
Improved Facial Feature Fitting for Model 
Based Coding and Animation 

Po Tsun, Paul, Kuo 

"11 
VI-12%5`1 

A thesis submitted for the degree of Doctor of Philosophy. 
The University of Edinburgh. 

June 2006 



Abstract 

Model-based representation of human faces has wide application in video communication, 

Virtual-Reality (VR) environments, Human Computer Interface (HCI) systems and facial ex-

pression studies. For example, model-based coding leads to a very low bandwidth requirement 

for image transmission as the images are transmitted using a small number of parameters rather 

than image pixels. 

This thesis addresses accurate facial feature fitting and examples of applying this to model-

based facial coding are given. Facial features are fitted by novel approaches based on dynamic 

curve fitting techniques, namely Active Contour Models (Snakes) and Deforrnable Templates. 

Active contour models are used for fitting the lips, eyebrows, and chin, while the eyes are fitted 

by deformable templates as the shapes of the eye and iris can be approximated to parabolas and 

a circle. To achieve a high success rate for model fitting in real head-and-shoulders images, 

a number of original techniques are described. These include: applying an adaptive colour 

model to the snakes for segmenting the lip and skin; developing a faster and more accurate 

eye template updating scheme with a novel method for eye corner detection; preprocessing the 

eyebrow image with lighting balancing and shadow removal; using a topologically adaptive 

snake for chin fitting and recovering a poorly-lit chin section by extrapolation. 

The wireframe face model, Candide-3 used in this work has to be precisely adapted to the face 

in terms of the vertex positions, so that the texture information and global shape and animation 

parameters can be extracted. An approach using a texture measure combined with a measure of 

the fitted features to the model vertices is shown to give a promising result, demonstrating that 

automatic adaptation is possible. 

The adapted face model is rotated to different views and animated with several expressions in 

order to assess the quality of the model fitting. The techniques of facial feature fitting and face 

model adaptation are also demonstrated for head-and-shoulders images and video sequences. 
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Chapter 1 
Introduction 

1.1 Background 

This thesis deals with processing a face image for model based coding and animation, topics 

include facial feature extraction, face model fitting and synthesis of facial expressions. Human 

faces are the main subject to be studied in this thesis. The face is one of the most important 

tools for making communication between human beings. The shape of the face (facial traits) 

reveals age, gender, ethnic origin and health of a person [1] while facial expressions provide 

measures for emotion, intention, cognition and personality [2]. 

To be able to identify either facial traits or expressions, knowing the locations of facial features 

is essential as the traits and expressions reflect the distribution of the features in the face. A 

model based representation is one method to represent the feature locations by using sets of 

more meaningful parameters. The basic idea of model based representation and coding for a 

face is described as follows: a source image containing a face is analysed, using image process-

ing techniques, the face and facial features are identified. A general or specific model, which 

is usually a wireframe describing the 3D shape of the object, is then adapted to the face (by 

matching the features and face boundary, etc.). The adaptation is performed by adjusting the 

model's parameters, which typically are size, position and shape, and the non-rigid parame-

ters if the face contains significant expressions. This representation of the face which allows 

translating a face state to sets of parameters is called the "model based representation" which 

differentiates from the "appearance based representation" that sees the face as a collection of 

pixels of varying intensity. 

This representation enables highly efficient coding and transmission of the image. Instead of 

transmitting the full image pixel-by-pixel, or by coefficients describing the waveform of the 

image, the parameters extracted from the model can be coded and transmitted (model based 

coding). This usually compresses data significantly (typically 720 x 576 pixels down to a 

handful of parameters) and is beneficial to very low bit-rate applications such as video-phone 

and teleconferencing. To achieve acceptable visual similarity to the original image, the texture 



Introduction 

from the original object is also transmitted. However, it is normally sent once to the receiver at 

the beginning of the connection so that the transmission of the model parameters is not affected. 

Another use of the model based representation of the face is to generate facial expressions. 

This can be either artificial synthesis or a clone of expressions. Synthesising an expression 

artificially uses a set of rules developed by psychologists such as Ekman [3]. On the other 

hand, a clone of expressions requires extraction of the model parameters from one face image 

faithfully and transferring the parameters to animate another. 

	

1.2 	Definition of Problems 

Many challenges had to be tackled during this work. The face and estimated facial feature 

positions were firstly located using Hillman's technique [4], which applies skin detection and 

PCA (Principal Component Analysis) [5].  It is insufficient having only estimated facial feature 

positions for the model based representation of the face. It is necessary to fit the contours of 

the features so that important characteristics, such as corners of eyes, corners of lips and jaw 

width, etc., can be extracted. These problems must be tackled in an automatic, robust and 

timely fashion. A measure of accuracy of fitting these contours is also required. However, 

such measurement can only be made subjectively as the ground truth comparison is usually 

unavailable. For the model fitting of the face, the information extracted from the fitted feature 

contours combined with the facial texture is used. Again, automation, robustness and time 

is the major concern. The accuracy of the final model fitting is assessed by animation. This 

is performed by using the model based representation so that the model parameters can be 

adjusted. Again, it is hard to measure animation quantitatively, so a subjective assessment has 

been undertaken. 

	

1.3 	Contributions of Research 

The main contribution of this thesis is to develop new or extend existing algorithms for facial 

feature contour fitting and face model fitting. The facial features of interest are lip, eyes, eye-

brows, and chin. The contours of these facial features are fitted by novel approaches based on 

dynamic curve fitting techniques, namely Active Contour Models (Snakes) [6] and Deformable 

Templates [7]. Active contour models are used for fitting the lips, eyebrows, and chin, while 

2 
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the eyes are fitted by deformable templates. Face model fitting is performed by using the found 

feature contours in conjunction with the face texture. All of the proposed algorithms are auto-

matic and considered robust and accurate. The time (speed) has not yet achieved a satisfactory 

level and this will be addressed in the conclusion chapter. 

The lip fitting algorithm applies a novel colour adaptive snake. This snake is capable of auto-

matically sampling lip and skin colour for each individual and adjusting its internal parameters 

accordingly. Thus the snake can extract the lip robustly regardless of age, gender, ethnicity and 

lighting conditions. A separate algorithm for locating lip corners is developed to improve the 

accuracy of the lip corner fitting of the snake [8]. 

The eye fitting algorithm is based on Yuille's deformable templates [7].  Several terms are 

added or modified in the energy function and a novel method for eye corner detection (using 

colour properties) is incorporated to improve the robustness and accuracy of the fitting. A new 

template updating scheme is developed, which now is simpler and more efficient: allowing one 

feature to be fitted properly before the next feature is fitted [9]. 

The eyebrow fitting algorithm combines a number of new techniques. A novel lighting balanc-

ing is first applied to a sub-image containing eyebrows. This is then processed by a k-means 

clustering and 3 clusters representing skin, dense eyebrow and sparse eyebrow are shown in 

the image. A wrongly clustered area which is caused by heavy shadow is removed by a novel 

shadow removing technique. Eventually, a twin snake algorithm is applied in the image to fit 

the upper and lower boundaries of the eyebrow. The intercept points of the two snakes are the 

corners of the eyebrow [10]. 

The chin fitting algorithm applies a novel topologically adaptive snake. This snake is able to 

"probe" the area of the image where the snake is going to develop and two statistical measures 

about the intensity topology of this area, mean and standard deviation (s.d.), are computed. 

Thus the internal parameters of the snake are adjusted according to these two statistical mea-

sures. In consequence, the chin fitting is robust against various skin types. Also a novel polar 

coordinate system is adopted for snake development in the chin region in order to find the chin 

characteristics. To increase the robustness against variation of the illumination, a new method 

which extrapolates the fitted chin section and uses it as the snake re-initialisation to recover the 

chin section in the shadow is developed [11]. 

The face model fitting algorithm applies a combined method of the Active Appearance Model 
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(AAM) [12] and a feature-based approach. A number of important feature points are extracted 

from the found feature contours and incorporated in an Analysis by Synthesis routine [13]. 

Thus now fitting the face model requires to minimise both the appearance and feature errors. 

This combined method significantly improves the accuracy of the model fitting at the feature 

points and is robust to various types of faces with moderate head rotation [10, 14]. 

1.4 	Structure of the Thesis 

The rest of the thesis is organised as follows: 

Chapter 2 serves as a background study. It is divided into two main parts. The first part reviews 

the basic face image processing techniques such as Principal Component Analysis (PCA) [15], 

Active Appearance Models (AAM) [12], Active Contour Models [6] and Deformable Tem-

plates [7]. It also includes a brief review of digital (colour) image processing (edge detection, 

smoothing, colour space and colour transform.) 

The second part of chapter 2 surveys the topics related to the work in the literature. This 

includes face detection, lip fitting, eye and eyebrow fitting, chin fitting and model face fit-

ting. Various techniques are investigated and compared, and their pros and cons are addressed. 

Chapter 2 finishes off by introducing the image database XM2VTSDB [16] (used for testing 

the algorithms) and the face models [17]. 

Chapter 3 describes the lip fitting algorithms in detail. An initial snake fitting using a static 

colour model is introduced first and followed by an improved snake algorithm using an adaptive 

colour model. The results show the latter approach is robust against various lighting conditions. 

Chapter 4 describes the eye and eyebrow fitting algorithms in detail. The first part of chapter 4 

covers the eye fitting which is able to extract the iris and eyelid contours. A novel approach for 

detecting eye corners is also included. The second part of the chapter 4 concentrates on eyebrow 

fitting, which is a cascaded technique consisting of lighting balancing, k-means clustering, inner 

corner shadow removal and twin snake eyebrow extraction. 

Chapter 5 describes the chin fitting algorithms in detail. The chin is fitted by a novel topologi-

cally adaptive snake and an approach to recover the chin under the shadow is also introduced. 

Chapter 6 describes the model face fitting in detail. Two model fitting techniques are presented 

ru 
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in this chapter. The first one relocates the model vertices according to the extracted feature 

positions after performing an appearance-based model fitting. The better fitting technique (the 

second technique in this chapter) is to incorporate a feature measure into the appearance-based 

fitting algorithm. Thus the model is fitted when both the feature and appearance errors are min-

imised. Both techniques show that the fitting of the model at the feature points is significantly 

improved. 

Chapter 7 draws the conclusions of this thesis. It also points out the limitations of the algorithms 

and suggests possible future research. 

5 
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Chapter 2 

Background Study and Literature 
Review 

2.1 	Review of Major Image Processing Techniques 

There are a number of essential image theories and processing techniques which are frequently 

mentioned and applied in this thesis. It is important to understand them before moving onto 

advanced methods and new ideas. 

2.1.1 Basic Theory: Digital Image, Edge Detection, Smoothing, Colour Spaces 

and Colour Transform 

Digital Image 

A digital image is an image composed of a set of dots or picture elements (pixels), the smallest 

units of the image. Each pixel is assigned a discrete numerical value to represent the intensity 

(brightness), thus forming a greyscale digital image. The smallest numerical value corresponds 

to the lowest intensity, which is black. On the other hand, the largest numerical value gives the 

highest intensity (white). The dynamic range of a digital image counts the number of numerical 

values available for a pixel. For example, an 8-bit greyscale image indicates that each pixel of 

the image has 256 shades from the lowest (black) to highest intensity (white). Modem digital 

images usually contain colour. A digital colour image is a digital image that includes colour 

information for each pixel. For visually acceptable results, it is necessary to provide three 

colour layers (channels) for each pixel. Each layer is similar to a greyscale image - providing 

shades of the colour. The blend of the three layers results in the colour of the pixel, which 

can be interpreted as coordinates in some colour space. The colour space and transformation is 

discussed later in this section. 

7 
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Edge Detection 

Edge Detection is used to enhance the appearance of edges. The edge, by definition, is the high 

frequency part of the image. The word "frequency" here is used to describe "change in space 

domain" rather than a more familiar description of "change in time domain". In other words, 

an edge (E) in a 2D (2 Dimensional ) image is given in the following form: 

r G 1 	I ôI(x,y) I 
E=[ j = I a 	 (2.1) I aI(x,u) G  Y 	[ ay  

lBl=V'G.+G 	 (2.2) 

where I(x, y) in Equation 2.1 is the intensity of a pixel at position (x, y) in a Cartesian grid 

of the image. It is a custom in the image processing community that x coordinate is incre-

mented rightwards and y coordinate is incremented downwards, i.e., the origin (0, 0) is at the 

top left corner of an image. Gx  and G. are horizontal and vertical components of the edge (E). 

Equation 2.2 then shows the magnitude of B. 

From Equation 2.1 and 2.2, many discrete forms of the edge detection were derived. Some re-

searchers are working on discrete frequency domain (i.e. through a Discrete Fourier Transform 

(DFT)) [18] to obtain more quantified edge detection. However, this approach generally suffers 

from slow processing in DFT. Thus many researchers (and the author) prefer more straightfor-

ward approaches of using spatial filters. 

Consider an image sub-region shown as a 3 x 3 matrix in Figure 2.1. By intuition, the mag- 

nitude of the edge is given by -../(I - 18 )2 + (15 - 16)2  or 	- 19)2 + (16 - 18)2 . For 

convenience, they can be approximated by (115  —181 + 1 15 —161) or (115 —191 + 116 - 18 1) . The 

latter one is implemented by taking the absolute value of the convolution response of the two 

2 x 2 spatial filters (or masks) shown in Figure 2.2 and summing the results. These masks are 

called the Roberts cross-gradient operators [18]. Sometimes masks of even sizes are awkward 

to implement. It leads to another approximation 1(17 + 18 + 19) - (I + 12 + 13)1  + 1(13 + 

16 + 19) - (I + 14 + 17)1. The difference between the third and first row of the 3 x 3 region 

approximates the derivatives in the y-direction, and the difference between the third and first 

column approximates the derivative in the x-direction. This can be realised by a set of spatial 

filters called the Prewitt operator [18], as shown in Figure 2.3. Furthermore, the coefficients 
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near the centre of the mask can have higher values to reflect the importance of proximity. This 

results in a Sobel edge detector (Figure 2.4). It is not unusual to use only one rather than the 

pair of the filters to solely enhance the edge in either the vertical or horizontal direction. 

Il '2 13  
14  15 '6 
17  '8 19 

Figure 2.1: An image sub-region 

10 	01 
0 —1 	—1 0 

Figure 2.2: Roberts operator 

—1 —1 —1 —1 0 1 
0 0 0 

1 
—1 0 1 

1 1 1 —1 0 1 

Figure 2.3: Prewitt operator 

A more complicated (but better) edge detection can be done by the Canny edge detector [ 1 81. 

The Canny operator works in a multi-stage process. First of all the image is smoothed by 

a Gaussian smoothing filter (see next section). Then a 2D edge operator (such as Roberts, 

Prewitt or Sobel) is applied to the smoothed image to highlight the edges. Edges give rise to 

ridges in the gradient magnitude image. The algorithm then tracks along the top of these ridges 

and sets to zero all pixels that are not actually on the ridge top so as to give a thin line in 

the output, a process known as non-maximal suppression [18]. The tracking process exhibits 

hysteresis controlled by two thresholds: Ti and T2 with Ti > T2. Tracking can only begin at a 

point on a ridge higher than Ti. Tracking then continues in both directions out from that point 

until the height of the ridge falls below T2. The major advantages of the Canny edge detector 

are that the detected edges form thin lines instead of scattered points and the user has control 

of its parameters such as the width of the Gaussian operator, Ti, and T2. The implementation 

of a Canny edge detector is documented in [19]. 

WE 
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—1 —2 —1 —1 0 1 
o a a —2 0 2 
1 2 1 —1 0 1 

Figure 2.4: Sobel operator 

Smoothing 

Smoothing filters are used for blurring and for noise reduction. Blurring is used for removal of 

small details from an image prior to (large) object extraction or for bridging of small gaps in 

lines or curves [18]. Noise is reduced by taking average/median over the centre pixel's and its 

neighbours' intensities. 

The most common and simplest smoothing filter is an average filter [18]. It is a N x N matrix 

with all its entries equal to one and is attached by a factor of (NxN)'  where N is very often 

an odd number. The matrix in Figure 2.5 illustrates a 3 x 3 average mask. A bigger N offers 

more powerful blurring ability. To reflect the importance of proximity, a Gaussian smoothing 

filter is used. It contains Gaussian coefficients in its matrix which uses larger values for entries 

closer to the centre. Figure 2.6 shows a 5 x 5 Gaussian smoothing filter with the width = 1 s.d. 

(standard deviation). 

1 1 11 
11  

I 1 1 	I 

1 1 ij 

Figure 2.5: 3 x 3 average mask 

ri 4 7 4 11 

I4 16 26 16 4 	I 
1 I I 

17 26 41 26 71 
273  I 

I 	4 16 26 16 I  4 	I 

Li 4 7 4 1  

Figure 2.6: 5 >< 5 Gaussian smoothing filter 
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In some cases when the objective is to reduce the noise rather than blurring, a median filter is 

used. This method is particularly effective when the noise pattern consists of strong, spike like 

components and the characteristic to be preserved is edge sharpness. A 3 x 3 median filter is 

applied to the region and the process is to replace the intensity of the centre pixel by the median 

of the 9 sorted samples. 

Colour Space and Colour Transform 

The fundamental colour space used in image processing is RGB space (Red, Green, Blue 

space). It is a 3D space constructed from the so-called primary colours - Red, Green, and 

Blue which represent as x-, y- and z- axes of the space (see Figure 2.7). In this space, any 

colour is produced by the combination of different proportion of Red, Green and Blue and all 

the colours are found as points on or inside the colour cube. Notice that the greyscale is shown 

as a diagonal line connecting Black at the origin to White at point (1 1, 1) 1• 

Although RGB space is an easy way to model colour, it has several drawbacks. First, it is 

difficult to alter the intensity as change in an individual colour channel will not only alter the 

intensity, but also alter the resultant colour. Second, RGB representation is not consistent with 

human perception. Psychologists know human eyes are more sensitive to one primary colour 

than another and therefore the space should be skewed somehow. For these reasons, there are 

many other colour spaces developed, such as CIELAB, CMY, YIQ and HSI, to suit particular 

applications. Among these, HSI is the most frequently used colour space in this thesis apart 

from RGB. 

HSI is short for Hue, Saturation and Intensity. Hue is a colour attribute that describes a pure 

colour (e.g. pure yellow, orange, or red), whereas Saturation gives a measure of the degree 

to which a pure colour is diluted by white light (lower value means more diluted). Intensity 

again represents the brightness of the colour. The HSI colour space owes its usefulness to 

two principal facts. First, the intensity now is decoupled from the colour information in the 

image, thus the intensity can be altered without changing the resultant colour. Second, the hue 

and saturation components are intimately related to the way in which human beings perceive 

colour. 

Figure 2.8 shows HSI space as a "double cone" model. Hue (H) represents the colour as an 

1 the normalised values [0, 1] are used in this colour cube 

11 
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G 

Figure 2.7: RGB colour cube. The diagonal line connecting the Black (0, 0, 0) and White (1, 
1, 1) is the greyscale. 

angle, varying from 00  to 360°. The three primary colours divide the plane equally, Red is 

at 00, Green is at 120° and Blue is at 240°. Saturation (5) corresponds to the radius, varying 

from 0 to 1. Intensity (I) varies along the vertical axis with 0 being black and 1 being white. 

When S = 0, the colour is a grey value of intensity and H is undefined. When S = 1, the colour 

is fully saturated (i.e. pure colour). The greater the saturation, the farther the colour is from 

white/grey/black (depending on the intensity). When I = 0, the colour is black and therefore H 

is undefined again. By adjusting I, a colour can be made darker or lighter. By maintaining S = 

I and adjusting I, shades of that colour are created. 

The conversion between RGB and HSI spaces is not straightforward but is well documented in 

[18]. Here the equations for conversion are given. 

12 
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Figure 2.8: HSI colour space [20] 

For converting RGB to HSI: 

I = (R+G+B) 

3 
S = 1— (R+ G+B)[mul(R)] 

	

H 	= cos— 1f 	2WR  - G) + (R - B)] 

[(R - G)2  + (R - B)(G - B)] 

	

when 	B>G,H=2it--H 

where R,G, B, I and S are in the range [0, 1]. H is in radian from 0 2ir. 

For converting HSI to RGB, 3 scenarios according to the angle of Hue are considered: 

(2.3) 

13 
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when 	O<H<ir 

b = (1—S) 

1 	Scos(H) 
r = 

9 = 	1— ('r+ b) 	 (2.4) 

when 

1 
r = (1—S) 

g 
1 	Scos(H) 

= 

	

b 	1—(r+g) 	 (2.5) 

	

when 	lir<H<2ir 

4 
H=H —ir 

(1—S) 9= 3  

b 
1 	Scos(H) 

cos( 211  
—[1 + 	

- H) 

7.  1—(g+b) (2.6) = 

In Equation 2.4, 2.5 and 2.6, r, g and b are the normalised version of R, G and B. 

IEI 
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r = 
(R+G+B) 

C 

9 - (R+G+B) 
B 

b = (R+C+B) 	
(2.7) 

2.1.2 Principal Component Analysis (PCA), Eigenfaces and Active Appearance 

Models (AAMs) 

Principal Component Analysis (PCA) 

PCA has become a popular technique for object recognition in image processing. The history 

of PCA is long. The earliest version of PCA was dated back to 1901, proposed by Pearson [15]. 

Originally, PCA was used in applied statistical mathematics. "The central idea of PCA is to 

reduce the dimensionality of a data set consisting of a large number of interrelated variables, 

while retaining as much as possible of the variation present in the data set. This is achieved by 

transforming it to a new set of variables, the Principal Components (PCs), which are uncorre-

lated, and which are ordered so that the first few retain most of the variation present in all of 

the original variables" [15]. The mathematical form of PCA transformation is written as: 

z = A'x 	 (2.8) 

where vector x is the original data set to be transformed by PCA and vector z is the new data 

set obtained by PCA transformation of x. 

A' is the transpose of matrix A, whose k-th column, (ak), is the k-th eigenvector of the co-

variance matrix of data set x. If the eigenvectors are arranged in such a way that the k-th 

eigenvector corresponds to the k-th largest eigenvalue of the covariance matrix, it turns out that 

vector z will have the first number corresponding to the greatest variation and the last number 

corresponding to the smallest variation. The full derivation of PCA can be found in [15]. 

Why is the PCA so useful in image processing? Imagine that an image (called the matching 

image) is compared with a pool of images to find the most similar one. The simplest way is 

to compare any images in the pool with this matching image pixel by pixel (assuming all the 

images were scaled to the same size). If every pixel in an image can be seen as a dimension of 

15 
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variation, an image with the size of M x N pixels will consist of M x N dimensions. 

Therefore all the dimensions are required to be compared across all the images in the pool. It 

is obvious that it is highly computational expensive and the error in each dimension has no in-

dication of order of importance. PCA is very useful in solving this. The principal components 

(PCs) are firstly computed by taking several images in the pool. Images are then compared in 

a lower space constructed by using only a number of most important PCs instead of using all 

dimensions. It speeds up the matching process and makes sure that all the major dimensions of 

variation are included. One concern of PCA is that the images need to be "normalised" before 

operating PCA. This includes adjusting all the images to the same size and to a common ori-

entation. A better performance can be obtained if histogram equalisation  and DC component 

removal are undertaken prior to PCA. 

Eigenfaces 

One relevant example to this PhD work is Turk and Pentland's approach [5, 21] to the detection 

and recognition of human faces by applying PCA. Their approach transforms face images into 

a small set of characteristic feature images, called "eigenfaces", which are the principal com-

ponents of the initial training set of face images. These eigenfaces emphasise the variation of 

the global "features" of the faces which may or may not be directly related to human intuitive 

notion of face features such as the eyes, nose, lip and hair (examples of eigenfaces are shown 

in Figure 2.9). Then a sub-space ("face space") is built with a number of the "best" eigen-

faces (corresponding to the largest eigenvalues) to include the most dominant facial variations. 

Recognition is performed by projecting a new image into this face space and then classifying 

the face by comparing its position in face space with the positions of known individuals. The 

summary of their face identification and recognition process is given as follows: 

Initialisation: Acquire the training set of face images and calculate the eigenfaces, which 

define the "face space". 

When a new face image is encountered, calculate a set of weights based on the input 

image and the M eigenfaces by projecting the input image onto the "face space". 

'histogram equalisation redistributes the intensity distribution of the image so that the dynamic range and con-

trast of the pixels are increased [181 

16 
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Figure 2.9: Images show the most important eight eigenfaces corresponding to the largest 
eigenvalues [22] 

Recognition: Determine if the image is a face at all (whether known or unknown) by 

checking to see if the image is sufficiently close to the training face clusters. 

Identification: If it is a face, classify the weight pattern as either a known person or as 

unknown. 

Their approach takes advantage of PCA for obtaining and comparing the faces in a much re-

duced dimension space. Furthermore, they also provide a fast way to compute the eigenvectors 

and eigenvalues [5], calculated in the order of the number of training images (normally < 50) 

rather than the order of the number of pixels in images (typically 720 x 576). To recognise 

faces with broader orientation, it is advisable to include faces with different orientations (e.g. a 

"frontal" view, a "451" view and a "profile" view) in the training set. 

17 
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Active Appearance Models (AAMs) 

While Turk and Pentland's approach [5,21] projects only the face texture in the lower dimen-

sion, Active Appearance Models (AAMs) [12,23-25] represent both the shape and texture 

variations seen in a training set of images. The training set consists of labelled images, where 

key landmark points (such as eye, eyebrow, and lip corners) are marked on each example object. 

In consequence two statistical models, the shape model and texture model, are built by using 

a PCA dimensionality reduction method. Given a face image as an example, a shape model 

capable of representing the plausible faces is given below. 

x = 	+ Pb, 	 (2.9) 

Where Y is the mean face shape vector which contains the labelled points at eye, eyebrow, lip 

corners and so on. P3  is a set of orthogonal modes of shape variation computed by PCA, and 

b8  is a vector of shape parameters. 

