605 research outputs found

    Multimodal Emotion Recognition among Couples from Lab Settings to Daily Life using Smartwatches

    Full text link
    Couples generally manage chronic diseases together and the management takes an emotional toll on both patients and their romantic partners. Consequently, recognizing the emotions of each partner in daily life could provide an insight into their emotional well-being in chronic disease management. The emotions of partners are currently inferred in the lab and daily life using self-reports which are not practical for continuous emotion assessment or observer reports which are manual, time-intensive, and costly. Currently, there exists no comprehensive overview of works on emotion recognition among couples. Furthermore, approaches for emotion recognition among couples have (1) focused on English-speaking couples in the U.S., (2) used data collected from the lab, and (3) performed recognition using observer ratings rather than partner's self-reported / subjective emotions. In this body of work contained in this thesis (8 papers - 5 published and 3 currently under review in various journals), we fill the current literature gap on couples' emotion recognition, develop emotion recognition systems using 161 hours of data from a total of 1,051 individuals, and make contributions towards taking couples' emotion recognition from the lab which is the status quo, to daily life. This thesis contributes toward building automated emotion recognition systems that would eventually enable partners to monitor their emotions in daily life and enable the delivery of interventions to improve their emotional well-being.Comment: PhD Thesis, 2022 - ETH Zuric

    Multiple Instance Learning for Emotion Recognition using Physiological Signals

    Get PDF
    The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine learning algorithms for improving the classification stage, accounting for the time ambiguity of emotional responses. Modeling and predicting the affective state over time is not a trivial problem because continuous data labeling is costly and not always feasible. This is a crucial issue in real-life applications, where data labeling is sparse and possibly captures only the most important events rather than the typical continuous subtle affective changes that occur. In this work, we introduce a framework from the machine learning literature called Multiple Instance Learning, which is able to model time intervals by capturing the presence or absence of relevant states, without the need to label the affective responses continuously (as required by standard sequential learning approaches). This choice offers a viable and natural solution for learning in a weakly supervised setting, taking into account the ambiguity of affective responses. We demonstrate the reliability of the proposed approach in a gold-standard scenario and towards real-world usage by employing an existing dataset (DEAP) and a purposely built one (Consumer). We also outline the advantages of this method with respect to standard supervised machine learning algorithms

    Improving the Generalizability of Speech Emotion Recognition: Methods for Handling Data and Label Variability

    Full text link
    Emotion is an essential component in our interaction with others. It transmits information that helps us interpret the content of what others say. Therefore, detecting emotion from speech is an important step towards enabling machine understanding of human behaviors and intentions. Researchers have demonstrated the potential of emotion recognition in areas such as interactive systems in smart homes and mobile devices, computer games, and computational medical assistants. However, emotion communication is variable: individuals may express emotion in a manner that is uniquely their own; different speech content and environments may shape how emotion is expressed and recorded; individuals may perceive emotional messages differently. Practically, this variability is reflected in both the audio-visual data and the labels used to create speech emotion recognition (SER) systems. SER systems must be robust and generalizable to handle the variability effectively. The focus of this dissertation is on the development of speech emotion recognition systems that handle variability in emotion communications. We break the dissertation into three parts, according to the type of variability we address: (I) in the data, (II) in the labels, and (III) in both the data and the labels. Part I: The first part of this dissertation focuses on handling variability present in data. We approximate variations in environmental properties and expression styles by corpus and gender of the speakers. We find that training on multiple corpora and controlling for the variability in gender and corpus using multi-task learning result in more generalizable models, compared to the traditional single-task models that do not take corpus and gender variability into account. Another source of variability present in the recordings used in SER is the phonetic modulation of acoustics. On the other hand, phonemes also provide information about the emotion expressed in speech content. We discover that we can make more accurate predictions of emotion by explicitly considering both roles of phonemes. Part II: The second part of this dissertation addresses variability present in emotion labels, including the differences between emotion expression and perception, and the variations in emotion perception. We discover that it is beneficial to jointly model both the perception of others and how one perceives one’s own expression, compared to focusing on either one. Further, we show that the variability in emotion perception is a modelable signal and can be captured using probability distributions that describe how groups of evaluators perceive emotional messages. Part III: The last part of this dissertation presents methods that handle variability in both data and labels. We reduce the data variability due to non-emotional factors using deep metric learning and model the variability in emotion perception using soft labels. We propose a family of loss functions and show that by pairing examples that potentially vary in expression styles and lexical content and preserving the real-valued emotional similarity between them, we develop systems that generalize better across datasets and are more robust to over-training. These works demonstrate the importance of considering data and label variability in the creation of robust and generalizable emotion recognition systems. We conclude this dissertation with the following future directions: (1) the development of real-time SER systems; (2) the personalization of general SER systems.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147639/1/didizbq_1.pd

