the number of

iteration steps was also reduced and divided into two phases. The first was used to

determine the average height that best fits the data set. The second was used to

determine the perimeter and area factor of influence.

With these tests the following formula was determined:

92.0360 + 0.1562 ∗ (0.2661 ∗ area)

This formula implied that it could only be applied successfully to areas with a fixed

bottomzvalue. However, the zone we wanted to apply this rule to estimate heights, the

remaining full length of Rua do Almada, is set on a slope. To solve this issue without

re-calculating any values the formula was adapted to base itself on an average height

roughly estimated by analysing the data of the calibrating zone. This resolution ap-

proach has no scientific or empiric value, but is valuable in this context to demonstrate

that the proposed methodology may not always work exactly as expected but still offer

reliable information to generate realistic models without requiring a time expensive

return to the calibration phase.

3http://maps.live.com
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In Figure 5.9 we have a different section of Rua do Almada, with housing that resembles

the characteristics of the small calibration zone. On the left we have the Microsoft

Visual Earth overview, on the right the generated model, all housing generated using

the following procedural height formula:

(bottomzval + 5.5) + (0.1562 ∗ (0.2661 ∗ area)

Figure 5.9: Comparative imagery of Rua do Almada real and modeling generated

housing.

Comparing these two images helps us conclude that the proposed methodology can

greatly assist expeditious modeling in generating realistic results from limited infor-

mation and without requiring significant domain knowledge from the user.

5.3 Summary

This chapter of the thesis presented some results of practical applications of the

developed algorithm. First by comparing the algorithm performance with several

configurations under different types of problems, benchmarking against other stan-

dard meta heuristic algorithms applied to combinatorial search of optimum solutions.

Secondly by applying the algorithm to the XL3D expeditious modeling system to

determine missing height values from geographically referenced data.
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The first section pertaining to the benchmarking reveals the development of a reliable

new hybrid meta heuristic algorithm that can be configured to offer competitive results

against other standard meta heuristic algorithms documented in the literature under

a set of different problems. Despite performance being directly correlated with the

specific problem nature, we have successfully shown that the developed algorithm

can offer good results with good confidence in finding the optimum, as long as it is

allowed to process enough iteration steps, faced with different sets of problems. The

configurable nature of our algorithm allows the user to change the thresholds and

family sizes depending on the number and correlation of the input parameters of the

combinatorial problem. It is important to keep in mind that the problem of fine tuning

the configuration of the new algorithm to best fit each problem goes beyond the scope

of this thesis and was only briefly addressed4 when presenting these results. The main

aim was the development of a competitive new hybrid meta heuristic algorithm capable

of handling all three parameter input types (boolean, integer and float), where most

meta heuristic algorithms can only handle discrete representations.

The second section demonstrated how the algorithm can easily be applied to solve

basic expeditious modeling problems of optimization and data mining. Applying

the new hybrid meta heuristic algorithm to unravel optimum modeling parameters

it becomes possible to obtain realistic data from sampled quantities of geographically

referenced information. Several test cases were presented that demonstrate a more

thorough calibration of the parameters and simple application cases of data correction

and even generation. The methodology waves some requirements of complete and

correct geographically referenced data to be available, and avoids most of the manual

parameter calibration that is typically required for generating a realistic urban virtual

environment.

4under the scope of hyper heuristics



Chapter 6

Conclusions

This sixth chapter presents the conclusions of this thesis. In the first sub section a short

summary of what was achieved is presented, explaining in what way the development

of this thesis contributed to the state of the art. The second sub section presents a

short selection of ideas envisioned for further research and development.

6.1 Developed Work

The use and importance of expeditious modeling of 3D virtual urban environments

has increased significantly in the past years. Still many difficulties are associated with

the technology. Generating appropriate production rules with fine tuned parameters,

or the resources required in collecting georeferenced data, for example, can easily

bottleneck the potential of the modeling system in achieving realistic results.

Different methods can be applied to determine adequate production rules for expe-

ditious modeling systems, ranging from simple empirical definitions to observing 3D

modelers creating objects. Fine tuning the parameters of these modeling rules is a

problem that requires knowledge from the underlying mathematics behind the rules.

Attempting to fine tune these rules without domain knowledge can easily lead long

sessions of trial and error.