To build a texture model for plausible faces, each example face image is warped so that its 

control points match the mean shape (using a triangulation algorithm [12]). Then the intensity 

information from the shape-no rinalised image over the region covered by the mean shape is 

sampled. Again, PCA is applied on the normalised data to obtain the texture modes. 

g=4+Pgbg 	 (2.10) 

Where j is the mean normalised greylevel vector, P9  is a set of orthogonal modes of intensity 

variation and b9  is a set of texture parameters 

To reduce complexity as well as take advantage of the correlation between the shape and texture 

variations. The b3  and b9  are further combined. 

[w8b2

I 

rQsI 

[ 
b9  =b= 
	c=Qc  

Where W3  is a diagonal matrix of weights to raise b3  to the similar scale to b9. Q is a set of 

orthogonal modes and c is a vector of appearance parameters controlling both the shape and 



Background Study and Literature Review 

texture of the model. 

Now an appearance model for faces has been constructed. The vector c in Equation 2.11 con-

trols both the shape and texture models (i.e. an appearance model), as shown in Equation 2.12 

and Equation 2.13. 

x=iii+P8W 1Q8c 	 (2.12) 

g= il +P9Q9c 	 (2.13) 

To match the appearance model to a face in the image (i.e. reconstruction of a face image). 

Two transform functions T3  and T. are required. "Shape Transform" (T8 ), including scale, 

translation and rotation parameters, transforms the shape x to the desired shape. "Texture 

transform" T9 , including intensity scaling and offset, transforms the texture g to the desired 

texture. The procedure of the reconstruction applies an "Analysis by Synthesis" routine [13, 26]. 

It starts with estimating the model parameters c and T8. Thus a shape of the image patch can 

be located and pixels in this region are sampled and projected back to the texture model frame. 

This image projected texture is compared with the texture composed by c using Equation 2.13. 

The difference is called the "residual image" and an iterative framework described in [12, 24-

26] is employed to minimise it. 

2.1.3 Active Contour Models (Snakes) 

Active Contour Models (Snakes) are dynamic curves for extracting deformable objects and are 

commonly applied for face and facial feature extraction [27-31]. The snake was first proposed 

by Kass et al. [6]. It is a curve guided by internal and constraint forces, and influenced by image 

forces (often termed external forces) that pull it toward features such as lines and edges. Mathe-

matically, the snake is a parametric curve (denote as v(s) in Equation 2.14), that moves around 

in the image domain to minimise the energy function regarding internal (including tension and 

rigidity), constraint and image (external) forces (Equation 2.16). 

V (s) = [x(s),y(.$)],s = [0,1] 	 (2.14) 
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1 

Esnake = f Ejnt(v()) + Eimage(v(s)) + E 0 (v(s))ds 	 (2.15) 

1 

Esnake = f Iv'(8)l + vh;(s)2
2 

	+ Eimage(v(s)) + E 0 (v(s))ds 	(2.16) 

Where a and 6 are weighting parameters that control the snake's tension and rigidity, respec-

tively. v'(s) and O(s) denote the first and second derivatives of v(s) with respect to s. The 

external energy function Ejmage is derived from the image so that it takes on its smaller val-

ues at the features of interest, such as boundaries. E 0  represents the optional constraint term 

which may be neglected for simplicity. 

The Euler-Lagrange equation (Equation 2.17; E 0  has been dropped out) can be used to find 

the minimum point of Equation 2.16. It differentiates each term in Equation 2.16 and turns the 

"energy minimisation" problem to a "force balancing" problem. 

+ ( 13  v")" + VEimage (v) = 0 	 (2.17) 

If the feature of interest is an intensity edge, E image (v) can be rewritten with: 

Eimage (v) = —'1hIVI(v)2 	 (2.18) 

1(v) denotes the intensity of the image. V represents the vector gradient on the 2D (image) 

domain. Thus the curve is attracted by the minimum of the potential, which means the local 

maximum of the gradient, which is an intensity edge. -y is the weighting factor associated to 

this term. 

To obtain a numerical solution for Equation 2.17, a finite differences approach is employed. 

F(v)=— 
1 

— vi-1) — aj+i(vj+i —v))+ 

h2 	
- 2v_i + v) - 2b(v_i - 2v + vj+i) + bj+i(vj - 2v+i + Vj+2)) - 

yVVI(v)2 	 (2.19) 

- 
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where h is the spatial step and v, ai and bi are the discrete quantities of the snake parameters. 

That is, v. = v(ih), ai = 	and bi = 	F(v) is the "resultant force" which pushes the 

snake closer to the feature at a temporal step in the iteration. When F(v) is reduced to zero, it 

turns out that there is no force and the snake is stationary, indicating an energy minimum (and 

possibly the feature of interest) is reached. 

A downside of this original snake is that the snake must be initialised close to the feature of 

interest, as further away from the feature produces additional local minima to which the snake 

could be falsely attracted. The simplest way to fix this problem is to produce a blurred version of 

the image, hence the image gradients of the feature can be spread into a wider area to overcome 

the local minima. However, this blurring approach still has some drawbacks; (a) the image 

gradients can not be extended indefinitely by blurring. In fact, the image gradients can only be 

spread to overcome the local minima within a few pixels surrounding it. (b) some less strong 

edges may be suppressed due to smoothing causing the snake to be unable to converge. 

Toward this end, many new active contour models were developed for (at least partially) solving 

this initialisation problem. 

Balloon Snake 

For closed-loop snakes, Cohen et al. [32, 331 suggested that an extra term of "pressure force" 

should be added into the snake equation of force, thus Equation 2.17 becomes Equation 2.20. 

The pressure force makes the snake act like a balloon, which can inflate or deflate depending 

upon the direction of thepressure force. The () denotes the direction of the normal at a as 

position on the snake and p is a weighting factor (a positive/negative value indicates an inflat-

ing/deflating force). In consequence, the initial snake would not be necessary at the proximity 

of the feature of interest. What the initial snake requires is to place itself inside or outside the 

object of interest and the appropriate direction of pressure force is applied. This framework 

can also be used in open-loop snakes provided that the initial direction for snakes to evolve is 

known. 

"D 
—(v')' + (iv")" + VEimage(v) - p

v 	
= 0 	 (2.20) 
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Gradient Vector Flow (GVF) Snake 

Xu and Prince [34] proposed a different approach to solve the initialisation problem and a 

related problem that snakes are unable to coverage into concave shapes. They introduced a 

dense vector field called Gradient Vector Flow (GVF) field, which is the replacement for the 

original external force of the snake. The GVF field is derived from the greylevel of the edge 

map of the image by applying the "diffusion theory". Thus the resultant field has a large capture 

range allowing the snake to "feel" the edge (the feature) before getting near it. GVF snake is 

more computational expensive than the balloon snake but it is advantageous to use GVF snake 

when the snake is required to converge to concave shapes or the initial convergent direction is 

unavailable. 

Colour Snake 

Colour snakes do not attempt to solve the initialisation problem. Instead, it improves the extrac-

tion results by making use of the fact that recent images are acquired and processed in colour. 

Generally speaking, colour snakes have the following advantages: (1) snakes can be attracted 

to the object with desired colour. (2) desensitising the effect of change in lighting (e.g., the 

shadow) which cause false edges, hence enabling snakes to extract the tangible edges, rather 

than illusive ones. 

Two typical colour snake models are introduced; Seo et al. [27] proposed using dual-colour 

patches in the snake's control points 3. The new control points are shown in Figure 2.10. Each 

control point has outer and inner colour patches, which are specified by the user for purpose 

of colour matching. Thus, the snake now is not only subject to minimising the energy function 

(Equation 2.16), but also subject to colour matching on both sides of the snake curve. For 

instance, a snake for lip detection will have pink-red colour on the inner patch and skin colour 

on the outer patch. Hence, a snake finds the lip when it reaches an edge as well as the inner and 

outer colour are both matched. Nevertheless, this algorithm works well only when the desired 

colours are exactly known in advance. If the colours are unknown, Seo et al. [35] provided 

a heuristic approach which is colour adaptive, but it is rather computational complex and its 

performance appears to be heavily dependent on the choice of weights. 

3the discrete form of the snake is represented by points forming the curve or loop. These points, moved under 
the influence of internal and external forces of the snake, are called snake's "control points". 
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Node I 

Noden 	 Node 2 

17  Inside colour of snake's node 

M\ 	Outside colour of snake's node 

Figure 2.10: Colour snake model and its dual-colour control points [27]. 

Schaub and Smith [36] developed a colour snake model allowing the desirable colour with 

certain variation. First of all, a statistical colour model was built in Hue-Saturation-Value (HSV) 

colour space 4 . The mean and standard deviation (s.d.) of the desirable colour were evaluated in 

Hue, Saturation and Value channels, respectively. Next, they combined Cohen's balloon snake 

[32] with the Gaussian colour model. The pressure term was incorporated with the colour 
. 	

i 	
81 	

1 i distribution and s expressed as p () (€ pressnre  - 1) (this was p () 	n Equation 2.20 

previously), where 6pressure  was defined in Equation 2.21. This time the weighting factor (p) is 

fixed to a positive number and the magnitude and direction of the pressure force are controlled 

by (epressare - 1). In Equation 2.2 1, 'rn, an and k (n E {1, 2, 3}) are the mean, standard 

deviation (s.d.) and colour tolerance in Hue, Saturation and Value channels, respectively. Pi 

P2 and p3 denote pixel's intensity in each H, S, and V channel. 

k sets the acceptable margin deviated from the mean ('rn) in terms of s.d. (an ) in each channel. 

For instance if k is set to a small value (say 0.001 s.d.), then the colour of the pixel has to be 

very close to the mean colour to allow this pixel being extracted. (i.e. to make the pressure force 

= 0). If k is set to a very large value (say infinite), then epressure 	0, making the pressure 

force = 1 x p and the snake will expand to the image boundary (i.e. accepting all the pixels). 

So, by varying the value of k, users have control of the colour margin, ranging from exact 

4 HSV is a similar colour space to the aforementioned HSI but using slightly different formulation. 

23 



Study and Literature Review 

colour matching to accepting all colours in the spectrum. In their work, Schaub and Smith [36] 

set k3 to an infinity so the object was extracted solely depending on the chromaticity (i.e. Hue 

and Saturation), regardless of the intensity (i.e. Value). 

/ 	 2 
Pi — 'Ti_ 	—T2(p3—i\2

€pre9sre 	

2 	

=k1al ) + 
(P2  

k2a2 )  + 
	

k3a3 ) 	
(2.21) 

2.1.4 Static Template Matching and Deformable Templates 

The static template matching algorithms are used to locate objects in the image which do not 

undergo much deformation. In face detection and recognition, this technique is often used to 

extract ears and noses. Normally a template is constructed artificially (e.g. sketched edge maps 

[37]) or by sampling the feature in the sequence (e.g. [38, 39] created a mean feature template 

from samples of the features). Then the correlation is carried out between the template and the 

search areas in the image. The place having highest correlation value is most likely to be the 

location of the feature. To extend the usability of the static templates, many researchers allow 

the templates having a range of size variations so that the same feature with different scales can 

be extracted from the image. 

However, static template matching cannot cope with deformable objects as the template is fixed 

in shape. To tackle this drawback, Yuille et al. [7] developed the technique of "Deformable 

Templates" to extract deformable objects. As its name indicates, deformable templates adjust 

their own shapes in "some degrees" when matching is carried out. Normally the template is 

chosen from the primary shapes (e.g., circle, parabola, ellipse, etc.) and the adjustment of 

the shape is by updating the parameters in its shape's mathematical description (e.g., radius, 

curvature, focal points, etc.). A cost function is associated with each template and is used to 

measure the fitness of the template to the feature of interest. By updating the parameters and 

moving the templates across the search area, the cost function can be maximised/ minimised 

which indicates that the feature is fitted. 

As it only updates the parameters of the shape rather than changes the shape type, this implies 

that the deformation of the template is limited in the same shape family. For instance, a de-

formation of a parabola will still be a parabola (but might be with different curvature and in 

different orientation). The advantage of using a deformable template is not only that the feature 

can be located and fitted but also that a set of shape parameters can be identified. Thus the repro- 
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duction of the feature in the latter stage is easy. To extend the usability of deformable templates, 

several deformable templates can be concatenated to form a compound one [37]. However the 

cost function of this compound template is sometimes difficult to optimise. Highly deformable 

features which can not be approximated by the primary shapes are usually extracted by Active 

Contour Models (Snakes) instead. In the next section, examples of using deformable templates 

to fit chins, lips and eyes will be addressed. 

2.2 Literature Survey 

2.2.1 Previous Work on Face Detection 

Detecting faces in images is the very first step towards any facial image processing. However 

producing a robust and accurate face detection routine is still a challenging task as the face 

is nonrigid and has a high degree of variability in size, shape, colour, and texture. In this 

section, numerous techniques for face detection and recognition are reviewed. This is followed 

by a description of the selected algorithm developed by Hillman et. al [4], which produced 

benchmark points on the facial features for this work. Using the definition in [40] for face 

detection: given an arbitrary image, the goal of face detection is to determine whether or not 

there are any faces in the image and, if present, return the image location and extent of each 

face. 

Broadly speaking, face detection can be categorised into 4 groups according to the methods 

used. They are: 

Knowledge-based methods, These rule-based methods encode human knowledge of what 

constitutes a typical face. Usually, the rules capture the geometric relationships between facial 

features. 

Feature-based approaches. These algorithms aim to find structural features that exist even 

when the pose, viewpoint, or lighting conditions vary, and then use these to find faces. 

Template matching methods. Several standard patterns of a face are stored to describe the 

face as a whole or the facial features separately. The correlations between an input image and 

the stored patterns are computed to determine the existence of the faces in the input image. 

Appearance-based methods. In contrast to template matching, the models (or templates) 
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are learned from a set of training images which should capture the representative variability of 

facial appearance. These learned models are then used for detection. 

In the first group, the face detection methods are developed based on the rules derived from the 

researcher's knowledge of a human face. The rules are drawn to describe the features of a face 

and their geometric relationships. For example, a face often appears in an image with two eyes 

that are symmetric to each other with a nose and a mouth on this symmetry axis. The geometric 

relationships between features can be represented by their distance, positions and size. Facial 

features in an input image are searched first and face candidates are identified based on the 

coded rules. 

The downside of this approach is the difficulty in converting human knowledge into well-

defined rules. If the rules are set to be strict, they may fail to detect faces that do not pass 

all the rules. On the other hand, if the rules are too general, they may detect non-face objects 

as faces. Moreover, a set of rules usually can only be applied for certain poses of faces (e.g. 

frontal view, 45° side view, or 90°  profile view). The number of rules has to be enormously big 

to exhaustively cover all possible cases. Yang et al. [41] used a hierarchical knowledge-based 

method to detect the face. In their algorithm three levels of rules were used; the first level rules, 

telling what a face looks like, work on the coarse version of the image while the last level rules, 

relying on details of facial features, are applied to the highest resolution of the image. The 

number of candidate faces in three levels are in descending order. This coarse-to-fine frame-

work reduces a great deal of computation as only a few faces enter the last level which is most 

computationally expensive. 

This idea of multi-resolution hierarchy is frequently applied [42]. Kotropoulos and Pitas [42] 

presented a rule-based face detection similar to [41] by locating the facial features using Kanade's 

technique [43].  The boundary and features of candidate faces are located by "Horizontal and 

Vertical projection" [43]. Subsequently, a set of detection rules (which are hierarchical) are 

applied to the found features to validate the presence of the face. 

The second group of approaches (feature-based) aims to find invariant "features" of face for 

detection. The underlying assumption is based on the observation that humans can effortlessly 

detect faces and objects in different poses and lighting conditions and so, there must exist 

properties or features which are invariant over these variabilities. Common features used for 

detection include facial features [44,45], textures [46], skin colour [47,48] and combination of 
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features (integration of facial features, textures, skin colour, size, and shape) [49]. 

Leung et.al. [44] developed a probabilistic method to detect a face in a cluttered scene based on 

local feature detectors and random graph matching. They formulated the face detection problem 

as a search problem in which the goal is to find the arrangement of certain facial features that 

is most likely to be a face pattern. To this end, five features (two eyes, two nostrils and a lip) 

are extracted and their relative distance is computed over an ensemble of images and modelled 

by a Gaussian distribution. 

In [45,50,51], Yow and Cipolla presented a feature-based technique that used implicit facial 

features. These implicit features were extracted by a second derivative Gaussian filtering and 

grouped to form feature regions. Measurement of a region's characteristics, such as edge 

strength and intensity variance are computed and stored in a feature vector. From the train-

ing data of facial features, the mean and covariance matrix of each facial feature vector are 

computed. A face is detected in an input image if the Mahalanobis distance  between the 

corresponding feature vectors is below a threshold. 

Augusteijn and Skufca developed a method that inferred the presence of a face through the 

identification of face-like textures [52]. The textures are computed using second-order statis-

tical feature, including "angular second moment", "contrast", "correlation", "inverse different 

moment", "entropy" and "sum average", on sub-images of 16 x 16 pixels and calculated "Space 

Gray-Level Dependence matrix" (SGLD) [53].  Three types of features - skin, hair and others - 

were used to form "face texture" and classified by a Kohonen self-organising feature map [54]. 

Furthermore, Dai and Nakano [46] also applied SGLD model with extra colour information 

incorporated with face texture model. 

Human skin colour has proven to be an effective feature for face detection, as many studies have 

shown that the major colour difference between human skin is in intensity rather than chromi-

nance [47, 55, 56]. The common approach is to define a skin colour region in an appropriate 

colour space by setting up several thresholds. A patch is classified as a skin if the pixel values 

fall within the colour region and vice versa. Researchers have used colour spaces such as RGB 

[57,58], Normalised ROB [59-61], HSV/HSI [49,62-64], YCrCb [65, 66], YIQ [46] and CIE 

[67,68]. 

given two vectors and with the same dimension, Mahalanobis distance between them is (( -  

Where C is the covariance matrix of. and . 
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Various researchers suggested that by using a combination of features, a face can be detected 

more convincingly. For example in [49, 63, 69],  face candidates can be obtained by skin texture 

or colour detection followed by a connected component analysis. They are then verified by 

shape constraints (a face should be of elliptic or oval shape) and relationships of the local 

features (eyes, eyebrows, nose and mouth). 

A general difficulty of this group of approaches is to define the discrimination thresholds. As 

these features (such as second-order statistical features, colour, texture and so on) are abstract, 

the decision boundaries which can separate faces and non-faces usually are not straightforward 

and require further computation (for example, using neural networks or PCA (Principal Com-

ponent Analysis) to obtain a linear space). 

Regarding the face detection by template matching (the third group of approaches), Sakai et 

al. [70] attempted to match the faces by using manually created templates. They used several 

sub-templates for the eyes, nose, mouth and face contour to model a face. Each sub-template is 

defined in terms of line segments. A correlation is applied between the input image's edge map 

and face contour template to find face candidates. This is followed by subsequent correlations 

between sub-images of the input and feature sub-templates to verify the face candidates. Craw 

et al. [71,72] modified Sakai's approach to become more robust by allowing different scales and 

orientations of the templates. Later researchers developed more "flexible" template matching 

by applying dynamic curve/shape fitting. For example Yuille et al. [7. 73,74] used deformable 

templates for face and facial feature detection and localisation, Lam and Yan [75] and Kwon 

et al. [76] applied Active Contour Models (Snakes) to locate the face boundary. Cootes and 

Taylor [77,78] and Lanitis et al. [79] used Active Shape Models (ASM) to locate and track 

faces. 

Generally speaking, this group of approaches are quite effective in detecting features with dis-

tinct contours (such as face boundary). However, since only the information of the shapes and 

outlines is used, these approaches will see some difficulties on extracting the features dominated 

by their contents (such as lips) without incorporating other measures. 

In contrast to the template matching methods where templates are predefined by experts, meth-

ods in the last group, the appearance-based approach, uses "appearance templates" which are 

learned from examples in images. In general, appearance-based methods rely on techniques 

from statistical analysis and machine learning to find the relevant characteristics of face/nonface 
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images. The learned characteristics are in the form of distribution models or discriminant func-

tions that are consequently used for face detection. Meanwhile, dimensionality reduction (PCA) 

[5] is usually carried out for the reason of computation efficiency. 

Turk and Pentland [5], as mentioned in the earlier section, applied PCA (Principal Component 

Analysis) on a training set of face images to generate an image subspace (called the face space) 

in which the face detection is performed. They projected face and nonface images to this space 

in the training phase and formed face and nonface clusters. To detect the presence of a face 

in an input image, the image is projected into the same space and a distance metric to the 

clusters is computed. Another way to reduce face dimensionality is to use neural networks 

[80, 81]. Agui et al. [80] proposed an early method using neural networks to detect the face 

in monochromatic images. They used a two-layer network structure with two subnetworks in 

each layer. In [82], Vaillant et .al. used convolutional neural networks to detect faces in images. 

Examples of face and nonface images of 20 x 20 pixels are first created. The first neural 

network is trained to select face candidates from image areas. Then these candidates are verified 

by the second network. Burel and Carel [83] proposed an approach adopting Kohonen's Self-

Organisation Map (SOM) [54] so a large number of training examples of faces and nonfaces 

can be compressed into fewer examples. Recently, Support Vector Machines (SVM) [84] and 

other kernel methods such as Genetic Algorithms (GA) [85], Naive Bayes Classifier [86] and 

Hidden Markov Model (HMM) [87] have been proposed for face detection. These methods 

implicitly project patterns to a higher dimensional space and then form a decision boundary 

between the projected face and nonface patterns. 

The major difficulty of this group of approaches is to construct an unbiased, normalised training 

set. The face images in the training set should contain all kinds of possible variations, for exam-

ple, different gender, age, ethnicity, beards, glasses, expressions, and so on. Furthermore, it is 

important to "align" all the face images before the training procedure can be carried out. These 

include normalisation of the size, orientation and brightness of the face images. In summary, to 

ensure appearance-based approaches perform properly, a large and diverse data set, and a huge 

amount of manual work are required. 

The face detection and facial feature localisation method used in this work was developed by 

Hillman et al. [4]. The technique overlaps between the aforementioned group 1, 2 and 4 

approaches. At the beginning, a skin colour detection was used to find the face candidates in 

the image (this is a group 2 approach). The CIE-Lab colour space was selected for performing 
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the skin detection as Hillman et al. [4] argued that skin and non-skin discrimination works 

better in this colour space. A set of 70 face images from a wide range of sources are then used 

to find the decision boundaries in the CIE-Lab space. The distribution of the pixels sampled 

from these faces is shown in Figure 2.11(a). This distribution can be seen to be skewed with 

respect to axes, thus the conventional rectangular bounding box cannot be fitted. To solve this, 

they applied PCA (Principal Component Analysis) to find a new linear space. 

In the linear space, the limits (Pmax = (max, 1/max, zmax) and Pmin = (min, 1/mm, Zmin)) 

derived from the PCA transformed training set are used as the vertices of the bounding box 

for skin thresholds. The colour of the input image is then segmented as follows. Each pixel is 

processed in turn, converted into CIE-Lab space, and then into PCA space. If the position of 

the pixel (px,py,pz)  in the transformed PCA space satisfies Equation 2.22, it is marked as skin 

(black), otherwise as non-skin (white) (see Figures 2.11(b) and 2.11(c)). 

Xmin  <Ps <Xmas  

Y7nin <Py <1/max 

Zm jn  <Pz <Zmax 	 (2.22) 

This will leave holes in eye regions as eye colour is very different from skin colour. A region 

growing technique was used to fill the eye regions and remove the noise. Only sufficiently big 

non-skin regions in the image will remain as eye candidates after the region growing. Then 

an eigen-eye matching which is similar to Turk and Pentland's [5] was performed on the eye 

candidates (a group 4 approach) and a geometrical analysis was used to verify the eye positions 

(a group 1 approach). All eye candidates were subtracted from a 60 >< 30 mean eye block 

and then projected into a PCA space. A matching measure (m) was obtained as the distance 

between each eye candidate and the centre of the cluster of known eyes in the PCA space. The 

smaller m is, the higher the possibility that the eye candidate is an eye. 

Since scaling, orientation and noise can affect the PCA matching, a further geometrical exami-

nation was undertaken. The following constraints were used [41: 

The magnitude of the angle of the line joining the left and right eyes must be less than 

30°. 
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The distance between the regions must be between 10 and 20 % of the image width 

Both eyes must lie within the central 50 % of the image. 

The unrejected eye candidate pair with the smallest combined m was taken as the position of 

the eyes. 

The nose and mouth were found by applying eigen-mouth and eigen-nose matching [5] in a 

search area defined by the found eye pair. The search region lies on the perpendicular bisector 

of the line connecting the found eyes. The region is 0.7 w wide and 1.5 w high, where w is the 

width between the eyes. These factors were found by analysing a wide range of face images 

[4]. 

Final geometrical constraints were used to remove false mouth and nose matches. The eye-nose 

distance (d) and eye-mouth distance (dm) were computed as an average distance from the eye 

to the nose and from the eye to the mouth, respectively. The ratio of (dm/dfl) must be in the 

range (1.3, 2.6) to validate the positions of mouth and nose. 

The output from this algorithm is the found face region, estimated eye, mouth and nose posi-

tions. These become the benchmarks for the feature contour fitting, which is one of the main 

contributions of this thesis. The entire system is depicted in Figure 2.12. 