    A HIERARCHY BASED ACOUSTIC FRAMEWORK FOR AUDITORY SCENE ANALYSIS

    Get PDF
    The acoustic environment surrounding us is extremely dynamic and unstructured in nature. Humans exhibit a great ability at navigating these complex acoustic environments, and can parse a complex acoustic scene into its perceptually meaningful objects, referred to as ``auditory scene analysis". Current neuro-computational strategies developed for auditory scene analysis related tasks are primarily based on prior knowledge of acoustic environment and hence, fail to match human performance under realistic settings, i.e. the acoustic environment being dynamic in nature and presence of multiple competing auditory objects in the same scene. In this thesis, we explore hierarchy based computational frameworks that not only solve different auditory scene analysis related paradigms but also explain the processes driving these paradigms from physiological, psychophysical and computational viewpoint. In the first part of the thesis, we explore computational strategies that can extract varying degree of details from complex acoustic scene with an aim to capture non-trivial commonalities within a sound class as well as differences across sound classes. We specifically demonstrate that a rich feature space of spectro-temporal modulation representation complimented with markovian based temporal dynamics information captures the fine and subtle changes in the spectral and temporal structure of sound events in a complex and dynamic acoustic environment. We further extend this computational model to incorporate a biologically plausible network capable of learning a rich hierarchy of localized spectro-temporal bases and their corresponding long term temporal regularities from natural soundscape in a data driven fashion. We demonstrate that the unsupervised nature of the network yields physiologically and perceptually meaningful tuning functions that drive the organization of acoustic scene into distinct auditory objects. Next, we explore computational models based on hierarchical acoustic representation in the context of bottom-up salient event detection. We demonstrate that a rich hierarchy of local and global cues capture the salient details upon which the bottom-up saliency mechanisms operate to make a "new" event pop out in a complex acoustic scene. We further show that a top-down event specific knowledge gathered by scene classification framework biases bottom-up computational resources towards events of "interest" rather than any new event. We further extend the top-down framework in the context of modeling a broad and heterogeneous acoustic class. We demonstrate that when an acoustic scene comprises of multiple events, modeling the global details in the hierarchy as a mixture of temporal trajectories help to capture its semantic categorization and provide a detailed understanding of the scene. Overall, the results of this thesis improve our understanding of how a rich hierarchy of acoustic representation drives various auditory scene analysis paradigms and how to integrate multiple theories of scene analysis into a unified strategy, hence providing a platform for further development of computational scene analysis research

    Behavioural and neural insights into the recognition and motivational salience of familiar voice identities

