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Abstract

The acoustic environment surrounding us is extremely dynamic and unstruc-

tured in nature. Humans exhibit a great ability at navigating these complex

acoustic environments, and can parse a complex acoustic scene into its percep-

tually meaningful objects, referred to as “auditory scene analysis". Current

neuro-computational strategies developed for auditory scene analysis related

tasks are primarily based on prior knowledge of acoustic environment and

hence, fail to match human performance under realistic settings, i.e. the acous-

tic environment being dynamic in nature and presence of multiple competing

auditory objects in the same scene. In this thesis, we explore hierarchy based

computational frameworks that not only solve different auditory scene analy-

sis related paradigms but also explain the processes driving these paradigms

from physiological, psychophysical and computational viewpoint.

In the first part of the thesis, we explore computational strategies that can

extract varying degree of details from complex acoustic scene with an aim

to capture non-trivial commonalities within a sound class as well as differ-

ences across sound classes. We specifically demonstrate that a rich feature

space of spectro-temporal modulation representation complimented with

markovian based temporal dynamics information captures the fine and subtle
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changes in the spectral and temporal structure of sound events in a complex

and dynamic acoustic environment. We further extend this computational

model to incorporate a biologically plausible network capable of learning a

rich hierarchy of localized spectro-temporal bases and their corresponding

long term temporal regularities from natural soundscape in a data driven

fashion. We demonstrate that the unsupervised nature of the network yields

physiologically and perceptually meaningful tuning functions that drive the

organization of acoustic scene into distinct auditory objects.

Next, we explore computational models based on hierarchical acoustic repre-

sentation in the context of bottom-up salient event detection. We demonstrate

that a rich hierarchy of local and global cues capture the salient details upon

which the bottom-up saliency mechanisms operate to make a "new" event

pop out in a complex acoustic scene. We further show that a top-down event

specific knowledge gathered by scene classification framework biases bottom-

up computational resources towards events of "interest" rather than any new

event. We further extend the top-down framework in the context of modeling

a broad and heterogeneous acoustic class. We demonstrate that when an

acoustic scene comprises of multiple events, modeling the global details in

the hierarchy as a mixture of temporal trajectories help to capture its semantic

categorization and provide a detailed understanding of the scene.

Overall, the results of this thesis improve our understanding of how a rich

hierarchy of acoustic representation drives various auditory scene analysis

paradigms and how to integrate multiple theories of scene analysis into a

unified strategy, hence providing a platform for further development of com-

putational scene analysis research.
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Chapter 1

Introduction

1.1 Background and Motivation

In everyday life, humans are surrounded by multitude of acoustic scenes e.g.

a cocktail party, a busy street, or a crowded coffee shop where the sound

originating from a particular source do not exist in isolation. They persistently

occur in presence of other competing sources and distractors that form a per-

son’s acoustic environment. The auditory system performs many intricate

steps involved in processing of sound which enables our ability to hear and

perceive constantly changing acoustic environment. This process of auditory

system to parse the complex mixture such that the entire soundscape gets

organized into meaningful ‘percepts’ is referred to as ‘auditory scene analysis’

(ASA) [1].

Humans and animals have got great ability to interpret and understand the

complex acoustic environment surrounding them. For instance, following a

conversation at a noise cocktail party or locating your newborn in the middle

of a colony of screaming birds relies on successfully segregating sounds into
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meaningful streams. However, the neural mechanisms by which the human

brain achieves this feat are largely unknown. In last three decades, auditory

scientists have postulated several theories for explaining the processing of

complex auditory scenes and perceptual phenomenon driving scene segre-

gation paradigm. Many of the computational models have been developed

based on these theories. However, the diversity of all these models and con-

tinued interest in this field suggests that auditory research community still

hasn’t solved the problem of complex scene segregation from computational

perspective. Most of the existing computational models are still not able to

match human performance when faced with realistic setting, such as, variabil-

ity of noise environment and presence of competing sound sources among

others.

This thesis concerns computational models of auditory scene analysis, with a

focus on how sound is represented across different stages of auditory pathway

and how does this representation gets transformed into an auditory ‘percept’.

In particular, we consider models that seek to explain: (1) how to represent

different stages of processing of sound in auditory system via efficient compu-

tational strategies (2) what are the different degrees of transformation that the

sound goes through across each stage of processing. (3) how do the details

extracted in each stage finally combine to form an auditory percept. (4) how

to adapt the representation captured at each stage to constantly changing

acoustic environment. In the course of this thesis, we show that the proposed

computational models not only succeeds in capturing efficient representation

of sound but also successfully drives many of the paradigms related to audi-

tory scene analysis.
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1.2 Key Stages of Auditory Scene Analysis

Based on past theories, ASA has been conceptualized as a multi-stage process

as shown in Figure 1.1. In the first stage, the acoustic mixture is decomposed

Figure 1.1: Block diagram of stages of Auditory Scene Analysis (adapted from
Mellinger,1992). Event and source formation are driven by feature representation and
prior knowledge

into feature elements. These feature elements are considered to be the building

blocks of auditory scene, which describes different acoustic events. Since past
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many years, a lot of effort is being thrusted upon obtaining a feature repre-

sentation that is capable of extracting relevant informations from complex

auditory scenes. This feature representation is complimented with a grouping

mechanism that combines the building blocks arising from the same acoustic

source, hence, finally forming a perceptual structure of the source called a

stream. These grouping mechanisms are well guided by feature dynamics

characterizing the constantly changing objects within the scene [2]. Slower dy-

namics in acoustic signals are believed to be the main carrier of information in

complex acoustic scenes [3] as well as commensurate with temporal dynamics

of stream formation and auditory grouping [4]. The second stage comprises

of statistical modeling based approach which projects the groups of feature

representation onto a space of auditory objects via learning some useful statis-

tics demonstrative of key details present in an acoustic scene. These statistical

models typically form the core of high level processes and are based on past

knowledge and expectations. Hence, the ability of a computational model in

any auditory scene analysis related paradigm depends on two key compo-

nents : 1) Obtaining a rich and robust feature representation that can capture

object specific details present in the scene and compliment it with grouping

mechanisms matching their temporal regularities to dynamics of an auditory

object 2) Using the feature space to build statistical model based representa-

tion of the auditory object to drive the key processes of auditory scene analysis.
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1.2.1 Feature Representation and Grouping Mechanisms

It is well argued in vision literature that a high dimensional feature representa-

tion can empower a computational visual recognizer in extracting meaningful

semantics from arbitrary natural images [5]. Along similar lines, kernel based

approaches have proved to be very successful in visual recognition or classifi-

cation based tasks [6]. In recent times, unsupervised deep layered architectures

have been proved to be extremely effective in capturing the salient aspects of

a visual scene through discovery of discriminative clusters, parts, mid-level

features and hidden units [7]. In recent past, a number of these deep network

techniques have been extended to time series visual data, thereby modeling

temporal trajectories of dynamic visual scene and apply it to human pose

estimation and motion tracking problems [8]. It has also been well established

in [9] that visual cues, even when well distributed in space bind over time to

form a perceptual and unified organization of visual objects [10]. The “scene

segmentation" problem in vision is analogous to the problem of auditory

scene analysis since past psychoacoustic studies have shown that the auditory

system also uses a combination of rich feature space and temporal grouping

strategies to process an auditory scene [11, 12].

The concept of a rich feature representation and temporal grouping mecha-

nisms has been well observed in past physiological studies. There are physio-

logical evidences which suggest that the auditory pathway in human brain

performs the task of decomposing the acoustic signal into its constituting

elements and mapping them into perceptual streams [13]. The initial transfor-

mation of acoustic signal into set of frequency components along the tonotopic
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axis happens at the cochlea [14]. As the signal pass onwards from the cochlea

towards the auditory cortex (A1), additional features are extracted forming a

rich feature representation that includes onsets, offsets, harmonicities, ampli-

tude and frequency modulations (AM, FM). These features form the backbone

of a sound object representation in human auditory system [15–17]. Recent

neurophysiological studies have also suggested that a rich high dimensional

feature representation doesn’t provide the complete picture of how sound is

represented in human brain, hence emphasizing the importance of grouping

mechanisms like temporal coherence theory [18]. These experiments suggests

that a combination of rich feature representation and feature binding induced

by temporal coherence provides a more complete and robust representation

of sound along the auditory pathway and facilitates segregation of auditory

objects into perceptual streams.

An important aspect of ASA based computational models is obtaining a com-

putational medium for parameterizing the auditory feature space [23]. Robust

low-level acoustic features have been proven to be effective representations

for variety of auditory scene analysis related paradigms [19–22]. In addition,

Mel Frequency Cepstral Coefficients (MFCC) have been a popular choice of

acoustic scene classification as they are quite powerful in capturing the overall

‘transfer function’ of a scene [23, 24]. However, for high-level interpretation of

a complex scene, one has to rely on subtle but intricate details which low-level

features fail to capture. Instead, it is imperative to consider signal features

that capture the spectral and temporal modulations (i.e. changes) in the scene

over a wide range of resolutions [25]. Gabor features offer such flexibility in

time and frequency by tracking the localized spectral and temporal signal
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changes over various scales [26]. In recent times, a very common technique

of characterizing an auditory feature space is by projecting time-frequency

spectrogram representation of sound onto a two dimensional filter; typically

referred to as spectro-temporal receptive fields (STRF) [27–30]. The primary

assumption in these computational frameworks is that STRFs are linear filters

that map the raw acoustic signal to multidimensional feature in a linear trans-

formation process; however a lot of physiological studies suggest that neural

representation of sound in auditory pathway is a nonlinear process character-

ized by nonlinearity of A1 responses [31]. Another major shortcoming of these

models is parameterized transformation of acoustic signal to feature space.

Such a transformation gets limited in its scope of capturing a feature space

that can encode any auditory soundscape irrespective of its complexity [32].

1.2.2 Statistical modeling for Auditory Scene Analysis

Majority of statistical based approaches based on biological mechanisms for

scene analysis processes are evaluated in terms of how faithfully they are able

to reproduce the psychoacoustics of stream segregation. For example, Wang

et. al in [33] measure the fitness of their model based on its ability to repro-

duce the fission and temporal coherence boundaries reported in [34]. Some

more examples based in this approach include models of auditory periphery

explaining the streaming paradigm of two tone sequences [35, 36], stream

segregation based on pitch modulations [37], as well as some models based

on elaborate sound sequences like segregating speech from environmental
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sounds (e.g siren, telephone rings etc.) [38]. These models are restricted to

the analysis of how a specific cue contributes to stream segregation processes.

These models also lack in giving an insight about what is the underlying rep-

resentation that captures these wide range of psychoacoustic cues from input

sound as suggested by physiological studies [13]. This suggests that there is

an existing gap between the computational models based on psychoacoustic

theories and physiological bases of how sound is represented in human brain.

Some of the computational models also explore the idea of temporal coherence

from stream segregation perspective and are primarily based on the notion

that acoustic features of sounds emitted by the same source recur together.

Hence, grouping by temporal coherence bind them together into single au-

ditory object representation [18, 39, 40]. These models are typically built

on the framework of capturing long term temporal correlation across multi-

dimensional feature representation assumed to provide a good mathematical

solution supporting the theory of temporal coherence. However, the backbone

of these models is primarily based on prior knowledge of what sources being

present in the scene. These models are typically driven by supervised training

framework learning the mapping of sound representation from feature space

to an auditory object. Hence, it can be well argued that these models lack

the biological perspective of temporal grouping mechanisms [41] driving the

formation of auditory objects based on feature association.

Over past several decades, many research fields related to auditory scene

analysis have been studied to varying extent. The related research comprises

different audio classification problems such as speech/music discrimination

[42], sound source classification [43], environmental noise classification [44],
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content-based audio classification [45], scene segregation [46] and salient

event detection among others [47]. In the context of scene analysis, scene

classification typically refers to the task of labeling an acoustic scene with

its corresponding class. However, event detection task refers to detection of

onset/offset for the classes present in a recording and classification within the

estimated onset/offset, which is typically a requirement in real-life scenario.

The complexity of such tasks typically lie in the unstructured nature of sounds

events and high degree of variation present among the sound events from the

same class [48]. Moreover, there can be multiple sound sources that produce

sound events belonging to the same class, e.g. a household ambience typically

comprises of sound events like water gushing out of a tap, sound of cooking

utensils etc. which adds to the semantic richness of sound class and hence

increases the complexity of underlying task.

In past efforts, auditory scientists have attempted to solve these problems

using statistical modeling based approaches. For example, several techniques

for auditory scene classification have been based on descriptive statistics

quantifying various aspects of statistical distributions including moments

(such as mean, variance, skewness and kurtosis of distribution) derived from

feature representation of acoustic scenes [49]. Other methods employed in

scene classification and event detection task include generative architectures

like Gaussian Mixture Models (GMMs) in which features vectors are inter-

preted as being generated by multi-modal distribution expressed as sum of

Gaussian distributions [22, 50]. The other class of generative models used

in several classification and detection tasks are based on Hidden Markov
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Models (HMMs) to account for the temporal unfolding of events within com-

plex soundscapes [51]. Source separation and scene segregation related tasks

have been primarily based on certain segmentation rules based on perceptual

grouping cues [52] semi-manually designed to operate on low-level features to

estimate a time-frequency mask that isolates the signal components belonging

to different sources [53]. Non-negative matrix factorization (NMF) [54–56]

has been another popular technique aimed to learn a set of non-negative

bases representation used to estimate mixing factors. Statistical models like

support vector machines (SVM) and Bayesian Network (BN) have also been

employed to learn relationship between audio effects and high-level scene

representations [57].

In recent times, with the emergence of deep learning architectures, deep learn-

ing methods have proved to be extremely successful and have demonstrated

state-of-the art results in vision related tasks like visual scene segmentation,

classification and identification among others [58–60]. Taking cue from vision

based studies, auditory scientists have applied such techniques to areas of

speech recognition, speaker identification etc. and have demonstrated state of

the art performance [61, 62]. However, the applicability of such techniques

have also been extended to tasks related to auditory scene analysis as well as

mentioned above. Deep learning models like Feed Forward Neural Networks

(FNNs), Convolutional Neural Networks (CNNs) and Recurrent Neural Net-

works (RNNs) have been shown to perform significantly better compared to

well established statistical model based approaches like GMM-HMM, SVM

and NMF for acoustic scene classification [63], monophonic/polyphonic event

detection [64] and source separation [65] among others. Recent efforts have
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also been employed in the direction of learning rich feature space from natural

soundscape in a data driven fashion, and subsequently using these spaces in

domains like music genre classification, phoneme classification and speaker

identification [66, 67].

With all the advancement of computational strategies in tackling the problem

of auditory scene analysis, there still lacks a proper study which presents a

comprehensive overview of different theories of scene analysis and tie them

up into a common computational framework. As suggested by Bregman in

[1], auditory scene analysis paradigm is driven by two types of perceptual

grouping theories namely primitive grouping and schematic grouping. Primitive

grouping is driven by incoming acoustic signal and is primarily described

by Gestalt principles of perceptual organization [68]. In contrast, schematic

grouping employs the knowledge of familiar patterns and concepts that have

been acquired through experience of acoustic environments.There have been

a number of physiological and psychoacoustic studies done to corroborate

these theories in context of stream segregation [69, 70]. However, most of the

neuro-computational strategies of auditory scene explored in the literature

rely on object based auditory supported by backend classifiers for building a

scene analysis framework. In this thesis, we aim to present a comprehensive

analysis of both primitive and schematic grouping principles by integrating

them into a common computational framework and show how such a frame-

work can drive different scene analysis paradigms like scene segregation,

classification and detection among others.
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1.3 Thesis Contributions and Outline

In this section, we present the outline of the thesis and state some of the

main contributions of the thesis. In the introduction, we provided some of

the background and motivations for research in the topic of auditory scene

analysis. Following the introduction in Chapter 2, we present a framework

that explores the role of temporal dynamics in a task of acoustic scene clas-

sification. The framework presented in this chapter is primarily driven by

features generated from a cortical model to extract information in spectral and

temporal modulations. In this paper, we propose a framework that provides

a detailed local analysis of spectro-temporal modulations augmented with

generative modeling that map both the average modulation statistics of the

scene using GMM as well temporal trajectories of these modulations using

HMM. One novel contribution of this framework is its ability of to capture

the heterogeneity of an unstructured scene like “household ambience" via

modeling the temporal dynamics of modulation features, which has not been

accounted for in great detail by most of the existing computational strategies.

Our analysis shows that a hybrid system of average modulation statistics

combined with temporal dynamics information can capture the non-trivial

commonalities within a sound class and differences between sound classes.

In Chapter 3, we propose an architecture so as to answer some key questions

faced by the framework in Chapter 2. One major question is the spectro-

temporal modulation filters being hand-crafted in nature are limited in their

scope to specific mapping in modulation space. Another major constraint is

the imposition of linearity in their design which restricts the filters in spanning
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those acoustic events characterized by non-linear spectro-temporal modula-

tions. In order to seek answers to these questions in this chapter, we propose a

computational framework that leverages ideas from different theories of scene

organization (both vision and audition) and integrate them into a unified

architecture. The proposed architecture learns a rich hierarchy of localized

and global "cues" from natural scenes in an unsupervised and non-linear data

driven fashion and is well supported by hebbian based grouping mechanism

which binds temporally correlated cues together to form perceptual represen-

tation of auditory objects in the scene. A major contribution of this work is that

the proposed framework successfully replicates well established physiological

and psychoacoustic bases of scene segregation across varied complexity of

sounds and also quantifies the complimentary role of segregation and binding

cues in driving scene segregation processes.

In Chapter 4, we propose an extension to the framework developed in Chapter

3 with an aim to incorporate bottom-up saliency mechanism in the hierarchical

architecture. We use the proposed architecture in an abnormal event detection

task so as to explore how saliency mechanisms drive event detection paradigm

and add to the present literature which lack relevant studies in this context.