2.2.2 Previous Work on Lip Fitting 

Lip fitting has been a popular research topic for computer vision scientists over past years 

as a wide range of applications (such as model-based coding [8, 37, 88] and lip-reading [30, 

89, 90])  are based on fast and accurate lip contour fitting. Deformable Templates and Active 

Contour Models (Snakes) are the two most commonly used techniques in lip fitting. Yuille 

et al. [7,73] were the pioneers applying the deformable templates on lip fitting. They used 

several conical shapes to describe the states of open and closed mouths. The cost functions of 

the templates include edge potential (for the upper and lower lip boundaries), valley potential 

(for the boundary between the upper and lower lips) and internal potentials such as potentials 

forcing the lip symmetrical, dipping the template at the middle of the upper lip. Their methods 

have obtained an initial success. However, due to high complexity of optimisation of the cost 

functions, several modified versions were proposed [91,92]. Zhang [88] simplified Yuille's 

model by employing only 3 parabolas for closed mouth conditions and 4 parabolas for open 
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(a) skin points in CIE-Lab space 

(b) input image 	 (c) skin detector 

Figure 2.11: The skin colour distribution in CIE-Lab space and the result of the skin detection 
[4], 
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Colour Face Image 

Skin detection 	 PCA template finding 

Candidate eye regions 	 Geometrical analysis 

PCA template finding 

Geometrical analysis 

Face region 	Estimated eye positions 	Estimated mouth and nose positions 

Facial Feature Contour Fitting 

Figure 2.12: Flowchart shows the process of estimating the face region and feature locations. 
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mouth conditions with an automatic mouth state detection. The number of the parameters used 

by Zhang is substantially reduced to less than half of the number used by Yuille et al. Along 

with an improved optimisation algorithm, a fast lip fitting was achieved 

Active Contours Models (Snakes) provide higher flexibility for deformation and has proven to 

offer better results for the lip contour fitting [89, 90, 93, 941. Based on Kass's snakes [6] and 

Cohen's balloon pressure [32], Shinchi et al. [90] and Sugahara et al. [89] developed a Sampled 

Active Contour Model (SACM) to fit the lip contour. Shinchi [90] employed a special repulsion 

force as an external force making the snake stay on the edge more robustly. Sugahara [89], on 

the other hand, added an extra vibration factor, helping the snake to slip through noise in the 

image. Eveno et al. [95] used a different approach from Cohen's to solve the initialisation issue. 

They developed a jumping snake which is able to grow and jump from a point quite far away 

from the lip. The snake grows first and hence it can "probe" the change of greyscale. In turn 

the snake jumps towards higher gradient of greyscale and a new snake grows where is closer to 

the lip edge. As a result, every iteration makes the snake approach the lip edge and eventually 

the lip can be extracted. 

The performance of the lip fitting can be enhanced by incorporating other techniques with 

Active Contour Models. Barnard et al. [30] proposed a snake guided by a two-dimensional 

(2D) lip shape template. The external force of the snake was produced by a 2D correlation 

between the matched 2D template and the control points of the snake. It overcome the problem 

that the weak lip edge could not produce enough force to hold the snake. By applying this new 

external force, a good lip shape can be guaranteed in snake convergence. Okubo and Watnabe 

[31] tracked lips in sequences of images by applying optical flow [96] to predict the initial 

position of the snake in the subsequent image. 

Various researchers have investigated applying colour snakes to lip fitting, as a distinguishable 

colour difference exists between the skin and lip regardless gender, age and ethnic origin. More-

over, a snake using colour information can avoid being attracted by fraudulent edges which are 

resulted from illumination differences. 

As mentioned earlier, Seo et al. [27] proposed a snake with "dual-colour patches" control 

points. The inner patches are of lip colour while the outer patches are of skin colour. The 

lip boundary can be fitted by matching the colour patches with the lip and skin colours on the 

image (Figure 2.10). 
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2.2.3 Previous Work on Eye and Eyebrow Fitting 

Eye Fitting 

Accurate eye fitting is a key step for many computer vision applications such as model-based 

facial coding [4,9,97,98], facial expression recognition [99-103], human computer interface 

(HCI) [99-101, 104-106] and biometric identification [107-109]. The term of "eye fitting" 

comprises finding and locating one or more of the eye features: pupil, iris, eye corners and 

eyelids, but excludes simply eye location estimation. Depending upon the type of applications, 

one or many of eye features are required to be fitted with good accuracy. 

Yuille et al. [7, 73] used deformable temples to fit the holistic eye. They used two parabolas and 

a circle to describe an eye. Each parabola represented the upper or lower eyelid and the circle 

between these represented the iris. Figure 2.13 depicts the general layout of Yuille's templates. 

Figure 2.13: Yuille's eye template [7]. 

The cost function associated with this set of deformable templates consists of 11 parameters 

and 10 weights. The steepest descent algorithm combined with a cascade updating procedure 

was then used to minimise the cost function. It is not easy and time consuming to update such a 

massive set of parameters and weights, and the steepest descent approach frequently produced 

a result which converged to local minima. To this end, many researchers [110-112] developed 

better deformable eye templates and updating algorithms. 

Deng and Lai [I 101 simplified Yuille's template and obtained a cost function consisting of only 

9 parameters and 6 weighting coefficients. Instead of using an energy minimising technique to 
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deform the template, Deng and Lai introduced regional forces which utilised the local feature 

information that could not be obtained by the global descriptor. By doing this, they also avoided 

the cumbersome step of adjusting the weights to ad hoc values. After the major updating 

procedure finishes, Deng and Lai proposed a post-processing which is capable of refining the 

eye fitting. 

Lam and Yan [111] also adopted Yuille's eye template, but they developed an extra algorithm to 

detect eye corners. In their approach, they found four fundamental eye corners at the beginning 

stage (two joints of upper and lower eyelids and two intercept points of the iris circumference 

and the upper eyelid). The intercept points of iris circumference and lower eyelid are less 

discernible due to low grey-level contrast hence they are not considered. By enforcing the 

parabolas to pass through these corner points, the performance of eye fitting could become 

faster and more accurate. However, the success rate of their eye corner finder was not reported 

in their contribution and their approach does not apply for widely open eyes. 

Hammal et al. [103] also used deformable templates to perform the eye fitting. They argued that 

the upper eyelid was fitted less accurately by using a parabola as it induced a vertical symmetric 

constraint. Therefore they employed a Bezier curve, permitting asymmetrical bending on the 

curve, to fit the upper lid. They still chose the parabola and circle templates to fit the lower lid 

and iris as Yuille et al. did. 

Apart from the deformable template approach, various researchers employed other techniques 

and were also capable of finding all or some eye features. 

Zhu and Yang [113] proposed an approach in finding the eye corners and iris. They introduced a 

pair of corner operators (showing in Figure 2.14) to find the eye corners. They initially defined 

search regions around the eye corners and performed a two-dimensional (2D) convolution on 

the regions with the predefined corner operators. The positions achieving the highest result 

from the convolution were very likely to be the eye corners. Finding the eye corners helped to 

locate and fit the iris. In [113], an elliptical shape, rather than the more popular circular shape, 

was used for fitting the iris in a large gaze direction. 

Campadielli [98] suggested a three-stage eye fitting framework. In the first stage, template 

matching is used in finding horizontal "eye bands" which are rectangular sub-images containing 

both eyes. Then neural network classification is applied on the down-sampled or wavelet-

transformed eye bands to obtain the separate locations of the left and right eyes in the stage 
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two. In the final stage a geometrical constraint is used to justify the found eye locations from 

the stage two. 

Perez et al. [114] proposed a method to eliminate reflection in iris region which made their 

iris/pupil fitting system more robust in real situations. Me et al. [115-117] proposed an im-

proved iris tracking algorithm allowing larger eye and head movements. They used intensity 

centroid to locate the centre of iris and adopted two Kalman filters to compensate the large eye 

and head movements. 

1 1 1 1 11 11 1 1 1 1 

Figure 2.14: Eye corner operators [113]. 

Other related work such as gaze estimation [106, 118-121] and blinking detection [102, 122] 

are popular in the literature. Estimation of the gaze direction is frequently applied in Human 

Computer Interface (HCI) systems [106, 1201 as using eye gaze for replacement of the keyboard 

and mouse is proposed. This requires very high accuracy in tracking the movement of the pupil. 

The mainstream technique is to illuminate the eye by Infra-Red (IR) light and a detector is used 

to receive the reflection from the pupil so that the gaze direction can be inferred [120]. Beymer 

[121] reported that using two sets of stereo cameras plus an JR emitter can achieve sub-pixel 

accuracy in estimating the eye gaze. The wide angle stereo system detects the movement of the 

head and steers the narrow stereo system to track the pupil. Their approach outperforms others 

as the additional set of cameras can accommodate large head movements without intrusive 

head-worn gear. 

Detection of eye blinking is important in eye tracking, as the interior of the eye becomes invis-

ible when the eye closes and thus the tracking needs a special handling over this period. Tian 

et al. [102] proposed a dual-state model representing the open and closed eyes. When the eye 

is open, Yuille's template model is used. When the eye is closed, a straight line connecting the 

eye corners is used. The closed eye is detected if the brightness inside the iris template is higher 

than a predefined threshold, assuming the iris radius is known and the template is situated at 

the place with maximum edge response. Al-Qayedi et al. [122] emulated the eye blinking by 
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a model-based approach. They fit a mesh model on an open eye frame and thus the sequence 

of the eye blinking can be emulated by drawing the eyelid vertices closer. In operation of their 

eye tracking algorithm, this artificial sequence is compared to the real sequences to determine 

whether a blinking occurs and thus the algorithm is switched between the tracking and blinking 

modes. In the tracking mode, a template matching technique is used to maintain the tracked 

location of the eyes. In the blinking mode, an arbitrary 6 frames interval (25 frames per second) 

are inserted for eye blinking. 

Eyebrow Fitting 

The motion of eyebrows usually indicates the presence of an expression. Although the eyebrow 

fitting is important, few researchers have considered this in detail. Many have only extracted 

a few representative (3 - 5) eyebrow points [102, 123, 124] but this is inadequate for accurate 

face model fitting. Other researchers [37,98, 125, 1261 applied low level techniques such as 

intensity thresholding and edge detection to segment eyebrows. These techniques are not likely 

to prove effective for different types of eyebrows (colour, thickness, density of eyebrow hair) 

or to be robust against illumination changes. Kampmann [37] and Chen et al. [127] have paid 

special attention to eyebrow fitting. Kampmann reported a systematic approach using several 

constraints on the calculation of the eyebrow's intensity/intensity gradient and his approach 

was able to pick up partially occluded eyebrows. However, he only considered intensity and 

intensity gradient thus it is likely to have difficulty with changes of illumination. Chen [127] 

used k-means clustering and a snake to fit the eyebrow from a horizontally and vertically divided 

search window, which was more likely to obtain a continuous contour of the eyebrow. However, 

the illumination issue again remained unsolved. 

2.2.4 Previous Work on Chin and Cheek Fitting 

Fitting of the chin and cheeks has received much attention from computer vision researchers. 

It is a major requirement for face recognition, face modelling and facial expression analysis. 

However, due to its inherent complex characteristics in greyscale distribution, conventional 

edge detection methods have failed to extract the chin and cheeks [128]. Many researchers used 

geometric models to approach the boundary by dynamic curve fitting. Conventional techniques 

include Active Contour Models (Snakes) and Deformable Templates. 
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Kampmann [37, 129] proposed a deforrnable template approach for chin and cheek fitting. He 

used four parabolas, two for each, to fit the chin and cheek. He first estimated the locations 

of the essential facial features, such as the eyes and the mouth, and placed the chin template 

on an estimate initial position. Since the locations of the essential features are known, he can 

limit the template deformation in a smaller search space. He fitted the chin followed by cheek 

fitting. Both chin and cheek fitting runs with three concatenated cost functions to obtain a 

global optimum. He argued that his approach offered more accurate fitting results than the 

single parabola fitting scheme used by Xiaobo et al. [130]. However, Kampmann did not show 

results for his approach in an extensive set of face images. 

Hu et al. [131] expressed concern that Kampmann's approach only worked on a parabola-like 

chin. Thus, they proposed a combined scheme of Deformable Templates and Active Contour 

Model. The chin contour is initially fitted by a parabola using a deformable template approach 

by identifying three landmark points on the chin. This initial fit is then used as the initialisation 

of a snake, thus a more refined chin contour can be extracted. In their snake procedure, they 

employed a GVF (Gradient Vector Flow) snake [34]  to obtain "long range capturability", which 

allowed the snake to be attracted by the feature of interest from a long distance. 

Sun et al. [28] used a SCACM (Statistical Constraint Active Contour Model) to fit non-

parabola-like chins. The mean and variance of the face shapes were obtained in the training 

phase by manually marking the points on the face boundary [23]. These two statistical param-

eters are used as a "shape reference" in the later snake extraction phase. By doing this, they 

can resolve the snake problem of no geometrical sense to the feature and a much smoother face 

boundary (including the chin and cheeks) can be extracted. In addition, their approach allows 

multiple initialisation of SCACM to obtain the global optimal fit. 

Goto et al. [132] attempted to fit the chin by making use of both frontal and profile view images. 

Thus it is easier and more accurate to find the three landmark points defining the chin - left and 

right extremities of the chin from the frontal image and the bottom tip of the chin from the 

profile image. Instead of directly employing traditional edge detection, they proposed an image 

processing flow to enhance the chin edge. This includes smoothing, splitting the chin areas 

and finding the chin edge by a number of direction vectors. The enhanced chin edge is then 

extracted by a snake approach. In order to improve the speed of snake evolution and keep a 

reasonable chin shape, they introduced symmetry and shape terms in the snake function. Their 

technique is fast but is unable to fit faces with large rotation. 

ME 
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Wang etal. [128] developed a scheme which can extract and classify chins. They first extracted 

a number of "chin points" near the chin contour by exploiting the intensity and edge properties. 

Some infeasible chin points are then removed by examining the continuity property of the 

points. Next they used a least square fitting technique to fit the chin points with three chin 

models, namely the round, pointed and trapezoidal chin models. Depending upon the minimum 

least square error calculated, the chin is classified as one of these three types. The data set used 

in their test experiment is fairly big and a numerical result is given (95.3% extraction rate and 

92.0% classification rate are achieved). The result is encouraging, but difficulties in extracting 

the chin from complex backgrounds were also reported. 

2.2.5 Previous Work on Model Face Fitting 

Generating a precisely fitted head model automatically and robustly is the ultimate goal for 

model-based representation of human heads. A huge amount of research effort has been put 

in and many different techniques, depending upon applications, can be found in the literature. 

Some researchers used laser scanners and high resolution face models (e.g., with hundreds of 

thousands of surface polygons) to represent any tiny bits of the human face. In this thesis, the 

techniques are focused on applications using nearly frontal faces. These applications include 

videophones, teleconferencing, computer games and face recognition on close-to-front-view 

images. 

In [133], Liu et. al. proposed an approach capable of finding a face geometry and orientation 

from face images and reconstructing the face texture from a video. Their approach aimed at low 

user interaction - the requirements are two nearly-frontal face images (no specified viewpoints) 

and a video of the turning head. They found the face geometry and orientation first and followed 

by facial texture reconstruction. To find the face geometry and orientation, five benchmark 

points corresponding to the two inner eye corners, nose tip and two mouth corners are located on 

these two images manually. It is then followed by an automatic face recognition- by subtracting 

the images (assuming the background is stationary) and exploiting colour property of skin. 

Once the face is found, more corners on the face are located and their motions are estimated. 

In [133], a Plessey corner detector [134] is used, which defines corners as high curvature points 

in the intensity dimension of the face. To link found corners from one image to another a cross 

-correlation is applied and then a geometric constraint is used to filter the false matched corners. 

Finally the relative head motion (rotation and translation) between the two images can then be 
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estimated by applying a non-linear least-squares technique [135, 136] on the matched corner 

points and 5 benchmarks. The corner points and benchmarks can be reconstructed in 3D space 

with respect to the viewpoint used in one of the two face images. As a result, a 3D face mesh 

model can be fitted by minimising the distance between model vertices and found points and 

benchmarks in 3D space. Further improvement in local details can be achieved by finding the 

features using snakes [137]. 

Since two-view face images do not cover the whole face surface, Liu et al. [133] made use of 

the video sequence of the turning head to obtain a complete texture map. First they used the 

previous technique to fit the head model in each image in the sequence. Then a texture blending 

procedure similar to Pighin et al. [138] was used. The procedure is summarised below: 

For each vertex on the face mesh, the blending weight is computed for each image based on the 

angle between surface normal and the camera direction. If the vertex is invisible, its weight is 

set to 0.0. The weights are then normalised so that the sum of the weights over all the images is 

equal 1.0. Thus a texture map composed of all the images in the video is obtained. This texture 

map is smoother, more realistic and has less artefacts. 

In [137], Liu et al. modify the algorithm so that it can fit a 3D face model onto a single 2D 

frontal face image. The depths of the resulting face models are usually not accurate, but the 

models look recognisable in view angles not too far from the front and the fitting speed is much 

faster than his previous technique [133]. 

Luo and King proposed a fast face model fitting approach in [139]. To start with, a number 

of important facial features are extracted to help fitting the WFM (Wire-Frame Model) onto a 

2D face image. They developed several techniques, including using neural networks and active 

contour models to automatically extract the facial features from the image [140]. The extracted 

features consist of the mouth, eyes, head boundary and mass centre of the face. 

In the fitting stage, the face is fitted first with correct geometry and orientation (estimated by 

the found features). It is followed by facial feature alignment. Since the head boundary in 

the image has been extracted, the position of each boundary vertex of the WFM can be fitted 

precisely. This is done by stretching/contracting the boundary vertices of the WFM to match 

the face boundary points which constitute the same angles (with respect to the face centre) as 

the vertices (with respect to the WFM centre). Each inside vertex of the WFM is then adjusted 

in proportion to the translation of its corresponding head boundary point. Notice that since 
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there is no z-dimension information from a 2D image, the general WFM is adjusted in the z 

direction by an amount proportional to its changes in a 2D image plan, which gives a reasonable 

estimation. 

Pighin et al. [138] developed an accurate face modelling and animation using five views of 

a human head, stepping from the left profile to the right profile. The manual work includes 

locating important feature points in different views of the images (typically, eye and mouth 

corners, nose tip, etc.). These points are used to automatically recover the camera parameters 

(position, focal length, etc.) corresponding to each photograph, as well as the 3D positions 

of the marked points in space. The 3D positions are then used to deform a generic 3D face 

mesh to fit the face. At this stage, additional corresponding points may be marked to refine 

the fit. The texture of the face thus can be extracted from the fitted face. They repeat the 

aforementioned process for the same object with several different facial expressions. Now, a 

database of 3D model fitted facial expressions of this person is obtained. At the animation 

stage, a new expression is created by interpolating between 2 or more different 3D models 

in the database. Meanwhile, the texture can be blended to create a more realistic look. The 

interpolation is not only able to be applied between holistic faces, but also allowed to apply for 

different regions of the face so that a "hybrid" facial expression can be created (for example, 

neutral expression of the upper face plus smile expression of the lower face produces a "fake 

smile" expression). 

Blanz proposed a texture-based fitting approach [1] which is able to solve two common lim-

itations in automated face reconstruction and animation. The first one is referred to position 

corresponding problem between different faces and the second one is to separate realistic faces 

from non-natural faces. In addition, their approach addresses a possible way to measure the 

face attributes. A big face dataset is collected at the onset for computing the average face and 

the main modes of texture variation (using PCA). A probabilistic distribution is then imposed 

on the morphing function to avoid unlikely faces in the reconstruction stage. This is particular 

useful when fitting a 3D model to a 2D image (in this case, many non-face-like solutions will 

be generated but removed by the constraint.). The new face is generated by linearly combining 

the average face and the modes with suitable weights. For finding the position correspondence 

of the faces, since now almost any faces can be turned into a parametric face model, the corre-

sponding problem can be solved by a mathematical optimisation. They also derive parametric 

description of face attributes such as gender, age, distinctiveness, weight of a person, etc. This 
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is done by manually picking up faces with particular attributes in the dataset and creating a 

sub-dataset for them. Then PCA is applied to this sub-dataset to obtain the variation. 

Cootes et al. [12,24,25] developed "Active Appearance Models" (AAMs) which are capable 

of using both shape and texture information to perform face fitting (see Section 2.1.2). The 

face is fitted by an "Analysis by Synthesis" routine which aims to minimise a "residual image" 

between the projected face image and the reconstructed one. Figure 2.15 illustrates this routine. 

It contains a feedback loop which can hold the analysed parameters (e.g., global pose, shape 

and/or animation parameters of the wire-frame model) and thus the face can be reconstructed in 

the synthesis block. The reconstructed face and input face are then normalised and compared in 

the lower dimensional space (by PCA). The error (the residual image) between these two images 

is computed. The optimal face fit is obtained by minimising this residual image. Ahlberg 

[13, 26] extended Cootes et al's work and applied it to real-time face tracking. 
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Figure 2.15: The analysis by synthesis routine [13]. 

The major problem for these model fitting techniques is the initialisation. Most of them require 

manual fitting of the feature points (even the appearance-based approaches also require features 

to be fitted so that an initial fit of the model can be estimated) at the initial step. Moreover, 

having only a few located feature points cannot achieve high accuracy in model fitting. Instead, 

feature contour fitting which gives the complete feature's boundary points is required. These 
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issues of the manual process and fitting accuracy have to be solved in order to apply these 

techniques to real applications. 

2.3 Image Database - The Extended M2VTS Database (XM2VTSDB) 

To assess the feature and model fitting algorithms developed in this work, a collection of images 

- the extended M2VTS database (XM2VTSDB) [16] from the University of Surrey - is used. 

This is a database of head-and-shoulders colour images with colour depth of 8-bit per channel 

(resulting in total 24-bit per pixel) and resolution of 720 x 576 pixels. It contains images of 

295 subjects shot in several scenarios [141]. The most common one is the frontal view position 

which consists of 8 images for each subject showing different hair style, clothing, expressions 

and make-up. Other scenarios include profile views (showing either left or right side of the 

face) and half-lit faces (restricting illumination from either left or right). The size of the data 

set, the range of subjects and their characteristics (89% white, 46% female, 35% with glasses, 

13% with facial hair), and the scenarios enable a realistic test for the fitting algorithms. 

2.4 Wire-Frame Face Model-The Candide-3 

Candide-3 is the wire-frame face model used in this work for face model fitting, face animation, 

and demonstration of Model-based Coding. It is chosen since (1) it is relatively simple in terms 

of the number of its vertices and surface polygons, allowing users to rapidly reconstruct and 

animate the face model, (2) it is publically available and (3) it is compatible with the standard 

face animation tool MPEG-4 [142-145]. Candide-3 is the successor of Candide-1 [146] and 

-2 [147]. All versions of Candide have the same characteristics - they contain a low number 

of vertices and surfaces which enable fast manipulation by users. Table 2.1 lists the number of 

vertices and surfaces for each Candide model and Figure 2.16 displays the wire-frame model 

of Candide-3. 

Candide-1 Candide-2 Candide-3 
Number of vertices 79 160 113 
Number of surfaces 108 238 168 

Table 2.1: List of number of vertices and surfaces for Candide-1, -2 and -3 [17]. 

To adapt and animate the Candide-3 model, three sets of control elements are provided. The 
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Figure 2.16: The wire-frame model of Candide-3 [17] 

first and second sets, which are able to change the surface contour of the model, are called 

"Shape Units/Parameters" and "Animation Units/Parameters". The last set, only related to the 

model's rigid movement, is called "Global Pose Parameters". A "Shape Unit" (denoted by S 

in Equation 2.23) defines a facial trait such as head height and eye width, and its associated 

"Shape Parameter" (denoted by u in Equation 2.23) is to augment or weaken such a facial trait. 

Likewise, an "Animation Unit" (denote as A in Equation 2.23) describes a small facial move-

ment such as jaw drop and outer brow raise, and its parameter (Animation Parameter is denoted 

as a) displays the "magnitude" of such a change in comparison with a neutral face 6  Lists of 

"Shape Units" and "Animation Units", and their interpretation are given in Appendix C.1. Fur-

thermore, in order to perform global motion, "Global Pose Parameters" are added for rotation 

(R), scaling (s) and translation (fl. Therefore the Candide model could be described in the 

mathematical form below: 

g=R.s(+ So-  +Aa)+t 	 (2.23) 

where g is the standard Candide model and g is the adapted/animated Candide. 

6a neutral face is defined in [143] 
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Another advantage of using Candide-3 is that the model now is compatible with MPEG-4 an-

imation rules [143]. The vertices of the Candide-3 can be found in FFPs7  and the Animation 

Units include FAPs 8  The conversion between Candid-3 and MPEG-4 is summarised in Ap-

pendix B. 

While the Candide model is frequently used in education and research purposes because of its 

simplicity and availability, higher complexity models can be created by VRML (Virtual Reality 

Modelling Language) and its successor X313 [148]. VRML is a standard file format for repre-

senting 3D objects in computer graphics. It defines vertices and edges for a 3D polygon along 

with the surface colour, image-mapped textures, shininess, transparency and so on. Fitting the 

higher complexity model to a face requires more detailed information of the face surface and 

this requires use of some expensive hardware/software (for example, 3D scanning system from 

Cyberware' [149]),  rather than a number of face images. The texture rendering of the model 

is usually undertaken by using OpenGl (Open Graphics Library), a 3D computer graphical 

language [150]. 

7Facial Feature Points (FFPs) provide spatial references for MPEG-4 face model [143]. For example, FFPs 
define eye corners, nose tip, hair line and so on. 

8Facial Animation Parameters (FAP5) are something analogous to Animation Units of Candide, but are defined 
based on the study of minimal perceptible actions and are closely related to Ekman's Facial Action Coding System 
(FACS) [3]. 
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Lip Fitting 

3.1 Introduction 

In order to produce smooth and realistic facial animations, a face model must be fitted onto 

the face with high accuracy. Among various facial features, the first and foremost feature to be 

fitted is the lip. Lips have been considered the most prominent facial features as they are very 

important for facial expressions [3]. 

Accurate lip fitting is required for many applications. These include: 

I. Model-based coding requires it for low bandwidth transmission. 

Psychologists need it to understand facial expressions and human intentions. 

Film-makers need it to produce high quality speech animations. 

Finally, it is an important factor in improving speech recognition, particularly in a noisy 

environment. For this, it is essential to know the characteristics of the shape of the mouth 

in both spatial and temporal domains, and correct lip extraction is required so that specific 

phonemes can be recognised (i.e., lip-reading) [30]. 

Deformable Templates and Active Contour Models (Snakes) are the two most commonly used 

techniques in lip contour fitting. The work of using these two techniques for lip fitting has been 

reviewed in Section 2.2.2 

The lip fitting techniques used in this work are based on Active Contour Models (Snakes). 

