660 research outputs found

    A system for recognizing human emotions based on speech analysis and facial feature extraction: applications to Human-Robot Interaction

    Get PDF
    With the advance in Artificial Intelligence, humanoid robots start to interact with ordinary people based on the growing understanding of psychological processes. Accumulating evidences in Human Robot Interaction (HRI) suggest that researches are focusing on making an emotional communication between human and robot for creating a social perception, cognition, desired interaction and sensation. Furthermore, robots need to receive human emotion and optimize their behavior to help and interact with a human being in various environments. The most natural way to recognize basic emotions is extracting sets of features from human speech, facial expression and body gesture. A system for recognition of emotions based on speech analysis and facial features extraction can have interesting applications in Human-Robot Interaction. Thus, the Human-Robot Interaction ontology explains how the knowledge of these fundamental sciences is applied in physics (sound analyses), mathematics (face detection and perception), philosophy theory (behavior) and robotic science context. In this project, we carry out a study to recognize basic emotions (sadness, surprise, happiness, anger, fear and disgust). Also, we propose a methodology and a software program for classification of emotions based on speech analysis and facial features extraction. The speech analysis phase attempted to investigate the appropriateness of using acoustic (pitch value, pitch peak, pitch range, intensity and formant), phonetic (speech rate) properties of emotive speech with the freeware program PRAAT, and consists of generating and analyzing a graph of speech signals. The proposed architecture investigated the appropriateness of analyzing emotive speech with the minimal use of signal processing algorithms. 30 participants to the experiment had to repeat five sentences in English (with durations typically between 0.40 s and 2.5 s) in order to extract data relative to pitch (value, range and peak) and rising-falling intonation. Pitch alignments (peak, value and range) have been evaluated and the results have been compared with intensity and speech rate. The facial feature extraction phase uses the mathematical formulation (B\ue9zier curves) and the geometric analysis of the facial image, based on measurements of a set of Action Units (AUs) for classifying the emotion. The proposed technique consists of three steps: (i) detecting the facial region within the image, (ii) extracting and classifying the facial features, (iii) recognizing the emotion. Then, the new data have been merged with reference data in order to recognize the basic emotion. Finally, we combined the two proposed algorithms (speech analysis and facial expression), in order to design a hybrid technique for emotion recognition. Such technique have been implemented in a software program, which can be employed in Human-Robot Interaction. The efficiency of the methodology was evaluated by experimental tests on 30 individuals (15 female and 15 male, 20 to 48 years old) form different ethnic groups, namely: (i) Ten adult European, (ii) Ten Asian (Middle East) adult and (iii) Ten adult American. Eventually, the proposed technique made possible to recognize the basic emotion in most of the cases

    Timing is everything: A spatio-temporal approach to the analysis of facial actions

    No full text
    This thesis presents a fully automatic facial expression analysis system based on the Facial Action Coding System (FACS). FACS is the best known and the most commonly used system to describe facial activity in terms of facial muscle actions (i.e., action units, AUs). We will present our research on the analysis of the morphological, spatio-temporal and behavioural aspects of facial expressions. In contrast with most other researchers in the field who use appearance based techniques, we use a geometric feature based approach. We will argue that that approach is more suitable for analysing facial expression temporal dynamics. Our system is capable of explicitly exploring the temporal aspects of facial expressions from an input colour video in terms of their onset (start), apex (peak) and offset (end). The fully automatic system presented here detects 20 facial points in the first frame and tracks them throughout the video. From the tracked points we compute geometry-based features which serve as the input to the remainder of our systems. The AU activation detection system uses GentleBoost feature selection and a Support Vector Machine (SVM) classifier to find which AUs were present in an expression. Temporal dynamics of active AUs are recognised by a hybrid GentleBoost-SVM-Hidden Markov model classifier. The system is capable of analysing 23 out of 27 existing AUs with high accuracy. The main contributions of the work presented in this thesis are the following: we have created a method for fully automatic AU analysis with state-of-the-art recognition results. We have proposed for the first time a method for recognition of the four temporal phases of an AU. We have build the largest comprehensive database of facial expressions to date. We also present for the first time in the literature two studies for automatic distinction between posed and spontaneous expressions

    Automated Speaker Independent Visual Speech Recognition: A Comprehensive Survey

    Full text link
    Speaker-independent VSR is a complex task that involves identifying spoken words or phrases from video recordings of a speaker's facial movements. Over the years, there has been a considerable amount of research in the field of VSR involving different algorithms and datasets to evaluate system performance. These efforts have resulted in significant progress in developing effective VSR models, creating new opportunities for further research in this area. This survey provides a detailed examination of the progression of VSR over the past three decades, with a particular emphasis on the transition from speaker-dependent to speaker-independent systems. We also provide a comprehensive overview of the various datasets used in VSR research and the preprocessing techniques employed to achieve speaker independence. The survey covers the works published from 1990 to 2023, thoroughly analyzing each work and comparing them on various parameters. This survey provides an in-depth analysis of speaker-independent VSR systems evolution from 1990 to 2023. It outlines the development of VSR systems over time and highlights the need to develop end-to-end pipelines for speaker-independent VSR. The pictorial representation offers a clear and concise overview of the techniques used in speaker-independent VSR, thereby aiding in the comprehension and analysis of the various methodologies. The survey also highlights the strengths and limitations of each technique and provides insights into developing novel approaches for analyzing visual speech cues. Overall, This comprehensive review provides insights into the current state-of-the-art speaker-independent VSR and highlights potential areas for future research

    Improved facial feature fitting for model based coding and animation

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Facial Expression Recognition in the Presence of Head Motion

    Get PDF

    Articulatory features for robust visual speech recognition

    Full text link

    Multi-Sensory Emotion Recognition with Speech and Facial Expression

    Get PDF
    Emotion plays an important role in human beings’ daily lives. Understanding emotions and recognizing how to react to others’ feelings are fundamental to engaging in successful social interactions. Currently, emotion recognition is not only significant in human beings’ daily lives, but also a hot topic in academic research, as new techniques such as emotion recognition from speech context inspires us as to how emotions are related to the content we are uttering. The demand and importance of emotion recognition have highly increased in many applications in recent years, such as video games, human computer interaction, cognitive computing, and affective computing. Emotion recognition can be done from many sources including text, speech, hand, and body gesture as well as facial expression. Presently, most of the emotion recognition methods only use one of these sources. The emotion of human beings changes every second and using a single way to process the emotion recognition may not reflect the emotion correctly. This research is motivated by the desire to understand and evaluate human beings’ emotion from multiple ways such as speech and facial expressions. In this dissertation, multi-sensory emotion recognition has been exploited. The proposed framework can recognize emotion from speech, facial expression, and both of them. There are three important parts in the design of the system: the facial emotion recognizer, the speech emotion recognizer, and the information fusion. The information fusion part uses the results from the speech emotion recognition and facial emotion recognition. Then, a novel weighted method is used to integrate the results, and a final decision of the emotion is given after the fusion. The experiments show that with the weighted fusion methods, the accuracy can be improved to an average of 3.66% compared to fusion without adding weight. The improvement of the recognition rate can reach 18.27% and 5.66% compared to the speech emotion recognition and facial expression recognition, respectively. By improving the emotion recognition accuracy, the proposed multi-sensory emotion recognition system can help to improve the naturalness of human computer interaction
    • …
    corecore