The proposed bottom-up architecture learns a rich hierarchy of localized and

global "attributes" from natural scenes in an unsupervised data driven fashion

and is well supported by an adaptation and reset mechanism biasing the "at-

tributes" towards salient details of an event in a complex acoustic scene. A top

down acoustic scene classification framework is also developed by modeling

the sequential representation of local and global attributes via a deep long

short-term memory network (LSTM). We further exploit the complementarity
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of bottom-up and topdown processes in context of saliency mechanisms by

applying them over abnormal event detection paradigm. A key contribu-

tion of this work is that the proposed framework outperforms the individual

bottom-up and topdown approach as well as achieves satisfactory perfor-

mance compared to baseline bottom-up and top-down saliency models in

salient event detection task.

Chapter 5 deals with exploring a rich hierarchical characterization of a broad

and complex sound class that is capable of capturing nontrivial commonalities

within a sound class as well differences across sound classes, with an aim to

identify abnormal sound events in a complex acoustic scene. In this chapter,

we have proposed a methodology for representing sound classes using a

hierarchical network of convolutional features and mixture of temporal trajec-

tories (MTT). The framework couples unsupervised and supervised learning

and provides a robust scheme for detection of abnormal sound events in a sub-

way station. The key contribution of this work is the ability of the proposed

representation in capturing non-trivial commonalities within a single sound

class and variabilities across different sound classes as well as high degree of

robustness in noise.

Finally, in Chapter 6, we conclude with a summary of the main contributions

of this thesis. We also briefly discuss the possibilities for further research

in the area of hierarchy driven acoustic representation and how to develop

top-down mechanisms to adapt such representation to constantly changing

acoustic environment.
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Chapter 2

Role of Temporal Dynamics in
Acoustic Scene Classification

2.1 Introduction

Our surrounding soundscapes are constantly changing as we go about our

lives; walking from an office to the street to a cafe and carrying conversations

along the way. Humans exhibit a great ability at navigating these complex

acoustic environments, and can effortlessly parse and identify their acoustic

surroundings; in a process called auditory scene analysis [1]. This phenomenon

describes complex neural and cognitive processes that underly our ability

to detect, identify and classify sound objects in complex acoustic environ-

ments. Much like one can identify different visual scenes by the attributes of

their constituting objects, a similar process takes place allowing our brain to

distinguish a human voice from a bird chirp or a car horn [42]. This ability

can provide a great degree of robustness and flexibility to technologies like

communication aids for sensory-impaired, surveillance and security systems,

context aware computing, audio annotation etc.
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The ‘identity’ of an acoustic scene is largely determined by the acoustic char-

acteristics of the sound sources present at the scene. These sources adapt the

spectral profile of the signal to reflect the shape and structure of the vibrat-

ing bodies, along with trajectories and reflection paths traveled by sounds

until they reach the listener’s ear or recording device. The analysis of these

characteristics for purposes of automatic identification or classification of

acoustic scenes has to take into account all the spectral and temporal attributes

of the signal. It has to also be sensitive enough to the natural variability in

each class of scenes while discriminative enough across classes. A number of

scene classification studies have explored the relevance of low-level features

in capturing scene characteristics. These features include low-level time based

and frequency based descriptors like short-time energy (STE), zero-crossing

rate (ZCR), voicing features like periodicity and pitch information, linear

predictive coding coefficients (LPC), as well as the energy distribution entropy

of discrete Fourier transform components [19, 20, 22, 71]. These reports sug-

gest that low-level acoustic features are powerful in distinguishing simple

scenes. In addition, Mel Frequency Cepstral Coefficients (MFCC) have been

a popular feature of choice in studies of acoustic scene classification as they

are quite powerful in capturing the overall ‘transfer function’ (or spectral

shaping function) of each scene, and have indeed led to a number of suc-

cessful implementations of event classification systems [23, 24]. However, in

case of complex acoustic scenes, the intricate details of the spectral profile

and temporal dynamics of sound events in a scene makes applicability of

average features rather limited. Use of global representations of a scene such

as cepstral coefficients are generally not capable of capturing fine and subtle
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changes in the spectrum as it evolves over time; especially in case of dynamic

and nonstationary scenes. Instead, it is imperative to consider signal features

that capture the spectral and temporal modulations (i.e. changes) in the scene

over a wide range of resolutions. Gabor features offer such flexibility in time

and frequency by tracking the localized spectral and temporal signal changes

over various scales [72].

Use of representative features is intricately linked with choice of backend

classifiers that are flexible enough to capture variability across scene classes

yet stable enough to work with nuances emerging from the signal features.

Commonly used learning techniques include K-NN classifiers and Gaussian

mixture models (GMM) which have been used to classify auditory scenes into

predefined semantic categories [22]. Statistical models like support vector

machines (SVM) and Bayesian network (BN) have also been employed to

learn the relationships between audio effects and high-level scene representa-

tions [57, 73]. Additional techniques employ descriptive statistics of low level

acoustic features and quantify their statistical distributions in terms of mean,

variance, skewness and kurtosis [19, 49, 74]. More recently, researchers have

focused on modeling the mean statistics obtained from spectro-temporal mod-

ulation features via discriminative classifier using multilayer perceptrons and

have shown that these representations greatly outperform low-level features

like MFCC and its statistics in auditory scene classification task [75].

That being said, one of the challenges of the scene classification task is the

inherent complexity of describing what a ‘scene’ is and the degree granularity

that is defined with a chosen dataset for analysis. In the commonly used BBC

sound effects dataset [76], the sound class labeled humor is a more generic class
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that encompasses instances of individuals cheering or laughing. These two

‘subclasses’ can be rather heterogeneous in their signal characteristics making

the use of average feature profiles rather limited. Instead, it appears that com-

bining a rich representation of spectro-temporal changes in the signal along

with their temporal trajectories could provide added flexibility to capture the

heterogeneity of the audio samples in each class [77]. In the current work, we

explore the use of a hybrid systems that combines use of spectro- temporal

modulation features along with their temporal dynamics to represent sound

classes. We explore use of temporal trajectories beyond the classical derivative

parameters (∆, ∆∆) by using Hidden Markov Modeling (HMM) applied to

modulation features.

Figure 2.1 shows a schematic representation of proposed architecture. Each

of the stages in Figure 2.1 are explained in detail in following sections. The

organization of this chapter is as follows: In section 2.2, a brief description

of the spectro-temporal modulation features used in the proposed system is

provided. Section 2.3 outlines the classification system modeling both mean

statistics as well as temporal trajectories of the modulation features. Section

2.4 describes the experimental set up and scene classification results; while

section 2.5 provides conclusions and discussion of the results.

2.2 Modulation Based Features

The analysis of modulation features in the acoustic signal is performed in two

stages. First, a time-frequency auditory spectrogram is extracted based on a

model of peripheral processing in the mammalian auditory system [29]. This
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Figure 2.1: A block diagram representation of GMM-HMM based acoustic scene
classification framework

first stage starts with a bank of 128 asymmetric filters equally-spaced on a

logarithmic axis over 5.3 octaves spanning the range 180 Hz to 8000 Hz. Next,

the signal undergoes spectral sharpening via first order derivative along the

frequency axis followed by half wave rectification and short term integration

with u(t, τ) = e−t/τu(t) where τ = 2 ms. This filterbank analysis results in

a time-frequency auditory spectrogram represented by y(t, f ). The second

stage follows to extract modulation features in the signal. This analysis is

performed using a bank of two-dimensional Gabor Filters (GF). Each Gabor

filter GF( f , t; s, r) is parameterized by its spectral modulation tuning or scale

(s in cycles/octave) and temporal modulation tuning or rate (r in Hertz). It

effectively filters the detailed fluctuations (called modulations) in the spectral

and temporal patterns of the signal. The analysis yields a four-dimensional

tensor R parameterized by time t, frequency f, scale s and rate r represented

as:

R(t, f ; s, r) = |y(t, f )⊗ f ,t GF( f , t; s, r)| (2.1)
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where ⊗ f ,t denote convolution in time and frequency. The tensor R is a multi-

resolution mapping of the acoustic signal onto a high-dimensional space

[78]. This mapping is akin of the rich representation of sounds in the central

mammalian auditory system where specro-temporal response fields of cortical

neurons [79] can be mapped onto a space tiled by these Gabor filters.

2.3 Classification of Modulation Features

We use the modulation features denoted by R to build statistical models for

the scene classification task. Our analysis contrasts two types of models, as

described next:

2.3.1 Modeling mean statistics of Spectro-Temporal Represen-
tation

The first approach builds a generative model of the data in each class based

on average statistics of the scenes. Average statistics are obtained from the 4D

modulation tensors R by first integrating the features over the duration of

audio segment. For all analyses presented here, we segment recordings of all

sound classes over non-overlapping 1s windows. For each segment, we get a

mean representation along frequency, rate and scale axes denoted by R̄( f , s, r)

which can be expressed as:

R̄( f , s, r) = E[R(t, f ; s, r)] (2.2)

The tensor R̄ is further projected onto a lower dimensional space using Tensor

Singular Value Decomposition (TSVD) [80]. We keep 420 dimensions that
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maintain 99 % variance in the data; resulting in a lower-dimensional modula-

tion tensor R̄. Given the use of modulation features over time and frequency,

this lower dimensional R̄( f , s, r) captures average changes in the audio seg-

ment and is used as feature vector to build Gaussian Mixture Models (GMM)

[81] of each sound class to learn its inherent statistical characteristics.

2.3.2 Modeling the temporal trajectories of Spectro-Temporal
Representation

Alternatively, we consider a second model that exploits the temporal tra-

jectories of the modulation tensor R. In this case, instead of integrating R

over the audio segment, the temporal trajectories of R across multiple time

frames over the duration of the audio segment are modeled. Here, we contrast

two approaches to modeling these temporal dynamics. First, we explore the

commonly-used derivative features that concatenate the base features with

their respective first (∆) and second derivative (∆∆) components [82]. In this

case, the mean, ∆ and ∆∆ features are computed from each audio segment R

and concatenated to generate 1260 dimensional feature vector for building

GMM models. The statistical models based on this feature representation

exploit some degree of information contained in the temporal dynamics of

modulation features.

Alternatively, we explicitly model the temporal trajectories of R using

a Hidden Markov Model (HMM) framework [20, 83]. Each audio segment

of duration 1 second is divided into fixed number of frames of duration tδ

(tδ= 16 ms) to obtain a time series. Then, HMM models parameterized by πs,
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P(st+1|st) and P(yt|st) are built where st denotes hidden states and yt denotes

the actual observation emitted by hidden state at time instant t. πs denotes

the prior distribution of states, P(st|st−1) denotes the transition probability

matrix and P(yt|st) is the distribution of observations emitted by hidden

states mainly modeled as a Gaussian. The hidden states used in our HMM set

up represent which of the frequency channels are active at a particular time

instant and the transition of one state to another state corresponds to how

the activity of one frequency channel changes with respect to other channels

over time. The parameters πs, P(st|st−1) and P(yt|st) of the HMM are learned

using the Baum-Welch (BW) algorithm as described in [84].

2.3.3 Fusion of GMM-HMM models

We also investigate a hybrid model that combines both mean modulation

statistics obtained from the GMM model with the temporal trajectories tracked

by the HMM model. Here, the underlying assumption is that both models

provide complimentary information that gives an even better representation

of intricate changes and dynamics in a sound class, that each model by itself

would fail to capture. The proposed hybrid GMM-HMM system operates

by combining the GMM and HMM models for each sound class c1, c2, . . . , ck

using a logistic regression [85]:

C = arg max
c1,c2,...,ck

wGMMLGMM + wHMMLHMM (2.3)

where C is the class to which the test sample gets assigned, LHMM and LGMM

are the respective normalized likelihood scores obtained using HMM and
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GMM models against a test sample. The logistic weights are trained using a

subset development set from the database.

2.4 Experimental Setup and Results

2.4.1 Data

The scene recognition experiments are performed on entire dataset from the

BBC Sound Effects Library [76]. The database has total of 2400 recordings,

amounting to 68 hours of data. The recordings are organized into 17 classes,

for example Ambience, Animals, Transportation and Musical etc. We resam-

ple each of the recordings in the database to 16 KHz and preprocess them

through a pre-emphasis filter with coefficients [1 − 0.97] in order to boost

high frequencies. 80 % of recordings are randomly selected from the database

and used as training set. The remaining 20 % are divided into test and devel-

opment sets. This latter set is used to train the logistic regression model for

the hybrid system. We run a 7-fold cross validation on the entire dataset and

report mean accuracy and standard deviation across runs.

2.4.2 Baseline Setup

The proposed system is contrasted against a baseline setup using MFCC

features along with their derivative ∆ and ∆∆ components. Such setup is close

to that used in [22]. We compute 13 MFCC features for every frame size of 25

ms with 10 ms overlap. The average statistics, first and second order delta

components of MFCC features are computed across these time frames over a

duration of 1 second and concatenated to form a 39 dimensional vector. These
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vectors are then used to build GMM models for each sound class.

2.4.3 Results and Analysis

Table 1 summarizes the scene classification accuracy using our proposed

hybrid system as well as other setups. The results compare the modulation

features against the standard MFCC features along with their derivatives

(∆, ∆∆). The performance of individual GMM and HMM classifiers using

modulation features and their delta components are also reported to assess

their respective accuracy values.

Features Classification
Accuracy (%)

GMM based MFCC + ∆ + ∆∆ 49.8 ± 9.5
GMM based

modulation features 64.6 ± 5.8

GMM based
modulation features + ∆ + ∆∆ 66.8 ± 5.1

HMM based
modulation features 65.3 ± 6.4

GMM-HMM based
modulation features 76.57 ± 4.3

GMM-HMM based
modulation features + ∆ + ∆∆ 79.1 ± 4.1

Table 2.1: Results obtained using different features and modeling approaches on
Scene Classification Task. ± indicates the standard deviation across folds.

A number of interesting observations are worth noting. Firstly, the modulation-

based features provide a clear advantage over MFCC features in capturing

scene characteristics; even with use of derivative components. Secondly, the

use of derivative components with modulation features further improve the

accuracy of classification suggesting that temporal dynamics captured in
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the rate modulation analysis do not sufficiently represent broader temporal

changes in the signal that can be better modeled using derivative cues. Thirdly,

the HMM system is slightly worse than the GMM system with the derivative

features indicating that the mean statistics captured by the modulation fea-

tures and their dynamics are likely capturing key aspects of each scene that

are not well modeled by the HMM system. Consequently, the hybrid system

does provide noticeable improvement further corroborating the observation

that representing the average distribution of the features with sufficient statis-

tics complements the temporal trajectories in best modeling heterogeneity in

sound classes in the BBC dataset.

In order to gain a greater insight into the contribution of each of the GMM and

HMM models, we examine the performance of these classifiers for each class

of scenes using a detection measure of d’ [86]. d’ is a very popular measure

of sensitivity in signal detection theory (SDT) mainly measured in terms of

Hit rate (H) corresponding to number of times the model correctly classifies

the test signal and False Alarm rate (FA) equal to number of times the model

assigns the test signal to wrong class. d’ is calculated as : d′ = z(FA)− z(H),

where z(FA) and z(H) indicate z scores of false alarm and hit rate respectively.

Higher value of d’ for a class indicates that the model has a high probability of

correctly classifying the test signal, hence a model’s classification performance

can be well represented in terms of its d’ value. Figure 3.2 shows the d’

values broken down by class. It is worth noting that most scenes do exhibit

an improved accuracy using the hybrid HMM-GMM system. However, such

improvement is not noted across all classes. One possible reason for decreased

performance of the hybrid system for some sound classes could be due to
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the greater heterogeneity in those subsets which undermines the score fusion

using a simple logistic model. Another interesting observation is the perfor-

mance of the GMM vs HMM systems across different classes. For instance,

the HMM classifier clearly outperforms the GMM for a class like ‘Musical’

which includes different tones with varying degree of spectral and temporal

modulations. The temporal characteristics of melodies in this class appear to

be best represented using the HMM model; in contrast with a class such as

‘Water’ for instance.

Generally, musical signals have a rich temporal structure and exhibit high

26



(a)

H
id

d
e
n

 S
ta

te
s 

(s
)

 

 

5 10 15 20 25 30 35 40

10

20

30

40 0

0.2

0.4

0.6

0.8
H

id
d

e
n

 S
ta

te
s 

(s
)

 

 

(b)
5 10 15 20 25 30 35 40

10

20

30

40 0

0.2

0.4

0.6

0.8

Figure 2.3: Probability transition matrix (P(st|st−1)) for class (a) Musical and (b)
Water

degree of temporal regularity [87]. HMM models capture these ‘hidden’ reg-

ularities in a much effective manner than GMM by means of its probability

transition matrix. Figure 2.3 depicts the HMM model’s probability transi-

tion matrix for 40 states corresponding to classes ‘Musical’ and ‘Water’. In

‘Musical’, there is a very strong activity across the diagonal elements of the

transition matrix which means the frequency channels tend to remain in their

own state across multiple time frames corresponding to their strong temporal

regularity. In case of ‘Water’ , the non zero probabilities in non-diagonal

elements of the matrix show that the frequency channels tend to make rapid

transitions across each other which affects the temporal structure of the scene.
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However, because of complimentarity of the information present in temporal

structure and average statistics of the scenes, the combination of GMM and

HMM models via model fusion gives a tremendous boost in classification

accuracy of both the classes as shown in Figure 3.2.

