12 research outputs found

    Using Genetic Algorithms to Improve Support Vector Regression in the Analysis of Atomic Spectra of Lubricant Oils

    Get PDF
    [Abstract] Purpose – The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regression (SVR)). Design/methodology/approach – The rationale behind the use of SVR was the fuzzy characteristics of the signal and its inherent ability to find nonlinear, global solutions in highly complex dimensional input spaces. Thus, SVR allows extracting useful information from calibration samples that makes it possible to characterize physical-chemical properties of the lubricant oils. Findings – A dataset of 42 spectra measured from oil standards was studied to assess the concentration of copper into the oils and, thus, evaluate the wearing of the machinery. It was found that the use of SVR was very advantageous to get a regression model. Originality/value – The use of genetic algorithms coupled to SVR was considered in order to reduce the time needed to find the optimal parameters required to get a suitable prediction model

    FC Portugal 3D Simulation Team: Team Description Paper 2020

    Full text link
    The FC Portugal 3D team is developed upon the structure of our previous Simulation league 2D/3D teams and our standard platform league team. Our research concerning the robot low-level skills is focused on developing behaviors that may be applied on real robots with minimal adaptation using model-based approaches. Our research on high-level soccer coordination methodologies and team playing is mainly focused on the adaptation of previously developed methodologies from our 2D soccer teams to the 3D humanoid environment and on creating new coordination methodologies based on the previously developed ones. The research-oriented development of our team has been pushing it to be one of the most competitive over the years (World champion in 2000 and Coach Champion in 2002, European champion in 2000 and 2001, Coach 2nd place in 2003 and 2004, European champion in Rescue Simulation and Simulation 3D in 2006, World Champion in Simulation 3D in Bremen 2006 and European champion in 2007, 2012, 2013, 2014 and 2015). This paper describes some of the main innovations of our 3D simulation league team during the last years. A new generic framework for reinforcement learning tasks has also been developed. The current research is focused on improving the above-mentioned framework by developing new learning algorithms to optimize low-level skills, such as running and sprinting. We are also trying to increase student contact by providing reinforcement learning assignments to be completed using our new framework, which exposes a simple interface without sharing low-level implementation details

    Aplicación de algoritmos genéticos en problemas de Ingeniería

    Get PDF
    The determination of strategies that ease the adjustment of parameters that could optimize a process operation is a common problem in engineering. These searching parameters can find an acceptable performance, which in a solution set are denominated a local maximum, which are acceptable but not reach the efficiency of the global maximum. This paper explores the Genetic Algorithms, as a search strategy in different engineering lines, illustrating its utilities in optimization problems, where the algorithm seeks the localization of a global maximum. Through the examples, the document shows that this search methodology can find the best solution to the problem and improve the process performance.Un problema común en ingeniería, es la determinación de estrategias que faciliten el ajuste de parámetros que optimicen el funcionamiento de los procesos. Esta búsqueda de parámetros puede encontrar funcionamientos aceptables, los cuales en un conjunto de soluciones son denominados máximos locales, que son aceptables pero no se acercan en eficiencia al máximo global de la solución. Este artículo explora los Algoritmos Genéticos, como estrategia de búsqueda en diferentes líneas de la ingeniería, ilustrando sus utilidades en problemas de optimización, donde se procura la  localización del máximo global. A través de ejemplos el documento muestra que esta metodología de búsqueda, puede encontrar la mejor solución al problema planteado y optimizar el desempeño del proceso

    Classification of mild cognitive impairment and Alzheimer’s Disease with machine-learning techniques using 1H Magnetic Resonance Spectroscopy data

    Get PDF
    [Abstract] Several magnetic resonance techniques have been proposed as non-invasive imaging biomarkers for the evaluation of disease progression and early diagnosis of Alzheimer’s Disease (AD). This work is the first application of the Proton Magnetic Resonance Spectroscopy 1H-MRS data and machine-learning techniques to the classification of AD. A gender-matched cohort of 260 subjects aged between 57 and 99 years from the Alzheimer’s Disease Research Unit, of the Fundación CIEN-Fundación Reina Sofía has been used. A single-layer perceptron was found for AD prediction with only two spectroscopic voxel volumes (Tvol and CSFvol) in the left hippocampus, with an AUROC value of 0.866 (with TPR 0.812 and FPR 0.204) in a filter feature selection approach. These results suggest that knowing the composition of white and grey matter and cerebrospinal fluid of the spectroscopic voxel is essential in a 1H-MRS study to improve the accuracy of the quantifications and classifications, particularly in those studies involving elder patients and neurodegenerative diseases.Instituto de Salud Carlos III; PI13/0028

    Bipedal humanoid robot walking reference tuning by the use of evolutionary algorithms