This is because the deformable template approaches can not fit lips well in fine scale. Since 

the templates are created by some pre-set shapes, the freedom of deformation of the shapes 

is limited. The deformable template works better for the features which only have limited 

deformation, such as eyes. However, for mouths which are very highly deformable features, 

the performance of the deformable template is degraded. 

Active Contours Models (Snakes), which have higher deformability, can overcome this prob 
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lem. Further analysis of the lip boundary reveals that a traditional intensity-type snake is unable 

to fit the lips precisely as the intensity edge of the lip boundary is not sharp. This leads to a de-

velopment of the "colour snake" which is capable of extracting the lip by matching colour and 

desensitising the lighting effect. Some colour snake algorithms have been discussed in Section 

2.1.3. 

The following sections describe two lip fitting algorithms based on colour active contour mod-

els. Both apply the balloon pressures introduced in Section 2.1.3. The earlier one incorporates 

a fixed colour model whereas the latter one uses an adaptive colour model. 

3.2 Initial Lip Fitting Model 

This lip fitting algorithm was inspired by Schaub and Smith's work [36] (also discussed in 

Section 2.1.3). They based their colour snake on balloon snakes and used a Gaussian colour 

model in Hue-Saturation-Value (HSV) colour space. The pressure equations of their balloon 

used Hue and Saturation only in order to separate colour changes from illumination variations. 

They claimed striking results obtained in various lighting and shadowing conditions. However, 

the objects used in their experiments all contained obvious edges with high colour contrast 

across the boundaries, such as shown in Figure 3.1(a). An implementation of their technique 

failed to extract the lips as the lips possess the characteristics of slowly changing colour across 

the boundary. Figures 3.1(b), 3.1(c) and 3.1(d) show unsuccessful lip extraction by applying 

Schaub and Smith's approach. A lip fitting algorithm which retains the virtue of the use of 

colour but adds an additional intensity gradient term to enhance the sensitivity of the "edge" 

was therefore developed. 

3.2.1 Lip Colour Model 

A colour model containing sets of lip and non-lip examples is required. This enables the snake 

to understand the difference between desired and undesired colours and thus the object with 

desired colour can be extracted. 

A suitable lip colour model should recognise all valid lip colours as desired colours while 

rejecting all unwanted non-lip colours such as facial hair or skin. The lip colour model was 
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(a) test example 	(b) subject 10311 	(c) subject 10411 	(d) subject 10511 
from [36] 

Figure 3.1: Figure 3.1(a), Schaub and Smith's approach is capable of extracting the inner 
boundary between the red and blue regions while the spurious edge resulting from 
the shadowing is ignored. Figure 3.1(b), 3.1(c) and 3.1(d), Show that their tech-
nique is unable to extract edges with slowly changing colour characteristics, such 
as lips. The dotted line is the final snake convergence. 

built based on Hue] , using the fact that the skin and lip regions of individuals of different 

gender, age and ethnicity have major differences in intensity but not colour [151]. 

110 lip pixels from images in the XM2VTS database [16] were selected. These pixels were 

chosen from different lip regions of diverse facial images. As expected, the hue distribution of 

these pixels was approximately Gaussian with mean of 11.25 degrees and standard deviation 

of 4.01 degrees. A second set of 230 non-lip pixels from the same database was then selected. 

These pixels were also selected from a diverse range of images including those with facial 

hair. The best discrimination between these two sets (lips and non-lips) was found to be with 

a discrimination threshold of ± 1.5 standard deviations from the lips set. Using this threshold, 

87% of the lip colours fell into this region and only 2% of the non-lips set were not rejected. 

3.2.2 Active Contour Model 

The original active contour models (snakes) and the balloon snakes have been reviewed in 

Section 2.1.3. 

The active contour model selected is a modification of the pressure colour snake model pro-

posed by Schaub and Smith [36]. An image gradient term was added, so that the snake can 

settle on an edge, even in an area with slowly changing colour characteristics. 

'Saturation is not used as the experiment shows that saturation of the lip and skin is largely overlapped. 
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The energy function of this modified snake is thus given by: 

\ 
E 	

= 	J 	
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x(s) and y(s) represent x and  coordinates along the snake v(s) and I(.) is the intensity of the 

image. In Equation 3,1, the first two terms are the snake's internal energy, where a and /3 are 

weighting parameters which control its tension and rigidity. The last two terms represent the 

snake's external energy. The first of these is the image intensity gradient (this is the new term 

not appearing in Schaub and Smith's approach [36]) with a weight parameter 'y applied. The 

last results from applying the pressure equation of the modified balloon model. 
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Equation 3.2 is the pressure applied perpendicularly to the derivative of the snake curve v(s) 

with weight parameter p. Depending on the values of €, the pressure can be inward causing the 

snake to shrink or outward causing it to expand. € is calculated using Equation 3.3. Equation 3.3 

is a simplified version of Equation 2.21. Since only the Hue (H) is considered, the square root 

in Equation 2.21 is replaced by an absolute operator to increase the computation speed. Again, 

i-, a and k are mean, standard deviation (s.d.) and tolerance of the lip hue. H(v) denotes the 

hue of the pixels on which the snake lies. 

As can be seen in Equation 3.3, € depends on the Hue similarity based on the Gaussian colour 

(hue) model described in Section 3.2.1. The numerical values found in Section 3.2.1 are used, 

T = 11.25, a = 4.01 and k = 1.5. The larger the difference between H(v) and T is, the 

stronger pressure force is produced, and the faster the snake will shrink or expand. 

Since the colour model is based on hue, it offers good discrimination between lip and non lip 

colours and the snake should eventually settle where there is a lip colour on one side and a non- 
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lip colour on the other. Moreover, in order to ensure an "edge" will be extracted, the weighted 

image intensity gradient term (the third term in Equation 3.1) has been incorporated to ensure 

some of the desirable characteristics of an edge. The lip is fitted by minimising the energy 

function (Equation 3.1). This can be solved by using the Euler-Lagrange equation [152] and a 

finite differences approach (see Section 2.1.3). 

3.2.3 Results from Active Contour Model 

This algorithm was tested on the XM2VTS database [16]. For this, a subjective grading system 

was created to assess the quality of lip fitting since a ground truth comparison was unavailable. 

The system graded the fitting into 5 different grades- "perfect", "good", "fair", "poor" and 

"wrong"- depending upon the general shape appearance and fitting of 4 benchmark points (left, 

right, top and bottom corners of lips). A score was also assigned to each grade; "perfect"=S, 

"good"=4, "fair"=3, "poor"=2 and "wrong"=l. Some examples of typical lip fitting grades 

are illustrated in Figure 3.2. As can be seen, subject 00021 is graded as "perfect" since the 

corners and edges of the lip are fitted precisely. By contrast, subjects 04221, 02021 and 00411 

have lower grades since one or more corners or edges of the lips are not fitted well. Table 

3.1 provides the percentage of lip fits in each category and the average scores for images with 

and without facial hair. Unsurprisingly, it is more difficult for the snake to extract the lips on 

images with facial hair. This is because facial hair often occludes the mouth region, making the 

lip edges invisible. Facial hair also contains a very wide range of non-skin colours which are 

difficult to be included in the colour model. 

Perfect Good Fair Poor Wrong Ave. 
(5) (4) (3) (2) (1) score 

Including 
facial hair 23% 36% 16% 11% 14% 3.43 
Excluding 
facial hair 29.5% 46.2% 15.4% 5.1% 3.8% 3.92 

Table 3.1: Summary of lip fitting results 

As shown in Table 3.1 and Figure 3.2, even for images with no facial hair, there is still a 

significant proportion (24.3%) of fittings not achieving either good or perfect grades. More 

careful study of these images reveals that this is caused by the use of a fixed colour model. Lip 

and skin colours vary significantly from one person to another and can even vary for a given 
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r51. 

(a) subject 00021 - "perfect" 
	

(b) subject 04221 - "good" 

(c) subject 02021 - "fair" 
	

(d) subject 00411 - "poor" 

Figure 3.2: Examples of lip fit grading. 

individual. A fixed Gaussian hue model for all images is unable to cope with these variations. 

Since the hue distribution of each individual image is different, this must be taken into account 

in order to obtain better lip fitting. Therefore the system which can automatically adapt the hue 

model for each image was investigated. 

3.3 	Improved Lip Fitting Model - Active Contour Model with Adap- 

tive Colour Model 

The new lip fitting system was developed using an active contour with an adaptive colour model. 

The system is capable of automatically updating the parameters of the colour model, making the 

lip extraction more robust for various types of skin and lip tones. The overall system flowchart 

is depicted in Figure 3.3. 
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PCA based facial feature location;) 

lip corner finding 

hue profile update 

computing the parameters 
of the colour model 

lip contour fitting 
by snake 

Figure 3.3: Flowchart of lip fitting algorithm 

3.3.1 Lip Corner Finding 

Initially, the system applies Hillman's technique [4] to estimate locations of important facial 

features. It starts with skin detection to an image to locate the face. Then Principal Component 

Analysis (PCA) with appropriate facial geometry techniques is applied to the face image to 

estimate the locations of the important facial features as an initial step in model fitting [4]. 

Details of this technique have been reviewed in Section 2.2.1. This enables location of suitable 

search regions for lip corners on the left and right hand sides of the PCA found mouth centres. 

Each of these search regions is 25 x 25 pixels, and is located in an area derived from PCA 

located eye and mouth centres. 

It is important to find accurate lip corners as they will be used extensively in later stages. First, 

they are fiducial points for building the colour model. Second, the corner points can be made 

use of for snake initialisation. Finally, the found lip corners help the snake to extract the corner 

regions of the lip in order to achieve better lip fitting results. A lip corner finding algorithm 

similar to that proposed by Delmas et al. [93] is applied to the selected search regions (Figure 

3.4(a)). A Sobel edge detector is applied to the hue images of these search regions to extract 

edge points of the lip around the corner (Figure 3.4(b)). A cost function is then employed to find 
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(a) 	lip corner 	(b) hue edge map 	(c) thinned hue 
search region 	 edge map 

(d) found lip corner 

Figure 3.4: Procedure of lip corner finding 

the boundary between the upper and lower lips (the grey curve in Figure 3.4(c)). An additional 

thinning operation is applied to Figure 3.4(b) so that more recognisable lip edges are revealed 

as shown in Figure 3.4(c). Finally, the lip corner is identified as the midpoint of the joins of the 

lip boundary and upper and lower lip edges. 

After both lip corners are found, the horizontal and vertical mouth centre lines, are drawn for 

use in building the colour model. The horizontal mouth centre line connects the two lip corners 

along the darkest valley, while the vertical mouth centre line is a straight vertical line bisecting 

the lip corners. Figure 3.5 shows these two fiducial lines and lip corners in several sample face 

images. 

3.3.2 Hue Profile Update 

The vertical mouth centre line is used to construct the hue profile. This line is expected to run 

through the thickest region of the lip, which contains samples of the upper skin, upper lip, lower 

lip and lower skin. A hue profile of skin-lip tone is built by collecting pixels' hue values along 

this line. These hue profiles (as shown in Figure 3.6) typically show a U-shape. As the pixels 

are sampled from top to bottom of the lip, the left and right high levels in the profile represent 

the hue of the skin above the upper lip and below the lower lip, respectively, while the trough 

represents the hue of the lip region. This U-shape characteristic is as expected, since the skin 

hues are higher than the lip hues which are closer to red in the colour spectrum. 

Although each profile shows a U-shape characteristic, a number of differences can be observed 

in Figures 3.6(a), 3.6(b), 3.6(c) and 3.6(d). For example, levels of the plateau and the trough 

of the U-shape, width of the U shape and steepness of the transition slopes are different among 
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(a) subject 00011 	 (b) subject 01011 

(c) subject 00511 	 (d) subject 02811 

Figure 3.5: Sample images showing vertical and horizontal mouth centre lines and crosses 
marking the lip corners. 
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(a) subject 00011 
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(c) subject 00511 	 (d) subject 02811 

Figure 3.6: Hue profiles corresponding to the images in Figure 3.5 

the profiles. These differences confirm that a fixed Gaussian colour model used in the initial 

fitting algorithm (Section 3.2) is inadequate for all lip images. 

3.3.3 Computing the Parameters of the Colour Model 

The updated hue profile is used to adjust the parameters of the colour model so that the model 

can be adapted to individual images. A simple "dual threshold colour model" is chosen, which 

requires threshold values for the upper lip and lower lip boundaries and two weighting param-

eters associated with these thresholds. It is important to have separate thresholds for upper 

and lower lip boundaries, since the lower and upper skin hue can be quite different (for exam-

ple, Figure 3.6(b)). In principle, the thresholds should be chosen to exactly separate skin and 
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lip hues but it is difficult to select such points from the hue profile since colour is gradually 

changing across the lip boundaries. In practice, however, the thresholds need not be absolutely 

accurate, since they are primarily used to attract the snake to approach the boundaries of the 

lip. The external force driven by the edge characteristics of the snake will then take over from 

this point and push the snake right onto the edge. 

Highest 20% of hue from the left plane 	 Highest 20% of hue from the right plane 

Lowest 10% of hue from the entire profile 

Figure 3.7: The analysis of the hue profile of subject 00011 

An effective, adequately accurate, and automatic framework to compute the thresholds for up-

per and lower lip boundaries was developed. Firstly, the profile is split into two regions (Fig-

ure 3.7), the left and right plane, by the horizontal mouth centre line. Thus the left plane 

contains the hue of the upper skin and upper lip and the right plane contains the hue of the 

lower lip and lower skin. The upper and lower lip thresholds are calculated by applying the 

criteria below: 

. the hue of the skin above the lip is computed by averaging the highest 20% of hue values 

from the left plane. 
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. the hue of the skin below the lip is computed by averaging the highest 20% of hue values 

from the right plane. 

the hue of the lip is computed by averaging the lowest 10% of hue values from the entire 

profile. 

the upper lip threshold (Thr upper lip) is the average of the upper skin hue and lip hue. 

the lower lip threshold (Thrlower lip)  is the average of the lower skin hue and lip hue. 

3.3.4 Lip Fitting by Colour Adaptive Active Contour Models 

To incorporate the new colour model with the snake, the equation for calculating the pressure 

term Fpressure  in Equation 3.2 is replaced by: 

/ 8v ' 
Fpressure  = p 	 (3.4) 

The error term c in Equation 3.4 is computed for two scenarios: 

fv(s), the snake control point, is above the horizontal mouth centre line, 

€ = (H(x(s), y(s)) - Thripper iip ) X Wupper lip 	 (3.5) 

else, 

€= (H(x(s),y(s)) — Thrlowerhp ) X Wioweriip 	 (3.6) 

H(x(s), y(s)) is the hue of the pixel on which the snake lies. Thr upper lip, Thriower  lip Wupper lip 

and Wiower lip are the upper lip threshold, the lower lip threshold and the weights associated with 

the thresholds, respectively. The if-else clause in Equation 3.5 and 3.6 examines whether the 

snake control point v(s) is above or below the lip; thus either the upper lip threshold or lower 

lip threshold is used accordingly. As shown in Equation 3.4, the inward or outward pressure, 

which causes the snake to shrink or expand is now directly proportional to E. Wupper lip and 

Mower lip are parameters to control how fast the snake shrinks/expands toward the upper or 

lower lips and are set to unity in the experiments for simplicity. 

Using this adaptive colour model obviates the requirement to manually collect lip and non-lip 
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pixels from a large number of representative facial images. Also there is no need to compute 

mean (r), standard deviation (a) and estimate a suitable value for the discrimination threshold 

k. Since the discrimination threshold k usually needs to be carefully adjusted to obtain optimal 

lip fitting results, this approach represents a great improvement. 

In conventional active contour methods, the initialisation of the snake can have a very signif-

icant effect on overall performance. However, the initialisation procedure presented here is 

simple. Because the active contour model incorporates a balloon model, the snake can be ini-

tialised reasonably far away from the lip, avoiding the difficulties of more commonly applied 

edge detection techniques. 

The lip corners found in the earlier stage can facilitate snake initialisation. As shown in Fig-

ure 3.8, a rectangular box, on which the snake initially lies is chosen. This box has its left 

and right boundaries on the corners of the lips and its height equal to twice the vertical dis-

tance between the PCA found nose centre and mouth centre. The box has a width which is 

equal to the width of the mouth, permitting the snake to extract the lip with minimal iterations. 

Furthermore, the control points on the lip corners are anchored when the snake evolves. This 

overcomes the general limitations of the convergence of snakes to high curvature corners. 

Experimental results have shown that at least 95% of lips in our large test data set could be 

fully enclosed by this type of snake initialisation, (failures were mainly due to poor initial PCA 

feature location). Figure 3.8 outlines the initial and final positions of the snake for facial images 

in Figure 3.5. 

3.3.5 Results of New Active Contour Model 

Three data sets were used to test the performance of the new lip fitting system, 

. Set 1: Normal XM2VTS database 

. Set2: Half-lit XM2VTS database 

. Set3: Susie and Foreman sequences 
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(a) subject 00011 	 (b) subject 01011 

(c) subject 00511 	 (d) subject 02811 

Figure 3.8: The initial position of the snake and its final convergence to the lip 
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Lip Fitting in Normal XM2VTS Images 

This is the same database used to test the initial lip fitting algorithm in Section 3.2.3. Table 3.2 

below shows the statistical summary of the lip fitting results using the adaptive colour threshold 

technique. 

Perfect Good Fair Poor Wrong Ave. 
(5) (4) (3) (2) (1) score 

Including 
facial hair 51% 23% 12% 8% 6% 4.05 
Excluding 
facial hair 62.2% 28.0% 4.9% 3.7% 1.2% 4.46 

Table 3.2: Summary of adaptive colour threshold lip fitting results. 

As can be seen, the percentage of "good" or "perfect" fitting has risen from 59% (see Table 

3.1) to 74% for "including facial hair images" and from 76% to 90% for "excluding facial hair 

images", respectively. This improvement is due to the adaptive colour model being capable 

of selecting its parameters for each individual image so that better local lip fitting is achieved. 

Further analysis reveals that the percentage of "good" or "perfect" fitting rises to 98.6% if 

images with large areas of teeth revealed are excluded. This is because the hue profiles of these 

images are different so the lip threshold calculation is inaccurate. This issue will be addressed 

in Discussion section. 

Figure 3.9 illustrates some close-up examples of the lip fitting for this database. 

Lip Fitting in Half-Lit XM2VTS Images 

To further test the capabilities of the adaptive colour threshold lip fitting algorithm, a number 

of "half-lit" images from the XM2VTS database were used. These images were intentionally 

lit from only one side (either left or right) to produce unbalanced illumination. This provides 

a good simulation of a difficult situation likely to be encountered in real applications. Figure 

3.10 shows that, even under these very uneven illumination conditions, the active contour can 

fit the lip fairly successfully. 
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(a) subject 02021 	(b) subject 02421 	(c) subject 04221 	(d) subject 05221 

Li 

(e) subject 06421 	(1') subject 00911 

IPPI- 

LJ 

(g) subject 01211 	(h) subject 06811 

Figure 3.9: Lip fitting results of normal XM2VTS images. 

(a) subject 00111 	(b) subject 00511 	(c) subject 0 10 11 	(d) subject 01711 

(e) subject 00021 	(fl subject 00421 	(g) subject 00921 	h) subject 01121 

Figure 3.10: Lip fitting results of half-lit XM2VTS images. 

Lip 
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Lip Fitting in Image Sequences 

The algorithm was also applied to track the lips in the Susie and Foreman sequences [153]. A 

few modifications were made to enable the algorithm to track:- 

* (1) the lip corner finder is only applied to the first frame of the sequence to improve 

tracking speed. 

(2) by assuming no significant change in lip and skin tone of the same person in the 

sequence, the hue profile and colour model are based on the first frame with no further 

update for subsequent frames. 

(3) the snake control points near the lip corners are given smaller internal forces (i.e. by 

reducing the weighting factors o and /3) to get better corner fitting. 

(4) the snake initialisation in each frame uses a 20% dilation of the snake convergence 

from the previous frame. 

Figure 3.11 shows examples of the lip tracking for these sequences. Since the colour model 

is not updated during the sequence and the lip corner finder is only applied to the first frame 

(to speed-up the tracking), the results of the lip fitting are not as good as those for still images. 

However, the system is fully automatic and the tracking is not lost in the entire sequence. 

This tracking algorithm requires roughly 1 second to process each frame in the sequence, thus 

it cannot be applied in real time. One way to increase the speed is to add a motion estimator, 

such as a Kalman filter. The issue of the fitting speed will be discussed in more detail in Section 

7.2. 

3.4 Discussion 

As expected, facial hair and revealed teeth are two major factors which degrade the performance 

of the system. This section will assess how severely the system would be affected and possible 

solutions are suggested. 
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(a) foreman 000 	(b) foreman 005 (c) foreman 010 	(d) foreman 050 

:1 
) HiL ' 

(e) susie 000 	(f) susie 033 	(g) susie 066 	h) susie 099 

Figure 3.11: Lip tracking in Foreman and Susie sequences. (a) and (e) are the first frames of 
the sequences. Lips in subsequent frames are tracked without colour model and 
corner updating. 

3.4.1 Facial Hair 

Stubble does not cause problems to the system, as shown in Figures 3.12(a) and 3.12(b). 

Even in many cases of faces with beards or moustaches, the system can cope quite well (see 

Figures 3.12(c) and 3.12(d)). The system is most likely to fail in lip extraction when the 

beards/moustaches are very dark and dense, as shown in Figures 3.12(e) and 3.12(f). The 

reason is because the dark and dense facial hairs create strong intensity edges that may over-

power the pressure force generated by the colour difference. This results in the snake settling 

on the edge between the facial hair and skin, rather than the lip edge. Figure 3.12(e) shows that 

the upper part of the snake is attracted to the edge between his moustache and the skin above 

it. Figure 3.12(f) shows the snake is attracted to the edge of his facial hair around the mouth 

rather than the true lip edge. 

A possible approach to get around this problem is to identify the location of the facial hair and 

thus the colour properties of the facial hair can be known in advance of the lip fitting. The 

facial hair can be detected by using a texture recognition approach and thus coverage of the 

hair (whether or not it occludes the lip) can be estimated. Therefore the snake is required to fit 

either the lip-skin edge or lip-hair edge according to the hair occlusion to the lip. 
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r 	 .HH 
(a) subject 02221 	(b) subject 05111 	(C) subject 00721 	d) subject 01621 

(e) subject 01821 	 (f) subject 14111 

Figure 3.12: Lip fitting on images with facial hair 

3.4.2 Revealed Teeth 

For a small area of visible teeth, such as those in Figures 3.13(a), 3.13(b), 3.13(c) and 3.13(d), 

the system is still capable of fitting the lips quite satisfactory. However, for large areas of teeth 

(Figures 3.13(e) and 3.13(g)), the hue profiles no longer show a U-shape characteristic (Figures 

3.13(1) and 3.13(h)) and the criteria given in Section 3.3.3 are invalid. This leads to calculating 

wrong colour thresholds for the lip and skin, making the system unable to find the outline of 

the lip (Figures 3.13(e) and 3.13(g)). 

To overcome this problem the system must identify the teeth and neglect the pixels from this 

area in the calculation of colour thresholds. On observation of the hue profiles of those images 

with large areas of revealed teeth, it seems that the teeth area corresponds to a very high hue 

peak in the profile (generally this peak is much higher than the skin hue). This may be because 

the teeth are whiter, meaning a small saturation value and thus a smaller radius in HSI colour 

space (recall Section 2.1.1). In consequence, a small colour variation would result in a large 

change in hue, thus possibly producing a large hue. Another more straight-forward approach 

may be to look at the Saturation profile. Therefore, a framework which makes use of the hue or 
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(e) subject 13721 	(1) profile 13721 	(g) subject 18011 	(h) profile 18011 

Figure 3.13: Lip fitting on images with revealed teeth. 

saturationprofile to identify the teeth area is suggested. Thus the teeth pixels can be removed 

from the threshold calculation and hence the correct thresholds should be obtained. 

3.5 Conclusions 

This chapter has described automatic lip fitting based on colour active contour models and 

introduced a new adaptive thresholding technique which gives improved performance over us-

ing a fixed Gaussian hue model. This enables the system to successfully operate with a wide 

range of subjects under different illumination conditions, offering improved performance over 

existing approaches. Successful lip tracking in well-known testing sequences has also been 

demonstrated. 

Two factors which degrade the performance have been identified. Dense and dark facial hair 

produces strong edges between hair and skin and thus the snake is likely to be attracted by 

such edges. A texture recognition approach has been proposed to estimate the coverage of the 

hair so that the lip edge (either skin-lip edge or hair-lip edge) can be identified. Revealed teeth 

produces very different hue profiles so the threshold calculation may fail to obtain the correct 

colour thresholds. However this problem could be solved by identifying the teeth region from 

the profiles and ignoring teeth pixels in the calculation. 



Chapter 4 
Eye and Eyebrow Fitting 

4.1 Introduction 

For accurate model face fitting, features in the eye region must be located and properly fitted. 

This chapter concentrates on the fitting of the eye region - including fitting the eye itself and 

eyebrow. The term "eye fitting" is used to mean finding and locating the following eye com-

ponents: iris, eye corners, and upper and lower eyelids, while "eyebrow fitting" is defined as 

drawing the outline of eyebrow contour. 

4.2 Eye Fitting 

4.2.1 Overview of the New Approach 

Many researchers have applied Active Contour Model [6] and Deformable Template [71 ap-

proaches for eye fitting. Section 2.2.3 has given a review of these techniques. The eye fitting 

approach used in this work is based on Yuille's deformable templates [7] using parabolas and 

circles, but enhanced by exploiting the colour properties and eye corner information. Moreover, 

the updating procedure is simpler and more efficient: allowing one feature to be fitted properly 

before the next feature is fitted. This reduces the number of parameters to be updated simulta-

neously and offers more flexibility for template deformation. The iris is fitted initially (with a 

circle) and this is followed by fitting of the eye corners . These eye corner locations help with 

separate fitting of the upper eyelid and then the lower eyelid (with parabolic sections). Figure 

4.1 depicts the overall system flow. 