2.5 Discussion

In this chapter, we examine the role of temporal dynamics of modulation

features in capturing intricate details in auditory scenes that extend beyond

average statistics of the scene and track the heterogeneous dynamics com-

monly encountered in these scenes. Specifically, we propose that temporal

trajectories of local spectral and temporal profiles do provide complimentary

information in addition to their mean statistics. A fusion system based on

both representations provides a better model of each sound class relative to

the individual models. Such hybrid modeling is crucial in case of complex

and unconstrained recordings such as the BBC sound effects data. It is com-

mon in such datasets that audio samples representing a similar nominal class

but different scenarios are grouped under the same label. Modeling these

disparate settings requires not only a representation of the characteristics of

the sound sources in the scene, but aspects of their temporal dynamics as

well. The proposed model based on a hybrid GMM-HMM model along with

derivative components provides noticeable improvement over a MFCC-GMM

system (by about 30%) as well as individual GMM or HMM systems (by an

average of 14%).
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One possible limitation of this framework is the imposition of linearity con-

straint upon spectro-temporal modulation features. Indeed, recent physiologi-

cal evidence indicates that the representation becomes increasingly complex

and nonlinear across the higher stages in auditory pathway [88] To address

this issue, we propose a hierarchical framework in the next chapter which

learns the spectro-temporal bases from natural soundscapes in an unsuper-

vised and non-linear fashion and explore how such a representation drives

scene segregation processes across wide range of auditory scenes.
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Chapter 3

A Hierarchical framework for
auditory scene segregation

3.1 Introduction

We live in busy environments and our sensory system is continuously flooded

by complex information from our surroundings which need to be analyzed

in a way that helps interpret the world around us. This process, referred to

as scene analysis, is common across all sensory modalities including vision,

audition and olfaction [89] and refers to the ability of humans, animals and

machines alike to parse the mixture of cues impinging on our senses, organize

them into meaningful groups and map them onto relevant foreground and

background objects. Gestalt principles are a set of rules that guide this process

of scene analysis across sensory systems [90]; and offers guidelines at the core

of many theoretical accounts of perceptual organization of scenes common

across modalities [91, 92].

In most accounts, the process of scene analysis can be conceptualized as a

two-stage process: segregation (or analysis) and grouping (or fusion) [93].
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In the first stage, the sensory mixture is decomposed into feature elements,

believed to be the building blocks of the scene. The features reflect the physical

nature of the sources in the scene, the state and structure of the environment

itself, as well as perceptual mappings of these attributes as viewed by the

sensory system. These features vary in complexity along a continuum from

basic (e.g. edges or frequency components) to more complex features (e.g.

shapes or timbral profiles). The ubiquitous nature of these profiles conceals

the multiplexed structures that give rise to this analysis. In many models,

this stage is represented either in simple feature axes or shaped via complex

dimensionality mappings via kernels [94]. Complementing this process is

then a fusion stage that integrates the state and behavior of these building

blocks to form perceptually cohesive structures forming objects or streams [90,

95]. These grouping mechanisms reflect the local and global distribution and

dynamics of the features and offer ‘rules’ by which events or sub-events likely

arise from the same underlying source or common perceptual object (these

two need not always be related in a one-to-one mapping) [1]. In many models,

these grouping cues are often leveraged in the context of back-end classifiers

that are tuned to capture pattern relationships in specific object classes (e.g.

speech, music, faces, cars, etc) [43, 44, 96, 97]. In doing so, these models effec-

tively capture the inter-dependencies between object attributes and learn their

mapping onto an integrated representational space [11, 98, 99]. Effectively,

success in tackling scene organization depends on two key components [100]:

1) obtaining a rich and robust feature representation that can capture object

specific details present in the scene; 2) group the feature elements such that

their spatial and temporal associations match the dynamics of objects within
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the scene.

Vision models have been very successful in mining these two aspects of scene

analysis. Intricate hierarchical systems have leveraged inherent structure in

static and dynamic images to extract increasingly elaborate features from

a scene that are then used to segment it, interpret its objects or track them

over time [101]. Data-driven approaches have shown that high dimensional

feature spaces are very effective in extracting meaningful semantics from

arbitrary natural images [5, 102, 103]; while hand-engineered features like

scale-invariant feature transform (SIFT) [104], histogram of oriented gradients

(HOG) [105], and Bag-of-visual-word descriptor [106] among others have also

enjoyed a great deal of success in computer vision problems like image classi-

fication and object detection. Recent advances in deep layered architectures

have resulted in a flurry of rich representational spaces showing selectivity

to contours, corners, angles and surface boundaries in images [107–110]. The

deep nature of these architectures has also led to a natural evolution from

low-level features to more complex, higher-level embeddings that capture

scene semantics or syntax [8, 111].

In audition, computational approaches to tackle auditory scene organization

have mostly taken advantage of physiological and perceptual underpinnings

of sound processing. A large body of work has built on our knowledge of the

auditory pathway, particularly the peripheral system to build sophisticated

analysis models of an auditory scene. These systems extract relevant cues

from a scene, such as its spectral content, spatial structure as well as temporal

dynamics; hence allowing sound events with uncorrelated acoustic behavior

to occupy different subspaces in the analysis stage [19, 20, 112–115]. These
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models are quite effective in replicating perceptual results of stream segre-

gation especially using simple tone and noise stimuli [33, 35–38, 116]. Some

models also extend beyond early acoustic features to examine feature binding

mechanisms that can be used as an effective strategy in segregating wide

range of stimuli ranging from tone sequences to spectro-temporally complex

stimuli like speech and music [18, 39, 40]. In most approaches however, the

models are built around hand-crafted feature representations, hence limiting

their scope to specific mappings of acoustic space. With the emergence of deep

belief architectures, recent efforts have started borrowing concepts from vision

literature in terms of learning rich feature space from natural soundscape in a

data driven fashion, and subsequently using these spaces in domains like mu-

sic genre classification, phoneme classification and speaker identification [66,

117–120]. Still, these models have mostly been tailored to specific applications

via supervised learning techniques; hence limiting their applicability to the

problem at hand.

The current study aims to leverage the role of Gestalt principles in the general

problem of auditory scene analysis; hence drawing on principles of scene

organization that are common across many sound environments. It leverages

recent advances in deep learning to examine what kind of cues can one infer

from natural sounds; how well do they reflect the known analysis and group-

ing cues of auditory streams; and how effective are these cues in explaining

perceptual organization of auditory scenes with varying degrees of complexity.

We propose a multi-layered deep belief neural network designed to analyze

the incoming acoustic signal with a multitude of granularities. Besides the

basic layout and choice of analysis window sizes, the network is trained in
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an unsupervised fashion to explore which cues naturally emerge from a rich

set of sounds including speech, nature, etc. The architecture is specifically

laid-out in two stages mimicking a segregation process where we expect local

and global acoustic attributes to emerge; hence segregating the incoming

scene along disparate feature axes. The short-term analysis underlines the

tiling of the spectro-temporal space; hence inferring local cues referred to as

simultaneous grouping cues [121–123]. The longer-range analysis extends the

segregation stage to examine temporal dependencies across acoustic attributes

over different time scales; hence exploring emergence of sequential group-

ing cues [124–128]. Finally, a fusion stage binds the cues together based on

how strongly they correlate with each other across multiple time scales. This

integration is achieved using hebbian learning framework which reinforces

activity across coherent channels and suppresses activity across incoherent

ones [129–131].

The overall system is tested with a wide range of stimuli where we can quan-

tify the role of each and every component in the network in driving stream

segregation processes. We also contrast the system performance with a set of

control experiments where different components of the system are deliberately

switched on/off in order to examine their impact in the organization of dif-

ferent acoustic scenes. The paper first presents an in-depth description of the

proposed architecture, followed by an analysis of the emergent properties of

the trained network and their potential neural correlates in the auditory path-

way in section 3.2. The experimental results shown in section 3.3 outline how

the network replicates human psychoacoustic behavior in stream segregation

and speech intelligibility paradigms. Finally, we present control experiments
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that dissect the network architecture and examine the contribution of each and

every component. In section 3.4, we discuss the implications of this network

in shedding light on ties between observed perceptual performance in various

complex auditory scenes and the neural underpinnings of this behavior as

implemented in networks of neurons along the auditory pathway.

3.2 Proposed Architecture

3.2.1 A model for sound organization

The proposed model develops a hierarchical network of auditory processing

that echoes the infrastructure of early- and mid-audition along the mammalian

auditory pathway [132]. The model maps incoming sound signals onto an

increasingly higher dimensional space that evolves from shorter, localized

time constants to longer scales; conceptually emulating the variations of in-

tegration windows along the auditory hierarchy from the periphery up to

the midbrain then auditory cortex. Other than these design elements, the

model tuning is learned in a data-driven fashion. Being trained on datasets of

natural sounds, each component of the model learns in a generative fashion

to represent natural sounds from its own vantage point following principles

of deep belief networks, as detailed next. Figure 3.1A depicts a schematic

of the overall model. It takes as input the acoustic waveform of an auditory

scene u(t), which is then mapped onto a time-frequency representation S(t, f )

mimicking peripheral processing in the auditory system. This first transforma-

tion analyzes the acoustic signal u(t) using a bank of logarithmically-spaced
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Figure 3.1: Schematic of the proposed model (A) An acoustic signal undergoes a
series of transformations starting with a mapping to a time-frequency spectrogram,
followed by two-layers of deep neural networks, then a fusion stage. (B) Noise ripples
are used to analyze the spectro-temporal tuning of the model at different stages. The
modulation transfer function for layers L1 and L2 are shown in the rate-scale domain.
The frequency axis f is collapsed for display purposes. Overlaid on each transfer
function is a contour plot of agglomerative clusters in spectro-temporal modulation
space.
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asymmetric constant-Q spectral filters. The filter-bank comprises of 128 asym-

metric filters equally-spaced on a logarithmic axis over 5.3 octaves spanning

the range 180 Hz to 8000 Hz. Next, the signal undergoes spectral sharpening

via first order derivative along the frequency axis followed by half wave rec-

tification and short term integration with u(t, τ) = e−t/τu(t) where τ = 10

ms. This filterbank analysis results in a time-frequency auditory spectrogram

represented by S(t, f ). This analysis replicates the cochlear model of Yang et

al. [114].

The spectrogram S(t, f ) is then sampled over 3 consecutive frames which

are grouped together in a process of shingling [133]. This step allows the

network to perform short term feature analysis over a temporal context of

30 ms. This stage (called L1) is structured as a two-layer sparse Restricted

Boltzmann Machine (sparse RBM) with a fully connected visible and hidden

layer [111]. The visible layer units xk are real-valued and characterized by

a Gaussian distribution fitted over the input spectrogram S(t, f ); while the

hidden units hk are sampled from a Bernoulli distribution such that hk ∈ (0, 1)

for k = 1, 2, . . . , N, where N is the number of nodes in each layer. In the

current implementation, we set N = 400. The network is parameterized by

θ = W, bv, bh where W represents the interconnected weights between {x} and

{h}, and bv (bh respectively) represents the visible (hidden, respectively) bias.

The network is trained using the Contrastive Divergence (CD) algorithm with

the objective to minimize the reconstruction error between x and x̂ = hW + bv

[134]. After training, the connection weights Wk are transformed into a 2D

representation capturing localized spectro-temporal filters Fk(t, f ), akin to

spectro-temporal receptive fields recorded in the mammalian auditory system
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[135]. These learned filters are then applied in a convolutional fashion over the

incoming spectrogram S(t, f ) to derive the response of each filter. Next, this

response undergoes a neural adaptation stage that allows to strengthen the

contrast between foreground and background units. This adaptation imposes

an exponential decay over each filter response hence suppressing units with

weak activation. The final activation of L1 nodes is then an array of responses

rk(t) which are then processed through the next layer in the hierarchy. L1 filter

responses {rk(t)} form the input to the next layer in the hierarchy (L2); which

is structured to highlight the contextual dependencies in the signal features.

This temporal context is captured using conditional RBMs (cRBM), which are

extended versions of RBMs designed to model temporal dependencies [136].

Similar to a RBM, a cRBM comprises a visible layer with units xk, sampled

from a Gaussian distribution fitted over the input, and a hidden layer with hk

units sampled from a Bernoulli distribution. Unlike a RBM, a cRBM acts as

a dynamical system operating over an entire input history τ taking as input

occurrences at times {t, t − 1, . . . , t − τ} in order to capture dynamics in the

input space over a context τ. The proposed model multiplexes the outputs

rk(t) from L1 over multiple histories; hence transforming L1 activations into

multi-rate inputs rτ1
k (t), rτ2

k (t), . . . , rτK
k (t) over a range of temporal resolutions

τk ∼ (30 - 600 ms). L2 is parameterized by θ = U, zv, zh, Aτ, Bτ where U rep-

resents the interconnected weights between visible units x and hidden units

h, zv represents the visible bias, zh represents the hidden bias, Aτ and Bτ

characterize the autoregressive weighs between past inputs, the current input

and current hidden unit respectively. Since the multi-rate versions of rτ
k (t)

are instantiations of different acoustic cues across multiple time resolutions τ,

38



the weights U capture the interactions across these cues over different tem-

poral resolutions whereas the autoregressive weights Aτ and Bτ capture the

effect of long term temporal dependencies over such interactions. Just like the

localized layer L1, the contextual layer L2 is trained in a generative fashion

using contrastive divergence (CD) in order to best capture the dynamics in

natural sounds using a large dataset of diverse realistic sounds spanning

speech, music and natural sounds. Once trained, the model parameters θ are

then applied over incoming L1 filter response in a linear fashion, yielding

a multi-resolution output which is then passed over to the next stage in the

hierarchy.

The next stage of the hierarchy performs a binding operation across outputs

of the L2 layer, giving rise to perceptually-coherent object representations. It

explores co-activations across all the channels within a given context τk and

binds together the units that exhibit strong temporal coherence. The ‘temporal

coherence’ theory posits that emergence of perceptual representations of audi-

tory objects depends upon strong coherence across cues emanating from same

object and weaker co-activation across cues from competent objects [137, 138].

This coherence is not an instantaneous correlation but one that is accumulated

over longer time scales, commensurate with the contextual windows explored

in the L2 layer. We implement this concept in a biologically-plausible fashion

via mechanisms of Hebbian learning, which suggests that when two neurons

fire together, their synaptic connection gets stronger [139]. Effectively, Hebbian

interactions operate by reinforcing activity across coherent channels, hence

grouping them into putative objects and inhibiting activity across incoherent

channels [140]. We implement a synaptic interaction across output channels
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from layer L2 by introducing a synaptic weight matrix V. If two units i and j

are co-activated at a given time t, their corresponding synaptic Vij is reinforced

over time. If the correlation between their activity is weak, the corresponding

synaptic weight Vij reduces as well. These synaptic weights are applied to the

output of each channel in a dynamic fashion, hence modulating the activity

across an entire ensemble of neurons within each context in layer L2. The net

effect gives emergence to perceptual coherent groups that represent auditory

objects in a scene.

3.2.2 Model characterization

In order to examine the emergent sensitivity of learned layers in the net-

work, we derive the tuning characteristics of individual nodes or neurons and

explore their filtering properties in the modulation domain [141, 142]. Modu-

lation tuning reflects the signal cues that best drive individual nodes in the

model both in terms of temporal variations and dynamics (i.e. temporal mod-

ulations) as well as spectral span and bandwidth (i.e. spectral modulations).

This approach follows common empirical techniques used in electrophyisol-

ogy and psychophysics to probe the tuning of the system to specific acoustic

cues. It is frequently used in characterizations of spectro-temporal receptive

fields (STRFs) which offer 2-dimensional profiles of filtering characteristics of

a neuron [135].

First, we employ a classic transfer function characterization method using

probe stimuli in order to derive the tuning of both L1 and L2 layers of the

network [143–145]. We present spectro-temporally-modulated noise signals
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(called ripples) as input to the model with varying spectro-temporal modu-

lation parameters and we characterize the fidelity of the ripple encoding at

various stages of the network as we vary the ripple modulation parameters

[146]. Each ripple is constructed as a broadband noise signal whose envelope

is modulated both in time and frequency according to the equation:

Srp(t, f ) = L(1 + ∆Asin(2π(ωt + Ω f ) + ϕ)) (3.1)

where L denotes the overall level of the stimulus, t is time, and f is frequency

on a logarithmic scale, ω is the temporal modulation or ripple velocity (in Hz),

Ω is the spectral modulation or ripple density (in cyc/oct), and ϕ is phase of

the ripple (Figure 3.1B-left).

We vary the ripple parameters over the range ω ∈ [−512, 512]Hz and Ω ∈

[0.25, 16] cycles/oct, and compute the modulation transfer function (MTF)

from the response of layers L1 and L2. Figure 3.1B-middle,right depicts the

MTF derived from both L1 and L2. The functions highlight that layer L1

is a faster layer tuned to rapid temporal dynamics, with a clear concentra-

tion of energy in |ω| ∈ [64, 512]; as well as spectral dynamics Ω ∈ [0.25, 4]

cycles/oct. In contrast, the contextual layer L2 is mostly tuned to slower

dynamics < 30Hz with tighter spectral selectivity mostly concentrated below

1 cycles/oct. This outcome is very reminiscent of similar transfer functions

obtained from neurophysiological data showing contrasting tuning charac-

terizations in the midbrain, auditory thalamus and auditory cortex [88, 147,

148], whereby selectivity of individual neurons along the mammalian auditory

hierarchy evolves from faster to slower temporal dynamics and from more
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refined to broader spectral spans along frequency. The tuning characteristics

obtained from the model exhibits a similar behavior reflecting the progression

from localized analyses in time and frequency in neurons in L1 to broader,

more context-sensitive selectivity in neurons in L2.

We further examine the selectivity of individual neurons by exploring emergent

tuning characteristics common across nodes in the network. We employ an

agglomerative clustering algorithm [149] over individual response functions

represented as Fk(t, f ) in L1. This approach clusters nodes exhibiting similar

tuning characteristics into common groups hence highlighting selectivity of

neuron subgroups from which we can infer a link with underlying acoustic

cues being processed. Figure 3.1B shows contour plots from the resulting

clusters overlaid on the spectro-temporal modulation space. Neurons in L1

appear to naturally group around specific modulation regions; giving rise to

a wide range of selectivities. Of note, neurons clustered in a group labeled

O appear to be more sensitive to fast transients or ‘Onsets’; while spectrally

structured neurons labeled H are centered around spectral modulations ∈ [1-

2] cyc/oct corresponding to harmonic peaks present in natural sounds. Other

groups also emerge with special selectivity to spectral or temporal features as

well as oriented spectro-temporally selective clusters, likely tuned to detect

frequency-modulated sweeps in the signal. In addition, there is also a natural

grouping of neurons into two broad classes; a fast group (F) consisting of neu-

rons with temporal modulations > 100Hz and a slow group (S) comprised of

neurons responding to modulations < 100Hz. We employ similar clustering

algorithm over L2 filters and see that model neurons in the second layer natu-

rally cluster around slower spectro-temporal modulations as shown in Figure

42



3.1B. This analysis further demonstrates the context-sensitive selectivity in L2

neurons and justifies the evolution of tuning characteristics in the network

from faster, more refined to slower, much broader in the modulation space.