Applying certain fields of artificial intelligence, such as optimization algorithms and

knowledge data mining may increase the level of automation of the expeditious mod-

eling system. An hybrid meta heuristic optimizer system was successfully developed,

implemented and tested. The optimizer is easily adaptable and reconfigurable, aimed

87
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to solve problems where the number of input parameters of discrete and continuous

nature can vary drastically and the domain knowledge of the problem may not be

accessible. Global optimization of parameters for these kind of problems is a com-

mon requirement of expeditious modeling systems in general and expeditious urban

modeling systems in particular.

The developed optimizer is an hybrid version of real coded genetic algorithms with

traits of simulated annealing and harmony search. The algorithm was developed

aiming to solve global optimization problems that have no access to domain knowledge

information and require support for boolean, integer and float type of input param-

eters. The algorithm was expected to perform competitively with other standard

implementations of similar algorithms.

The performance of the algorithm was tested under different configurations, some

of which emulating the typical behavior of popular meta-heuristic implementations,

documented in the literature. The statistical comparison between the different config-

urations revealed competitive results that offer good confidence in future applicability

in other areas.

The optimizer algorithm was also applied to an expeditious modeling system under

a test case scenario to determine the optimum parameter combination of certain

productions rules by comparing modeling results with real data. This knowledge

was applied to successfully generate realistic urban models in other locations sharing

similar characteristics that missed crucial data.

These results show that the proposed system is a viable solution for several types

of expeditious modeling situations, warranting further development and increased

interoperability with similar modeling and simulation systems.

6.2 Future Work

There are many possible applications of the proposed system. Its reconfigurability

and architecture were developed having in mind the multiplicity of global optimization

problems that abound in expeditious modeling systems. As such, it would be inter-

esting to observe the performance of the system operating under more complex test

cases than the ones documented on this thesis, not only to strain test the performance

of the system but also to inspire further development and optimization of the system.

Future developments in the optimizer algorithm include the implementation of a more
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comprehensive quantity of crossbreed and mutation operands with dynamic adaptation

through the iterative process. Also possible is a simplified integration of domain

knowledge to improve performance in problems where the domain knowledge can

greatly assist in reducing the search scope. Another possible implementation that

could improve performance is using gradient based parameter correlation estimations

and applying principles of ant colony, nested partitions, particle swarm and parallel

processing to the developed system. Especially important is the optimization of

the algorithm to better handle multi objective and constrains from standard global

optimization problems.

Another interesting approach could explore the hyper heuristic characteristic of the

developed optimizer. It is already possible to recursively apply the algorithm to unravel

the optimum configuration to solve a given type of problems, these configurations could

be clustered into multiple categories considering general characteristics. The clustering

and classification would enable an automatic system to determine, with certain degrees

of probability, which range of configurations are better suited to solve certain types of

global optimization problems. This idea bridges the areas of knowledge data mining

and data extraction and could have many interesting applications in different areas.

Another idea is to expand the system to a certain type of interactive feedback method-

ology where the system would not determine the quality fitness value of each solution

automatically. Instead the system would allow for an interactive system of sorting

and prefered selection. This methodology would allow a certain creative freedom

that could have several interesting applications. One of the more obvious ones would

be assisting to define constraints for parameters of undeterminable quality fitness

functions. Many problems lack explicit fitness functions to measure the quality of

their possible solutions. This could be due to a lack of knowledge information on the

production rules, or a resource incapacity to measure comparison values. This method-

ology would enable to avoid defining a quality function. Another possible application

of the methodology would be exploring the full capacity of complex production rules.

Scenarios in expeditious modeling are often subjected to user approval, it can occur

that a user knows they want something to look different but don’t quite know what

exactly should be different and what should remain the same. An interface that allows

the user to interact, approving or disaproving the degree of an alteration, can enable a

system to probabilistically determine the key parameters that the user actually wanted

to adjust in the modeling, and a possible relation between them.

In conclusion, there are many interesting ideas that can be explored for future work in

this area. The application of artificial intelligence in general and parameter optimiza-



CHAPTER 6. CONCLUSIONS 90

tion in particular in the field of expeditious modeling is still very recent and has many

interesting applications for both academic researchers and capital investors from the

industry.
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