
Universidade do Minho

Escola de Engenharia

Ana Filipa de Sampaio Calçada Duarte

Using Reinforcement Learning in the tuning 
of Central Pattern Generators

Outubro de 2012



Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Ana Filipa de Sampaio Calçada Duarte

Using Reinforcement Learning in the tuning 
of Central Pattern Generators

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de

Professor Cesar Analide Rodrigues 
Professora Cristina Peixoto dos Santos

Outubro de 2012



ii 

 

 

 

  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“What we have to learn to do, we learn by doing” – 

 Aristotle, Nicomachean Ethics 
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Resumo 

É objetivo deste trabalho aplicar técnicas de Reinforcement Learning em tarefas de 

aprendizagem e locomoção de robôs. Reinforcement Learning é uma técnica de 

aprendizagem útil no que diz respeito à locomoção de robôs, devido à ênfase que dá à 

interação direta entre o agente e o meio ambiente, e ao facto de não exigir supervisão ou 

modelos completos, ao contrário do que acontece nas abordagens clássicas. O objetivo 

desta técnica consiste na decisão das ações a tomar, de forma a maximizar uma 

recompensa cumulativa, tendo em conta o facto de que as decisões podem afetar não só 

as recompensas imediatas, como também as futuras. 

Neste trabalho será apresentada a estrutura e funcionamento do Reinforcement 

Learning e a sua aplicação em Central Pattern Generators, com o objetivo de gerar 

locomoção adaptativa otimizada. 

De forma a investigar e identificar os pontos fortes e capacidades do Reinforcement 

Learning, e para demonstrar de uma forma simples este tipo de algoritmos, foram 

implementados dois casos de estudo baseados no estado da arte. No que diz respeito ao 

objetivo principal desta tese, duas soluções diferentes foram abordadas: uma primeira 

baseada em métodos Natural-Actor Critic, e a segunda, em Cross-Entropy Method. Este 

último algoritmo provou ser capaz de lidar com a integração das duas abordagens 

propostas. As soluções de integração foram testadas e validadas com recurso ao 

simulador Webots e ao modelo do robô DARwIN-OP.  

 

 
Palavras-chave: Inteligência Artificial; Aprendizagem; Reinforcement Learning; Central 

Pattern Generators; Locomoção Robótica; Otimização; Natural Actor-Critic; Cross-Entropy 

Method. 
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Abstract 

In this work, it is intended to apply Reinforcement Learning techniques in tasks 

involving learning and robot locomotion. Reinforcement Learning is a very useful 

learning technique with regard to legged robot locomotion, due to its ability to provide 

direct interaction between the agent and the environment, and the fact of not requiring 

supervision or complete models, in contrast with other classic approaches. Its aim 

consists in making decisions about which actions to take so as to maximize a 

cumulative reward or reinforcement signal, taking into account the fact that the 

decisions may affect not only the immediate reward, but also the future ones.   

In this work it will be studied and presented the Reinforcement Learning 

framework and its application in the tuning of Central Pattern Generators, with the aim 

of generating optimized robot locomotion.  

In order to investigate the strengths and abilities of Reinforcement Learning, and to 

demonstrate in a simple way the learning process of such algorithms, two case studies 

were implemented based on the state-of-the-art. With regard to the main purpose of the 

thesis, two different solutions are addressed: a first one based on Natural-Actor Critic 

methods, and a second, based on the Cross-Entropy Method. This last algorithm was 

found to be very capable of handling with the integration of the two proposed 

approaches. The integration solutions were tested and validated resorting to Webots 

simulation and DARwIN-OP robot model. 

 

 
Keywords: Artificial Intelligence; Machine Learning; Reinforcement Learning; Central Pattern 

Generators; Robot Locomotion; Natural Actor-Critic; Cross-Entropy Method; Optimization 
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Chapter 1  

Introduction 

The purpose of this thesis is to study learning techniques regarding to 

Reinforcement Learning (RL) for the tuning of Central Pattern Generators (CPGs) in 

the optimization of biped locomotion. This chapter presents the motivation which led to 

the development of this work and provides for the importance of such investigation in 

the context of Artificial Intelligence. It also depicts the major aims for achieving this 

particular task, as well as some of the issues that are desired to be answered with the 

development of this project. 