4.2.2 Iris Extraction 

The eye fitting system is initialised by Hillman's approach [4] (also see Section 2.2.1). The skin 

detection technique and Principal Components Analysis (PCA) [4] are first applied to the image 

to locate the eyes. Then the further extraction and fitting of eye components can be followed. 
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I 
I PCA estimate eye 1ocation 	Iris extraction 	
Radius of Iris  

Eye corner finding  
Centre of Is I  

of Iris 
Centre 

Upper eyelid extraction 

Lower eyelid extraction 

Figure 4.1: Flowchart of the eye fitting system. 

The first (and easiest) eye component to extract is the iris. This is because the iris is round, 

dark, and has a large intensity contrast across its boundary. Starting with the PCA estimated 

eye locations gives a good search region for the iris. 

Figure 4.2 shows a 40 x 20 pixel rectangular search region, centred at each PCA estimated eye 

centre. A circle of variable size (by changing its radius) is scanned across the search region 

(by changing its coordinate position) to find the best fit to the iris. The fitting process uses the 

Intensity Field, the Edge Field and the Radius of the Iris. 

For colour images, the Intensity Field is simply I(x, y) = x [R(x, y) + G(x, y) + B(x, y)] 

where R(x, y), G(x, y) and B(x, y) is the intensity value in each R, G and B colour channel, 

respectively. 

The Edge Field q(x, y) for the iris is created in a slightly different way from Yuille's [7]. A 

Sobel edge operator is used to extract only the vertical parts of edges. This is because the upper 

and lower parts of the iris are frequently occluded by the eyelids so that only the sides of the iris 

may be visible (see Figure 4.2). In consequence, only the vertical parts of edges on the sides 

of the iris are taken as the iris boundary. The Sobel operator used for vertical edges is given as 



Eye and 

(a) subject 00021 
	

(b) subject 00111 

(C) subject 00511 
	

(d) subject 00611 

Figure 4.2: Examples of iris fitting. 

follows: 
—1 0 1 

—2 0 2 

—1 0 1 

To prevent the template from shrinking to the darkest spot inside the iris (the pupil), an addi-

tional size term is used. This is the expected Radius of Iris Rexpected.  The initialisation stage 

of PCA provides the approximate distance between the eyes and Rexpected is set to be one-tenth 

of this eye separation, on the basis of experimental observation. 

Thus fitting the deformable circle to the iris requires maximising the following expression: 

W1 s—.. 	 WE 
---- L.1 [255—I(x,y)]+---- 	q(x,y) 
Acir L1cir 

(x,y)EAeir 	 (x,y)EL 

	

+W x 255[1 
- Rexpected Rdefm1 	

(4.1) 
Rexpected 

Where Air and Lcir  are the area and circumference of the deformable circle. W1, WE and W 

are the weighting coefficients associated with intensity, edge and size terms, respectively. Since 

24-bit colour images (8-bit in each channel) [16] are used in the implementation stage, "255" 

is the maximum value in Intensity and Edge Field. In consequence, the size term is multiplied 
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by 255 to give it the same scale as the other terms. 

For a good fit, the area of the circle should be dark, a large intensity contrast should be present 

along the circumference and the size of the circle should be close to the expected value. Thus 

the first and second terms compute the average inverted intensity inside the circle and average 

edge intensity along the circumference. The last term provides a function yielding a high score 

as the radius of the deformable circle (Rd, f,,,,) reaches Respected. Rde  form is allowed to vary 

from 0 2 X Respected. 

Figure 4.2 illustrates some iris fitting results. As can be seen, even for a relatively light coloured 

iris, this method can correctly fit the iris. 

4.2.3 Eye Corner Detection Algorithm 

Eye corners are very important features for eye fitting. If the eye corners can be found, this 

can improve the overall performance of the fitting and speed up the fitting of parabolas to the 

eyelids. 

A simple, yet effective eye corner location technique is now described. This new eye corner 

finder, unlike that proposed by Lam and Yan [111], finds the inner and outer corners of each 

eye. It uses the white area of the sclera and corner templates. 

A vector, with a length equal to three times the radius of the iris, and an origin at the centre 

of the iris is utilised. This length is chosen as it is long enough to cover the distance from the 

iris centre to the eye corner regardless of the position of the eyeball. This vector is fitted with 

an 'arrow head' which subtends a 300  angle and has a length equal to the diameter of the iris. 

The vector, pivoted at the iris centre, rotates through ±20° with respect to the line between the 

two eye centres. The bottom of the arrow head is curved along the iris boundary. If the vector 

is pointing towards the eye corner, the area enclosed by the arrow head should contain mostly 

white sclera, i.e. the lowest saturation. Rotating the vector until the arrow head encloses the 

area of lowest saturation should point to the eye corner. Figure 4.3 illustrates such an eye corner 

arrow head arrangement. 

Figures 4.4(a) and 4.4(b) illustrate the directions of the eye corners found using such a vector 

and arrow head approach. 

Since the actual eye corner should be the point where the upper and lower eyelids meet, Corner 
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Ii 

Figure 4.3: Drawing of the eye corner arrow head 

templates are incorporated in the calculation of the vector position to find such a point. These 

corner templates are given below; The two templates on the left are for the left eye corner (in 

fact, it is the object's right corner) while the templates on the right are for the right eye corner 

(object's left corner). The arrangement of numerical values in the templates finds the corner 

with a dark exterior and bright interior. Such a corner (e.g. eye corners) gives a large positive 

value when convolved with the templates. 

—3 —2 —1 0 

—2 —1 0 1 

—1 0 1 2 

o i 23 

o i 23 

—1 0 1 2 

—2 —1 0 1 

—3 —2 —1 0 

o —i —2 —3 

1 0 —1 —2 

2 1 0 —1 

32 1 0 

32 1 0 

2 1 0 —1 

1 0 —1 —2 

0 —1 —2 —3 

These corner templates are incorporated in finding the direction and location of the eye corner. 

The eye corner is found when the following cost function is maximised. 

Ws 	 P[255 - S(x, y)] + Wc x MAX{E + E} 	(4.2) 
A arrow 

(x,y)EAa,ro 
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(a) pointer 00011 	 (b) pointer 02011 

r 

(c) corner 00011 	 (d) corner 02011 

Figure 4.4: Examples offinding eye corners. 4.4(a) and 4.4(b) show rotating vectors and arrow 
heads used to find the directions of the eye corners. 4.4(c) and 4.4(d) show the 
vectors and found corners (marked as white dots) 

S(xy) > 100 75 	100 50 	75 40 -. 50 <40 

P 0.5 1 2 3 4 

S(x, y) denotes the saturation value at pixel coordinate (x, y). The first term in Equation 4.2 

computes the average inverted saturation. Coefficient P is inserted to encourage lower satura-

tion values while penalising higher saturation values. 

The second term searches for the maximum value after performing a 2-dimensional convolu-

tion, along the vector, with the predefined templates shown in the previous page. E+ is the 

convolution result using one set of the templates and E is its counterpart. 

Finally WS  and WC  are the appropriate weighting coefficients associated with the saturation 

and corner template terms. Figures 4.4(c) and 4.4(d) show successful eye corner extraction 

examples. 

4.2.4 Eyelid Extraction 

Eyelids are the last features to be fitted since they take advantage of previously found features 

to achieve higher fitting accuracy. The upper eyelid is fitted first, followed by the lower eyelid. 
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Fitting Upper Eyelid 

A parabolic section with parameters controlling its curvature, position of origin and rotation 

is employed to fit the upper eyelid. This deformable parabola is described in Equation 4.3. a 

controls the degree of curvature and can take values between 0 and Radiusof Iris (smaller a 

produces a flatter curve). (x0, Yo)  is the origin of the predefined axes of the parabola and Xm 

and Ym  are subsequent horizontal and vertical translation of the parabola. Thus the origin of the 

shifted parabola becomes (x0  + Xm, Vo  + ym). The parabola can also be rotated with respect to 

its origin. Equation 4.4 and 4.5 demonstrate how the parabola is rotated by an angle 0. D is the 

distance to the parabola origin from a parabola point (x, y) while a is the inclination of (x, y) 

with respect to the origin. (x', y') is then the new location transformed from (x, y) after the 

rotation operation. Figure 4.5 illustrates how the parabola is deformed and fitted to the upper 

eyelid. 

(V - (Yo + Ym)) = a(x - (x0  + Xm))2 	 (4.3) 

= D x cos(a + 0) 

Y' =D xsin(a+0) 	 (4.4) 

D = \'[x - (x0  + m)]2  + [y - (Yo + ym)]2  

(4.5) 

a = tan— 1(Y - (Yo + ym) 
x—(xo +xm) 

The upper eyelid possesses the following characteristics; it presents a strong edge and an in-

tensity valley, and the area below it, excluding the iris, is very white (sclera). In consequence, 

fitting the parabola to the upper eyelid requires maximising the following cost function: 

We  I 	c10 (XI y)+ 	 qj(x,y)]+ 

Lpar (X,Y)ELaD 	 (,y)ELar 

-- 	v(x,y)+ 	 w(x,y) 	 (4.6) 
Lpar 	 A 

(x,y)EL,. 	 (x,y)EA 

Where Lpar , Lp°ar  and ar  are the lengths of the full parabolic section and the parabolic section 

outside and inside the iris, respectively. A is the white area defined below and We, W and 
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best fit by maximising 
the cost function 	 translated and rotated version with 

various degrees of curvature 

-7 	 -.-. 
I 	 ...... 	x 

/ 

(Xo, Yo) 	the original parabolic section 

iris 

Figure 4.5: Deformable parabola for eyelid fitting 

W are weighting coefficients associated with each term. 

The first term in Function 4.6 represents an Edge term, containing the edge terms outside (çb 0) 

and inside (0j) the iris (if the iris is partially covered by the eyelid). 00  is computed by a 

standard Sobel edge operator, while Oi is computed by a horizontal Sobel edge operator, as an 

almost fiat boundary is formed between the eyelid and iris when the eyelid cuts through the iris. 

The horizontal Sobel edge operator is given below. 

—1 —2 —1 

000 

1 2 1 

The second term represents a Valley term which is introduced earlier. Since the upper eye-

lid stands out from the eye, it usually leaves a distinct shadow on the edge of the eyelid. 

Experiments confirmed that more robust fitting results are obtained if this term is included. 

v(x, y) = 255 - I(x, y) and is simply the inverse of the Intensity. The final term represents 

a White Term (w). This corresponds to drawing a horizontal line through the iris centre, inter-

cepting the parabola at two points. The area (AW ) enclosed by the parabola and this line, but 
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excluding the part of the iris, should be white i.e., with low saturation. Thus w is simply the 

inverse of the saturation, i.e., w(x,y) = 255 - S(x,y). 

To maximise Function 4.6 requires the parameters (curvature a, origin offsets (X m, Ym) and 

rotation 6) of the parabola to be adjusted. Previously found eye corners are used to speed up the 

fitting process. Parabola candidates are only taken into consideration as they pass through the 

previously located eye corners or their nearest 4 neighbouring pixels. As a result, fitting is not 

a very time consuming process, despite the large number of parameters. Figure 4.6(a) shows 

an upper eyelid fit. 

Fitting Lower Eyelid 

The fitting of the lower eyelid is similar to that of the upper eyelid but uses a modified function. 

The Valley term (v) has been removed from Function 4.6, as the shadow is absent from the 

edge of the lower eyelid. The White term has been modified so that the area where w(x y) is 

summed is bounded by the upper and lower parabolas but excluding the iris region. Finally, 

the curvature parameter a is set to 0 	- Radius of Iris in order to bend towards the correct 

direction. 

Figure 4.6(b) shows the fitting on both upper and lower eyelids . The final stage of the fitting 

is to trim the parabolas and the iris so that only the sections between eye corners are left, as 

shown in Figure 4.6(c). 

4.2.5 Experimental Results 

The eye fitting algorithm was tested on the XM2VTS database. The weighting coefficients 

in Equations 4.1, 4.2 and 4.6 were set to unity during the test as it seems that every term is 

equally important. The origin of the parabola is initially situated at the found iris center, with 

curvature=0. For upper eyelid fitting, the offsets of the origin (xm , Ym)  are allowed to be varied 

within the range of ±2 x (Radius of Iris) and 0 -.. —1.5 x (Radius of Iris) respectively. For 

lower eyelid fitting, Ym  is varied within the range of 0 	+1.5 x (Radius of Iris) so that the 

parabola can move down to fit the lower eyelid. The rotation of the parabola is within the range 

of ±200  to cope with some head tilt. 

The outcome of the testing was encouraging. The technique was able to successfully extract 
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(a) 
	

(b) 

(c) 

Figure 4.6: 4.6(a)fitting an upper eyelid. 4.6(b) fitting both eyelids. 4.6(c) both eyelids fit after 
trimming. 

and fit a high percentage of eyes from this large data set (94% for iris extraction and 84% for 

eye corners and eyelids fitting). Figure 4.7 illustrates the fitting results on various types of facial 

images. 

The successful fitting rate was not affected by factors such as age, gender or ethnicity, however, 

the system is vulnerable under the conditions of strong reflection and presence of spectacles. 

In the presence of spectacles, the successful fitting rate drops to 55%. This weakness will be 

addressed in the next section. 

4.2.6 Discussion 

As indicated previously, reflections and spectacles are two major causes of system failure. In 

fact, these two causes are related. Reflection occurring inside the iris causes wrong iris fitting 

as the iris selecting criteria of a "dark interior" becomes invalid. Reflection occurring elsewhere 

causes an unexpected region of lower saturation, which, again, interferes with the corner finding 

and eyelid fitting algorithm. The presence of spectacles worsens this problem, as spectacles 

usually increase the reflectivity and introduce extra frame edges. 

Figure 4.8 shows eye fitting with various types of reflections and spectacles. Figure 4.8(a) 
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(a) subject 00121 	 (b) subject 00411 

(c) subject 01311 
	

(d) subject 02221 

(e) subject 00321 
	

(f) subject 00521 

AMP., 

(g) subject 02011 	 (h) subject 02321 

Figure 4.7: Successful eye fitting on various types offaces 
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f'Okçr1iL) 
(a) subject 01621 	 (b) subject 02821 

(c) subject 01921 
	

(d) subject 05811 

(e) subject 07521 
	

(f) subject 04111 

Figure 4.8: Eye fitting with reflections and glasses 
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shows a wrong fitting to his left eye due to strong edges of the spectacles frame. Figure 4.8(b) 

has failed on both eyes due to very strong reflections on the glasses. Figures 4.8(c) and 4.8(d) 

have satisfactory fitting as no strong reflections are present in the eye region. Even though there 

are no glasses in Figure 4.8(e), the inner corner of the right eye is not found correctly due to a 

local reflection. Since there is less reflection inside the eye region in Figure 4.8(f), the eyes can 

be fitted well. 

To reduce the interference from reflections and glasses, a reflection cancellation algorithm and 

a method to remove the spectacles frames is suggested. The work of Perez et al. [114] may be 

a good starting point for reflection cancellation. The spectacles frames can be detected using 

traditional edge detection approaches as the frame generally has very distinct edges. 

4.3 Eyebrow Fitting 

4.3.1 Overview of the New Approach 

Despite eyebrows undergoing a great deal of movement when emotions are expressed, few 

researchers have considered the eyebrows in detail. Many researchers use low level techniques 

such as intensity thresholding and edge detection to segment eyebrows. These techniques are 

unlikely to be robust against different illuminations and a large variety of eyebrows. A review 

of eyebrow detection and extraction is given in Section 2.2.3. 

The eyebrow fitting approach used in this work is inspired by Chen's work [127]. This approach 

uses an intensity-based k-means clustering followed by intensity snakes (Active Contour Mod-

els). Since all the operations work on the intensity of the image, lighting and shadowing effects 

need to be accommodated. Thus two additional steps are introduced which are capable of bal-

ancing the illumination of the image and removing the spurious shadows often formed near 

lower inner eyebrow corners. The algorithm begins by obtaining an image containing an eye-

brow. The illumination is then balanced and the shadow is identified and removed from the 

k-means clustered mask image. Finally an active contour approach (snake) is applied to fit the 

outline of the eyebrow. Figure 4.9 depicts the system flow. 
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Eyebrow Image >-H Lighting Balancing F-H K—Means Clusteringl— 	Snake Extraction 

Shadow Removal 

Figure 4.9: Flowchart of the eyebrow fitting system. 

4.3.2 Lighting Balancing 

Based on the eye contour fitting described earlier, a search region for an eyebrow can be lo-

cated above the fitted eye with appropriate length and width. However, the illumination in the 

search region is often unbalanced transversely, due to the curvature of the forehead surface (see 

Figure 4.12(a)). To re-balance the lighting, skin and eyebrow tones are used as references. As 

illustrated in Figure 4. 10, the eyebrow search region is divided into 5 equal vertical strips (i.e., 

Strip A, B. C, D, and E) and in each strip, a central vertical line is drawn (i.e., Line 1, 2, 3, 4, 

and 5). The pixels' intensity is collected along those lines and so-called "eyebrow profiles" are 

plotted. Figure 4.11 shows such an eyebrow profile. Each curve corresponds to the intensity 

of a central vertical line. All curves, except for Linel and 5, exhibit a U-shape characteristic, 

indicating the vertical line has run from the skin above the eyebrow (high brightness), through 

the eyebrow (low brightness), to the skin below the eyebrow (high brightness). 

To work out the average brightness of the skin and eyebrow on each central vertical line, it is 

assumed that the highest 50% of intensity of the line belongs to the skin and the eyebrow's in-

tensity is estimated, according to its geometry, by the percentages shown in the bottom column 

of Table 4.1 

pixels taken to average Li L2 L3 L4 L5 
Skin: highest 50% 50% 50% 50% 50% 

Eyebrow: lowest 10% 15% 20% 15% 10% 

Table 4.1: Proportions used to calculate mean skin and mean eyebrow intensity. 

Once the mean skin and mean eyebrow intensity are estimated on all the central vertical lines, 

the intermediate values between the lines can be obtained by linear interpolation. Assuming 
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Line 1 	Line2 	Line3 	Line4 	Line5 

't  

U I U U 

- 
U I U I 

U U U I 
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I - I I I - 
Strip A 	Strip B 	Strip C 	Strip D 	Strip E 

Figure 4.10: The eyebrow search region is divided into 5 strips and 5 central vertical lines are 
drawn to obtain the eyebrow profile. 

the estimated mean skin and mean eyebrow intensity on each line is denoted by 	Iebl}, 

{ Is, -eb2},  {-1s3, Ieb3},  {14,  Ieb4} and {1S5, Ieb5},  respectively. The mean skin and eyebrow in 

the area between Line N and Line (N + 1) is given by: 

13(x) = Is  + 's(N+l) 'sN 	
- X) 

-'eb(N+1) - 'ebN 
Ieb(X) = 'ebN + 	d 	

X (x - ZN) 

when N = 1, 2,3,4 and x E [ZN, XN+11 	 (4.7) 

where ZN is the x-coordinate of the Line N and d is the spacing between the central vertical 

lines i.e., d = ZN+1 - aj. The far left and far right regions in the search window are also 

estimated by linear extrapolation in a similar manner. 

The images used are 8-bits per channel so the dynamic range of the intensity is 0 - 255. To 

balance the lighting, the mean skin intensity is arbitrarily shifted to 200 and mean eyebrow 

intensity to 100. This adjustment can be achieved by finding an appropriate scaling factor 
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(SF(x)) and offset constant (OC(x)) for every vertical line. 

N ang  
SF (x) = (I

s (X)Ieb(X)) 

OC(x) = SF(x)x18 (x)—N3  

thus, Iadj(X,y) = SF (x) x I(x,y) - OC(x) 	 (4.8) 

where Nrag€  denotes the nominal range between skin and eyebrow intensities, which is 200 - 

100 = 100, N8  denotes the nominal skin intensity, which is 200. I(x, y) is the intensity of the 

original image and Iadj (X, y) is the intensity after the lighting balancing. Figure 4.12 shows an 

image before and after this lighting balancing operation. As shown in Figure 4.12(b), the skin 

region becomes more homogeneous after balancing. 
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Figure 4.11: The eyebrow profile for Figure 4.10. 
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01,  

(a) before lighting balancing 
	

(b) after lighting balancing 

Figure 4.12: Image before and after lighting balancing. Notice that the intensity of the skin 
region becomes more homogeneous in Figure 4.12(b). 

4.3.3 K-Means Clustering 

K-means clustering is a non-hierarchical clustering technique so that the number of clusters, k, 

needs to be determined at the onset. Here, three clusters were used representing the skin, dense 

eyebrow and sparse eyebrow, respectively, as a two-cluster approach (one cluster for skin and 

the other for eyebrow) often misgroups the sparse part of an eyebrow as skin. 

The initial cluster centroids were assigned according to two local traits - brightness and its 

variance. The initial centroid of the skin cluster was set as brightness = 200 and variance = 0 

since the skin is of intensity of 200 nominally and homogeneous. The initial centroid of the 

dense eyebrow was set as brightness = 100 and variance = 0 since the eyebrow is of intensity 

of 100 nominally and homogeneous. Finally the initial centroid of the sparse eyebrow was 

set as brightness = 150 and variance = 100 since sparse eyebrow has a medium intensity and 

significant variance. A standard k-means routine is run to obtain the optimal classification for 

the desired clusters. A k-means clustered mask is generated and skin, dense eyebrow and sparse 

eyebrow is marked with intensity values of 255 (white), 127 (medium grey) and 0 (black). This 

3-level intensity mask is shown in Figure 4.13(a). 

4.3.4 Inner Corner Shadow Removal 

A spurious shadow covering the inner corner of the eyebrow can be seen in Figure 4.13(a). This 

results from the fact that the eye is indented in the eye-socket and bones surrounding the eye 

protrude. To remove this shadow, a simple approach which assumes the shadow always occurs 

at the inner corner of the eyebrow is used. This proceeds by tracking a lower eyebrow boundary 

near the inner corner to separate the eyebrow and skin. This approach works for many common 
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(a) before removing shadow 	 (b) lower boundary identified 

(c) after removing shadow 

Figure 4.13: The operation of shadow removal 

situations where the lighting is largely from above but would not be effective for other lighting 

arrangements. 

The lower eyebrow boundary is very prominent at the middle part of the eyebrow and tails 

off towards the extremities. Thus the boundary is searched on the lower part of a vertical 

line bisecting the eyebrow window. The pixel which gives the maximum of Equation 4.9, 

indicating the presence of a strong intensity edge, can be found. This is the starting point of 

the lower eyebrow boundary and the next boundary point is searched horizontally towards the 

inner corner with a search space of +1- 2 pixels in the vertical direction. Figure 4.13(b) shows 

how such a lower eyebrow boundary is identified. Figure 4.13(c) shows that the inner corner 

shadow has now been removed. This is achieved by setting the intensity of the pixels below the 

found lower boundary to 255 (i.e., reclassified as skin). 

MAX{c1[I(x y + 2) - I(x, y + 1)] + c2[I(x, y + 1) - I(x, y)] + 

c2[I(x,y) —I(x,y-1)]+cl[I(x,y-1) —I(x,y-2)]} 

where cl=l, c2=2 	 (4.9) 
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s.-.- 	 - --.= 
Z~j 

(a) before trimming 	 (b) after trimming 

Figure 4.14: Eyebrow extraction by twin snakes 

4.3.5 Twin Snake Eyebrow Extraction 

Two linear balloon snakes are now employed to extract the eyebrows on the k-means clustered 

mask after the removal of the inner corner shadow (Figure 4.13(c)). One snake is initialised near 

the top of the eyebrow search window, and progresses downwards to find the upper eyebrow 

boundary (green line in Figure 4.14(a)). The other is mirrored; initialised at the bottom and 

progresses upwards to find the lower eyebrow boundary (blue line in Figure 4.14(a)). Figure 

4.14(a) illustrates initial and final convergence of the twin snakes. The eyebrow corners, which 

could be a problem for snakes due to the high curvatures, can be successfully extracted by 

identifying the intersection points of the two snakes. 

The energy function of the twin snakes is defined by Equation 4.10. The first two terms are 

the internal energy, previously used in Equation 3.1. The last two terms represent the snake's 

external energy. The first of these is the potential associated with the balloon pressure whose 

magnitude and direction are determined by the average of the local intensities (I(x, y)) of the 

image (Equations 4.11 and 4.12). 

E 	
f

1 

vF (s) 2 + v(s)2 + Epressure + EdirectiondS 	 (4.10) 

VEpressure = Fpressure = 'y Mx, y) —127) 	 (4.11) 
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!(X, Y) = 	 I(x + n,y + m) 	 (4.12) 
n=-1 m=-1 

VEdirection  = Fdirection  = 01 - 

For upper snake, y E [0, 11]. For lower snake, y E [, H] 	(4.13) 

For the upper snake, since its initial position is in the upper skin area, (i.e., I(x, y) is above 127), 

this results in a pressure force pushing the snake downwards. Once the upper snake reaches the 

upper boundary of the eyebrow, the pressure force will reduce to zero (since I(x, y) 	127). 

In the rare cases that the upper snake falls into the eyebrow region, the snake will be pushed 

back to the boundary due to an opposite pressure force (since I(x, y) now is below 127). The 

lower snake behaves in a similar manner. The last term of Equation 4.10 is the direction term 

which provides the guided directions for the two snakes to evolve. At the beginning, it produces 

a strong downward/upward force for the upper/lower snake to move to "clamp" the eyebrow. 

The force is gradually reduced as the snakes evolve and, if possible, is reduced to zero when 

the snakes reach the middle of the search window. This force is described in Equation 4.13. H 

is the height of the search window. The direction term increases the snake's robustness against 

noise, especially when there is hair present in the search window. 'y and 8 are the weighting 

parameters associated with pressure and direction forces. The outline of the eyebrow will be 

fitted by minimising energy function (Equation 4.10). This is solved by converting the energy 

function to a "force balancing function" through the Euler-Lagrange equation and then using 

a finite differences approach (see Section 2.1.3). The final extraction of the eyebrow can be 

obtained by trimming the redundant parts outside the found eyebrow ends (Figure 4.14(b)). 