3.3 Experimental Results

3.3.1 Primary Results in streaming and speech intelligibility
paradigm

We test the model’s behavior with a variety of acoustic scenes ranging from

classic streaming paradigms using simple tones to experiments using speech

signals. Crucially, all experiments are tested on the same model (after all layer

have been trained), without any adjustment to model parameters. The stimuli

parameters are carefully chosen to closely replicate human perceptual results

hence allowing a direct comparison between the model and human perception.

All stream segregation results are shown in Figure 3.2 organized in 3 columns:

the stimulus on the left, a replica of human perception of the same stimulus

reproduced from the corresponding publication in the center, and the model

performance on the right.

Simple Tones

The first experiment employs the classic two-tone paradigm with sequences

of high and low notes, commonly used in streaming experiments [1, 150, 151].

The sequences are produced by presenting two tones of different frequencies,
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Figure 3.2: Primary results of stream segregation using proposed model. Leftmost
panel shows the stimuli sequence used for each experiment. Middle panel shows the
human listening performance whereas rightmost panel shows the model performance
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A and B, repeatedly and in alternation (ABAB−). When the frequency sep-

aration ∆F between the A and B tones is relatively small (<10%), listeners

perceive the sequence as grouped or fused and report hearing one stream. As

the frequency separation ∆F increases, listeners hear two separate streams

consisting on only the low notes (A − A−) or only the high notes (−B − B-).

In contrast, when the two notes A and B are presented synchronously (Fig-

ure 3.2A-left), listeners tend to hear the sequence as grouped regardless of

the frequency separation ∆F, in a process reminiscent of temporal coherence

which fuses together channels that are co-activated together [137, 138]. Figure

3.2A-middle replicates results from a study by Micheyl et al. [152]. The study

shows that an alternating tone sequence is perceived as a single stream when

the frequency separation ∆F is small and is segregated into two streams when

∆F is large. When the two tones are presented synchronously, they are always

perceived as grouped regardless of frequency separation. The fused percept is

objectively measured using d’ [153, 154]; where listeners are asked to detect

a change in one of the tones presented in the final burst. Figure 3.2A-right

shows that the model replicates the same behavior using the same tone se-

quences presented in alternation or synchrony. As the frequency separation

∆F increases between the A and B tones, the model is more likely to perceive

them as segregated in the alternating condition but tends to fuse them in the

synchronous condition.

The two-tone paradigm is also often used to probe the phenomenon of buildup

of streaming [1, 155]. The buildup highlights that streaming is a dynamic

process, whereby the segregation of the two notes into separate streams is

not instantaneous; but builds-up over time taking up to several seconds to
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emerge. In a study by Micheyl et al. [156], buildup was assessed using

a variation of the two-tone paradigm using tone triplets (ABA − ABA), as

shown in 3.2B-left. Figure 3.2B-middle replicates results from this study [156]

whereby listeners continuously report perception of one or two streams for

different frequency separations ∆F. The behavioral data shows that when

the frequency separation ∆F is large, both A and B tones are perceived as

segregated streams relatively quickly. As ∆F decreases, the segregated percept

takes longer to emerge lasting over many seconds. Figure 3.2B-right replicates

the same behavior using the model and shows that the sequences gradually

segregate into separate streams with different time constants. The model

faithfully replicates human performance; demonstrating a faster buildup at

large ∆F, slower buildup at intermediate ∆F, and no buildup at very small

∆F.

Complex Tones

Next, we explore stream segregation using complex tones. These complexes

highlight the wide range of acoustic cues that aid in the segregation of au-

ditory scenes; including frequency separation (as shown earlier), as well as

amplitude modulations (AM), harmonicity, temporal synchrony, etc. [91, 125,

157, 158]. In this simulation, we focus on the role of modulation cues in stream

segregation by replicating a classic study by Grimault et al.[159] where alter-

nating noise bursts with different AM rates are presented (Figure 3.2C-left).

As the difference in modulation rate ∆AM increases, noise bursts tend to seg-

regate into two streams with distinct AM rates. Once the rate difference ∆AM

reaches about 2 octaves, the modulated noises fully segregate into two distinct
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streams. Figure 3.2C-middle shows human perception of segregated streams

as a function of ∆AM replicating the results from the study by [159]; while

Figure 3.2C-right shows the performance of the model on the same stimuli.

As shown in the Figure, the model closely replicates human perception as

reflected by increase in probability of stream segregation, hence indicating

that the emergent tuning of nodes in the model explicitly encodes informa-

tion about amplitude modulation; hence allowing the model to leverage this

information to facilitate segregation of noise sequences into corresponding

streams.

Next, we examine the role of harmonicity and temporal synchrony as putative

grouping cues. Both these cues are believed to exert strong grouping acting as

a bond that fuses sound elements together as shown in study by Micheyl et

al. [160]. In this work, a target tone at frequency 1000 Hz is masked by back-

ground tones that are either harmonically related or in temporal synchrony

with the the target tone. The study examines two kinds of stimuli: ‘MBS’

-multiple burst same- stimuli (Figure 3.2D-left) have the same burst of tones

are presented every time; ‘MBD’ -multiple burst different- stimuli (Figure

3.2E-left) vary the harmonicity relationship between target and background

tones at every burst based on different fundamental frequencies. Figures

[3.2D,3.2E]-middle replicate the results from the study by Micheyl et al. [160]

in which listeners detect a change in the final burst of the target tone. The

study shows that when target and background tones are either harmonically

related or in temporal synchrony with each other, d’ is low indicating a strong

background-target fusion. Listeners’ ability to segregate the target improves

when either harmonicity or sychrony is perturbed. Figures [3.2D,3.2E]-right
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show the model performance on the same MBS and MBD stimuli respectively.

When target and background tones are harmonically-related or in synchrony,

the model favors fusion and results in a small d’. In contrast, perturbing

harmonicity by shifting the harmonics, the model favors a segregated inter-

pretation resulting in increased d’. Similarly, when target and background

tones are asynchronous, there is a significant increase in d’, again suggesting

strong segregation.

Speech Intelligibility

Next, we examine the model’s behavior using complex sounds such as speech

in presence of competing noise. In all experiments, a speech utterance is

presented to the network either in clean or masked by background noise that

includes speech modulated noise, babble noise, cafe noises or an interfering

speech utterance. All speech utterances are part of the CRM corpus where

each utterance consists of a call sign and a colorâĂŞnumber combination,

all embedded in a carrier phrase [161]. A typical sentence would be “Ready

baron, go to red four now,” where ‘baron’ is the call sign, and ‘red’-‘four’ is

the colorâĂŞnumber combination. Figures [3.2F,3.2G]-left show spectrograms

of speech utterances from the CRM corpus mixed with speech modulated

noise and an interfering speech utterance respectively.

Figures [3.2F,3.2G]-middle replicate the results from two behavioral stud-

ies using the CRM corpus in a dichotic listening paradigm where subjects

identified the “number" and “color" mentioned in the target utterance under

different noise conditions [162, 163]. The behavioral data yield a measure of

speech intelligibility (in word percent correct) as a function of signal to noise

48



ratio (SNR) with different noise maskers. Figures [3.2F,3.2G]-right depict the

model’s performance replicating the same paradigm as closely as possible.

The model yields a correct identification of speech tokens (numbers, colors,

or both) that is closely related to the SNR condition following an S-shaped

curve typical of similar measures of speech intelligibility in noise. The model

performance plateaus at about 98% correct identification at SNRs above 3dB

(Figure 3.2F-right); whereas it degrades quite rapidly from -3 to -9 dB before

reaching chance performance at -18 dB. When comparing effects of noise type,

both human and model performance is poorer in presence of an interfering

utterance, relative to babble and cafe noise conditions.

3.3.2 Model function and malfunction

As outlined earlier, Figure 3.2 outlines how the model is able to faithfully

replicate a wide range of perceptual results for stream segregation. Next, we

examine the actual contribution of different components of the model to get a

better perspective on how each principle modeled in the system contributes

to stream segregation. The experimental results shown in the previous section

suggest that simultaneous cues (tonotopic organization, AM rate, harmonicity,

temporal synchrony, etc), sequential cues and grouping mechanisms play

an important role in streaming paradigms. In order to shed light on their

individual contributions, we run a series of control experiments where we

look at malfunctions in the model if components of the system are disrupted

individually.
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Role of Simultaneous cues

The tuning characteristics of layer L1 show that model neurons naturally

cluster around specific modulation regions, hence, revealing a wide selectivity

to different acoustic cues that emerge in natural sounds. Here, we focus on

four L1 neuron clusters with particular selectivity to harmonicity, onsets, fast

and slow temporal modulations. We individually ‘turn off’ each of these

clusters from the system and replicate all stream segregation experiments

shown earlier. Figure 3.3 shows the model performance as follows: The left-

most column shows the model performance when L1 harmonicity-neurons

are turned off, the middle column with L1 onset neurons turned off, and

the rightmost column with fast (> 100 Hz) and slow (< 100 Hz) L1 units

turned off respectively. In these experiments, L2 is not altered but is retrained

based on a modified input (i.e. its input dimensionality is reduced because

harmonicity, onset, slow or fast channels are removed).

Switching off harmonicity-L1 nodes has no effect on the system’s perfor-

mance in a two tone paradigm (Figure 3.3A-left) or sinusoidally amplitude-

modulated noise bursts (Figure 3.3B-left). In contrast, the ability to segregate

MBS and MBD sequences in case of mistuned harmonics is drastically affected

by the absence of harmonicity-tuned nodes in the network (Figure 3.3C,D-

left). Similarly, the network’s ability to detect speech (i.e. color and number

in the CRM corpus) is severely impacted in absence of harmonicity-tuned

nodes (Figure 3.3E-left). Taking a closer look at the behavior of the network in

detecting numbers, we note a systematic drop in performance across all digits
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Figure 3.3: Control experiments introducing malfunction in layer L1
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which all contain prominent voiced phonemes (Figure 3.3F-left). A similar

systematic drop is also noticed across all color key words in the corpus (data

not shown).

Disabling L1-onset nodes results in its own malfunctions of the model. Stream-

ing two-tone sequences and sinusoidally amplitude-modulated noise bursts

is not affected by switching off onset units (Figure 3.3A,B-middle). However,

the MBD and MBS stimuli appear to be affected in an interesting way (Figure

3.3C,D-middle) where we note an improvement of segregation in case of mis-

tuned harmonics. The design of these stimuli puts temporal synchrony and

harmonicity in conflict. Free of onset-detectors, the model is able to judge seg-

regation mostly driven by harmonicity or lack thereof in the case of mistuning.

Conversely, in case of temporal asynchrony, there is a drop in segregation

performance in absence of onset-detectors, though the model is able to exploit

the harmonic relationship between target and background tones to induce

streaming. A comparable drop in speech intelligibility performance is also

noted (Figure 3.3E-middle), attesting to the important role of onsets in speech

perception. Taking a closer look at the model performance with individual

digits (Figure 3.3F-middle), we note severe drops for tokens like “three", “six"

and “seven" that contain prominent fricative and plosive unvoiced phonemes.

The role of amplitude modulations in stream segregation has a different effect

on the model’s behavior. We manipulate the selectivity of L1 neurons to

different range of amplitude modulations by testing only-slow or only-fast

neurons (< or > 100Hz respectively)). The segregation of two-tone sequences

appears to be unaffected by presence or absence of slow or fast units alone,

and is likely mostly driven by the tonotopic organization of the nodes in the
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network (Figure 3.3A-right). In contrast, streaming of sinusoidally-modulated

noise bursts is heavily affected when L1 units tuned to faster modulations

are turned off, though only mild changes are noted when slower-units are

turned off (Figure 3.3B-right). Streaming of MBD and MBS sequences appears

unaffected by the time-constants of temporal modulations left in the L1 layer;

and we observe no changes to the model behavior (Figure 3.3C,D-right). In-

terestingly, speech intelligibility is also unaffected when faster L1 units are

turned off (Figure 3.3E-right). In contrast, switching off slower units drasti-

cally affects the model’s ability to separate speech from noise, especially at

low SNRs, strongly corroborating the role of midrange-modulations in speech

perception [142].

Role of sequential temporal dynamics

Next, we examine the impact of model parameters responsible for temporal

integration on stream segregation over longer time scales. First, we observe

the model’s behavior if we switch off neural adaptation at the output of L1

nodes. This mechanism aims to adjust the dynamics of neurons’ responses by

eliminating nodes with moderate activation over time. Figure 3.4-left contrasts

the model’s performance with and without this neural adaptation. Figure

3.4A-left shows that neural adaptation is important for segregating alternat-

ing two-tone sequences. Adaptation appears to aid the temporal coherence

layer in ‘shutting down’ neurons from competing streams which facilitates

segregation. In its absence, both tones in the stimulus continue to compete at

the output of the model hence affecting the ability to segregate. Furthermore,
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this continued competition appears to slow-down the buildup process (Figure

3.4B-left compared to the original model behavior in Figure 3.2B-right). As

noted in the figure, a tone sequence with frequency separation of ∆F = 9

semitones takes many seconds to eventually reach a segregated percept with

modified model as compared to 1-2 secs in the original model, owing to the

continued competition between the two tones. While the temporal coherence

model is able to note the out-phase relationship between the streams, this

process is assisted by neural adaptation which supresses activity from com-

peting streams hence speeding up stream segregation in line with observed

behavioral responses (Figure 3.2B-middle). A similar behavior is observed

in case of sinusoidally amplitude-modulated noise bursts in Figure 3.4C-left.

Here again, removing adaptation from the network allows competition across

channels to linger longer hence hampering the role of temporal coherence in

detecting consistent incoherent activity across competing streams. In the case

of MBD and MBS sequences, adaptation appears to have a mild effect with the

exception of mistuned harmonics in the case of MBD sequences and temporal

asynchrony for MBS sequences (Figure 3.4D,E-left).

We next explore the role of temporal dynamics in cue extraction, partic-

ularly the role of slower time-constants which are thought to play a crucial

role in sequential integration of acoustic cues as the scene evolves. We probe

this role in a control experiment by switching off the L2 units with strong

selectivity to modulation rates (< 50 Hz) and compare this modified network

against the full architecture. The results comparing the two models are shown
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in Figure 3.4-middle and reveal wide spread aftereffects across all stream-

ing experiments. In the case of the two-tone paradigm, removing slower

neurons from L2 significantly impairs the network’s ability to segregate 2

streams as ∆F increases (Figure 3.4A-middle). Also of note is that the stream-

ing buildup is severely affected and quickly settles on final assessment of

segregation between streams regardless of ∆F value likely reflecting the inher-

ent spectral-based separation across the neurons in the network but failing

to track how activity across the neural population evolves over time (Figure

3.4B-middle). Segregation of modulated noise bursts is also severely affected

(Figure 3.4C-middle). The probability of perceiving 2 streams drops dramat-

ically, indicating a poor integration of neural activity across differentiated

neurons. The same effect is observed in the case of MBS and MBD sequences,

where the network fails to segregate the target tone from background masker

tones even in presence of mistuned harmonic relationships (Figure 3.4D,E-

middle). This drop is also noted for both stimuli in the case of asynchrony,

even though the drop is not as dramatic, suggesting the network still relied

on some degree of temporal alignment across the fast neurons remaining

in the L2 network to judge relationship between tone bursts. Finally, in the

case of speech in noise experiments, the network containing ’faster’ neurons

only is severely impaired across all SNR values (Figure 3.4F-middle). The

drop in performance is clear across all digits (Figure 3.4G-middle), as well as

across colors (data not shown). The absence of slow L2 units clearly affects the

network’s ability to match the slow changes in temporal structure of speech

tokens even in presence of simultaneous cues hence failing to facilitate stream

segregation.
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Finally, the role of temporal fusion across channels is examined by testing

the model’s performance without the temporal coherence mechanism in layer

L3. Much like earlier control experiments, removing temporal coherence has

sweeping effects on the model’s ability to perform stream segregation. In the

two-tone paradigm, the model treats the synchronous and alternating notes

similarly as it fails to judge the phase relationship across spectral channels

(Figure 3.4A-right). The buildup of streaming is also completely annihilated

regardless of frequency separation across channels strongly suggesting that

integration over time and across frequency channels plays an important role in

the brain’s ability to consolidate information spectrally and temporally while

it examines possible configurations or interpretations of the scene (Figure

3.4B-right). This process is very much what the temporal coherence stage

achieves and is clearly impaired without coherence. Segregation of modulated

noise bursts is also affected although the probability of segregation does in-

crease with increased AM rate difference ∆AM albeit with reduced probability

suggesting poorer segregation performance of the modified network (Figure

3.4C-right). In the case of noise complexes in the MBD and MBS paradigm, the

network completely fails to achieve any form of segregation (Figure 3.4D,E-

right) suggesting that the presence of simultaneous cues (e.g. harmonicity)

is not sufficient. Complex noise patterns tend to activate a wide range of

channels which require an integration mechanism such as L3 temporal coher-

ence to interpret based on across-channel consistency and phase relationships.

Speech segregation is slightly affected by the disabling of temporal coherence

(Figure 3.4F-right) and more noticeably at lower SNR values. Mild reductions

in segregation are observed consistently across all digits (Figure 3.4G-right)
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and colors (data not shown).

