1,787 research outputs found

    Learned versus Hand-Designed Feature Representations for 3d Agglomeration

    Full text link
    For image recognition and labeling tasks, recent results suggest that machine learning methods that rely on manually specified feature representations may be outperformed by methods that automatically derive feature representations based on the data. Yet for problems that involve analysis of 3d objects, such as mesh segmentation, shape retrieval, or neuron fragment agglomeration, there remains a strong reliance on hand-designed feature descriptors. In this paper, we evaluate a large set of hand-designed 3d feature descriptors alongside features learned from the raw data using both end-to-end and unsupervised learning techniques, in the context of agglomeration of 3d neuron fragments. By combining unsupervised learning techniques with a novel dynamic pooling scheme, we show how pure learning-based methods are for the first time competitive with hand-designed 3d shape descriptors. We investigate data augmentation strategies for dramatically increasing the size of the training set, and show how combining both learned and hand-designed features leads to the highest accuracy

    Automatic region-of-interest extraction in low depth-of-field images

    Get PDF
    PhD ThesisAutomatic extraction of focused regions from images with low depth-of-field (DOF) is a problem without an efficient solution yet. The capability of extracting focused regions can help to bridge the semantic gap by integrating image regions which are meaningfully relevant and generally do not exhibit uniform visual characteristics. There exist two main difficulties for extracting focused regions from low DOF images using high-frequency based techniques: computational complexity and performance. A novel unsupervised segmentation approach based on ensemble clustering is proposed to extract the focused regions from low DOF images in two stages. The first stage is to cluster image blocks in a joint contrast-energy feature space into three constituent groups. To achieve this, we make use of a normal mixture-based model along with standard expectation-maximization (EM) algorithm at two consecutive levels of block size. To avoid the common problem of local optima experienced in many models, an ensemble EM clustering algorithm is proposed. As a result, relevant blocks, i.e., block-based region-of-interest (ROI), closely conforming to image objects are extracted. In stage two, two different approaches have been developed to extract pixel-based ROI. In the first approach, a binary saliency map is constructed from the relevant blocks at the pixel level, which is based on difference of Gaussian (DOG) and binarization methods. Then, a set of morphological operations is employed to create the pixel-based ROI from the map. Experimental results demonstrate that the proposed approach achieves an average segmentation performance of 91.3% and is computationally 3 times faster than the best existing approach. In the second approach, a minimal graph cut is constructed by using the max-flow method and also by using object/background seeds provided by the ensemble clustering algorithm. Experimental results demonstrate an average segmentation performance of 91.7% and approximately 50% reduction of the average computational time by the proposed colour based approach compared with existing unsupervised approaches

    Content-based image retrieval of museum images

    Get PDF
    Content-based image retrieval (CBIR) is becoming more and more important with the advance of multimedia and imaging technology. Among many retrieval features associated with CBIR, texture retrieval is one of the most difficult. This is mainly because no satisfactory quantitative definition of texture exists at this time, and also because of the complex nature of the texture itself. Another difficult problem in CBIR is query by low-quality images, which means attempts to retrieve images using a poor quality image as a query. Not many content-based retrieval systems have addressed the problem of query by low-quality images. Wavelet analysis is a relatively new and promising tool for signal and image analysis. Its time-scale representation provides both spatial and frequency information, thus giving extra information compared to other image representation schemes. This research aims to address some of the problems of query by texture and query by low quality images by exploiting all the advantages that wavelet analysis has to offer, particularly in the context of museum image collections. A novel query by low-quality images algorithm is presented as a solution to the problem of poor retrieval performance using conventional methods. In the query by texture problem, this thesis provides a comprehensive evaluation on wavelet-based texture method as well as comparison with other techniques. A novel automatic texture segmentation algorithm and an improved block oriented decomposition is proposed for use in query by texture. Finally all the proposed techniques are integrated in a content-based image retrieval application for museum image collections

    Smartphone picture organization: a hierarchical approach

    Get PDF
    We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.Peer ReviewedPreprin