4.3.6 Experimental Results 

The eyebrow fitting algorithm was tested on the XM2VTS database. It achieved a good fitting 

rate of 92% for the frontal-lit images without glasses and hair occlusion (see Figure 4.15). The 

algorithm was also tested on the data set of half-lit images to check if the lighting balancing 

algorithm could cope with such extreme conditions. It appears that the eyebrow contour in very 

dark regions cannot be fitted accurately (see Figure 4.16). Examples of eyebrow fitting results 
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(a) subject 00021 	 (b) subject 00311 

i 	Iii.J:1y 
(c) subject 00921 	 (d) subject 00121 

(e) subject 00521 	 (f) subject 03611 

Figure 4.15: Examples of eyebrow extraction in front-lit images 

are shown in Figures 4.15 and 4.16. The limitations of the approach have been identified as 

glasses, hair occlusion, and largely side-lit images. These limitations will be discussed in the 

next section. 

4.3.7 Discussion 

The presence of glasses or hair may occlude the eyebrow such that the snakes are unable to 

be fitted properly. Figures 4.17(a) and 4.17(b) show how the glasses interfere with the fitting. 

The lower boundary of eyebrow is not fitted successfully, instead, the edge of the glasses frame 

is fitted. The hair produces a similar problem (Figures 4.17(c) and 4.17(d)). As the snakes 

can not differentiate the edges of eyebrow and hair, the snakes are likely to attracted by hair 

edges before reaching the eyebrow. To tackle this problem, glasses frame removal and texture 

properties of the eyebrow could be used. The glasses frame can be removed by identifying 

the edge of the frame, which is normally much stronger than the eyebrow edge. The texture 

properties may be the major means to discriminate the eyebrow and hair, as the colour and 

intensity is obviously not suitable to use. The techniques [154-156] for converting intensity 

patterns into frequency components (Gabor filters and wavelets) seem to be promising to apply 
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(a) subject OO1L 	 (b) subject 008L 

(c) subject 017L 	 (d) subject 008R 

(e) subject 01 1R 	 (f) subject 021R 

Figure 4.16: Examples of eyebrow extraction in side-lit images. Figure 4.16(a), 4.16(b) and 
4.16(c), light is from subjects' left hand side. Figure 4.16(d), 4.16(e) and 4.16(f), 
light is from subjects' right. 
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for eyebrow-hair segmentation. 

The performance of the eyebrow fitting is degraded in the side-lit images, indicating the linear 

lighting balancing scheme (introduced in Section 4.3.2) is unable to cope with such largely 

unbalanced lighting conditions. The reason is that since the intensity of the dark region of the 

side-lit image is very small, the scaling factor (SF(x)) computed by Equation 4.8 becomes 

very large. This means that not only the intensity of the eyebrow and skin is scaled up, but also 

the noise. This side-effect of noise augment is shown clearly at the right end (reader's left end) 

of the subject OO1L's eyebrow (see Figure 4.17(e)). In consequence, the k-means clustering 

tends to be noisy (see Figure 4.17(f)) and thus the fitting of the eyebrow is degraded. 

A possible solution for this is to design a more sophisticated lighting balancing scheme. The 

lighting balancing used in this work applies linear interpolation and shift can only compensate 

slightly unbalanced illumination. For these deliberately side-lit images, an analysis of light 

source and where the shadow will form may be required. In consequence, a non-linear lighting 

balancing scheme can perhaps be generated. Furthermore, the texture properties of the eyebrow 

can be helpful. As the shadow only affects the intensity value, the texture of the eyebrow should 

be preserved and can be identified in the dark regions. 

4.4 Conclusions 

This chapter has described improved approaches for eye and eyebrow fitting. The technique 

for eye fitting is based on Yuille's deformable template approach [7].  A circular template with 

a special size term is used for fitting the iris while parabolic templates are used for (upper and 

lower) eyelid fitting. A novel eye corner fitting technique employs a rotating "arrow head" 

which is pivoted at the found iris centre. The eye corner is found when the area of the arrow 

head contains most of white part of eye (sclera) and a strong corner characteristic (a jointed 

edge) is detected. The found eye corners not only increase the accuracy of the eyelid fitting 

but also speed up the fitting process as the the candidates of the parabolas must pass the found 

corners (or the neighbouring pixels). The fitting is in a cascade manner, that is, allowing one 

eye feature to be fitted properly before the next feature is fitted. This reduces the number of 

parameters to be updated simultaneously and offers more flexibility for templates deformation. 

The limitations of this eye fitting approach include reflection and occlusion of spectacles. The 

reflection may be identified by using Perez et al's [114] technique to detect abnormal high (or 
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(a) subject 01911 	 (b) subject 09311 

- 	- - 	 W f1 	 '. '• 	:'' 

4&iiz 

(c) subject 00621 	 (d) subject 02911 

- - 

(e) lighting balancing of the right eye- 	(f) K-means clustering of the right eye- 
brow of Figure 4.16(a) 	 brow of Figure 4.16(a) 

Figure 4.17: Figure 4.17(a) and 4.17(b), eyebrow extraction with occlusion of the glasses. Fig-
ure 4.17(c) and 4.17(d), eyebrow extraction with occlusion of hair Figure 4.17(e) 
and 4.17(f), the lighting balancing and k-means clustering applies on the right 
eyebrow of Figure 4.16(a). Both images are shown to be noisy. 
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change of) saturation. The spectacles frame can be removed by using traditional edge detection 

techniques as the frame produces distinct edges. Eyebrows are fitted using a series of different 

techniques. A linear lighting balancing scheme is developed to compensate the unbalanced 

lighting due to the curvature of the forehead. This leads to a better k-means clustering which 

classifies the eyebrow search area into three regions -skin, dense eyebrow and sparse eyebrow. 

The shadow near the lower inner eyebrow corner is then removed by a lower inner eyebrow 

boundary detection. Finally two snakes are applied to fit the eyebrow contour. 

The limitations of this eyebrow fitting approach include hair and spectacles occlusion, and 

heavy shadow. The spectacles may be removed by detecting the strong edges, while the hair 

may be removed by using the texture properties. Fitting the eyebrow in the heavy shadow 

resulting from largely side-lit images is challenging. A possible solution may be to use a more 

sophisticated (non-linear) lighting balancing scheme with exploitation of the texture properties. 
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Chapter 5 
Chin Fitting 

5.1 Introduction 

To make a precise fit of the wireframe face to a real face, the face boundary needs to be located 

and boundary points need to be extracted. To achieve this, robust, accurate and automatic 

chin fitting techniques are developed. The techniques are based on Active Contour Models 

(Snakes) as they have been proved to be an effective approach for chin fitting (see Chapter 2). 

In this chapter, two chin fitting approaches are proposed. The initial approach, which uses an 

intensity snake, is capable of fitting the chin in a frontal-view, balanced-lit face image. The 

second approach, which continues from the initial one and exploits the symmetrical properties 

of human faces, is able to handle the chin in heavy shadowing and bad lighting conditions. 

Furthermore, an adaptive method for self-tuning the snake's parameters has been adopted in 

the proposed approaches. This self-tuning technique is simple and very effective in response 

to topological variations in the image. It is suggested that this self-tuning technique could be 

applied in other active contour model applications. 

5.2 Chin Characteristics Analysis by Circular Profiling 

Figure 5.1 shows a typical frontal face image. The chin contour can be divided into three 

different regions. In regions Al and A2, the face is against the background. These regions are 

located on the both sides of the face. In region B, the face is against the neck skin. This occurs 

at the bottom part of the face. In regions Al and A2, the chin edge is the face boundary and 

this part of the chin is easier to identify due to the substantial difference between the skin and 

background. On the other hand, the chin edge in region B is less definite because the face and 

neck possess very similar skin colour. 

Further analysis of the chin characteristics can be achieved by drawing lines from the mouth 

centre with different angles. Figure 5.2 illustrates six lines drawn from the mouth centre at 36 

degrees apart. The mouth centre is set to the midpoint between the two mouth corners found 
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Figure 5.1: An example of a frontal image showing different characteristics of the chin edge in 
different regions 

in the previous chapter. Thus the intensity of the pixels along each line can be collected and 

plotted against pixel distance from the mouth centre. This is called the "circular profile" of the 

chin contour. 

Figure 5.3 depicts the circular profile of Figure 5.2. As can be seen, Line I (red) and Line 6 

(yellow) fall abruptly near the end, indicating a face boundary (which is a chin edge) is reached. 

Line 2 (green) and Line 5 (light-blue) also show a sudden fall near the end; but in line 2 a small 

intensity valley is observed just before the final fall. By examining Figure 5.2, this intensity 

valley is likely to be the location of the chin contour. Line 5 does not have this small valley 

because the line is through the point where the neck and chin boundary meet (see Figure 5.2). 

As expected, Line 3 (dark-blue) and Line 4 (purple) do not display the sudden fall near the end. 

This is consistent with Figure 5.2 as the lines remain in the skin region (the neck). Instead, 

an intensity valley now shows a sign of the chin contour existing between the face and neck. 

Notice that the beginnings of the lines in the profile are quite ragged since they are affected by 

the lip region. These would not be used for chin extraction. 

By studying the circular profiles, a chin characteristic can be identified. It is summarised as 

follows: If the chin edge occurs in regions Al and A2 (Figure 5. 1), an abrupt "fall" (or not a 

"fall" if the background is not dark) or something quite dramatic will be expected in the profile 

due to changing from one medium to another. If the chin edge occurs in region B (Figure 5. 1), 
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an (gradual) intensity valley will be expected. Also, the region inside the lip should not be 

considered for chin search. 

Figure 5.2: Six lines drawn from the centre of the mouth. The circular profile of the chin is 
plotted by picking up the pixels along the lines. 

5.3 Initial Chin Fitting Approach 

The flow-chart of the initial approach is depicted in Figure 5.4. The system starts with skin 

detection and utilises the lip corner points, which are found in the former chapter, to set up a 

search region for the chin. An Active Contour Model (Snake) can then be initialised on the 

boundary of the search region. The snake is an adaptive, inflating balloon, intensity snake, 

starting on the inner boundary of the search region and expanding to extract the chin contour by 

exploiting the chin characteristics found in the Section 5.2. This snake is able to self-adjust its 

own parameters, depending on the topology of the image, to obtain more robust chin extraction 

results. Each function block in the Figure 5.4 will be explained in more detail in the next 

sections. 

5.3.1 Skin Detector 

There have been many algorithms for detecting the skin in a face image in the literature [4, 

49, 59-64]. The basic theory relies on the fact that skin from different people has similar 

chromaticity, although skin intensity can be quite different. Thus, it is possible to segment 
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Figure 5.3: The intensity profile corresponding to the lines in Figure 5.2 

the skin from the image by transforming RGB (Red-Green-Blue) values to a relevant colour 

space. A review for skin detection, thus face detection, is given in Section 2.2.1 A skin detector 

used here is to transform the image to HSV (Hue-Saturation-Value) space and impose a number 

of experimental thresholds on the Hue and Saturation channels, so that the skin region, which 

is meant to be different from other surfaces in Hue and Saturation, can be segmented. It then 

undergoes smoothing and another threshold procedure to obtain a black-and-white face mask 

image (Figure 5.5). 

In this mask image, the "jaw points" can be located by extending a horizontal line from the 

mouth centre, thus the jaw points are found as the first black pixel on both sides. The mouth 

centre is set to be the midpoint between the two found lip corners. Of course, if the face 

is severely tilted, a horizontal line to search the jaw points may not be a perfect approach. 

However this can be easily cured by estimating the degree of the head tilt by considering the 

lip corner and eye positions. For simplicity, it is assumed that the head in the image does not 
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Lip corner points 
from lip extraction 

Defining the chin 	 Setting up 	 Chin fitting 

search region 	 Active Contour Model 	 by Active Contour Model 

Skin Detection 
(locating jaw and chin points 
in region At &A2) 

Figure 5.4: The flow chart of the initial chin fitting approach 

Figure 5.5: The binary face mask is used to find the jaw points and the chin not backgrounded 
by the neck 

contain much rotation. Apart from the jaw points, the chin contour not backgrounded by the 

neck (refer to the region Al and A2 in Figure 5.1) is also identified in this face mask image. 

5.3.2 Defining Chin Search Region 

A chin search region is a confined area between two concentric 180-degree arcs (centred at the 

mouth centre), and the face boundary found in the skin detection stage. This region is shown 

as a red-shaded area in Figure 5.6. The diameter of the outer are (green dots) is set to be 1.2 

times the jaw width, while the diameter of the inner arc (yellows dots) is set to be 1.2 times 

the lip width. The jaw width and lip width are the distances between the two found jaw points 

and two found lip corners, respectively. This experimentally set search region encompasses the 
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chins for 95% of the frontal images in the test database, XM2VTSDB [16]. 

Figure 5.6: The red-shaded area confined by inner and outer semi-circles and the face bound-
ary is the chin search region 

5.3.3 Setting up the Active Contour Model 

The proposed active contour model (snake) is initialised on the inner arc (yellow dots in Figure 

5.6) and expanded outwards to find the chin contour. The snake can only move radially in a 1-D 

polar coordinate system with origin at the mouth centre. The snake is allowed to go outwards 

as far as reaching the outer arc (greens dots) or the face boundary (white dots). The reason for 

using an inflating snake rather than a deflating snake (which is adopted for the lip fitting) is 

that there are more undesired features outside the chin contour than inside. The background, 

hair, cloth and neck edges are very diverse and can interfere greatly with the snake's use for 

chin fitting. Starting from the inner arc guarantees that the growth of the snake is within the 

homogeneous skin region. It results that the chin is the only feature that needs to be modelled 

in the snake equations. 

The snake contains 19 control points (shown as the 19 yellow dots in Figure 5.6 as they are 

deployed at the initial position), at 10 degrees apart. The number of the control points affects 

the final fitting results. If an excessive number of points is used, the chin fitting takes longer 

time and the result is sensitive to the noise. On the other hand, using an insufficient number of 

points can not provide enough detail of the chin. The best number was decided empirically and 
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is varied with the size of the face in the image. 

This proposed snake works on a polar plane instead of the normal Cartesian plane. The plane 

origin is located at the mouth centre and the plane covers the chin search region. Two major 

benefits are obtained by using such a polar plane framework. First, all the control points are only 

allowed to move radially in the polar plane. In other words, the control points can only move 

directly towards (inwards) or directly away from (outwards ) the mouth centre. This ID (one-

dimensional) movement of the control points reduces computational time greatly compared to 

a 2D snake. Second, a semicircle template is implicitly used as a shape constraint on the snake 

convergence. In the Cartesian plane, the minimisation of the snake's internal energy leads to a 

straight line or a point. In the polar plane, however, the internal energy is minimised when all 

the control points are situated at an equal distance to the mouth centre. It intrinsically imposes 

a constraint of a semicircular shape, which is a good estimate shape of the chin, on the snake 

convergence. 

5.3.4 Chin Fitting by Active Contour Model 

The energy associated with a balloon snake is recalled here: 

E 
 = J

a 	2 	,, 2 
v/ (s) + 	v (s) + Eimage (s) + Epressure(s)ds 	(5.1) 

Again the snake is in a parametric form. But since the polar system is used, the snake is 

parametrised as v(s) = (r (s), 0(s)), s E [0, 1]. Where r(s) is the distance from the mouth 

centre to the control point v(s) and U(s) is the angle of the inclination of v(s). The first two 

terms in Equation 5.1 denote the energy of the regularity of the snake, which controls the elas-

ticity and rigidity of the model. The third term is the potential associated with the image force 

(Fimage) derived from the image. The last term is the potential associated with the pressure 

force (Fpressre). 

The image force is formulated based on the chin characteristic found in Section 5.2. The image 

force is capable of pushing the control points to an intensity valley. The mathematical form of 

this term is: 

F age(v(s)) 	(r, 0) x 
dl
—(v(s)) 	 (5.2) 
dr 

the image intensity gradient term 	is evaluated at the point v (s) on the snake along the cone- 
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sponding radial line. The image force (Fima.qe ) is an expanding one when the image intensity 

gradient is negative and a shrinking one otherwise. 'y(r, 6) is a weighting factor whose value is 

dependent upon the image topology and an algorithm allowing self- adjustment is proposed in 

Section 5.3.5. 

The pressure force (Fpressure) is simply a constant inflating force to make the snake progress 

towards the chin. The pressure force must be set to a value smaller than the image force [32] 

therefore the snake can be caught by the intensity valley of the chin. In practice, the pressure 

force is set to a quite small value (as long as it can blow up the snake is sufficient). Equation 

5.3 depicts its mathematical form. n(s) is the unit vector pointing in the outward direction for 

each control point v(s) and p is a constant positive number equal to 0.5 X 'yjn. 7mm will be 

discussed in Section 5.3.5. 

Fpressure(s) = p x n) 	 (5.3) 

The snake, which grows with this inflating force, will find its best fit of the chin by minimising 

the total energy of Equation 5.1 after a number of iterations (500 iterations are used in the 

experiment). Alternatively, one may set a "maximum pixel drifting threshold" to flag the reach 

of the convergence. 

5.3.5 Topologically Adaptive Snake 

It is obvious that some face images contain more "noise" and "edges" than others. For example, 

wrinkles, pimples, freckles and stubble increase the variance of the facial skin dramatically. 

Even worse, the intensity valley of the chin contour varies depending upon facial tissue and 

bone structure. It has been found that using a set of fixed snake parameters cannot fit chins in 

a diverse range of facial images. To overcome this problem, a statistical model for intensity is 

used to automatically adjust the weighting factor -y(r, 0). 

Since each control point is only allowed to move radially, a statistical model for intensity can 

be automatically constructed for each radial line. The pixels on the radial line (but within the 

search region) are collected and the intensity mean (ji)  and standard deviation (al) can be 

obtained. jj and ai represent the important facial skin dynamic and are used to adjust the 

7(r, 0). 
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Figure 5.7: Figures show the functions of w1(O1) and  W2 (I - p1). 

Clearly, a radial line containing a higher standard deviation (aj) implies a higher "noise" level, 

which indicates that a smaller weighting factor ('y) should be applied for the image force to 

avoid the snake being trapped at an undesired "noise" concavity. Conversely, a lower aj implies 

a more homogeneous skin patch suggesting that a larger 'y should be applied to boost the chin 

characteristic. 

Additionally, the mean (ni)  can be used to check for the presence of the chin. A larger 'y is 

used for the control point whose pixel intensity is much lower than pj, whereas 'y  is set to zero 

if the control point has higher intensity than pi.  This assumes that the intensity valley of the 

chin should plunge below the mean intensity of the facial skin. 

As a result, 'y(r, 0) can be described in Equation 5.4 and two piece-wise functions, one for 

wi(ai) and another for W2 (I - pj), are implemented. 

'y(r,O) =wi(cri) xw2(I—PI) )<Ymin 
	 (5.4) 

Where Wi (oi) has the value 2 when ai is zero, reducing linearly to 1 when oj is > 20. This 

gives a larger ')' for a homogeneous skin region (low ai)  to emphasise the chin contour valley 

and a smaller 'y  as the "feature noise" level (crj) increases, in order to avoid the snake being 

trapped at an undesired "noise" concavity. This function is depicted as Figure 5.7(a). w2(I - 

i) has the value 2 when (I - i) (the intensity deviation from the mean) is < —2ai, again 

decreasing linearly to 1 when I =ujto encourage the snake to converge to a "dark" valley 
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but avoid instability. A larger 'y is used when the image intensity at the control point is much 

lower than the mean tj, but w2 and therefore 'y is set to zero if the intensity is higher than the 

mean. (As the intensity valley of the chin contour is assumed to be below the mean intensity of 

the facial skin.) This function is depicted as Figure 5.7(b). Thus -y(r, 0) has an overall dynamic 

range of 4 x Ymin  The Ymin  (typically 0.02) was determined by extracting the chins from 

several facial images containing high noise levels. 

5.3.6 Results of Chin Fitting by the Initial Approach 

This initial approach achieves very high fitting rate for the balanced frontal lit images in XM2VTS 

database [16]. As stated earlier, the external force now is adaptive, thus the snake can fit the 

chin contour for various skin colour, gender, age, and with or without stubble (Figure 5.8(a) - 

Figure 5.8(h)). Faces with heavy beards, which usually result in invisible (or partially invisible) 

chins, account for most of the false fitting (Figure 5.8(i) and Figure 5.80)). Furthermore, this 

approach can handle the chins well for small head rotation (Figure 5.8(k) and Figure 5.8(1)). 

However, this initial approach can not fit the chins under unbalanced lighting conditions, be-

cause this adaptive snake uses intensity in finding the chin contour. The shadow and spurious 

edges caused by the unbalanced lighting can overrun the chin characteristic and hence the chin 

is not fitted. Figure 5.9 shows some examples. 

5.4 	Chin Fitting Algorithm for Unbalanced- and Half- Lit Face Im- 

ages 

To overcome the problems caused by the unbalanced lighting, a technique exploiting the sym-

metrical property of the face and employing a second snake has been developed. It includes 

a functionality to detect the direction of light so that the bright and dark sides of the face are 

identified. An initial active contour model, which was introduced in Section 5.3, can be im-

plemented to fit the bright side of the chin. The dark side of the chin which may be corrupted 

with shadows and spurious edges is extrapolated by using the symmetrical property of the face. 

This extrapolation is then used as the initialisation of the second snake. Thus the complete chin 

contour can be found by joining the fitting of the initial snake and the second snake. Figure 

5.10 shows the block diagram flow of this new chin fitting approach. 
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(a) subject 00011 	 (b) subject 00111 	 (c) subject 02711 

(d) subject 02321 	 (e) subject 00511 	 (f) subject 03411 

(g) subject 03321 	 (h) subject 00911 	 (i) subject 03121 

(j) subject 01821 	 (k) subject 01121 	 (1) subject 02511 

Chin Fitting 

Figure 5.8: Results of the chin fitting in frontal-lit images by using the initial fitting algorithm 
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(a) Akiyo 	 (b) Susie 	 (c) subject 0011 

Figure 5.9: Results of the chin fitting under unbalanced lighting conditions by using the initial 
fitting algorithm. Notice that the chin characteristic found in Section 5.2 is covered 
by the shadow. 

5.4.1 Detecting the Direction of the Light 

In real world head-and-shoulders images, balanced, frontal illumination, such as shown in Fig-

ure 5.8, may not always occur. In most cases, light can be expected from above the head, but 

with one side stronger than the other. Consequently, a shadow is formed on the lower part of 

the poor-lit side of the face. Depending upon the severity of light imbalance, the shadow can be 

formed in a confined region below the chin (Figure 5.9(a) and Figure 5.9(b)) or cover a wider 

region of the poor-lit side of the face (Figure 5.9(c)). 

A simple technique to detect whether the light is unbalanced and on which side of the face 

the shadow will form is introduced. First, a rectangular box is drawn below the mouth centre, 

with the length equal to the distance between the two jaw points and the height equal to twice 

the distance of the nose - mouth centres, as shown in Figure 5.11. Then, intensities of the 

pixels on the left and right side of the box (named Region L and Region R in Figure 5.11) are 

collected separately. Thus the average intensities of Region L and Region R can be computed. 

If the shadow is formed on one side of the face, it can be expected that the average intensity of 

the shadow side will be much smaller. In the experiment, a threshold of one side being more 

than 1.5 times brighter than the other side or the brightness difference being greater than 50 

(greyscale 0 255) is taken to indicate unbalanced lighting. 
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Figure 5.10: The flow chart illustrates the chin fitting approach under unbalanced lighting 
conditions 

5.4.2 Chin Extrapolation in the Dark Side of the Face 

Once the dark and bright sides of the face are identified, the initial fitting technique described 

in Section 5.3 is used to fit the bright side of the chin. The dark side of the chin is extrapolated 

using the symmetrical property of the face. 

Figure 5.12 illustrates how the extrapolation is performed. For simplicity, the face is assumed 

to have no inclination in the x-y plane (that is, the eyes are levelled at a horizontal line) and 

thus a vertical line through the mouth centre should pass the lowest point of the chin, as shown 

in Figure 5.12. This assumption can be compensated by exploiting eye or lip corner positions 

to obtain the true inclination of the face. Since the jaw points (S0 and S_1) on both sides 

of the face have been found, the chin on the shadow side of the face (S_2, Sfl ... ) can be 

extrapolated by using the ratio of two jaw points deviated from the centre vertical line. In other 

words, the ratio JL : JR = 51C1 S_2C1 = 32C2 : S,-3C2 and so on in Figure 5.12. Since 

the control points on one side of the face are already located by the initial fitting, the control 

points on another side can be extrapolated using the ratio JL : JR. The extrapolation using a 

fixed ratio together with face inclination adjustment can handle the chins for reasonable 3-D 

head rotation. 
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Figure 5.11: The average intensities are obtained from Region L and Region R to determine 
the direction of the light and the location of the shadow. Point A, B, C and Dare 
the nose centre, left jaw point, right jaw point and mouth centre, respectively. 

5.4.3 Chin Fitting by the Second Snake 

To make the extrapolation of the chin match the local details, a second snake using the extrapo-

lation as its initialisation is employed. The second snake is the same as the initial snake, except 

that the inflating force is now removed and the external (image) force is modified. Since the 

extrapolation is now very close to the true chin outline, without the aid of the inflating force, an 

image force produced by the image is sufficient to attract the snake to the feature. The image 

force is different from that used in the initial approach. Since the chin is covered by the shadow, 

the intensity valley previously used for chin extraction is now no longer present. Instead, due 

to the structure of the protruded chin bone, the chin often shows a rapid intensity change (the 

chin edge) in the shadow area. This can be a reflection on the chin bone (Figure 5.13(b)) or just 
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Figure 5.12: The chin under the shadow is extrapolated by its found counterpart using a con-
stant ratio computed from the two jaw points and the centre vertical line 

because the higher curvature of the chin makes the brightness change more quickly. In addition, 

in order to obtain a stable convergence, the control points of the second snake are only allowed 

to move within ±5 pixels from its initial position. 

Figure 5.13 makes a comparison between using an extrapolation only and an additional second 

snake. The latter achieves better results in terms of matching the local details. Figure 5.13(d) 

shows better fitting on the chin edge and face boundary. 