1.1 - Motivation 

Wheeled robot locomotion was for a long time subject of study. However, it has 

proved to not be adapted to several environments. So, recent contributions emerged to 

the development of walking robots, which revealed numerous advantages over wheeled 

robots. Specifically, they are able to navigate in uneven terrains, to overcome or avoid 

obstacles and holes/ditches, to climb steps, and to better balance on unstructured and 

inclined terrains (Vítor Matos 2009). Such locomotion mechanisms are often inspired 

by biological systems, which means that robots are brought closer to real living beings 

(animal or human). 

Legged robots involve the coordination of a high number of degrees-of-freedom 

(DOF) and parameters, and therefore, the learning and control of their movements, in 

real time, are assumed as very complex problems. Other difficulties are related to the 

body balancing in order to support the robot and not letting it to tip over. The design of 

a suitable controller is therefore not trivial, and the generation of autonomous, flexible 
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and adaptive locomotion is a very challenging problem that is still subject of current 

studies. This makes legged locomotion one of the most important and hardest control 

problems. 

Learning plays a major role in this subject, such as providing gait generation and 

robot stability, and the capability of autonomously decide when and how to move. In 

robotics, the ability to adequately respond to a certain stimulus taking into account a 

goal, poses one of the greatest challenges on the field of autonomous systems. Such 

capability can be achieved by means of a relationship between the perceived 

information, collected by the robot about the surrounding environment, and the motor 

response that it is supposed to exhibit.  

In this sort of decision-making and control problems, it is very difficult to provide 

explicit supervision to a learning algorithm, since it is impossible to gather a training 

set, capable of covering all feasible cases. The provision of a complete model of the 

environment, in these cases, is not a practicable alternative, since there are always 

plenty of unknown, unpredictable and/or stochastic components in the ambience. For 

these grounds, it is necessary to take full advantage of the interaction between the agent 

and its environment, to cope with problems such as balance and steering, gait switching, 

terrain changing, and any other type of adaptation to perturbations in the surrounding 

environment. 

Considering the above, it is necessary an Artificial Intelligence approach capable 

of: mapping any situation (stimulus) to an action (motor reaction); providing all the 

advantages of interaction; and overcoming the fact of not existing elements of 

supervision. Thus, Reinforcement Learning will be indicated to address these problems, 

since it is very different from other classic approaches, where it is required some 

supervision or environment models. In this case, the feedback provided constitutes 

merely in the information if the robot is doing well or poorly (rewards). Learning to act 

in ways that are rewarded or punished reveals intelligence, and it is broadly how 

humans and animals gain knowledge and experience to apply in the most numerous 

situations.  

Apart from locomotion, Reinforcement Learning can be used for several 

applications, and provides a very important component in any decision making: the 

possibility of this being sequential, if an action entails future consequences (more 

planning). This constitutes one of the aspects that contribute to the great complexity of 

this technique, when compared to others. The work (S. J. Russell and Norvig 1995) 
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provides further details on these sequential decision problems in contrast to single 

decision problems. 

Reinforcement Learning is therefore a computational approach for understanding 

and automating goal-oriented learning and decision making (Sutton & Barto, 1998). 

Learning is accomplished through interaction with the environment and involves 

deciding which actions to take so as to maximize a reward signal, and such actions can 

impact the long-term. 

1.2 - Problem Statement 

"Adaptative System Behaviour Group" is a work group at University of Minho, 

whose main research focus are the new challenges that arise from the development of 

robotic and computer technologies embedded in dynamical environments and 

situations. This work group developed a bio-inspired architecture that applies 

autonomous differential equations to model the manner how behaviors related to 

locomotion are programmed in the oscillatory feedback systems of Central Pattern 

Generators in the nervous systems. 

One of the disadvantages of CPG driven methods is that it is not trivial to 

determine appropriate oscillators parameter settings in order to achieve a stable gait or a 

desired movement. In this work, it will be addressed the problem of real time 

adjustment of CPGs, in order to generate biped locomotion. The robot must be able to 

learn to improve its own performance in the proposed motor tasks, through what is 

perceived about the environment. 