    Get PDF
    Various aspects of humanoid robotics attracted the attention of researchers in the past four decades. One of the most challenging tasks in this area is the control of bipedal locomotion. The dynamics involved are highly nonlinear and hard to stabilize. A typical fullbody humanoid robot has more than twenty joints and the coupling effects between the links are significant. Reference generation plays a vital role for the success of the walking controller. Stability criteria including the Zero Moment Point (ZMP) criterion are extensively applied for this purpose. However, the stability criteria are usually applied on simplified models like the Linear Inverted Pendulum Model (LIPM) which only partially describes the equations of the motion of the robot. There are also trial and error based techniques and other ad-hoc reference generation techniques as well. This background of complicated dynamics and difficulties in reference generation makes automatic gait (step patterns of legged robots) tuning an interesting area of research. A natural command for a legged robot is the velocity of its locomotion. A number of walk parameters including temporal and spatial variables like stepping period and step size need to be set properly in order to obtain the desired speed. These problems, when considered from kinematics point of view, do not have a unique set of walking parameters as a solution. However, some of the solutions can be more suitable for a stable walk, whereas others may lead to instability and cause robot to fall. This thesis proposes a gait tuning method based on evolutionary methods. A velocity command is given as the input to the system. A ZMP based reference generation method is employed. Walking simulations are performed to assess the fitness of artificial populations. The fitness is measured by the amount of support the simulated bipedal robot received from torsional virtual springs and dampers opposing the changes in body orientation. Cross-over and mutation mechanisms generate new populations. A number of different walking parameters and fitness functions are tested to improve this tuning process. The walking parameters obtained in simulations are applied to the experimental humanoid platform SURALP (Sabanci University ReseArch Labaratory Platform). Experiments verify the merits of the proposed reference tuning method

    Aprendizaje motor en robots humanoides a partir de la imitación humana

    Get PDF
    El control motor en robots humanoides es una tarea compleja debido al alto número de grados de libertad que deben ser tratados; la mayoría de las soluciones presentadas para el area de control de movimiento dependen, en gran medida, de la información específica del dominio sobre el robot o la tarea motora concreta a desarrollar, lo cual, dificulta la posibilidad de generalizar la solución. El aprendizaje por demostración surge como una alternativa más sencilla para la programación de habilidades motoras en robots, pero hasta ahora la mayoría de las arquitecturas propuestas sólo han sido validadas con tareas motoras que no comprometen la estabilidad del robot. Este trabajo presenta el desarrollo de una arquitectura de aprendizaje por imitación que no requiere de un modelo analítico del robot ni del comportamiento motor a ser aprendido. Su validación se realiza utilizando la marcha como el comportamiento motor a ser aprendido por un robot bípedo. La solución propuesta toma como entrada, información de captura de movimiento a partir de la ejecución de la tarea por un grupo de maestros humanos; la salida es calculada mediante un algoritmo genético para el que se definen operadores de selección, mutación y cruzamiento, acordes al problema de aprendizaje por imitación; estos operadores aplican sobre una codificación de cromosoma implementada mediante una serie temporal donde el conjunto de las posiciones angulares de cada pose corresponden a cada gen del cromosoma representado por dicha serie. A partir de esto, el robot puede reproducir la tarea asignada utilizando su propio repertorio motor

    Using Reinforcement Learning in the tuning of Central Pattern Generators

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaÉ objetivo deste trabalho aplicar técnicas de Reinforcement Learning em tarefas de aprendizagem e locomoção de robôs. Reinforcement Learning é uma técnica de aprendizagem útil no que diz respeito à locomoção de robôs, devido à ênfase que dá à interação direta entre o agente e o meio ambiente, e ao facto de não exigir supervisão ou modelos completos, ao contrário do que acontece nas abordagens clássicas. O objetivo desta técnica consiste na decisão das ações a tomar, de forma a maximizar uma recompensa cumulativa, tendo em conta o facto de que as decisões podem afetar não só as recompensas imediatas, como também as futuras. Neste trabalho será apresentada a estrutura e funcionamento do Reinforcement Learning e a sua aplicação em Central Pattern Generators, com o objetivo de gerar locomoção adaptativa otimizada. De forma a investigar e identificar os pontos fortes e capacidades do Reinforcement Learning, e para demonstrar de uma forma simples este tipo de algoritmos, foram implementados dois casos de estudo baseados no estado da arte. No que diz respeito ao objetivo principal desta tese, duas soluções diferentes foram abordadas: uma primeira baseada em métodos Natural-Actor Critic, e a segunda, em Cross-Entropy Method. Este último algoritmo provou ser capaz de lidar com a integração das duas abordagens propostas. As soluções de integração foram testadas e validadas com recurso ao simulador Webots e ao modelo do robô DARwIN-OP.In this work, it is intended to apply Reinforcement Learning techniques in tasks involving learning and robot locomotion. Reinforcement Learning is a very useful learning technique with regard to legged robot locomotion, due to its ability to provide direct interaction between the agent and the environment, and the fact of not requiring supervision or complete models, in contrast with other classic approaches. Its aim consists in making decisions about which actions to take so as to maximize a cumulative reward or reinforcement signal, taking into account the fact that the decisions may affect not only the immediate reward, but also the future ones. In this work it will be studied and presented the Reinforcement Learning framework and its application in the tuning of Central Pattern Generators, with the aim of generating optimized robot locomotion. In order to investigate the strengths and abilities of Reinforcement Learning, and to demonstrate in a simple way the learning process of such algorithms, two case studies were implemented based on the state-of-the-art. With regard to the main purpose of the thesis, two different solutions are addressed: a first one based on Natural-Actor Critic methods, and a second, based on the Cross-Entropy Method. This last algorithm was found to be very capable of handling with the integration of the two proposed approaches. The integration solutions were tested and validated resorting to Webots simulation and DARwIN-OP robot model

    Automatic Generation of Biped Walk Behavior Using Genetic Algorithms

    No full text
    corecore