3.4 Discussion

This study presents a biologically-plausible model of stream segregation that

leverages the hierarchical and non-linear representation of sound along the

auditory pathway. While the model is formulated to focus on local and global

cues in everyday sounds, it is structured so that it ‘learns’ these cues directly

from the data. The unsupervised nature of the architecture yields physiolog-

ically and perceptually meaningful tunings of model neurons that support

the organization of sound into distinct auditory objects. The three key com-

ponents of the architecture as shown in Figure 3.1 are : (1) A deep belief

RBM layer that encodes two-dimensional input spectrogram into localized

specto-temporal basis representation based on short term feature analysis; (2)

A dynamic cRBM layer that captures the long-term temporal dependencies

across spectro-temporal bases characterizing the transformation of sound from

fast changing details to slower dynamics. (3) A temporal coherence layer that

mimics the hebbian process of binding local and global details together to

mediate the mapping from feature space to formation of auditory objects.

The layout of the model closely replicates the physiological layout of audi-

tory processing in the brain where an acoustic signal undergoes a series of

transformations from the cochlea all the way to auditory cortex (A1), effec-

tively extracting a rich feature representation [15–17, 164–166]. This multitude

of transformations evolves in temporal and spectral resolution going from

temporally fast, spectrally refined as is typically observed at the level of the
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midbrain to markedly slower and spectrally broader and richer in cortical

networks [147, 167, 168]. The model ‘learns’ similar structures as can be seen

from the modulation transfer functions for both layers L1 and L2 (Figure 3.1B).

This feature representation is complimented with fusion mechanisms that give

rise to perceptually coherent objects. Temporal coherence has been shown

to play an important role in this binding process, operating on the feature

space to integrate cross-channel activity, and has been speculated to operate

beyond auditory cortex likely in a network engaging the intraparietal sulcus

and superior temporal sulcus [169–172]. The proposed model captures the

role of temporal coherence in the final layer L3 via hebbian inetractions.

Role of Simultaneous Layer: Extracting relevant information from incoming

acoustic waves is the backbone of any further processing and sound interpre-

tation. The model replicates this feature analysis in a data-driven fashion by

employing a diverse dataset of natural sounds including human speech, ani-

mal vocalizations and street ambient sounds. Structuring the local layer using

an RBM architecture allows the model to learn a rich tiling of spectro-temporal

basis functions. The results indicate that these bases capture fine details in

the acoustic stimulus, as suggested by the modulation transfer function (Fig-

ure 3.1B); showing a close parallel with physiological transfer functions in

midbrain network with a strong tuning to faster temporal modulations ∼ >

100 Hz and refined spectral tuning spreading up to ∼ 4 cyc/oct. The tuning

of individual model neurons is itself well-structured and localized in this

spectro-temporal space with clear organization of subsets to a wide range of

acoustic cues spanning frequency proximity, harmonicity, onset, and AM rate

among others, as shown by the clustering analysis.
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Traditionally, biomimetic computational models of stream segregation have

attempted to replicate some or all of these cues to enable stream segrega-

tion. Often, this process is achieved by hand-selecting specific axes of feature

analysis that best suit the auditory scenes of interest in these specific studies

[29, 173, 174]. One of the drawbacks to feature selectivity in model design is

confining the testable signals to those that take advantage of these specific

features. By employing an unsupervised approach to feature selection, the

current model not only replicates known simultaneous cues in auditory scene

analysis, but also nonlinearly spans multitudes of features given the fully-

connected nature of the Restricted Boltzman Machine (RBM) used in layer L1.

Across-feature integration is in line with recent findings suggesting that many

auditory neurons are driven by a multitude of stimulus features [175]. This

feature integration is particularly crucial in case of complex sounds where

a multitude of dimensions provide the perceptual system with converging

evidence about the organization of the scene [115, 176]. The complementary

value of this cross-feature mapping is clearly visible in control experiments

where dropping different components of the simultaneous layer have different

effects on the model’s ability to perform stream segregation (Figure 3.3).

Role of Sequential Layer: Along the same lines, the sequential layer provides an

integrated non-linear mapping of the feature space from localized details to

slowly evolving spectro-temporal patterns. The use of a cRBM layer allows

the model to ‘learn’ tuning from natural sounds along slower time-constants.

The transfer function analysis reveals a strong selectivity to slow temporal

modulations present in natural sounds typically in the range ∼ 2 - 32 Hz

as shown in Figure 3.1B. This tuning is reminiscent of modulation transfer
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functions derived from the mammalian auditory cortex with slightly broader

neurons spectrally and slow temporally [147, 148, 167]. This global analysis

has not been extensively investigated in models of auditory scene analysis,

though few models have leveraged cortical-like processing to complement

local feature analysis [29, 177–179]. Engineering approaches have also lever-

aged this global analysis especially in the case of speech processing systems.

Approaches such as RASTA (relative spectra), high-pass and band-pass fil-

tered modulation spectrum take advantage of slow articulatory structure of

speech production as well as the sensitivity of human perception to such slow

dynamics to offer a more robust processing of speech sounds in presence of

noise [180–182].

Role of Temporal Coherence Layer: While the feature analysis is a crucial ingredi-

ent in auditory scene analysis, fusing the relevant cues together is an equally

important complementary stage to group the features into meaningful objects.

Perceptual and physiological data have strongly suggested that temporal

coherence achieves the feature fusion needed for object formation [18, 34, 137,

183]. The current model employs biologically plausible Hebbian interactions

across channels to rapidly adapting co-operative and competitive interactions

between coherent and non-coherent responses [138]. Effectively, channels

that exhibit a high degree of temporal correlation across feature dynamics are

mutually strengthened while incoherent channels are gradually weakened

hence facilitating segregation of target signals from background interference.
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Scene segregation and fusion

A key contribution of this architecture is its ability to quantify the complemen-

tarity of rich feature representation and grouping mechanisms in driving scene

segregation processes. The proposed architecture faithfully replicates human

psychoacoustic behavior on steaming paradigms over wide range of stimuli

ranging from simple tones to speech utterances as demonstrated in Figure 3.2.

In case of two tone streaming paradigm shown in (Figure 3.2 A), the network

exhibits stream segregation when two alternating tones are widely separated

across tonotopic frequency axis. This behavior of the network is consistent

with well established psychophysical and physiological findings of stream

segregation induced by differences in tonotopic cues [184–187]. The primary

reason for this behavior in proposed architecture is when ∆F is high in an

alternating two tone sequence, two different groups of frequency selective

neural units get activated in L1. In absence of temporal correlation between

these two groups, the temporal coherence layer aided by adaptive mechanism

suppresses the anti-correlated groups of units, hence inducing stream segre-

gation in the final stage of the network. However when ∆F is small enough,

there is high degree of overlapping between these two groups as a result of

which the two tones get combined into a single stream.

When the two tone sequence is presented in a synchronous fashion, the net-

work demonstrates strong fusion even when ∆F is high as shown in (Figure

3.2 A). The primary reason for this is when a synchronous two tone sequence

evokes two different groups of co-active neural units, the temporal coherence

layer strongly binds these two groups over time and allows the network in
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fusing two tones into a single stream. This behavior strongly supports the

spatio-temporal view of auditory stream segregation which requires neural

channels to be widely separated as well as temporal incoherence across these

channels [188]. It is also well consistent with the psychophysical findings

suggesting that synchronous spectral components fuse perceptually into a

single coherent sound, whereas any degree of asynchrony introduced across

these components results in segregation [189].

Our network closely replicates the human psychoacoustic behavior in terms

of demonstrating the effect of buildup over two tone stream segregation

paradigm as shown in (Figure 3.2 B). The effect of buildup as established

in [156, 190–192] suggests that stream segregation is a time dependent phe-

nomenon in which the sequence of sounds are initially heard as a single

stream, and that with time the same sounds split into two separate streams.

The prime example of this behavior is demonstrated by our network for the

case when frequency difference (∆F) between the two tones is typically in

the range 3 − 6 semitones. Initially, the network starts with a single percept

because of considerable overlap across the groups of frequency selective neu-

ral units. However, the temporal coherence layer (in presence of adaptive

mechanism) makes sure that the binding of strongly correlated groups of

units keeps on getting stronger and suppressing the anti-correlated units over

time in the same process. This phenomenon improves the stream segregation

performance of the network over time and demonstrates the buildup effect of

stream segregation in a hierarchical framework.

Our network architecture exhibits similar stream segregation behavior in case

of complex tones as shown in (Figure 3.2 [C,D,E]). This behavior is consistent
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with past psychophysical findings which suggest that stream segregation is

induced with sounds evoking segregated responses along any of the feature

dimensions in the auditory pathway including fundamental frequency (F0),

spectral and temporal modulation rate axes and onset among others [193–197].

The network performance validates our claim that localized spectro-temporal

basis representation captured in L1 shows selectivity to different simultaneous

cues like harmonicity, onset and AM among others. When the foreground and

background sounds differ significantly with each other in terms of one of these

cues, the temporal coherence layer in conjunction with adaptive mechanism

makes sure that the co-active units responding strongly to the foreground

are grouped together, whereas all the other competing units get suppressed,

hence allowing the network to induce stream segregation at the output of final

stage of hierarchy.

The performance of proposed network in correct identification of speech

tokens (“number" and “color") over speech intelligibility paradigm further

validates our claim that a combination of rich feature space and grouping

mechanisms drive scene segregation processes in varied complexity of sounds

ranging from simple tones to complex speech utterances. The findings are

consistent with well established physiological and psychoacoustic theories of

scene segregation which suggest that a rich span of feature space in auditory

pathway underlies a distributed representation of natural scenes [114, 198,

199] whereas grouping mechanisms based on coherence of temporal structure

provides an elegant solution to mapping of feature space to well defined object

based representation in the auditory system [18, 137].

We have demonstrated in our control experimental results that tuning the

64



network by controlling the firing of certain L1 and L2 clusters significantly

impacts the network performance on stream segregation and speech intel-

ligibility paradigm. By switching off the L1 units showing high degree of

selectivity to localized cues like harmonicity, onset and slow/fast temporal

modulations as shown in (Figure 3.3) , the network is unable to process the

information characterized by each of these cues and hence fails to map the

acoustic representation to a discriminable feature space. Similarly, when L2

is just tuned to faster modulations, the network fails to phase-lock with the

slower dynamics of the natural sounds present in the scene as a result of which

the stream segregation and speech intelligibility performance gets severely

impacted as shown in (Figure 3.4 - middle). We see a similar kind of effect on

speech intelligibility and stream segregation performance when adaptation

and temporal coherence layer is not incorporated in the network architecture

as demonstrated in (Figure 3.4 - [left,right]) respectively. In absence of group-

ing mechanisms, the network fails to capture the mapping between feature

space and sound percept, hence preventing the network from segregating

non-coherent objects in the dynamic scene. The results of our control experi-

ments validate the claim that a synergy of rich feature space and biologically

driven grouping mechanisms drive the processes involved in segregation of

constantly changing dynamic scene to coherent objects.

In next chapter, we extend this hierarchical framework to an event detection

paradigm with an aim to explore bottom-up saliency mechanisms. Further,

we also develop an acoustic scene classification based on this rich hierarchy of

local and global attributes and use it to complement the bottom-up framework

in the task of salient event detection.
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Chapter 4

Abnormal Event Detection using
hierarchy based bottom-up and
top-down saliency

4.1 Introduction

Our surrounding soundscapes are constantly changing as we go about our

lives; walking from an office to the street to a cafe and carrying conversations

along the way. This constantly changing acoustic environment floods our

auditory system with complex information which needs to be analyzed in

order to make sense of the events around us. Human auditory system has an

exceptional ability of sampling the surrounding environment to pay attention

to the salient objects of interest, while ignoring irrelevant backgrounds Such

an ability is guided by auditory attention, which is a process of allocating

sensory and cognitive resources to objects of interest [200]. For instance, at

a cocktail party, we can keep attending to someone’s voice in a conversation

and neglect the ambient background, however a shrill sound of telephone

ring will cause us to shift our attention to the salient event.
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Auditory attention can be conceptualized as a selection process which directs

sensory-driven as well as cognitive mechanisms to focus its resources onto

anything that is deemed salient in an incoming acoustic stimuli. The selection

process is influenced by both “bottom-up" sensory driven factors as well as

“top-down" task specific goals [201]. In case of purely bottom-up selection pro-

cess, attention is triggered by a stimulus in which the sensory driven cues are

salient enough for conspicuous events to pop up amidst surrounding sounds.

These sensory driven cues are typically represented in terms of rich feature

representation, believed to be the building block of an auditory object. The

bottom-up saliency is characterized in terms of how these feature elements

are distinct enough to enable their constituting object stand out in a scene

amidst different objects. Bottom-up saliency is a major driving force behind

attentional mechanisms, however in cases when an auditory object is not

distinctively different among its neighbors in an acoustic scene, the attentional

mechanisms are complimented with top down task defendant processes. The

top-down task relevant process uses prior knowledge and learned past exper-

tise to focus attention on the target locations in a scene. For example, in an

acoustic mixture comprised of musical piece and spoken conversation, the

attention of subject may shift to speech sound if task is "what is being spoken

?", while the attention may shift to the music if the task is "which instruments

are being played ?"

Vision based saliency models have been very successful in leveraging bottom

up and top down visual cues from complex scenes and use them to build well

defined attention frameworks [202]. Bottom up visual saliency has been pri-

marily captured as a distinction of image locations, regions or objects in terms
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of low level cues such as color, intensity, orientation, shape, T-conjunctions,

X-conjunctions, etc. [203]. Such low level features are shown to affect visual

search and bias eye fixations in natural scenes [204]. The correlation between

physical structure of visual scene and saliency based selective visual atten-

tion has been exploited via successful models based on spatial scales [205],

local geometry [206], spectral contrast [207] using well defined statistical ap-

proaches like information entropy [208] and natural statistics [209]. Bottom-up

saliency has been well complimented with a number of top-down approaches

like bayesian framework exploiting cognitive features and scales for target

identification [210], support vector machine (SVM) framework based on low,

mid and high level visual cues for predicting human fixations [211] as well

as to learn task driven object based visual attention [212]. In recent times,

research efforts have shifted focus from use of hand-engineered features to

use of data-driven features to augment saliency prediction using deep learn-

ing models such as convolutional neural network (CNN) [107, 213–215] and

recurrent neural networks among others [216, 217]. Such saliency models

based on pre-trained deep features have shown to be extremely effective in

learning rich representational space of low level features [218] as well as more

complex and high level embeddings capturing semantic information such as

class of objects [219].

In auditory research, saliency driven computational models have a huge role

to play in tasks like event detection and classification, audio tagging, au-

dio summarization and audio surveillance among others [47, 220]. Most of

event detection and classification studies in past decade have relied upon

low-level features in capturing event specific characteristics. These features
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include short-time energy (STE), zero-crossing rate (ZCR), linear predictive

coding coefficients (LPC), periodicity and pitch information, as well as entropy

distribution of discrete Fourier transform components [19, 20, 22, 71, 221].

Mel-Frequency Cepstral Coefficients (MFCC) have been the most widely used

representation in acoustic event detection tasks because of its ability to capture

compact and efficient mapping of spectral characteristics of simple events [23,

24]. However, as the acoustic scenes encountered in real life environments are

more complex and dynamic in nature, it becomes imperative to capture both

special and temporal nuances of the signal over multiple time-resolutions

[28, 222]. In this regard, spectro-temporal features were introduced via em-

ploying two-dimensional time-frequency Gabor filter-banks, localized Fourier

bases and even biomimetic spectro-temporal receptive fields to capture event

modulation patterns in both time and frequency domains [72, 75]. Although,

huge efforts have been made to designing optimal features, detection and

classification of salient event in continuous audio still remains a challenging

task because of limited scope of hand-crafted features in capturing salient

characterization of an event in a complex acoustic environment.

In recent times, with the emergence of deep belief architectures, deep unsuper-

vised representation learning techniques have achieved tremendous success

in domains like music genre classification, phoneme classification and speaker

identification [66, 117, 118, 120]. The key idea is to learn complex abstrac-

tions as rich feature space from natural soundscapes in a data driven fashion.

Recently, unsupervised representation learning has begun to be applied to

event detection and classification tasks with moderate success. In [223], deep

belief networks (DBN) were employed to learn low level embeddings from
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unlabeled data which were then fed into concatenated softmax layer for final

classification. Cakir et al. in [64] used multi-label feed-forward deep neural

networks (DNN) for polyphonic sound event detection and showed that with

significant numbers of hidden layers, hidden units and training data, DNNs

outperform conventional generative models like GMM and HMM in event

detection and classification task. In recently conducted DCASE evaluations,

it was shown that combination of CNN and LSTM framework is capable of

extracting salient details from myriad of scenes which is reflected in boosted

accuracy in detection and classification paradigms [224, 225]. Although inten-

sive research effort is being continuously expended into developing deep net

architecture to push forward the area of sound event detection and classifi-

cation, most of these techniques are still limited to supervised setup which

models each of the events specifically using a discriminative cost function and

loads of augmented data. There is a lack of relevant studies that can explore

the role of acoustic driven bottom-up saliency mechanisms in event detection

paradigms as well as how to integrate bottom-up saliency with top-down task

specific knowledge so as to bias the bottom-up resources onto locations of

interest in a complex acoustic scene.

The current study proposes an architecture of salient event detection in a

continuous audio using a combination of acoustic driven bottom-up saliency

mechanism and top down task specific knowledge. The study is based on

the hypothesis that sound evolves in a high dimensional feature space and

a salient event is “flagged" whenever there is temporal irregularity across

the feature representation [226, 227]. The study leverages recent advantages

in deep learning to explore the emergence of acoustic cues across auditory
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pathway in bottom-up fashion and how such cues adapt themselves to a

particular scene by following the short and long term regularities of the scene

[228]. We propose a multi-layered deep belief architecture that leverages

the hierarchical and non-linear representation of sound along the auditory

pathway. The network is trained in an unsupervised fashion on a rich sound

dataset including speech, natural scenes etc. to learn a rich combination of

local and global cues from natural soundscape. The deep belief architecture is

comprised of two layers in which each layer is designed to extract different

degree of details from input acoustic signal. The first layer is designed so as to

learn a rich tiling of localized spectro-temporal bases from complex acoustic en-

vironment [66, 121]. The second layer is designed to perform a long term global

analysis to aid the network in learning temporal regularities across local cues

over multiple time-scales [124]. Finally, we incorporate an online feedback

driven adaptation framework into the same architecture which adapts the

spectro-temporal bases based on incoming statistics of an auditory scene. This

adaptive framework tracks the temporal regularities of an incoming acoustic

scene and flags any deviations from these regularities as “salient" [229, 230].