    Get PDF
    The majority of voices encountered in everyday life belong to people we know, such as close friends, relatives, or romantic partners. However, research to date has overlooked this type of familiarity when investigating voice identity perception. This thesis aimed to address this gap in the literature, through a detailed investigation of voice perception across different types of familiarity: personally familiar voices, famous voices, and lab-trained voices. The experimental chapters of the thesis cover two broad research topics: 1) Measuring the recognition and representation of personally familiar voice identities in comparison with labtrained identities, and 2) Investigating motivation and reward in relation to hearing personally valued voices compared with unfamiliar voice identities. In the first of these, an exploration of the extent of human voice recognition capabilities was undertaken using personally familiar voices of romantic partners. The perceptual benefits of personal familiarity for voice and speech perception were examined, as well as an investigation into how voice identity representations are formed through exposure to new voice identities. Evidence for highly robust voice representations for personally familiar voices was found in the face of perceptual challenges, which greatly exceeded those found for lab-trained voices of varying levels of familiarity. Conclusions are drawn about the relevance of the amount and type of exposure on speaker recognition, the expertise we have with certain voices, and the framing of familiarity as a continuum rather than a binary categorisation. The second topic utilised voices of famous singers and their “super-fans” as listeners to probe reward and motivational responses to hearing these valued voices, using behavioural and neuroimaging experiments. Listeners were found to work harder, as evidenced by faster reaction times, to hear their musical idol compared to less valued voices in an effort-based decision-making task, and the neural correlates of these effects are reported and examined

    Pathway to Future Symbiotic Creativity

    Full text link
    This report presents a comprehensive view of our vision on the development path of the human-machine symbiotic art creation. We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist (Turing Artists) to a Machine artist in its own right. We begin with an overview of the limitations of the Turing Artists then focus on the top two-level systems, Machine Artists, emphasizing machine-human communication in art creation. In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations. The rapid development of immersive environment and further evolution into the new concept of metaverse enable symbiotic art creation through unprecedented flexibility of bi-directional communication between artists and art manifestation environments. By examining the latest sensor and XR technologies, we illustrate the novel way for art data collection to constitute the base of a new form of human-machine bidirectional communication and understanding in art creation. Based on such communication and understanding mechanisms, we propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle rather than the traditional "end-to-end" dogma. By proposing a new form of inverse reinforcement learning model, we outline the platform design of machine artists, demonstrate its functions and showcase some examples of technologies we have developed. We also provide a systematic exposition of the ecosystem for AI-based symbiotic art form and community with an economic model built on NFT technology. Ethical issues for the development of machine artists are also discussed

    A Study of Accomodation of Prosodic and Temporal Features in Spoken Dialogues in View of Speech Technology Applications

    Get PDF
    Inter-speaker accommodation is a well-known property of human speech and human interaction in general. Broadly it refers to the behavioural patterns of two (or more) interactants and the effect of the (verbal and non-verbal) behaviour of each to that of the other(s). Implementation of thisbehavior in spoken dialogue systems is desirable as an improvement on the naturalness of humanmachine interaction. However, traditional qualitative descriptions of accommodation phenomena do not provide sufficient information for such an implementation. Therefore, a quantitativedescription of inter-speaker accommodation is required. This thesis proposes a methodology of monitoring accommodation during a human or humancomputer dialogue, which utilizes a moving average filter over sequential frames for each speaker. These frames are time-aligned across the speakers, hence the name Time Aligned Moving Average (TAMA). Analysis of spontaneous human dialogue recordings by means of the TAMA methodology reveals ubiquitous accommodation of prosodic features (pitch, intensity and speech rate) across interlocutors, and allows for statistical (time series) modeling of the behaviour, in a way which is meaningful for implementation in spoken dialogue system (SDS) environments.In addition, a novel dialogue representation is proposed that provides an additional point of view to that of TAMA in monitoring accommodation of temporal features (inter-speaker pause length and overlap frequency). This representation is a percentage turn distribution of individual speakercontributions in a dialogue frame which circumvents strict attribution of speaker-turns, by considering both interlocutors as synchronously active. Both TAMA and turn distribution metrics indicate that correlation of average pause length and overlap frequency between speakers can be attributed to accommodation (a debated issue), and point to possible improvements in SDS “turntaking” behaviour. Although the findings of the prosodic and temporal analyses can directly inform SDS implementations, further work is required in order to describe inter-speaker accommodation sufficiently, as well as to develop an adequate testing platform for evaluating the magnitude ofperceived improvement in human-machine interaction. Therefore, this thesis constitutes a first step towards a convincingly useful implementation of accommodation in spoken dialogue systems
    • …
    corecore