5.4.4 Results of the Chin Fitting by the Improved Approach 

Figure 5.14 shows the results of the chin fitting in the half-lit face images in XM2VTSDB [16]. 

Again, this approach is very successful in fitting the chins regardless of light direction, skin 

colour, gender, age, and with or without stubble. Failures are mainly due to beards (Figure 

5.14(h)) and a "soft" chin (Figure 5.14(i)) which is also hardly discernible to human eyes. To 
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(a) using chin extrapolation only 	(b) enlargement of the shadow part of the 
chin in Figure 5.13(a) 

(c) implementation of the second snake 	(d) enlargement of the shadow part of the 
chin in Figure 5.13(c) 

Figure 5.13: Comparison between the fitting by extrapolation and the further refinement using 
the second snake. It can be seen clearly that Figure 5.13(d) is better fitted than 
Figure 5.13(b) on the chin edge and face boundary. 
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further test the capability of the algorithm, images from two standard video sequences, Susie 

and Akiyo, are used. Susie and Akiyo images represent very common unbalanced lighting 

conditions occurring in head-and-shoulders sequences. In both sequences, sample images are 

tested for every 10 frames (the images with the chins occluded by the phone in Susie sequence 

are discarded). The results for Akiyo images are better than for Susie's. It is because Susie 

images contain larger head rotation and have less defined chin edges (probably due to her 

make-up). Figure 5.15 shows some examples of the fitting in these images. 

5.5 Conclusions and Future Work 

In this chapter, two chin fitting approaches have been proposed. The first one employs an 

"adaptive, inflating balloon, intensity snake" to fit the chin in the frontal-lit images. The snake 

is initialised as a semi-circle inside the face region and inflated to fit the chin contour. The 

adaptability allows the snake to self-adjust its parameters according to the image topology so 

that it can fit the chins in a wide range of face images. However, due to the intensity dependence, 

this approach is unsuccessful in fitting the chins in half- or unbalanced-lit face images. The 

second approach exploits the symmetrical property of the face to extrapolate the chin under the 

shadow. It is then followed by a second snake to refine the fitting to match the local details. 

These two approaches have been tested in XM2VTSDB [16] and standard video sequences. 

The first approach is successful in fitting the chins in the frontal-lit XM2VTSDB, while the 

second one is also successful in the half-lit XM2VTSDB and the video sequences. 

The future work will focus on fitting the partially occluded chins and dealing with large head 

rotation. To do this, a more effective use of related facial features to estimate the location of the 

chin is needed. Furthermore, the chin location together with the locations of the eyes, eyebrows, 

nose and lip will be able to improve the accuracy of the wire-frame face model fitting. This will 

lead to more realistic expression synthesis and facial animation. 
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(a) subject 000 	 (b) subject 001 	 (c) subject 027 

(d) subject 036 	 (e) subject 005 	 (f) subject 034 

(g) subject 009 	 (h) subject 045 	 (i) subject 042 

Chin Fitting 

Figure 5.14: Chin fitting in half-lit XM2VTSDB [16] by the improved approach. 
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(d) 
	

(e) 
	

(f) 

Figure 5.15: Chin fitting in standard video sequences by the improved approach. Figure 
5.15(a) to Figure 5.15(c), fitting in Susie images. Figure 5.15(d) to Figure 5.15(f), 
fitting in Akiyo images. 
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Chapter 6 
Model Face Adaptation 

6.1 Introduction 

To produce a useful face model, the model must be fitted to the face accurately and must also be 

deformable. The deformability results in production of diverse facial actions and expressions 

while the high fitting accuracy ensures these animations occur in the correct places. 

In this chapter, two approaches for automatic face model adaptation are presented. Both use 

the face texture and the knowledge of the formerly fitted feature contours. The differences 

between these two are the accuracy and usability. The first approach is very accurate but can 

only be used among the same models. By contrast, the second approach sacrifices accuracy but 

is compatible with other face models. 

Candide-3 [17] is the model for demonstrating fitting and animation. It consists of 85 control 

parameters (6 global pose parameters, 14 shape units and 65 animation units), 113 vertices 

and 168 surface polygons. This moderate-to-low complexity allows the concept of fitting and 

animation to be demonstrated without much deterioration of face detail and realism. The detail 

of Candide-3 is described in Section 2.4. 

6.2 Adaptation with Vertex Position Correction 

This approach starts with an initial adaptation of the Candide-3 model to the face. The ini-

tial adaptation employs Hillman's [4, 10] or Ahlberg's [13] technique which applies an Active 

Appearance Model (AAIVI) to fit the faces. However, the experience from previous research 

[97] shows that the important feature points need to be fitted extremely accurately in order 

to generate natural and realistic facial animations. This cannot be achieved solely by using 

appearance-based approaches; a feature-based measure must be incorporated. Consequently, 

a "Vertex Position Correction" scheme is developed as a post-processing for the initial model 

adaptation. 
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(a) input image with fitted feature con- 	(b) corresponding Candide-3 vertex 
tours 	 points (iris points are not marked) 

Figure 6.1: Input image with fitted feature contours and their corresponding vertex points in 
Candide-3 

A set of 49 important feature points are extracted from the fitted feature contours to correspond 

to their vertex positions in Candide-3. These points are used to augment the fitting accuracy 

around the important facial features, which are used to define the face area or are frequently 

involved in animation. The number (49) is set according to the structure of the Candide-3 

model. It is beneficial to have these found feature contours available as more points can be 

extracted from them if the implementation model contains more vertices and polygons and it is 

necessary to do so. 

The 49 feature points are divided into three groups. 

Group 1: chin contour 

Group 2: eye and eyebrow contour 

Group 3: lip contour 

Figure 6.1(a) shows the overall feature contours (lip, eye, eyebrow and chin) as found in previ-

ous chapters and Figure 6.1(b) shows the vertices required to be matched in Candide-3 (eight 
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I 
(a) lower part of the input face with 	(b) corresponding Candide-3 chin vertex 

marked chin points 	 points 

Figure 6.2: Lower part of the input face and the Candide-3 model 

iris vertex points are not marked). In the chin region, 7 points are required to be extracted 

from the contour to correspond to the Candide chin vertex points 28, 30, 32, 10, 65, 63, and 

61 (shown in Figure 6.2(a) and Figure 6.2(b)). A radial search method is used to find the cor-

respondence. Assuming the face to be fitted is in the "neutral state" 1,  the chin vertex points 

in Candide-3 subtend the same set of constant angles with respect to the mouth centre as the 

chin points do in the input face image. More specifically, if a horizontal line is drawn through 

the mouth centre, the angles subtended by vertices 28, 30, 32, 10, 65, 63 and 61 are —20.991, 

16.480, 63.430, 90.00, 116.570, 163.520  and 200.990  (see Figure 6.2(b) for an example). These 

angles are calculated in the image Cartesian system (the origin is at the top left corner of the 

image; x-coordinate increments rightwards and y-coordinate increments downwards.) and the 

Candide-3 original vertex positions are used. Thus, to locate the chin points in the input image, 

the mouth centre is identified first and 7 radial lines are drawn from the mouth centre, with the 

calculated angles, to obtain the intercept points on the chin contour. The mouth centre is lo-

cated at half way between the lip corners. The found chin points for Figure 6.1(a) are marked in 

Figure 6.2(a). These chin points provide additional information about the face boundary (such 

as the head width and jaw position) which is often falsely fitted by using solely the appearance-

based approach [4]. 

There are 28 feature points to be fitted in the eye and eyebrow region (see Figure 6.1(b)). These 

are the corners of the eyebrows (4 points), the corners of the eyes (4 points) and 8 points (4 

points for each iris) to form 2 squares enclosing the irises. The other 12 points are not strictly 

'see [143] for the neutral face definition 
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(a) eye and eyebrow region of the in- 	(b) corresponding Candide-3 eye and 
put face with marked feature points (iris 	eyebrow vertex points 
points are not marked) 

Figure 6.3: Eye and eyebrow region of the input face and the Candide-3 model 

defined in the Candide-3 model. Each upper eyelid is represented by 3 points (6 points for two 

eyes) and so is the lower eyelid (6 points for two eyes). Thus these make up the total number 

of the feature points to 28. 

The corner points of the eye and eyebrow can be located in the input face by identifying the 

extremities of the found eye and eyebrow contours (see Figure 6.3(a)). The less defined eyelid 

points are located by quartering the horizontal distance between the eye corners on the found 

upper and lower eyelid contours. The iris is enclosed by a square. The locations of the square 

vertices (vertices 69, 70, 73 and 74 for the left eye and vertices 71. 72, 67 and 68 for the 

right eye) are calculated from the found iris centres and radii. The eyelid and iris points are 

important in avoiding the fitting corruption of the eye region which is common in appearance-

based approaches as eye region texture is complex and noisy, resulting in a high mismatch rate. 

Figure 6.3(a) shows the marked eye and eyebrow feature points for Figure 6.1(a) (the iris points 

are not marked). 

There are 14 important feature points selected in the mouth region (see Figure 6.4(b)). These 

include two inner lip corners (vertices 89 and 88), 6 points on the inner lip boundary (vertices 

82, 87, 81, 84, 40 and 83) and 6 points on the outer lip boundary (vertices 80, 7, 79, 85, 8 

and 86). Notice the tips of Cupid's bow of the upper lip are not used as such a characteristic 

does not always appear in lips. To mark these feature points in the input face, the corners are 

located by identifying the extremities of the lip contour (see Figure 6.4(a)). The 6 inner lip 

boundary points merge to only 3 points because the mouth is closed in the neutral state. Thus 

vertex 82 overlaps vertex 84, vertex 87 overlaps vertex 40 and vertex 81 overlaps vertex 83 

respectively. These inner boundary points must be situated on the lip contact line which is 
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(a) mouth region of the input face with 	(b) corresponding Candide-3 mouth ver- 

marked feature points 	 tex points 

Figure 6.4: Mouth region of the input face and the Candide-3 model 

the low intensity valley connecting the lip corners (as the green lines shown in Figure 3.9 and 

Figure 3.10 in Chapter 3). They also quarter the distance between the lip corners. The outer 

lip boundary points are located by using the geometric relationships between themselves and 

the inner boundary points. Vertices 7 and 8 are on the same vertical line through vertex 87. 

Vertices 79, 80, 85 and 86 are located by applying a similar radial search method to the chin 

points, which uses vertices 81, 82, 83 and 84 as the centres. As a result, vertices 79, 80, 85 and 

86 are found as the intercept points of the green lines and the lip contour in Figure 6.4(a). These 

mouth points improve the accuracy of the fitting of the mouth region when they are animated 

to produce expressions and speech. 

After the set of 49 important feature points are all matched to their Candide vertex positions, 

the initially adapted model (by using an appearance-based approach [4, 10, 13]) can be refined. 

First these 49 vertex points on the adapted model are relocated to the new locations found on the 

input face. Second, in order to make the vertex points distribute evenly, the neighbouring points 

of these relocated vertices are also adjusted. The adjustment is performed by proportionally 

moving these points with respect to the "reference objects". In the mouth region, the mouth 

width is used as the reference and the neighbouring points to be adjusted are vertices 9, 64 and 

31 (marked as blue circles in Figure 6.5). The mouth width is set as the distance between the 

inner lip corners (i.e. the distance between vertices 89 and 88). In the original Candide-3 model, 

the distance between vertex 89 and vertex 88 (V89 V88) is 0.400 and the distances between vertex 

9 and vertex 8 (V9V), vertex 64 and vertex 89 (V64  V89) and vertex 31 and vertex 88 (V31  V88) 

are 0.065, 0.046 and 0.046, respectively. Thus the ratio of each distance w.r.t. the mouth width 

is obtained as 	 and 0,046 . In consequence, the vertices 9, 64 and 31 can be moved 
0.400 0.400 	0.400 
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Figure 6.5: The neighbouring points (marked as blue circles) to be adjusted in the mouth re-
gion. 

using these ratios w.r.t. the true mouth width in the input face. 

In the eye region, the eye width is used as the reference to adjust the locations of the neigh-

bouring vertices. Take the "left eye" (from the reader's point of view) as an example (Figure 

6.6), the eye width is set as the distance between vertex 53 and vertex 56 and the neighbouring 

points to be adjusted are vertices 96, 102, 52, 57. 104 and 110 (marked as blue circles in Figure 

6.6). In the original Candide-3 model, the distance between vertex 53 and vertex 56 (V53  V56 ) 

is 0.340 and the distances between vertex 96 and vertex 98 (V96  V98 ). vertex 102 and vertex 

100 (V102 V100), vertex 52 and vertex 54 (V52 V54), vertex 57 and vertex 55 (V57  V55), vertex 104 

and vertex 106 (V104  V106 ) and vertex 110 and vertex 108 (V110  V108 ) are 0.015, 0.009, 0.021, 

0.018, 0.015 and 0.009, respectively. Thus the ratio of each distance w.r.t. the eye width can 

be computed. In consequence, vertices 96, 102, 52, 57, 104 and 110 can be moved using these 

computed ratios w.r.t. the true eye width in the input face. The vertices in the right eye region 

can also be adjusted in the same manner. 

Figures 6.7(a) - 6.10(a) show the initial adaptation of the model while Figures 6.7(b) - 6.10(b) 

show the results of applying the vertex position correction. It can be clearly seen that Figures 

6.7(b) - 6.10(b) have significant improvements over Figures 6.7(a) - 6.10(a) in fitting of the 

chin, eyes, eyebrows and lip. Notice that the nose positions are not corrected using this scheme 

as it is found that the nose region is fitted well using the appearance-based approach because 

the texture of the nose is more consistent and distinctive from other parts of the face. 
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Figure 6.6: The neighbouring points (marked as blue circles ) to be adjusted in the left eye 
region. 

(a) appearance-fit of subject 00021 	(b) vertex position correction of Figure 6.7(a) 

Figure 6.7: Comparison between the appearance-only-fit and the post-processed vertex posi-
tion correction for Subject 00021 
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(a) appearance-fit of subject 00111 	 (b) vertex position correction of Figure 6.8(a) 

Figure 6.8: Comparison between the appearance-only-fit and the post-processed vertex posi-
tion correction for Subject 00111 

(a) appearance-fit of subject 00521 	(b) vertex position correction of Figure 6.9(a) 

Figure 6.9: Comparison between the appearance-only-fit and the post-processed vertex posi-
tion correction for Subject 00521 
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(a) appearance-fit of subject 02311 	(b) vertex position correction of Figure 6.10(a) 

Figure 6.10: Comparison between the appearance-only-fit and the post-processed vertex posi-
tion correction for Subject 02311 

6.2.1 Assessment of the Model Fitting by Animation 

One of the best ways to assess the fitting of the model is to animate it. In this section, the model 

is rotated to different views and given several expressions to perform using the model-based 

technology (i.e. changing the control parameters). In the rotation test the model is applied with 

±15°  angle about x and y axes and in the expression test, five major expressions are generated 

according to the MPEG-4 code book [143]. 

Figures 6.11, 6.12, 6.13 and 6.14 show the 15°  rotation of the fitted models about x and y 

axes. They look fairly realistic. Experiments have shown that good realistic side-views can 

be generated up to about 30°. Angles greater than this will produce some unrealistic artefacts, 

particularly noticeable at the nose and nose ridge. This is because no depth information is 

available from a single fitted frontal face. Notice that Figure 6.14(c) and 6.14(e) show a void 

texture near the nose. This is due to the bad wireframe fit near the nose so no texture is sampled, 

as shown in Figure 6.10(b). 

The models are also animated to produce five major expressions - "anger", "fear", "joy", "sad-

ness" and "surprise". These expressions are by far the most distinguishable and reasonably 

defined. [143] lists major characteristics of each expression defined in the MPEG-4 code book2 . 

2Actually there are six expressions defined in MPEG-4. However, the sixth expression, "Disgust", has a different 
definition from another major facial expression group, Paul Ekman et al. [3].  Therefore it is excluded in the test. 
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(a) original face 	(b) -1-15°  y rota- 	(c) —15°  y rota- 	(d) +15°  x rota- 	(e) —15°  x rota- 
tion 	 tion 	 tion 	 tion 

Figure 6.11: +15° rotation about  and  axes for subject 00021 

(a) original face 	(b) +15°  y rota- 	(c) —15°  y rota- 	(d) +15°  x rota- 	(e) —15°  x rota- 
tion 	 tion 	 tion 	 tion 

Figure 6.12: +150  rotation about x and  axes for subject 00111 
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(a) original face 	(b) +15°  y rota- 	(c) —15°  y rota- 	(d) +15°  x rota- 	(e) —15°  x rota- 
tion 	 tion 	 tion 	 tion 

Figure 6.13: ±15° rotation about x and  axes for subject 00521 

(a) original face 	(b) +15°  y rota- 	(c) —15°  y rota- 	(d) +15°  x rota- 	(e) —15°  x rota- 
tion 	 tion 	 tion 	 lion 

Figure 6.14: ±150  rotation about x and  axes for subject 02311 
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Anger: The inner eyebrows are pulled downward and together. The eyes are wide open. 

The lips are pressed against each other or open to expose the teeth. 

Fear: The eyebrows are raised and pulled together. The inner eyebrows are bent upward. 

The eyes are tense and alert. 

Joy: The eyebrows are relaxed. The mouth is open and the mouth corners pulled back 

toward the ears. 

. Sadness: The inner eyebrows are bent upward. The eyes are slightly closed. The mouth 

is relaxed. 

Surprise: The eyebrows are raised. The upper eyelids are wide open, the lower relaxed. 

The jaw is open. 

As can be seen, although each expression is textually described in MPEG-4, the exact exe-

cution, such as proportion of the facial actions and the "adjectives" (tense, alert and relaxed), 

remains ambiguous and is left to users' choice. To produce a realistic expression, the values of 

the animation units have to be determined experimentally and assessed subjectively. A list of 

Candide-3 Animation Units (AUs) and the interpretation is summarised in Appendix C.2. 

Anger is produced by adjusting Animation Unit (AU) 3 (brow lowerer) , 9 (lip presser) and 6 

(eyes closed). Notice that AU 6 is assigned an negative value to open the eyes (see Figures 

6.15(a), 6.16(a), 6.17(a) and 6.18(a)). 

Fear is produced by adjusting Animation Unit (AU) 3 (brow lowered), 39 (raise left inner eye-

brow), 40 (raise right inner eyebrow), 45 (squeeze left eyebrow), 46 (squeeze right eyebrow) 

and 6 (eye closed). Notice that AU 3 and AU 6 are assigned negative values to raise the eye-

brows as well as produce the tense and alert eyes (see Figures 6.15(b), 6.16(b), 6.17(b) and 

6.18(b)). 

Joy is produced by adjusting Animation Unit (AU) 4 (lip corner depressor), 0 (upper lip raiser), 

and 1 (jaw drop). AU 4 is assigned a negative value to bend lip corners upward. AU 0 and AU 

1 activate a mouth open. AUs controlling eyebrows remain zero to give the relaxed eyebrows 

(see Figures 6.15(c), 6.16(c), 6.17(c) and 6.18(c)). 

Sadness is produced by adjusting Animation Unit (AU) 39 (raise left inner eyebrow), 40 (raise 

right inner eyebrow), 6 (eyes closed) and 4 (lip corner depressor). All these AUs are assigned 
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(a) anger 	 (b) fear 	 (c) joy 	 (d) sadness 	(e) surprise 

Figure 6.15: Animation offive major expressions on subject 00021 

(a) anger 	 (b) fear 	 (c) joy 	 (d) sadness 	(e) surprise 

Figure 6.16: Animation offive major expressions on subject 00111 

positive values to produce a sad expression (see Figures 6.15(d), 6.16(d), 6.17(d) and 6.18(d))3 . 

Surprise is produced by adjusting Animation Unit (AU) 3 (brow lowerer), 10 (upper lid raiser), 

and 1 (jaw drop). Again AU 3 is assigned a negative value to raise the eyebrows (see Figures 

6.15(e), 6.16(e), 6.17(e) and 6.18(e)). 

From these animations, the model fitting with vertex position correction can be seen to be 

successful. 

AU 4 (lip corner depressor) is added by the author to produce a more realistic sad face 
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(a) anger 	 (b) fear 	 (c) joy 	 (d) sadness 	(e) surprise 

Figure 6.17: Animation offive major expressions on subject 00521 

(a) anger 	 (b) fear 	 (c) joy 	 (d) sadness 	(e) surprise 

Figure 6.18: Animation offive major expressions on subject 02311 
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6.3 Adaptation by Adjusting Model Control Parameters 

The second automatic adaptation method is to adjust the control parameters so that the Candide-

3 model is reshaped and matched to the face. There are three types of control parameters for 

adapting the Candide-3 Model - the global pose, shape and animation parameters. However, 

since the faces in the XM2VTS [16] image database are assumed to be in the "neutral state" 

(this is nearly true as most of the faces are fairly expressionless), only the global pose param-

eters and shape parameters are used. The animation parameters will be used for adaptation in 

the later stage for images containing definite expressions [157]. To improve the fitting at the 

important feature points, the previously found 49 feature points are used in conjunction with 

the appearance model to compute the best set of the global pose and shape parameters. This is 

achieved by an optimisation algorithm which minimises both the appearance error and feature 

error. 

6.3.1 The Methodology 

The adaptation algorithm modifies Ahlberg's approach [131.  Using the terminology in [13] and 

assuming that all the animation units are zero, the Candide-3 Model is parametrised according 

to a parameter vector 

where r, r, r, s, t, t, are global pose parameters. r, r and r are 3D rotations about the 

x, y and z axis respectively, s is the scale, t and t,, are the 2D translations, and o is the shape 

unit vector (consisting of 14 parameters). 

A PCA "face-space" can be formed by fitting Candide-3 manually to several faces and using 

the fit to reshape the faces back to the standard Candide shape .i. These images differ only in 

texture - the feature positions are identical in all images. The training set of images S is used 

to find a PCA transform XT  into the face-space (details see [13]). 

Given a parameter set p and an input image i, the face in i is reshaped back to the standard face 

to give a normalised face j(i,p). j is mapped into the face-space and back into intensity 

space to give a reconstructed image 
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x(i,p) =?i+xxT(j(i,p) -) 	 (6.2) 

where Y is the mean of the training set S and XT  and X are the forward and reverse PCA 

transforms respectively. The residual image, r(i, p) = j(i, p) - x(i, p) is used to derive an 

Appearance Error Measure 

e(p) = Ir(i,p)H 	 (6.3) 

Since the training space is constructed solely from well-fitted faces, the PCA space will be able 

to provide a good reconstruction of well-fitted faces. Thus, the reconstructed image will be 

similar to the original image and the error is small. Poorly fitted images will be significantly 

different from the training set and hence will not be well reconstructed, resulting in a large 

error. 

The best fitting parameters p' for the input face image i can be found by finding the parameter 

set which minimises the error e. Given an approximate fit at the beginning, the parameters are 

updated by using an update matrix U which maps the residual image to an update vector Lip 

[13]. The process iterates until e(p) is small. The initial fit of the model is important. If it is too 

far from the optimum fit, the optimum may not be reached and the final fit will be found at a 

local minimum. To solve this, a good initial estimation of the face based on the locations of the 

important facial features is developed. Three global pose parameters, s, t and t,, are estimated 

by using 10 out of the 49 found feature positions (4 eyebrow corners, 4 eye corners and 2 lip 

corners). That is, assuming the input face is the standard Candide-3 shape and is looking 

forward. Giving 20 parameters (10 feature points with x, and y positions) to solve 3 unknowns, 

the system is over-specified and can be solved using "Singular Value Decomposition". 

The main novelty of the proposed algorithm over Ahlberg's approach [13] is that the minimisa 

tion error is combined with the appearance and feature measures. Let F be a matrix whose rows 

are the (x, y) co-ordinates of the found 49 feature points and V be a matrix whose rows are 

positions of the corresponding Candide-3 vertices when adapted using the parameter vector p 

and projected to 2D. The difference between these two matrices gives a Feature Error Measure 

e(p)=HV — FI 2 	 (6.4) 
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which is the difference between the located feature points in the image and the positions of 

the features given using p. The two error measures, e (the appearance error measure) from 

Equation 6.3 and € (the feature error measure) are combined: 

P = arg min (e(p) + Ac(p)) 	 (6.5) 
P 

where A is a weighting factor able to lift the feature measure to roughly the same scale as the 

appearance measure. A is dependent upon the size of the image and the number of the selected 

points, therefore it is determined experimentally. Figure 6.19 shows the fitting results using this 

combined appearance and feature measure approach. The results show that the fitting at the 

feature points has improved massively compared to Ahlberg's approach [13]. Although these 

fits are slightly less accurate than using "Vertex Position Correction" scheme, they are more 

valuable as the global pose parameters and shape parameters are identified. 

6.3.2 Assessment of the Model Fitting by Animation 

The fitted models are again assessed by animation. Three types of animations are used. The 

first and second are assessed by producing rotation views and artificial expressions, as seen in 

the Section 6.2.1. The third assessment applies "expression duplication". Definite expressions 

are captured from the source images [157] and converted to animation units, and "transferred" 

to the fitted face models. 

Figures 6.20 - 6.23 show the 15° rotation about x and y axes for the fitted models. Again, these 

views look realistic as long as the angles are kept less than 301. Figure 6.23 shows a small area 

of the background has been included in the model, indicating the global pose parameters are 

not quite right. Some defects of fitting can also be seen near the nose region of Figure 6.23. 

Figures 6.24 - 6.27 show animations of the five major expressions on the fitted models by fol-

lowing the IVIPEG-4 code book. Since the feature points are not placed at the perfect locations 

(since the optimisation is driven by minimising both the feature and appearance errors), the 

fits are slightly less accurate than using the "Vertex Position Correction" scheme. This is most 

noticeable at the mouth corners of Figure 6.24. 