We also propose a top down scene classification framework to compliment the

bottom-up saliency network in detection of events of “interest". The top down

architecture operates on local and global cues learnt via deep belief network,

further supplemented by three layer LSTM network exploiting the sequential

representation of acoustic cues. We demonstrate two fold advantage of top

down acoustic scene classification framework: 1) The framework exhibits

comparable performance to state-of-the-art performance over acoustic scene

classification task. 2) The bottom-up saliency network uses the top-down
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event specific knowledge of classification framework to focus its attention

on events of “interest" rather than any “new" event. We use this integrated

framework of bottom-up and top-down driven saliency mechanism in an

abnormal event detection paradigm and demonstrate how a bottom-up deep

belief based network is capable of extracting salient characteristics of a com-

plex acoustic scene and how predefined knowledge of abnormal events via

top down classification framework guides the network in correct detection of

events of “interest".

The organization of paper is as follows: Section 4.2 provides a detailed de-

scription of the proposed architecture. Section 4.3 outlines the experimental

setup and network configuration and section 4.4 event detection and classi-

fication results. Section 4.5 provides a discussion of results in the context of

role of bottom-up and top-down processing in driving saliency mechanisms

in auditory scene analysis.

4.2 Proposed Architecture

The proposed architecture is structured along 5 stages of auditory processing

as shown in Figure 4.1. The first stage of processing transforms an incoming

acoustic signal to two dimensional time-frequency representation. This repre-

sentation is the passed as an input to second stage which extracts localized

spectro-temporal attributes from auditory spectrogram. The output of this

stage is then passed as input to third stage which learns the temporal reg-

ularities across the local cues. The 4th stage performs short term and long

term adaptation across multiple time scales based on temporal regularities

72



Auditory Spectrogram
Local Analysis 

   using RBM

Global Analysis

  using CRBM
Abnormal Events

Bottom Up Adaptation

Tem
pora

l H
is

to
ry

 (
T)

X H

W

S(t,f)
L
1

L
2

LSTM Network

W

h(t,f)

F(t  ,f)n 

Predicted Label ( y )

Top Down 

Knowledge

Acoustic Scene Classification Framework

Layer 1

Layer 2

Layer 3

Softmax layer 

Figure 4.1: Schematic of proposed architecture. The architecture combines bottom-up
and top-down processing for detecting abnormal events. Bottom-up processing is
comprised of two deep belief layers performing local and global analysis and a multi
scale adaptation framework. Top down processing is based on a scene classification
paradigm passing down scene specific knowledge.

captured in previous stage. A top down classification framework is designed

as the 5th stage in proposed architecture whose output is passed down as top

down knowledge of specific event to compliment the bottom-up processing.

Details of each stage are outlined next:

The acoustic signal is first processed through a model mimicking peripheral

processing in mammalian auditory system [29]. The model transforms the

acoustic signal into joint time-frequency representation referred to as auditory

spectrogram. This stage starts with 128 symmetric filters equally spaced on a

logarithmic axis over 5.3 octaves spanning the range 180-4000 Hz. Next, the

filter outputs undergo spectral sharpening via first order derivative along the

frequency axis followed by half wave rectification and short term integration
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with u(t, τ) = exp(−t/τ)u(t) where τ = 10ms. This analysis mimicking the

cochlear analysis of Yang et al. [114] results in a time-frequency auditory

spectrogram given by S(t, f ). 3 consecutive frames are then grouped together

to form a one dimensional vector x in a process of shingling [133] such x ∈ Rn

and n = 384. A dataset of n sampled patches given by X = x1, x2, . . . , xn is

formed. This set of time frequency patches X forms the input to the next stage

of processing.

4.2.1 Local Analysis using RBM

This stage is structured as Sparse Restricted Boltzmann Machine (RBM), cho-

sen to discover features from unlabeled soundscape in an unsupervised fash-

ion. Sparse RBM in this architecture is comprised of fully connected visible

and hidden layer [231]. The visible layer units xk are real valued and char-

acterized by a Gaussian distribution fitted over input spectrogram S(t, f );

while the hidden units hk are sampled from Bernoulli distribution such that

hk ∈ 0, 1 for k = 1, 2, . . . , N, where N equals the number of nodes used in the

hidden layer, which in this case is equal to 350. The network is parameterized

by θ = W, bx, Bh where W represents the interconnected weights between x

and h, bx represents the visible bias and bh represents the hidden bias. The

network is trained using Contrastive Divergence (CD) algorithm [134] so as to

minimize the reconstruction error between x and x̂ = hW + bv. We refer the

reader to [111] for detailed understanding of the training paradigm. After the

training, the connection weights Wk are transformed into two-dimensional
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hk(t, f ) where t = 3 and f = 128 to obtain a representation akin to spectro-

temporal attributes. We apply these 2D filters over the time frequency patch

S(t, f ) to obtain filter responses rk(t) given by:

rk(t) = ∑
f

∫
yl(τ, f )h(t − τ, f )dτ (4.1)

The localized filter responses rkt form the feature representation for the next

stage in the hierarchy as discussed below.

4.2.2 Global Analysis using CRBM

This stage L2 is structured to learn long term temporal regularities of the

acoustic cues well characterized by the localized spectro-temporal filters in

the previous component. A dynamical modeling approach is incorporated in

this stage to capture the long term temporal regularities as well as the rate of

such regularities. For a dynamical network to capture such regularities from

filter responses rk(t), firstly, a range of temporal resolutions τ ∼ ( 30 - 600 ms)

is defined. Based on each temporal resolution window, instances of rk(t) are

grouped in a process of shingling. The process is repeated for each window

size and different sets of inputs rτ1
k (t), rτ2

k (t), . . . , rτN
k (t) are created.

We use a conditional RBM (CRBM) methodology as our dynamical network

which is a non-linear generative model for time series data that uses an

undirected model with binary latent variables h, connected to a collection of

visible units γ [136]. In our case, we are representing the distribution of visible

units γτn by gaussian fitted over the filter responses rτn
k (t) for k = 1, 2, . . . , K

obtained from the previous component. At each time step t, we maintain
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a history of last T time steps and store the visible variables corresponding

to these time steps in a history vector referred to as γτn
T . Each visible input

γτn
t and hidden unit hτn

t at a particular time step t and corresponding to a

particular rate τn receives directed connections from γτn
T so as to capture the

long term temporal dependencies across visible units. This dynamical model

is defined by a joint distribution :

p(γτn
t , hτn

t |γτn
T ) = exp(−E(γτn

t , hτn
t |γτn

T ))/Z(γτn
T ) (4.2)

where γτn
t is a gaussian fitted representation of current filter response rτn

k (t),

hτn
t is a collection of binary hidden units such that hτn ∈ (0, 1), γτn

T contains

the history of past T filter responses, and Z is the partition function for proper

normalization. The energy function E is given by:

E(γτn
t , hτn

t |γτn
T ) =

1
2 ∑

i
(γτn

it − ĉτn
it )

2 − ∑
j

hτn
jt d̂τn

jt

−∑
i,j

W̄τn
ij γτn

it hτn
jt

(4.3)

where W̄τn captures the interactions between the filter responses and hidden

variables corresponding to each rate τn and the dynamical terms ĉτn
it and d̂τn

jt

are linear functions of previous T filter responses γτn
T , given by:

ĉτn
it =

(
Cτn

i + ∑
l

Aτn
il γτn

lN

)
d̂τn

jt =

(
Dτn

j + ∑
l

Bτn
il γτn

lN

)
(4.4)

where Cτn and Dτn are static biases and Aτn and Bτn are autoregressive model

parameters. The dynamic biases ĉτn and d̂τn help in integrating the input over

past T time steps and apply them as a bias to the visible unit γτn
t and hidden

unit hτn
t at current time step t. The parameter set θ = (W̄, A, B, C, D) of CRBM

76



defined over 300 hidden units for each rate τn are learned using contrastive

divergence (CD) approximation similar to RBM network. We refer the readers

to [232] for detailed understanding of training paradigm of CRBM framework.

4.2.3 Bottom-up Adaptation

This stage is based on a feedback mechanism framework in which the filter

outputs corresponding to each rate in L2 are adapted based on change in

temporal regularities. The change in temporal regularities are characterized

in terms of first order change in multi-rate filter outputs. Filter outputs oτn
k (t)

for k = 1, 2, . . . , 300 and τn ∼ ( 30 - 600 ms) are given by:

oτn
k (t) = W̄τn

k γτn
k (t) + ĉk

τn (4.5)

where W̄τn represents the connecting weights between hidden and visible

layer, γτn(t) represents the gaussian fitted visible input representation of L1

filter responses rτn(t) and ĉτn designates the dynamic visible biases learnt for

each rate τn in L2. The filter weights W̄τn capture the temporal regularities

across acoustic cues emanated from a scene. However, one major constraint

imposed in this methodology is that W̄τn is time-independent which limits the

ability of the network to adapt to changing regularities of an acoustic scene.

In order to relax this constraint, we introduce a time dependent variable

represented by gτn
k (t) as linear gain component to account for the changing

regularities. In order to compute gτn
k (t), we take first order derivative of filter

outputs zτn
k (t) such that:

∆zτn
k (t) = W̄τn

k ∆γτn
k (t) + gτn

k (t)W̄τn
k γτn

k (t) (4.6)
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After solving equation 6 for gτn
t , we get a closed form solution given by:

gτn
k (t) = (∆zτn

k (t)− W̄k∆γτn
k (t))(γτn

k (t)W̄τn
k )−1 (4.7)

In order to formulate the feedback mechanism, firstly, we make sure that the

time dependent gain gτn
k (t) as computed in equation (6) is normalized such

that gτn
k (t) ∈ (0, 1), and secondly, gτn

k (t) is projected onto L2 weights W̄τn in a

recursive state space framework as suggested in [233, 234]. The state space

formulation for adaptive weights are given by:

W̄τn
k (t + 1) = βgτn

k (t)W̄τn
k + ζ||W̄τn

k ||2 (4.8)

where β is given by 0.001/τn which implies for large values of τn, L2 weights

adapt slowly to the change in scene regularities whereas for small values of

τn, β forces the L2 weights to adapt at a faster rate. This allows the network

to track multiple rates of regularities in a scene, hence accounting for both

slow as well as faster transitions. ζ is used as L2 regularizer to make sure that

L2-norm of W̄τn(t) ∈ (0, 1). Bottom-up saliency mechanism is incorporated

in the same framework by resetting the adaptation framework whenever gτn
t

exceeds a certain threshold M decided empirically. Hence, the mathematical

formulation for bottom-up saliency framework as incorporated in this stage is

given by:

W̄τn
k (t + 1) = ζ||W̄τn

k ||2 if gt > M

W̄τn
k (t + 1) = βgτn

k (t)W̄τn
k + ζ||W̄τn

k ||2 if gt ≤ M

(4.9)
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4.2.4 Top-down task specific knowledge

The role of this component in the proposed architecture is to pass down task

specific knowledge to bottom-up saliency framework so as to allow it to focus

its attention onto events of “interest". In order to gather sufficient knowledge

about some specific events, this stage is structured as scene/event classifica-

tion framework based on RBM-CRBM features supported by 3 layer LSTM as

the backend classifier.

In this proposed classification framework, a deep belief RBM-CRBM based

representation has been used as feature space. As studied in [66], RBMs typi-

cally capture localized spectro-temporal bases from acoustic input whereas

CRBMs capture the long term temporal regularities which characterize the

global attributes present in an acoustic scene. This feature presentation forms

a part of bottom-up framework proposed in the architecture. We implement a

top-down methodology of feature extraction in this framework to incorporate

both the local and global attributes in the same feature space. Firstly, the L2

filter weights W̄τn are untangled into W̄τn
nxK1xK2

, where n represents number of

slices tangled together in the shingling process, K1 represents the number of

hidden units in L1 network (= 350) and K2 represents number of hidden units

(= 300) in L2 network. The filter weights W̄τn
nxK1xK2

corresponding to each rate

τn are then projected onto L1 filter weights to obtain new set of weights given

by: t Ŵτn
K0xK2

= ∑n (WK0xK1)
(

W̄τn
nxK1xK2

)
where K2 equals number of visible

units (= 384) in L1 network. These newly obtained set of weights Ŵτn
K0xK2

are

then transformed into two-dimensional ĥτn
k (t, f ) where t = 3 and f = 128 to

obtain a spectro-temporal bases representation where k = (1, 2, . . . , K2). The
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final feature map is obtained by convolving each of these 2D spectro-temporal

bases with input auditory spectrogram S(tn, f ) such that the final feature map

is represented by:

F τn
k (tn, f ) = S(tn, f )⊛ ĥτn

k (t, f ) (4.10)

where tn represents the time-steps in auditory spectrogram and ⊛ designates

‘same’ convolution.

In this top-down scene classification framework, a 3-layer LSTM network is

used as the background DNN based classifier operating on top-down feature

map representation as shown in Figure 4.1. LTSM layers are composed of

recurrently connected memory blocks in which one memory cell contains

three multiplicative gates. The gates perform continuous ‘read’, ‘write’ and

‘forget’ operations enabling the network to utilize the temporal information

over a period of time. The hidden layers of LSTM network have self-recurrent

weights which enable the cell in the memory block to retain previous informa-

tion. We refer the reader to [235] for further details of LSTM network. In the

proposed system, an acoustic image given by F τn
k (tn, f ) is used for sequential

learning. Each acoustic image is of the form F τn
f xtn

for k different filters. Hence,

for a single utterance u(t), we have (kxτn) different versions of acoustic image

F f xtn . We randomly sample k′ images from the set of (kxτn) images and use

them as an input set for utterance u(t). The same procedure is repeated for

the entire set training set which is further used for training the LSTM network.

This allows the network to learn multiple and distinct sequences of local and

global details characterizing acoustic events. The output vector zt is extracted
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from input acoustic image F f xtn through LSTM layers, which is further for-

warded to softmax layer. Finally, the class probability ŷt is predicted through

the softmax layer.

In order to propagate the top-down event specific knowledge back to bottom-

up saliency framework, segment-based class labels are obtained from the

network. GIven zt, the predicted class label for segment of duration τn is

given by:

Cτn
segment = argmax

i

T

∑
t=1

log(P(ŷt = i|zt) (4.11)

where T represents the number of frames in segment of duration τn. For

abnormal event detection task, we have a predefined set of abnormal events

designated by Cabnormal = (Cab1 , Cab2 , . . . , CabN). The top down event specific

knowledge from LSTM framework is incorporated into the bottom-up saliency

framework by introducing a modification to equation (9) as given by:

W̄τn
k (t + 1) = ζ||W̄τn ||2 if (gt > M) & (C ∈ Cabnormal)

W̄τn
k (t + 1) = βgτn

k (t)W̄τn
k + ζ||W̄τn

k ||2 if gt ≤ M

(4.12)

4.2.5 Detection of Abnormal Events

The final stage in the architecture is structured as abnormal event detection

framework. After combining the bottom-up acoustic driven representation

and top-down task specific knowledge, L2 filter outputs are extracted by pro-

jecting modified W̄τn
k (t) as obtained in equation (12) onto L1 filter distribution

γτn
k (t) for k = 1, 2, . . . , 300 corresponding to each rate τn. Modified L2 filter
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outputs ôτn
k (t) are given by:

ôτn
k (t) = W̄τn

k (t)γτn
k (t) + ĉk

τn (4.13)

In order to detect an ‘onset’ of any abnormal event in complex acoustic scene,

the ‘adaptation’ and ‘reset’ properties of ôτn
k (t) are exploited. The reset points

in ôτn
k (t) signify an onset of any event of “interest" as suggested in equation

(12). The reset points are determined by taking first order derivative of ôτn
k (t)

given by ô′
τn
k (t) = ∆ôτn

k (t). The reset information is integrated by summing

across all the filters and rates such that o(t) = ∑τn ∑k ô′
τn
k (t). The onset points

are identified by extracting the locations of peaks in o(t). In order to assess the

correspondence between events detected by proposed mechanism and actual

events, the scenes are analyzed over overlapping bins of duration duration

TL. Results presented in this paper are for 3 second windows with a time

step of 1 second. Each bin containing both the actual onset and detected

onset is marked as a “hit’"; each bin containing only the detected onset is

marked as “false". Based on these statistics, a receiver operating characteristic

(ROC) curve is generated by varying the threshold based on strength of peaks

corresponding to detected events.

4.3 Experimental Setup

4.3.1 Data

An ensemble of natural sounds comprising of speech segments from TIMIT

speech database [236] and environmental sounds like ambient outdoor noises

and animal vocalizations from BBC sound database [76] is used to train RBM
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(L1) and CRBM (L2) bases in our architecture in an unsupervised fashion.

Speech dataset and from TIMIT comprises of male and female speakers and

approximately amounts to 4 hours of data. BBC database has total of 2400

recordings, amounting to 68 hours of data. Examples of animal vocalizations

in BBC include barking dogs, bleating goats and chattering monkeys. The

ambient sounds include different types of environmental noises, for example,

street, office, warfare and transportation among others. Speech utterances

are approximately 3 seconds in length, while animal vocalizations are and

ambient sounds are broken into 3 seconds and are windowed using a raised

cosine window to avoid transient effects. All segments are down-sampled to

8 kHz and standardized to zero-mean and unit variance.

The dataset used for abnormal sound event detection framework contains

audio recordings having abnormal events mixed with a plurality of back-

ground noises [237]. The proposed architecture for abnormal event detection

is experimentally validated considering an application of ‘audio surveillance’

in which the set of abnormal events Cabnormal is comprised of three classes of

audio events: scream, glass breaking and gun shot. The dataset consists of 384

audio files, each of the files is about 3 minutes long and containing a sequence

of ‘normal’ and ‘abnormal’ events laid on top of each other. The audio files

are available at multiple SNR levels in which the normal and abnormal events

are mixed at a specific value of SNR, SNRp, with p={0 dB,5 dB,10 dB,15 dB, 20

dB, 25 dB, 30 dB}.