    Wavelets and Imaging Informatics: A Review of the Literature

    Get PDF
    AbstractModern medicine is a field that has been revolutionized by the emergence of computer and imaging technology. It is increasingly difficult, however, to manage the ever-growing enormous amount of medical imaging information available in digital formats. Numerous techniques have been developed to make the imaging information more easily accessible and to perform analysis automatically. Among these techniques, wavelet transforms have proven prominently useful not only for biomedical imaging but also for signal and image processing in general. Wavelet transforms decompose a signal into frequency bands, the width of which are determined by a dyadic scheme. This particular way of dividing frequency bands matches the statistical properties of most images very well. During the past decade, there has been active research in applying wavelets to various aspects of imaging informatics, including compression, enhancements, analysis, classification, and retrieval. This review represents a survey of the most significant practical and theoretical advances in the field of wavelet-based imaging informatics

    Toward Large Scale Semantic Image Understanding and Retrieval

    Get PDF
    Semantic image retrieval is a multifaceted, highly complex problem. Not only does the solution to this problem require advanced image processing and computer vision techniques, but it also requires knowledge beyond what can be inferred from the image content alone. In contrast, traditional image retrieval systems are based upon keyword searches on filenames or metadata tags, e.g. Google image search, Flickr search, etc. These conventional systems do not analyze the image content and their keywords are not guaranteed to represent the image. Thus, there is significant need for a semantic image retrieval system that can analyze and retrieve images based upon the content and relationships that exist in the real world.In this thesis, I present a framework that moves towards advancing semantic image retrieval in large scale datasets. At a conceptual level, semantic image retrieval requires the following steps: viewing an image, understanding the content of the image, indexing the important aspects of the image, connecting the image concepts to the real world, and finally retrieving the images based upon the index concepts or related concepts. My proposed framework addresses each of these components in my ultimate goal of improving image retrieval. The first task is the essential task of understanding the content of an image. Unfortunately, typically the only data used by a computer algorithm when analyzing images is the low-level pixel data. But, to achieve human level comprehension, a machine must overcome the semantic gap, or disparity that exists between the image data and human understanding. This translation of the low-level information into a high-level representation is an extremely difficult problem that requires more than the image pixel information. I describe my solution to this problem through the use of an online knowledge acquisition and storage system. This system utilizes the extensible, visual, and interactable properties of Scalable Vector Graphics (SVG) combined with online crowd sourcing tools to collect high level knowledge about visual content.I further describe the utilization of knowledge and semantic data for image understanding. Specifically, I seek to incorporate knowledge in various algorithms that cannot be inferred from the image pixels alone. This information comes from related images or structured data (in the form of hierarchies and ontologies) to improve the performance of object detection and image segmentation tasks. These understanding tasks are crucial intermediate steps towards retrieval and semantic understanding. However, the typical object detection and segmentation tasks requires an abundance of training data for machine learning algorithms. The prior training information provides information on what patterns and visual features the algorithm should be looking for when processing an image. In contrast, my algorithm utilizes related semantic images to extract the visual properties of an object and also to decrease the search space of my detection algorithm. Furthermore, I demonstrate the use of related images in the image segmentation process. Again, without the use of prior training data, I present a method for foreground object segmentation by finding the shared area that exists in a set of images. I demonstrate the effectiveness of my method on structured image datasets that have defined relationships between classes i.e. parent-child, or sibling classes.Finally, I introduce my framework for semantic image retrieval. I enhance the proposed knowledge acquisition and image understanding techniques with semantic knowledge through linked data and web semantic languages. This is an essential step in semantic image retrieval. For example, a car class classified by an image processing algorithm not enhanced by external knowledge would have no idea that a car is a type of vehicle which would also be highly related to a truck and less related to other transportation methods like a train . However, a query for modes of human transportation should return all of the mentioned classes. Thus, I demonstrate how to integrate information from both image processing algorithms and semantic knowledge bases to perform interesting queries that would otherwise be impossible. The key component of this system is a novel property reasoner that is able to translate low level image features into semantically relevant object properties. I use a combination of XML based languages such as SVG, RDF, and OWL in order to link to existing ontologies available on the web. My experiments demonstrate an efficient data collection framework and novel utilization of semantic data for image analysis and retrieval on datasets of people and landmarks collected from sources such as IMDB and Flickr. Ultimately, my thesis presents improvements to the state of the art in visual knowledge representation/acquisition and computer vision algorithms such as detection and segmentation toward the goal of enhanced semantic image retrieval
    • …
    corecore