The last animation test is to duplicate the expressions from other images. Five subjects showing 

different expressions [157] are used as the source images (see Figures 6.28 - 6.32). To extract 
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(a) 00021 model fit by the combined error 	(b) 00111 model fit by the combined error 
method 	 method 

(c) 00521 model fit by the combined error 
method 

(d) 02311 model fit by the combined error 
method 

Figure 6.19: Results of the model fits by using the combined appearance and feature measure 
approach 
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(a) +150 y rota- 	(b) —15°  y rota- 	(c) +15°  x rota- 	(d) —15°  x rota- 
tion 	 tion 	 tion 	 tion 

Figure 6.20: ±151  rotation about x and  axes for subject 00021 

(a) +15°  y rota- 	(b) —15°  y rota- 	(c) +15°  x rota- 	(d) —15°  x rota- 
tion 	 tion 	 tion 	 tion 

Figure 6.21: ±150  rotation about x andy axes for subject 00111 
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(a) +15°  y rota- 	(b) —15°  y rota- 	(c) +15°  x rota- 	(d) —15°  x rota- 
tion 	 tion 	 tion 	 tion 

Figure 6.22: ±15° rotation about x and  axes for subject 00521 

(a) +15°  y rota- 	(b) —15° y rota- 	(c) +15°  x rota- 	(d) —15°  x rota- 
tion 	 tion 	 tion 	 tion 

Figure 6.23: ±151  rotation about x and  axes for subject 02311 

(a) anger 	 (b) fear 	 (C) joy 	 (d) sadness 	(e) surprise 

Figure 6.24: Animation offive major expressions on subject 00021 
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(a) anger 	 (b) fear 	 (c) joy 	 (d) sadness 	(e) surprise 

Figure 6.25: Animation offive major expressions on subject 00111 

(a) anger 	 (b) fear 	 (c) joy 	 (d) sadness 	(e) surprise 

Figure 6.26: Animation offive major expressions on subject 00521 

(a) anger 	 (b) fear 	 (c) joy 	 (d) sadness 	(e) surprise 

Figure 6.27: Animation offive major expressions on subject 02311 
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the animation parameters from each expression, the neutral face and expressive face need to be 

fitted. For fitting the neutral faces (Figures 6.28(a)- 6.32(a)), the method described in this sec-

tion is used. However, for fitting the expressive faces (Figures 6.28(c) - 6.32(c)), the animation 

units rather than the shape units are updated. It is assumed that the shape of the subject's face 

does not change, thus the shape parameters are fixed to the values found in fitting the neutral 

face and allowing the global pose and animation parameters to be updated. In consequence, the 

optimiser will compute the best sets of the global pose parameters and animation parameters 

for the expressive face. The set of the computed animation units can then be implemented in the 

fitted model faces and generate a so-called "personalised" expression. The "personalisation" 

means the expression now is no longer the generic one which uses MPEG-4 rules, but is one 

duplicating a particular person's specific expression. 

The "transferability" and "personalisation" are actually the advantages over the "Vertex Posi-

tion Correction" scheme. Since the "Vertex Position Correction" scheme cannot identify the 

shape/animation parameters, it is not possible to transfer or personalise the shape/expression 

from one model to the other. Figures 6.33 - 6.36 illustrate the results of expression duplication 

from Figures 6.28 - 6.32 on the previously model fitted faces. 

6.4 Conclusions and Future Work 

In this chapter, two automatic model adaptation approaches to human faces are presented. The 

first approach uses Hillman's [4, 10] or Ahlberg's [13] model adaptation, but adds an extra 

post-processing scheme of "Vertex Position Correction". This scheme is able to adjust the 

model vertices which correspond to the important facial features to more precise locations. The 

locations of important features are found in the fitted feature contours described in the former 

chapters. The corresponding vertices are thus forced to move to the found feature locations and 

the neighbouring vertices are also moved proportionally. The resultant model fits have been 

tested by rotation and expression animations. Both tests show this automatic model adaptation 

is successful. 

The second approach is to incorporate a feature measure into an appearance adaptation ap-

proach [13]. As a result, the model is fitted to a face when the combined appearance and 

feature error is minimised. Although it is not as precise as the first approach at the feature loca-

tions, it corrects the drawback of Ahlberg's approach [13] that the fitting is usually quite poor 
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(a) neutral face of subject 01 	 (b) model fit of the neutral face 

(c) joyful expression of subject 01 	 (d) model fit of joyful expression 

Model Face Adaptation 

Figure 6.28: Model fit of the neutral and joyful face 
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(a) neutral face of subject 05 	 (b) model fit of the neutral face 

(c) fearful expression of subject 05 	 (d) model fit of fearful expression 
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Figure 6.29: Model fit of the neutral and fearful face 
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(a) neutral face of subject 06 	 (b) model fit of the neutral face 

(c) surprising expression of subject 06 	 (d) model fit of surprising expression 
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Figure 6.30: Model fit of the neutral and surprising face 
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(a) neutral face of subject 08 	 (b) model fit of the neutral face 

(c) angry expression of subject 08 	 (d) model fit of angry expression 
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Figure 6.31: Model fit of the neutral and angry face 
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(a) neutral face of subject 14 	 (b) model fit of the neutral face 

(c) sad expression of subject 14 	 (d) model fit of sad expression 

Model Face Adaptation 

Figure 6.32: Model fir of the neutral and sad face 

139 



Model Face Adaptation 

(a) 	duplicate 	(b) 	duplicate 	(c) duplicate joy 	(d) 	duplicate 	(e) 	duplicate 
anger 	 fear 	 sadness 	 surprise 

Figure 6.33: Duplication offive major expressions on subject 00021 

(a) 	duplicate 	(b) 	duplicate 	(c) duplicate joy 	(d) 	duplicate 	(e) 	duplicate 
anger 	 fear 	 sadness 	 surprise 

Figure 6.34: Duplication offive major expressions on subject 00111 
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(a) 	duplicate 	(b) 	duplicate 	(C) duplicate joy 	(d) 	duplicate 	(e) 	duplicate 
anger 	 fear 	 sadness 	 surprise 

Figure 6.35: Duplication offive major expressions on subject 00521 

(a) 	duplicate 	(b) 	duplicate 	(c) duplicate joy 	(d) 	duplicate 	(e) 	duplicate 
anger 	 fear 	 sadness 	 surprise 

Figure 6.36: Duplication offive major expressions on subject 02311 
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at the feature points which are thus not suitable for animation. This combined appearance and 

feature measure approach has also been tested by various animations and proved successful. 

Although the "Vertex Position Correction" scheme is more accurate, there are several advan-

tages for adopting the second method. First, because the shape/animation units can be extracted 

after adaptation, these can be transferred to any other different face models as long as they com-

ply with the same shape/animation parameters. Second, since the parameters are transferable, 

the model can be animated with a specific expression from a particular person, rather than by 

a set of generic rules. In addition, the extracted shape/animation parameters are valuable for 

studying facial traits (to recognise age, gender, ethnicity) and expressions (to recognise emotion 

and intention). 

Future work would require depth information for the face. This requires at least two face 

images from different view points so that the z-coordinates of facial features can be estimated. 

This would dramatically increase the possible rotation angles of the animated faces. This also 

helps with the appearance fitting and texture rendering as a single image does not cover the full 

surface of the face. 
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Chapter 7 
Conclusions 

7.1 	Achievements of the Thesis 

This thesis presents novel and improved algorithms for facial feature fitting and model face 

fitting. The results of the fitting have been tested with the XM2VTSDB image database [16] 

and other images and sequences. The fitting of the face model (Candide-3 [17]) was not only 

assessed by subjective inspection of the wireframe fit of the face, but also by animation using 

model-based technology. All of the developed fitting algorithms in this thesis are automatic, 

and considered robust and accurate. 

Four important facial features - lip, eyes, eyebrows and chin - are of interest and their contours 

were fitted. The lips were fitted by an adaptive colour Active Contour Model (Snake) [6]. 

The algorithm is capable of sampling the lip and skin pixels (in HSI (Hue-Saturation-Intensity) 

space), thus a colour profile can be built for each individual. The snake incorporates Cohen's 

balloon model [32] and is able to self-adjust its pressure parameters according to the colour 

profile. Thus the algorithm is robust against age, gender, ethnicity and lighting conditions. To 

increase the accuracy of the fitting of the lip corner (as the snake is less competent for getting 

into sharp corners), a separate lip corner finding algorithm was developed. 

Eyes were fitted by an improved Deformable Template algorithm. The iris was fitted first 

followed by fitting of eye corners and eyelids. A circular template was used for iris fitting as 

Yuille did [7], but an additional size term, which was derived from the feature geometry, was 

added in the cost function to avoid template over-shrinking. The eye corners were found by 

a novel rotating vector approach. The vector, pivoted at the centre of the iris, was rotated to 

such a point where the area enclosed by its arrowhead contained most white sclera and the 

eye corner should be in the direction that the vector points. Thus the actual eye corner can be 

located by a corner detection along this direction. The (upper and lower) eyelids were fitted by 

using two parabolic templates. The fitting of eyelids is much faster than Yuille's approach [7] 

as only the templates passing the found eye corners (or their neighbouring points) need to be 

considered for eyelid fitting. The templates were updated sequentially, which means a smaller 
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number of parameters are computed simultaneously. These reduce the complexity and number 

of the iterations thus the speed of fitting is increased dramatically. 

Eyebrows were fitted by a cascaded approach consisting of lighting balancing, k-means cluster-

ing, inner corner shadow removal and twin snake eyebrow extraction. Because of the curvature 

of the forehead, the illumination is often unbalanced from left to right in a sub-image con-

taining an eyebrow. Thus linear scaling and offsetting of intensity horizontally was used to 

re-balance the illumination. This led to more accurate k-means clustering which can divide the 

image into three regions - skin, dense eyebrow and sparse eyebrow. However, the inner corner 

of the eyebrow (the area near the nose ridge and eye socket) often contains heavy shadow and 

cannot be eliminated by the lighting balancing. An edge detection was used to segment the 

shadow and eyebrow. The twin snake was then deployed in this processed image. The snakes 

were initialised at the upper and lower image boundaries respectively and moved oppositely to 

extract the upper and lower boundaries of the eyebrow. The intercept points of the snakes were 

the eyebrow corners. 

The chin was fitted by a novel topologically adaptive snake. This snake is capable of "probing" 

the area of the image where the snake is going to develop. Two statistical measures of this area, 

mean and standard deviation of intensities, were computed. The parameters of the snake were 

self-adjusted according to these measures, therefore the chin can be extracted from various 

types of skin. In cases where the chin is corrupted by heavy shadow, a novel chin extrapolation 

technique was developed. The part of the chin which is in shadow is identified by brightness 

comparison. The initialisation of the snake for this shadowed part of the chin was generated 

from the linear extrapolation of the unshadowed part. This new initialisation is very close to 

the true chin outline and thus the chin is fitted with minimal shadow effect. 

The face was fitted by a Candide-3 wire-frame model using a combined appearance- and 

feature- based approach. This novel approach fitted the face by minimising both the appearance 

and feature errors. It alleviates the drawback of the previous appearance-based approach that is 

unable to fit facial feature points (on the face model) accurately. 

Face animation was generated by applying model-based technology so that the model parame-

ters can be altered. Two sets of animation were generated. The first set followed the MPEG-4 

animation rules [143] to generate the five major expressions - anger, fear, joy, sadness and sur-

prise. The second set of animation demonstrated the concept of cloning of expressions. A face 
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image containing a definite expression [157] was model fitted and thus the parameters related 

to the expression were extracted. These parameters were then implemented on another model 

fitted face to produce a similar expression, demonstrating the cloning of the expression from 

one face to the other. These animations were produced for assessing the model fitting of the 

face. The results of the animations showed acceptable realism and duplication, indicating a 

good fit of the face model has been achieved. 

7.2 	Limitations of the Work 

Although the new/improved approaches described in this thesis outperform the previous ap-

proaches in many aspects, there are still some limitations existing in the algorithms. 

The most noticeable limitation is the speed (time) of the fitting algorithm. Because the facial 

features are fitted by extracting their entire contours rather than only estimating their locations 

(as points), the processing time is hugely increased. Generally speaking, each feature takes 

about 3 - 6 seconds to fit. Thus it will take about 30 seconds to fit all the features in a face. The 

model fitting of the face takes a longer time to complete, typically 3 minutes are required. If the 

preprocessing step of face detection and feature localisation is included, the overall processing 

time for a face image will be about 5 minutes (this is done with a 2.40 GHz Intel(R) Xeon(TM) 

Processor under Linux system ). It is certainly unacceptable for any real-time applications. 

However, many ways to improve the speed are possible. Firstly, the code (written in C/C++) 

was not written in an optimised fashion, as the algorithm was coded initially for the purpose 

of demonstrating the concept of new/improved approaches. It should be possible to rewrite the 

code in a more efficient way. 

Secondly, the algorithm can be modified to improve speed. For example, initialisation is im-

portant for active contour models, deformable templates and appearance-based model fitting of 

the face. An initialisation of the snake closer to the feature can reduce the number of iterations 

dramatically. A better initial search boundary helps deformable templates to fit the features 

quicker. A more accurate initial estimation of the face pose accelerates the face model fitting. 

The computation can become faster by reducing the number of the control points of the snake 

as well but this may deteriorate the fitting accuracy. 

Thirdly, the processing time is related to the size of image. The XM2VTSDB images [16] are 

very high quality face images (size 720 x 576), but in real-time applications such as videophone, 
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the number of pixels in the image is much less (e.g.. QCIF, 180 x 144). The smaller size of the 

images means less control points of the snake will be used, less pixel distance from the initial 

to final position, a smaller search space, and less pixels to be compared in PCA. 

Finally, better hardware is also helpful. Ahlberg [26] used specialised hardware and showed 

appearance-based model face tracking can be achieved in real-time. This indicates the process-

ing time of the proposed algorithms in this thesis can be cut down significantly if specialised 

hardware is used. 

Other limitations include simplicity of the face model (Candide-3) and the proposed algorithms 

are unable to handle large head rotations. The simplicity of Candide-3 is convenient for demon-

strating the concepts of face model fitting and model-based animation, but this simplicity also 

impedes producing animations that are commercially acceptable. It is because some facial fea-

tures are missing as well as the number of vertices and polygons of the model being small. For 

example, Candide-3 has no teeth, tongue, ear and hair. No teeth and tongue means that anima-

tion of speech cannot be realistic. No ear and hair means that it is impossible to attach personal 

accessories, such as earrings or hairpins to the model. The low number of surfaces results in a 

jagged face boundary and affects the smoothness of animation. However, this can be solved by 

adopting one of the high complexity models used commercially. This will increase the number 

of feature points extracted for model face fitting, but it should not be a problem as the contours 

of the features are known. 

Most of the techniques in this work are based on the assumption that the face is nearly-frontal. 

It is important because most of the initialisation of the algorithms is set up using the geometric 

relationships between the features. Such relationships become invalid if the rotation of the 

face is large. To improve this, estimation of the face pose (rotation about x- y- and z- axes) 

in the early stage is necessary. Thus the geometric relationships between the features can be 

calculated by rotating the face back to a frontal view. 

Furthermore, some limitations are also identified in each fitting technique. For lip fitting, fa-

cial hair and revealed teeth are two major factors causing the system to fail. Dense beards 

and moustaches (but not stubble) create strong intensity edges that overpower the snake force 

generated by the lip-skin colour difference and they may also occlude the true lip edge. These 

cause the snake to fit the beard/moustache contour rather than the lip contour. Revealed teeth 

significantly alter the expected colour profile as the algorithm used only expects the presence 
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of skin and lip colours in the search region. This results in a wrong colour threshold estimation 

for lips and skin, making the snake unable to fit the lip contour. 

For eye fitting, glasses and reflections are two major factors causing the system to fail. The 

glasses introduce frame edges which are stronger than the edges of the eye features. Reflections 

can generate unexpected high intensity, low saturation areas in the eye search region. Reflection 

problems are also intensified by glasses as they often have higher reflectivity. As the cost 

functions for the deformable templates use edge, intensity and saturation terms, these frame 

edges and reflections can interfere with the template deformation, resulting in a misfit of the 

eye features. 

For eyebrow fitting, glasses, hair and unbalanced lighting are the major factors causing the sys-

tem to fail. The glasses and hair introduce additional edges as well as occluding the eyebrow, 

making the snakes fit the edges of the hair or the glasses frame instead of the eyebrow con-

tour. Furthermore, although a linear lighting balancing mechanism is used prior to the eyebrow 

fitting, this is not always sufficient to compensate for a wide range of illumination. Also, the 

shadow is more complex in largely side-lit images, such cases can not be approximated by a 

linear model. 

Chin fitting has the limitation of facial hair occlusion. Because dense beards can cover the chin 

characteristic found in Section 5.2, the snake is unable to fit the chin. The technique also suffers 

from the general limitation of being unable to handle large head rotation. This is because the 

search region is defined by facial feature geometry and would not be able to fully encompass 

the chin if the head rotation is too large. 

Other limitations of the model face fitting technique include no depth information and some 

missing face texture. These are inevitable as only a single face image is used. In consequence, 

the face cannot be rotated to larger angles or the artefacts (e.g. unrealistic nose height and some 

void surface patches) will be visible in an animation. 

7.3 Future Research 

Further improvements on facial feature fitting and face model fitting are also possible. As lip 

fitting is frequently degraded by facial hair and revealed teeth, detection and segmentation of 

facial hair and teeth are suggested. Facial hair may be identified by using texture properties and 
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thus the coverage of the hair may be estimated. Then a colour model of the facial hair could 

be established and possibly incorporated into the colour snake in conjunction with the skin and 

lip colour models. In consequence, the snake would be able to recognise the lip-skin boundary 

using the lip and skin colour models (if the lip is not occluded by the facial hair) and the lip-

facial hair boundary using the lip and facial hair colour models (if the lip is partially occluded 

by the facial hair). 

The teeth can be discriminated from the skin and lip by examining the saturation profile, as 

the teeth are whiter which means lower saturation. Identification of the teeth should result in 

a better estimation of the skin-lip colour thresholds (as the teeth pixels are removed from the 

threshold calculation) thus the lip outline can be fitted more accurately. This also indicates a 

possibility of finding the inner boundary of the lip if the teeth could be detected and segmented. 

Eye fitting is frequently interfered with by glasses frames and reflections. To reduce such 

interferences, a reflection cancellation algorithm and a method to remove the glasses frames 

are suggested. The glasses frames may be removed by using traditional edge detection as the 

frames generally produce very distinct edges. Reflections in the eye region may be identified 

by using Perez et al's [114] technique to detect abnormally high (or change of) saturation. 

Hair, glasses and unbalanced lighting result in unsatisfactory eyebrow fitting. Again, the glasses 

frames may be identified by tradition edge detection, while the hair may be removed by using 

texture properties. Fitting the eyebrow in the heavy shadow resulted from largely side-lit im-

ages is challenging. A possible solution may be to detect the direction of the light sources 

and use the topology of the eyebrow surface [158] to apply a more sophisticated (non-linear) 

lighting balancing scheme. Understanding eyebrow texture may be also beneficial in fitting the 

shadowed eyebrow region. 

The major limitation of the chin fitting is the occlusion of facial hair. Depending upon the 

extent of the facial hair coverage, the chin may only be fitted when there is a sufficient area 

of the chin visible (chins not perceptible by human eyes cannot possibly be fitted). Partially 

occluded chins may be fitted by recognising the area of the facial hair (this may require texture 

recognition). Then the visible parts of the chin may be fitted followed by an estimation of the 

invisible parts. 

Limitations of the face model fitting such as no depth information and missing face texture have 

been noted. To solve these, a set of face images taken at different view angles may be used. At 
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least two images are required to produce a stereo view of an image object. The estimation of the 

z-coordinate may be further improved if more cameras are used [1591. Multiple images should 

also result in more complete face textures. A texture blending technique similar to Pighin et. al 

[138] is suggested to produce more realistic and smooth face texture. Their technique blended 

the textures from different images by assigning different weights according to the angle between 

the face surface normal and the camera direction. In addition, if a 3D scanner is available, better 

depth information and full face texture can be obtained. 

The results of this work open up many future research opportunities. The animation units 

extracted from the face model can be used for expression recognition and classification [2]. 

This leads to more psychological and medical uses. Examples are micro- and subtle- expres-

sion recognition, lie detection, emotion and intention analysis, cognitive processes, personality 

studies and early child development [3]. The shape units extracted from the face model can 

be used for personal identity recognition, such as recognising age, gender, ethnic origin and 

condition of health [1]. 

Other future research related to this work includes lip-reading (lip fitting) [30, 89, 90] and gaze 

detection (eye fitting) [106,118-121]. Both studies have potential applications in the field 

of HCI (Human Computer Interface). Lip-reading requires finding both the outer and inner 

lip boundaries and performing temporal lip tracking. Such a system is expected to handle 

the revealed teeth and tongue so the inner lip boundary can be extracted. The system also 

requires matching the tracked lip to a sequence of phonemes so that speech recognition can be 

performed. 

Gaze detection and tracking are popular because it can be used for hands-free computer dis-

play control and interaction. However, as direction of gaze changes in relation to the small 

movement of the eyeball, the accuracy of estimated direction of gaze from the images is still 

unsatisfactory. Another issue for gaze tracking is blinking handling, as the tracking may be 

lost because irises/ pupils are invisible when the blinking occurs. These two concerns are the 

major bottlenecks to prevent these techniques being used in commercial applications. Another 

valuable application for using gaze and blinking is for drowsiness detection. 
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7.4 Final Remarks 

Facial feature fitting and Model face fitting are important research areas with a wide range 

of applications across various disciplines. As a result, the algorithms developed in this work 

are valuable and can be used as a basis for future research. The suggested improvements, when 

combined with the algorithms' existing attributes of automation, robustness and accuracy, make 

a fully usable face modelling system foreseeable. This will directly benefit use of face mod-

elling in the IT, psychology and medicine sectors and also benefit applications using individual 

facial features such as lips (lip-reading) and eyes (gaze control, drowsiness detection). 
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Candide-3 and MPEG-4 Conversion 
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Appendix C 

Candide-3 Shape and Animation Units 
and the Interpretation 

C.1 Shape Units 

Shape Unit (AU) Description 

SU 0 Head height 

SU 1 Eyebrows vertical position 

SU 2 Eyes vertical position 

SU 3 Eyes, width 

SU 4 Eyes, height 

SU 5 Eye separation distance 

SU 6 Cheeks z 

SU 7 Nose z-extension 

SU 8 Nose vertical position 

SU 9 Nose, pointing up 

SU 10 Mouth vertical position 

SU 11 Mouth width 

SU 12 Eyes vertical difference 

SU 13 Chin width 

*Number of Shape Units: 14 
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C.2 Animation Units 

Animation Unit (AU) Description 

AU 0 Upper lip raiser (AUV 0) 

AU I Jaw drop (AUV I 1) 

AU 2 Lip stretcher (AUV 2) 

AU 3 Brow lowerer (AUV 3) 

AU 4 Lip corner depressor (AUV 14) 

AU 5 Outer brow raiser (AUV 5) 

AU 6 Eyes closed (AUV 6) 

AU 7 Lid tightener (AUV 7) 

AU 8 Nose wrinkler (AUV 8) 

AU 9 Lip presser (AUV 9) 

AU 10 Upper lid raiser (AUV 10) 

AU 11 (FAP 3) open-jaw 

AU 12 (FAP 4) lower Lmidlip 

AU 13 (FAP 5) raise.bmidlip 

AU 14 (FAP 6) stretch _1_cornerlip 

AU 15 (FAP 7) stretch r_cornerlip 

AU 16 (FAP 8) lowerJJipim 

AU 17 (FAP 9) lowerJiipirn 

AU 18 (FAP 10) raisebiipim 

AU 19 (FAP 1 1) raisebiipsm 

AU 20 (FAP 12) raise_l_cornerlip 

AU 21 (FAP 13) raisecornerIip 

AU 22 (FAP 14) thrust-jaw 

AU 23 (FAP15) shift-jaw 

AU 24 (FAP 16) push-blip 

AU 25 (FAP 17) pushtiip 
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Animation Unit (AU) Description 

AU 26 (FAP18) depress-chin 

AU 27 (FAP19) close-ti-eyelid 

AU 28 (FAP20) close-ti-eyelid 

AU 29 (FAP21) closebi_eyeiid 

AU 30 (FAP22) cIosekseye1id 

AU 31 (FAP23) yaw_i_eyeball 

AU 32 (FAP24) yaw i_eyeball 

AU 33 (FAP25) pitch_i_eyeball 

AU 34 (FAP26) pitch_reyeba1l 

AU 35 (FAP27) thrust_i_eyeball 

AU 36 (FAP28) thrust_r_eyeball 

AU 37 (FAP29) dilate_i_pupil 

AU 38 (FAP30) dilate_r_pupil 

AU 39 (FAP31) raiselieyebrow 

AU 40 (FAP32) raise_ri eyebrow 

AU 41 (FAP33) raise_i_rn-eyebrow 

AU 42 (FAP34) raise_rmeyebrow 

AU 43 (FAP35) raiseloeyebrow 

AU 44 (FAP36) raise_roeyebrow 

AU 45 (FAP37) squeeze_l_eyebrow 

AU 46 (FAP38) squeeze_reyebrow 

AU 47 (FAP39) pufflcheek 

AU 48 (FAP40) puff _rcheek 

AU 49 (FAN 1) iifticheek 

AU 50 (FAP42) lifLrcheek 
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Candide-3 Shape and Animation Units and the Interpretation 

Animation Unit (AU) Description 

AU 51 (FAP5 1) lower_Lmidlipo 

AU 52 (FAP52) raise_b.midlip_o 

AU 53 (FAP53) stretch_1_cornerlip_o 

AU 54 (FAP54) stretch_r_cornerlip_o 

AU 55 (FAP55) lowert_liplm_o 

AU 56 (FAP56) lowerJiipim_o 

AU 57 (FAP57) raise_biipim_o 

AU 58 (FAP58) raise_b_lip_rm_o 

AU 59 (FAP59) raise_I_comerlipo 

AU 60 (FAP60) raiser_comerlip_o 

AU 61 (FAP61) stretch_Lnose 

AU 62 (FAP62) stretch r.nose 

AU 63 (FAP63) raise-nose 

AU 64 (FAP64) bend-nose 

*Number of Animation Units: 65 

= left, r = right, t = top, b = bottom, i = inner, o = outer, m = middle 
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