For the top-down classification framework, we have used the publicly avail-

able ESC-50 dataset [238]. The ESC-50 dataset consists of 2000 environmental

recording, each of which are 5 seconds long. The recording are divided
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into 50 equally balanced classes. These 50 classes are divided into 5 major

groups, namely, animals, natural sounds, human non-speech sounds, inte-

rior/domestic noises and exterior/urban noises. The dataset contains “glass-

break" as one of the classes in interior noise set, hence in order to incorporate

the top down information of all the abnormal events used in our event de-

tection analysis, we further add classes like “gun-shots” and “scream" to the

database. The files are arranged in 5-folds for comparable cross-validation.

4.3.2 Network Configuration

The deep belief architecture formulated for acoustic driven bottom-up saliency

is comprised of RBM and CRBM network in which both the networks are

trained using the contrastive divergence (CD) approximation. RBM network

is comprised of 350 hidden units and CRBM network corresponding to each

temporal resolution (τn) consists of 300 hidden units. Both RBM and CRBM

network are initialized with learning rate of λ = 10−3 and a sparsity target

of 0.5. The autoregressive weights in case of CRBM used a learning rate of

λA = 10−3 as used in [136]. A momentum term is also used in both the

networks: 0.9 of the previous accumulated gradient was added to the current

gradient. The training cases are presented to both the networks as “mini-

batches" of size 500 and the weights are updated after each mini-batch.

For top-down acoustic scene classification framework, we used a LSTM net-

work of 3 hidden layers, each with 200, 100 and 100 LSTM cells respectively.

The network is trained over 300 epochs using cross-entropy error as the loss

function supervised by one-hot encoding class vectors. The randomly ordered
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mini-batches in each epoch is set to be 200. After a mini-batch is processed, the

weights are updated using adadelta [239]. The input sequence is an acoustic

image which consists of 500 frames of 128 dimensional auditory spectrogram

frequency bins. The output layer consists of 52 softmax nodes identical to the

number of acoustic scenes.

4.4 Experimental Results

For evaluating the performance of proposed architecture on abnormal event

detection task, we considered two primary measures: correct detection of ‘ab-

normal’ event onsets termed as true positive rate (TPR), detection of abnormal

onsets when only normal events are present termed as false positive rate (FPR).

Figure 4.2 shows the ROC measure for proposed acoustic driven bottom-up

salient event detection framework. The proposed architecture is compared

against two baseline bottom-up feature driven methodologies. One baseline

framework is based on MFCC based feature representation and the second

is based on combination of 9 standard features namely brightness, bandwidth,

spectral flatness, spectral irregularity, pitch, harmonicity, temporal modulations,

spectral modulations, and loudness. Details of each of these features can be

found in [240]. The performance measure of each of the techniques is based on

the same onset detection paradigm, which is extraction of onset time stamps

based on derivative of feature representation. Figure 4.2 clearly suggests that

proposed framework based on adaptation and reset mechanism achieves the

best performance in terms of true positive rate. For an average false positive

rate of 30% on the entire test set, the proposed framework achieves an average
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correct detection rate of 71.2%. We consider the area under the ROC curves

(AUC), which is equal to 1 for a perfect classification, as a measure of the

performance of three feature driven bottom-up frameworks. The higher this

measure, the better the overall performance of the framework is. The average

AUC measure for the proposed bottom-up framework is 0.79 which is 24% rel-

ative improvement over the performance of MFCC (AUC=0.6) and standard

feature set (AUC=0.55).

To evaluate the performance of proposed top-down scene classification

Figure 4.2: ROC measure for three bottom-up feature driven configurations related
to abnormal sound event detection

framework, 5-fold cross validation was performed on 52 classes (ESC-50 +

“gun-shot" + “scream"). The classification accuracy for each class of scene is

reported in Figure 4.3 for the proposed RBM-CRBM-LSTM framework and

compared against a framework using the same set of feature representation

extracted from RBM-CRBM network supported by a GMM based classifier
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in the backend [81]. Figure 4.3 shows that the proposed architecture exhibits

an improved accuracy across majority of classes compared to GMM frame-

work. However, such improvement is not noted across all classes, hence

suggesting that sequential modeling of local and global attributes captured

via RBM-CRBM is not enough for discriminable representation of a complex

acoustic scene. We further compare our framework’s performance against

other studies in literature reported on same task and summarize the results in

Table 4.1. The comparison suggests that the average classification accuracy

of 87.2% achieved by our proposed framework is slightly better than state-of-

the-art network of Filter Bank Energies (FBEs) and convolutional RBM based

feature representation and CNN based classifier as reported in [223].

The top down knowledge acquired from scene classification is further

Figure 4.3: Classification Accuracy for each of the fifty-two classes for the proposed
and baseline generative framework

incorporated into bottom-up saliency framework to augment the abnormal
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Framework Accuracy(%)

RBM-CRBM-LSTM 87.2
FBEs-ConvRBM-Bank [223] 86.5

Piczak FBEs-CNN [241] 64.5
EnvNET [242] 64.0

logmel-CNN [242] 66.5
logmel-CNN-EnvNet [242] 71.0

Table 4.1: Comparison of classification accuracy of ESC-50 dataset in literature

event detection paradigm as per the schematic shown in Figure 4.4. Figure 4.4

suggests that the top down classification framework generates labels for each

segment 1 second long. If these labels don’t match a corresponding abnormal

event, adaption-reset mechanism is driven by pure bottom-up saliency. How-

ever, if the labels generated by top-down framework matches an abnormal

event and the bottom-up saliency misses the onset owing to weak saliency

in changes across regularities, the top-down decision forces the bottom-up

framework to reset its resources and restart the process of adaptation based

on new event regularities. Hence, the incorporation of top-down knowledge

into bottom-up framework augments the network in detecting the onsets of

abnormal events which might get missed in the pure bottom-up process.

Figure 4.5 shows the ROC performance curve for the proposed top-down

and bottom-up based saliency framework for abnormal event detection. The

proposed framework is compared against baseline architecture proposed by

Foggio et.al [237] for the same dataset. The top down knowledge of abnormal

classes is gathered from scene classification framework developed on dataset

comprised of ESC-50 scenes and “gun-shot" and “screams", hence, in order

to provide a fair comparison, we replicate the scene classification framework
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Figure 4.4: A schematic of top-down event specific knowledge incorporated into
bottom-up framework
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using the baseline architecture as proposed in [237] for the dataset comprised

of ESC-50 scenes and “gun-shot" and “screams", and subsequently use it for

abnormal event detection. The baseline architecture is a pure top-down based

event detection framework which consists of short-time and long-time de-

scriptors in terms of feature representation supported by SVM based classifier.

We refer the reader to [237] for detailed description of feature set and learn-

ing mechanism. Figure 4.5 clearly suggests that incorporation of top-down

task specific knowledge of abnormal events like “glass-break", “gun-shot"

and “screams" into bottom-up framework improves the performance of the

architecture in terms of true positive rate. The combination of top-down and

bottom-up based saliency framework achieves an average correct detection

rate of 78.8% for an average of false positive rate of 30% which is 7.6% absolute

improvement over performance of proposed bottom-up framework as shown

in Figure 4.2. The proposed framework also achieves almost 19% absolute

improvement over baseline SVM based architecture, hence signifying the

importance of bottom-up processes in driving saliency mechanisms. For fur-

ther analysis, AUC is computed from ROC curves of each of the frameworks

shown in Figure 4.5. The top-down⊕bottom-up architecture achieves an AUC

measure of 0.84 compared to 0.79 for bottom-up framework and 0.65 for base-

line architecture. This measure further validates the fact that incorporation of

top down knowledge of abnormal scenes in saliency mechanism compliments

the bottom-up saliency driven mechanism and significantly improves the

performance of network in detection of abnormal events.

To test the robustness of the proposed framework, a comparative analysis

of bottom-up and top-down⊕bottom-up architecture is performed for the
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Figure 4.5: Comparison of ROC measure for proposed top-down⊕bottom-up, pure
bottom-up and SVM based baseline architecture in abnormal event detection test-set

entire test set at different levels of SNR. In the context of abnormal events

mixed with normal events in a continuous audio, high SNR means the ab-

normal events are more prominent in the audio. As the SNR level decreases,

the prominence of normal events in the audio increases which subsequently

increases the complexity of the abnormal event detection task. The results

for this analysis are reported in Table 4.2. The performance of both the archi-

tectures are reported in terms of F1 and ER (error-rate) score. Table clearly

suggests that top-down⊕bottom-up architecture matches the performance of

pure acoustic driven bottom-up architecture at high SNR and exhibits high

degree of robustness at low SNR. When normal events tend to get more and

more prominent in the audio in terms of low SNR level, it becomes difficult

for bottom-up architecture to detect the onsets of abnormal events, as reflected

by low F1 and high ER score.
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F1 score ER score
SNR Bottom-Up Bottom-up

⊕ Top-down
Bottom-Up Bottom-up

⊕ Top-down
30 dB 0.95 0.96 0.18 0.16
25 dB 0.92 0.93 0.20 0.19
20 dB 0.9 0.91 0.22 0.21
15 dB 0.83 0.89 0.28 0.24
10 dB 0.75 0.85 0.34 0.27
5 dB 0.65 0.83 0.41 0.29
0 dB 0.55 0.71 0.45 0.30

Table 4.2: Abnormal sound events detection results for proposed configurations at
different SNR levels

4.5 Discussion

This study presents a hierarchical framework of salient event detection based

on acoustic driven bottom-up mechanism and top-down task specific knowl-

edge. The hypothesis for this framework is acoustic driven bottom-up saliency

mechanisms are heavily dependent on a rich feature representation that can

characterize an event present in a complex acoustic scene in terms of its spe-

cific details and can pop the event out in a neighborhood of other events

based on how distinct and discriminative the details are. The hierarchical

architecture is based on an unsupervised framework of learning the local and

global attributes from a complex acoustic scene via a deep belief based RBM-

CRBM network. This network is primarily drive by methodology which

encodes two-dimensional input spectrogram into localized spectro-temporal

basis representation via short term feature analysis as well as learning the

long term temporal regularities across such bases. Based on this hierarchy

based auditory representation, a bottom-up saliency mechanism is developed
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based on adaptation of spectro-temporal bases as per change in regularities

of complex heterogeneous event in a acoustic scene as well as reset of the

same bases whenever a “new" event is salient enough to draw the attention of

bottom-up framework. The study also proposes a top-down acoustic scene

classification framework which exploits the sequential representation of local

and global attributes via deep LSTM networks. The top-down event specific

knowledge gathered via this framework is then used to bias the bottom-up

resources towards the events of “interest".

A lot of studies in literature have explored the role of various features in the

context of bottom-up saliency mechanism. Often, this studies are based on

hand-selecting specific sets of features best suiting acoustic events of interest

used in the studies [243–245]. One major limitation to feature selectivity in

model design is the span of acoustic events which are limited to those which

can take advantage of specific sets of features in saliency studies. By employ-

ing an unsupervised framework of feature learning, the proposed network is

capable of learning a rich non-linear space of local and global attributes in a

complex acoustic scene. This non-linear feature space is particularly crucial in

case of complex scenes in which a multitude of dimensions provided converg-

ing and complimentary evidence about the salient organization of events in a

scene. The characterization of long term temporal details via global analysis

(CRBM framework in this study) has not been extensively studied in saliency

models, though few models have explored the idea of complimenting local

feature space with long term details, especially in speech processing systems

which incorporate feature dynamics mimicking the articulatory structure of

speech production to impart robustness to such systems in presence of noise
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[180, 181].

A key contribution of the proposed architecture is a pure acoustic driven

bottom-up saliency framework used in the context of abnormal event detec-

tion. Figure 4.2 shows that proposed bottom-up framework performs signifi-

cantly better than two baseline frameworks used in previous studies [47, 246]

in terms of correct detection of abnormal events as well as AUC measure. One

key reason behind such an improvement is the complimentary information

imparted by local and global specto-temporal bases learnt via RBM-CRBM

framework related to salient characterization of fast as well as slow changing

events in a complex acoustic scene. Another key reason is that the framework

takes into account the change in regularities of the events in a continuous

audio in terms of first and second order statistics of filter outputs in L2 and

adapt the filter weights based on these statistics. The reset mechanism allows

the network to bias its computational resources towards a salient change in

event regularities, hence aiding the network in salient event detection. The

normal events present in the test-set for the event detection task are typically

comprised of household ambient sounds including combination of people

conversing, telephone ring, cooking utensils and sound of water gushing out

of tap among others, rain sounds, street ambient sounds etc. When normal

events tend to get more prominent at low SNR level in a continuous audio, the

saliency doesn’t remain confined to abnormal events owing to heterogeneity

of complex events. For example, at low SNRs, sound of telephone ring in the

middle of a conversation will be detected as salient event in the proposed

bottom-up framework, hence contributing to false alarms in terms of abnor-

mal event detection. To tackle this constraint of bottom-up framework, the
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top-down knowledge of abnormal events via an acoustic scene classification

framework is incorporated in the same framework which allows the network

to bias its bottom-up resources towards a salient event only when the saliency

of the event is in agreement with top down event specific knowledge as shown

in Figure 4.4.

A major contribution of this work is a top-down acoustic scene classification

framework exhibiting comparable performance to state-of-the art [223] on

ESC-50 dataset as shown in Table 4.1. The rich complimentary space of local

and global spectro-temporal bases is driving the feature representation stage

via RBM-CRBM framework which is further supplemented by 3 layer LSTM

network exploiting the sequential representation of the feature space. The

fact that the proposed framework betters the state-of-the art validates the

importance of global analysis complimenting local feature space. However,

for broadband classes like “rain" and “water-drops", the classification accu-

racy of the framework is well below mean classification accuracy of 87.2% as

shown in Figure 4.3. This suggests that proposed feature space is not enough

to characterize broad-band spectro-temporal representation. The proposed

framework exhibits a classification accuracy of 94.8% for “glass-break", 90.1%

for “scream" and 97.2% for “gun-shot". This analysis forms the basis for incor-

porating top-down information of such classes forming the core of abnormal

events into the bottom-up framework.

The feedback of top down information in terms of posterior probability of an

acoustic class into bottom-up framework lead to an improved performance

in abnormal event detection task over pure bottom-up framework as well as

SVM based top-down event detection framework [237] as shown in Figure 4.5.
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The major factor accounting for such an improvement is that whenever an ab-

normal event ∈ {glass-break, gun-shot, scream} shows up in the continuous

audio, the top-down scene classification framework produces the right label

ŷ corresponding to such events which in turn forces the bottom-up frame-

work to bias its saliency resources towards such an event. Table 4.2suggests

that even at low SNR when the normal events are way more prominent than

abnormal events, the proposed bottom-up⊕top-down framework exhibits a

F1-score of around 0.71 compared to 0.55 for pure bottom-up. This shows that

the top-down classification framework is able to produce the right labels for

abnormal events event at 0 dB SNR owing to its rich feature representation

and deep LSTM network, which in turn imparts high degree of robustness

into event detection paradigm. The ER score of 0.30 primarily accounts for

the fact when the normal events are spanned by events like “rain sounds"

and others which typically have a broadband spepctro-temporal representa-

tion, the feature space of local and global attributes fail to capture the salient

changes in temporal regularities and hence, miss the salient onsets of abnor-

mal events. Another major reason is at low SNR, an abnormal event like

“scream" is confused with classes like “crying baby" or "laughing" which pre-

vents the top-down network from feeding back the information of “scream"

into bottom-up framework and hence, lead to high miss rate at low SNR.
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Chapter 5

Abnormal Event Detection using
Mixtures of Temporal Trajectories

5.1 Introduction

As discussed in Chapter 4, abnormal event detection in a continuous au-

dio depends to a a great extent over salient details captured by the feature

representation which makes a salient event "pop" out in the context of the

other events in the neighborhood. However, when the events tend to get

very unstructured and broad in nature, defining ‘abnormal’ behavior in an

audio recording becomes a challenging task. First of all, there is no universal

definition of what abnormality means. Second, even what is normal cannot be

easily defined given the complex nature of sound sources in realistic scenarios.

To date, most research efforts in anomaly detection have mainly focused on

detection of isolated events in continuous recordings such as shouts [247],

screams [248], laughs [249], gunshots and explosions [250] etc. However, for

setting up a surveillance system in an environment like a train or subway

station, detecting abnormalities based on examining isolated events becomes
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highly inefficient since collections of such isolated events can overlay nor-

mal behavior. Instead, we consider the problem of obtaining a good model

representation of normal behavior in the environment. We are particularly

interested in models that can capture non-trivial commonalities across various

sound events as well as their interactions in the context of a complex scene.

Modeling acoustic scene behavior ultimately reduces to a choice of feature rep-

resentation and learning model that can best characterize the myriad events

that can be encountered in acoustic scenes. Mel-Frequency Cepstral Coef-

ficients (MFCC) are the most widely used representation in acoustic event

detection tasks. They provide a compact and efficient mapping of the spectral

characteristics of simple scenes [23, 24, 73]. Unfortunately, their performance

does not generalize to real world environments which are inherently dynamic

and often corrupted by noise. In order to accurately report the intricacies of

such realistic scenarios, it is imperative that any modeling of acoustic char-

acteristics captures both spectral and temporal nuances of the signal over

multiple resolutions and time-constants [28, 222]. Work in this direction has

often employed two-dimensional time-frequency filter-banks using Gabor

filters, localized Fourier bases or even biomimetic spectro-temporal receptive

fields [72]. In [66], Lee et al. reported a localized and rich tiling of the spectro-

temporal space of sound classes derived from unsupervised learning over

unlabeled data in the context of Restricted Boltzmann Machines (RBM) [251]. In

the current work, we build on this rich basis set; and extend applicability of

unsupervised learning using RBMs to the problem of anomaly detection in

audio recordings.

Operating on this feature analysis often comes a robust backend classifier
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whose role is to capture variability across different instances of the sound

class. Unsupervised classifiers like Support vector machines (SVM) and Gaus-

sian mixture models (GMM) have proved to be very efficient in modeling the

mean statistics of analytical audio features in tasks of scream, laughter and

gunshot detection [252, 253]. These models do provide well defined average

representation of isolated events but fail to capture the information contained

in the temporal dynamics of these events. In contrast, HMM based models

are capable of capturing such temporal trajectories [253]. However, because of

their markovian constraint, they become inefficient in modeling the long term

temporal dependencies across events essential to obtain a global context of an

acoustic scene. Recent work started using more representationally powerful

generative models based on distributed hidden states, such as Conditional

RBMs [254] to learn representation of temporal dynamics from data rather

than explicitly modeling them under hard wired assumptions.

In the current study, we develop a hybrid RBM-CRBM scheme for modeling

normal acoustic behavior in a subway station. An “event" such as normal

conversation among riders is typically comprised of multiple sub-events like

speech, laugh, cheerful banter etc., each having its own set of spectral and

temporal dynamics. In order to capture these different modes of temporal

dynamics as well as their interactions and transitions across each other, we

propose a mixture of dynamic trajectories that can decompose the global tempo-

ral space of a normal event into multiple trajectories, each of which belongs to

a semantically different sub-event. We develop an integrated framework of

learning the localized spectro-temporal attributes in an unsupervised fashion

as well as capturing their different modes of temporal trajectories by using a
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Figure 5.1: Block diagram of MTT based abnormal sound event detection

set of mixtures of temporal trajectories (MTT). The framework flags anything

as an ‘abnormal’ event that don’t fall within the span of learned trajectories.

The organization of this paper is as follows: Section 5.2 provides a detailed de-

scription of the proposed methodology using a hybrid RBM-MTT framework.

Section 5.3 outlies the experimental setup and event detection results, while

section 5.4 provides conclusion and discussion of the results.

5.2 Method

Our proposed framework for abnormal sound event detection comprises 3

main processing blocks; acoustic modeling using RBM, dynamic modeling

using MTT and finally using these models for abnormal sound event detection

as shown in Figure 5.1. The system operates on time frequency represen-

tation of acoustic signals. A time-frequency auditory spectrogram y(t, f ) is

extracted from each audio file based on a model of peripheral processing in

the mammalian auditory system [29]. The spectrogram representation y(t, f )
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is sampled with frame size of 10 ms. 10 consecutive frames are then grouped

together to form a one dimensional vector x in a process of shingling [133].

A dataset of n sampled patches given by X = x1, x2, . . . , xn is formed, where

x(i) ∈ RN and N = 1280 in our case.

5.2.1 Acoustic modeling using RBM

We use Sparse restricted Boltzmann machine (RBM) as the unsupervised

learning algorithm to discover features from the unlabeled dataset X. Sparse

RBMs are undirected graphical models with K binary hidden variables [255].

We train the first layer RBM representations comprised of 400 hidden units

using the contrastive divergence (CD) approximation with same type of hyper-

parameters and sparsity penalty as used in [256]. The training produces the

weights Wk for k = 1, 2, . . . , 400 which are a representation of localized spectro-

temporal attributes. In order to get a representation similar to localized 2D

filters, we transform these one dimensional weights Wk into hk(t, f ) where

t = 10 and f = 128. We apply these 2D filters over the time-frequency patch

y(t, f ) extracted from the labeled dataset of normal conversations to obtain

filter responses rk(t) given by:

rk(t) = ∑
f

∫
yl(τ, f )h(t − τ, f )dτ (5.1)

Filter responses rk(t) are used as our feature representation of ‘normal’ events

for the next processing block.
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5.2.2 Dynamic modeling using MTT

Next, a mixture of CRBMs (mCRBM) [8] is proposed as a dynamical mixture

model to decompose the global temporal space of a normal event into multiple

trajectories, where each such trajectory belongs to a particular sub-event. A

dynamical mixture model can be created by introducing a mixture component

variable, q, with M possible states. The dynamical model is defined by a joint

distribution:

p(γt, zt, qt|γN) = exp(−E(γt, zt, qt|γN))/Z(γN) (5.2)

where γt is real valued representation of current filter response rk(t), zt is a

collection of binary hidden units such that z ∈ (0, 1), and γN contains the

history of past N filter responses to provide a way for capturing the long term

temporal dependencies across the responses. The energy function E is given

by:

E(γt, zt, qt|γN) =
1
2 ∑

i
(γit − ĉit)

2 − ∑
j

zjtd̂jt

−∑
m

qmt ∑
i,j

W̄ijγitzjt

(5.3)

where W̄ captures the interactions between the filter responses and hidden

variables and the dynamical terms ĉit and d̂jt are linear functions of previous

N filter responses γN, given by:

ĉit = ∑
m

qmt

(
Cim + ∑

l
AilmγlN

)

d̂jt = ∑
m

qmt

(
Djm + ∑

l
BilmγlN

) (5.4)
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where C and D are static biases and A and B are autoregressive model pa-

rameters. The parameter set θ = (W̄, A, B, C, D) of mCRBM are learned using

contrastive divergence (CD) approximation. We refer the reader to [8] for

details of learning mCRBM by CD. This learned parameter set θ becomes

our representation of mixture of temporal trajectories (MTT) models. We use

M=10 assuming a mixture of 10 components can span the entire temporal

trajectory space of a single event and use 200 hidden units in our mCRBM

architecture.

5.2.3 Abnormal Sound Event Detection

In the detection stage, we use the measure of log-likelihood score of a given

test frame under our learned MTT model to decide whether the frame under

consideration belongs to an abnormal event or normal conversation [8]. A test

audio signal is processed through the learned RBM weights hk(t, f ) to obtain

feature representation rk(t) as per equation 1. On applying the parameter set

θ over rk(t), we obtain a log likelihood score L given by:

L = log(p(rt|rN; θ)) = log( ∑
zt,qt

p(rt, zt, qt|rN)) (5.5)

We compare this likelihood score L with a threshold value obtained from de-

velopment set and we label the frame as ‘normal’ if L > threshold or ‘abnormal’

if L < threshold.
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5.3 Experimental Setup and Results

5.3.1 Data

We prepare an unlabeled training dataset by randomly mixing the recordings

from both TIMIT [236] and BBC sound effects library [76] to train our first layer

RBM bases. BBC sound effects library contain classes like Ambience, Animals,

Office, Transportation and Musical etc. Because of such heterogeneity across

the scenes, RBM weights are not biased towards one particular kind of scene.

The dataset used for abnormal sound events detection contains recordings of

audio events in a metro station [257]; the duration of each file ranging from

1 minute to about 6 minutes. We resample each recording in the dataset to

8 KHz and preprocess them through a pre-emphasis filter with coefficients

[1 − 0.97] in order to boost the high frequencies. The recordings contain

events like normal speech, laughter, cheerful banter etc. annotated as normal

conversation. The frames belonging to normal events are split randomly into

80 % for training the MTT models and rest 20 % as development and test set.

The recordings also contain events like train passing by, shout, scream, fights,

aggressive behavior etc. which we consider as ‘abnormal’ in our analysis and

include them in the test set for detection.

5.3.2 System variants

The performance of an abnormal sound event detection system depends

on how good our model representation is. The key aspect of our model

representation is based on a set of mixtures of temporal trajectories capturing
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the interactions and transitions across multiple events in a complex acoustic

scene. In order to quantify its importance and effect on system performance,

we contrast our proposed system against 3 system variants based on similar

generative framework and backbone architecture but with variabilities in

mixture components and trajectory representations. In one case, we train

our MTT model using M = 1 to see how the performance of the detection

system changes when a single mixture component is used to model different

modes of temporal trajectories existing within a single event. Secondly, in

order to quantify the importance of temporal trajectories based representation,

we build a detection system by replacing mCRBM block with a regular RBM

that models only the localized spectro-temporal modulations without any

information of long term temporal dependencies. Our final system is based on

learning first layer RBM bases only from normal conversation and use these

learned bases for detecting the abnormal events.

5.3.3 Results and Analysis

Figure 5.2 shows the ROC for each of the detection systems by including/excluding

the MTT stage as well as varying the number of mixtures capturing the tem-

poral trajectories. The figure shows that our proposed system using MTT

model with M = 10 performs the best in terms of true positive rate. When

MTT is replaced by a RBM layer in the framework, we see that the detection

performance of the system degrades because of incapability of RBM based

representation in capturing the long term temporal dependencies. Single layer

RBMs trained only on normal conversations gives the worst performance
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in terms of true positives; the main reason being the first layer RBM bases

trained on a small set of data are not able to capture a good representation

of localized spectro-temporal attributes. As a result of this poor characteri-

zation, we get a lot more false negatives for this system compared to other

systems. For MTT model with M = 1, the observation gets interesting. We

see that its detection performance is better than RBM based systems, thus

illustrating the importance of long term temporal dependencies over short

term temporal structure for better characterization of sound events. However,

the true positive rate for this system decreases when compared to MTT model

with M = 10. This observation is mainly accounted for by the fact that due to

presence of different modes of temporal trajectories within an event of normal

conversation, MTT with M = 1 fails to span the entire temporal trajectory

space of such a broader class. As a result, when an event like laughter occurs

in a continuous audio, the system detects it as an abnormal event even though

it is labeled as normal conversation.

To provide more insight into the idea of MTTs capturing different modes

of temporal trajectories, we apply our MTT model to a sample recording of

normal conversation among riders in a subway station. At several points

during the conversation, other than normal speech, there are instances of

laugh, excitepment etc. which are non stationary events having their own set of

dynamics. As suggested in Figure 5.3, we find that frames belonging to the

instances of laugh and excitepment are assigned to components 1, 4 and 7 with

an average probability of 0.9572; while component 9 captures the temporal

trajectories of normal speech in the conversation with an average probability

of 0.9851. This probabilistic assignment of frames to different components of
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Figure 5.2: ROC curves for 4 systems regarding to detection of abnormal sound
events

MTT confirms our intuition that MTT with desired number of components is

able to segment an event with different modes of temporal trajectories into

statistically salient sub-events.

We further test the robustness of the proposed system by adding noise from

NOISEX-92 database [258] to the test set at different SNR levels of 20, 10,

0, -5 and -10 dB. The performance of the systems are measured in terms of

percentage F-measure. We see from Table 5.1 that MTT (M=10) based detec-

tion system not only outperforms the other three system variants in clean

scenario but exhibits robustness in presence of noise as well. When noise level

increases, the detection performance of our MTT based system degrades at a

much lower rate compared to the other three system variants. We also observe

that for upto 10 dB SNR, our proposed system gives a very satisfactory perfor-

mance in detecting the abnormal sound events. Another interesting point to
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Figure 5.3: Posterior probability distribution of components corresponding to multi-
ple "sub-events" in normal conversation

F-measure (%) for 4 detection systems
SNR
(dB)

MTT
(M=10)

MTT
(M=1)

2 layer
RBM

Single
layer
RBM

Clean 93.11 89.12 86.55 78.77
20 dB 92.03 85.41 79.66 71.82
10 dB 88.85 80.15 72.99 64.88
0 dB 65.77 59.87 51.66 43.77
-5 dB 50.76 43.28 34.88 25.75
-10 dB 42.36 34.88 25.77 10.99

Table 5.1: Abnormal sound events detection results for 4 systems at different SNR
levels
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note from Table 1 is that even MTT model with M = 1 performs better than

RBM based models for all noise cases. This clearly shows the importance of

incorporating the information of temporal trajectories along with localized

spectro-temporal attributes in the model representation of sound events for a

robust characterization.

5.4 Discussion

In this work, we develop a hybrid RBM-MTT framework for abnormal sound

event detection in subway station by using a joint representation of localized

spectro-temporal attributes with mixtures of temporal trajectories. Such a

joint representation is very effective in capturing the intricate details and

commonalities across a broader sound class spanned by multiple events. We

show that MTT as a dynamical mixture model spans the complete temporal

trajectory space of a complex acoustic scene by decomposing it into multiple

trajectories, each of which belongs to a particular sub-event. In abnormal

sound event detection task, the detection accuracy improves by an absolute 7

% over RBM class of models when information of different modes of temporal

dynamics is incorporated in model representation of sound objects via our

proposed MTT. We also find that our MTT based representation augments

the detection system with high degree of noise robustness at low SNR levels,

thus illustrating the fact that the joint representation provides a much robust

characterization of broader sound classes.
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Chapter 6

Conclusion

6.1 Overall conclusions

This thesis has explored the computational strategies underlying the hierar-

chical representation of sound in auditory pathway and its role in driving

bottom-up and top-down mechanisms in driving several auditory scene analy-

sis paradigms namely acoustic scene classification, salient event detection and

scene segregation among others. The first part of the thesis explored the role

of temporal dynamics of spectro-temporal modulation features in capturing

intricate details in auditory scenes that extend beyond average statistics of the

scene and track the heterogeneous dynamics commonly encountered in these

scenes. Specifically, we proposed that temporal trajectories of local spectral

temporal profiles do provide complimentary information in addition to their

mean statistics. A fusion system based on both representations provides a bet-

ter model of each sound class relative to the individual models able on mean

statistics and temporal dynamics. We showed that such a hybrid systems is

crucial in capturing non-trivial details from an unstructured and dynamic
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acoustic environment. This was reflected in an acoustic scene classification

paradigm in which the hybrid representation based on GMM-HMM frame-

work showed significantly improved performance than baseline MFCC-GMM

framework, hence validating the contribution of temporal dynamics informa-

tion incorporated along with mean statistics of modulation features.

In the next part of the thesis, we have emphasized on demonstrating the

ability of our model in learning a rich representation of sound from com-

plex sound classes in an unsupervised fashion. The proposed computational

framework replicates the physiological manifestation of auditory system with

a multi-layered neural network architecture and closely resembles aspects

of hierarchical transformations of sound in auditory pathway. The localized

spectro-temporal bases representation and their long-term temporal regular-

ities learned via a deep belief network capture the finer and global details

in commensurate with the dynamics of the sound. These varying degree of

details are then projected onto the space of an auditory object via a hebbian

based grouping mechanism based in the theory of temporal coherence. We

have demonstrated that such an integrative framework drive scene segrega-

tion processes in varied complexity of sounds ranting from simple tones to

complex speech utterances. Another major advantage of this framework is

its key relevance in terms of bridging the existing gap between physiological

bases of how sound is represented in human brain and the psychoacoustic

theories driving the processes of auditory scene analysis paradigm

The hierarchical acoustic representation in terms of localized and global

spectro-temporal bases is then explored in the context of adaptation to natural

scene statistics. We have demonstrated that such an adaptation framework
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tunes the spectro-temporal bases as per change in temporal regularities of a

scene. This framework forms the core of bottom-up saliency mechanism. We

have demonstrated that the proposed bottom-up saliency framework achieves

significantly improved performance over baseline feature driven bottom-up

frameworks reported in previous studies for a abnormal event detection task.

We have further supplemented the bottom-up framework with top-down

knowledge of "events" of interest (abnormal in this case) from acoustic scene

classification framework. The incorporation of top-down knowledge of abnor-

mal events into bottom-up framework further improves the performance of

the entire architecture in terms correct detection of events of interest. The top-

down knowledge also imparts high degree of robustness to the architecture at

low SNRs, thus illustrating the fact that bottom-up and top-down auditory

factors provide a much robust characterization of complex abnormal events

and capture the salient details of different degrees even in presence of highly

prominent background events.

Finally, we extended the abnormal event detection paradigm with an aim to de-

velop a global understanding of an unstructured and heterogeneous acoustic

scene via a rich hierarchy based acoustic representation. We develop a hybrid

RBM-MTT framework for abnormal sound event detection in subway station

by using a joint representation of localized spectro-temporal attributes with

mixtures of temporal trajectories. We show that such a joint representation is

not only very effective in capturing the intricate details and commonalities

across a broader sound class but also spans the complete temporal trajectory

space of a complex acoustic scene by decomposing it into multiple trajectories

corresponding to a specific semantic category within the acoustic scene.
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6.2 Further Extensions of this Work

The computational architecture based on rich hierarchy of acoustic represen-

tation presented in this work demonstrates a reasonable performance for a

number of scene analysis related tasks like acoustic scene classification, scene

segregation and event detection among others. However, in a constantly

changing acoustic environment, there needs to be a continuous two-way inter-

action between bottom-up and top-down stages in the hierarchy such that the

bottom-up framework constantly adapts itself as per the prior knowledge of

an acoustic environment.

As per the hierarchical architecture presented in Chapter 4, the integration of

top-down knowledge into the bottom-up stage is primarily driven by acous-

tic scene classification framework. This architecture can be extended in a

number of ways. First, both bottom-up and top-down components can be

tuned together using a discriminative objective function, similar to adaptation

frameworks used in speaker verification and speech recognition paradigms

[259, 260]. The objective function may be designed in such a way that the

bottom-up representation changes its characteristics based on heuristic knowl-

edge of acoustic environment.

Second, it still remains to be seen whether induced plasticity in bottom-up

representation using such a discriminative approach would correspond with

well established neurophysiological results suggested in literature [261–263].

A number of psychoacoustic studies suggest that cognitive functions, such as

attention and memory, drive perception by tuning sensory mechanisms to rel-

evant acoustic features [264, 265]. An interesting extension of the architecture
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proposed in this work will be to integrate it with cognitive mechanisms like

attention and memory etc. to get an understanding of how such mechanisms

drive scene analysis paradigms from computational viewpoint.

Finally, the results of Chapter 5 motivate further investigation into other prac-

tical scene analysis related paradigms. For example, it has been demonstrated

in Chapter 5 that MTT framework is capable of decomposing an unstructured

and heterogeneous scene into multiple trajectories, each of which belongs to

specific sub-event forming a semantic category within the scene. Hence, it

would be interesting to extend this framework to polyphonic event detection

task in which multiple events with different trajectories are present at the same

time instant. It is also of interest to explore the generative and discriminative

MTT in greater depth to gather an understanding of whether the trajectories

naturally emerge out from the acoustic representation of complex scene or

the discriminative objective function forces the network to learn multiple

trajectories corresponding to specific events within the scene.
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