Despite the difficulty of tuning the CPGs in order to execute the adequate motor 

movements, a basis locomotion pattern is already available. But will the chosen 

parameters be the more suitable for the task at hand? In addition to this, there are some 

other issues that need to be answered at the end of this project:  

Are the available methods for tuning CPGs parameters suitable for this particular 

CPG architecture? Are the selected approaches capable of optimizing the basic 

movement and thus achieving the designed goals? And is that optimization worthwhile 

when examining the robot’s evolution? Is this conceived integrated approach a good 

line of attack for the task that it is intended to achieve? 

Along with these CPG-related issues, it is also intended to evaluate RL itself. So, is 

RL capable of successfully obtaining the desired results?  



 

Chapter 1. Introduction 

4 

1.3 - Objectives 

The major aim of this work is then to tackle the problem of tuning the Central 

Pattern Generators (CPGs) parameters in order to achieve the desired locomotion, 

imlementing Reinforcement Learning as an automatic learning technique of those 

parameters.  

Thus, and in order to pursue this purpose, the following intermediate goals have to 

be achieved:  

- To gather the state-of-the-art considering the problem of optimization and 

learning techniques regarding to Reinforcement Learning, mainly addressing the subject 

of robotic locomotion; 

- To understand the RL framework and functioning; 

- To study and implement experiments based on the state-of-the-art, in order to 

better understand RL and to gain experience for addressing the following objectives; 

- To study the CPGs implemented and to gather the state-of-the-art regarding the 

use of integration techniques of the two approaches; 

- To idealize a RL solution for the humanoid locomotion problem, considering the 

use of CPGs; 

- To implement the solution in Webots simulation (Michel 2004), evaluating the 

achieved results. 

1.4 - Thesis Outline 

The following chapter, Chapter 2, will show the work resulting from the research 

phase, which was mainly focused in the RL application to robotic locomotion. The 

CPGs will be described and briefly discussed at the end of the chapter, along with a 

state-of-the-art review. 

Chapter 3 describes the Reinforcement Learning problem, including an overview of 

its framework. The functioning of Markov Decision Processes (MDPs) will be 

addressed as a method of solving RL problems, as well as some available techniques 

based on the mentioned framework. RL advantages, bottlenecks and challenges will be 

also exposed throughout the chapter.  

Then, Chapter 4 will present two experiments studied and implemented, based on 

the state-of-the-art, and which are ideally suited for simple demonstrations of RL 
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algorithms. The Crawler robot and the Inverted Pendulum problem are exposed and the 

results are analyzed and discussed. 

Chapter 5 deals with the first set of experiments carried out in order to tackle the 

main objective. The used CPGs are readily exposed and Natural Actor-Critic is 

presented as the method used in the development of the solution.  

In Chapter 6, it is discussed an alternative method to solve Reinforcement Learning 

problems, which is curiously very similar to some of the classic RL methods. The 

Cross-Entropy Method is then introduced and a solution is designed for the 

optimization of biped locomotion with CPGs. 

Last of all, the conclusions are presented in Chapter 7, including an evaluation and 

introspection of all the work carried out. Final reviews and considerations are made 

regarding the proposed goals, and some challenges are anticipated for future work. 

1.5 - Contributions  

The work carried out in the first phase of the thesis, regarding the case studies 

based on the state-of-the-art, led to a publication in International Conference of 

Numerical Analysis and Applied Mathematics (ICNAAM) conference (Duarte, Silva, 

and Santos 2012). This conference was held in Greece, in September 2012, covering 

numerous topics on Mathematics, including Optimization. 

A crawler robot model was developed from scratch, which may be helpful for 

several other future experiments. 

Another contribution of this study is the application of a solution that was not 

encountered in the literature for similar aims of this thesis, e.g., robot locomotion using 

CPGs. This solution resulted in an efficient optimization, as will be shown in 6.3. 
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Chapter 2  

State of the art 

The previous chapter focused on the importance and motivation for using RL as the 

learning technique to apply to robot locomotion. This chapter, the state-of-the-art 

gathered during the development of the thesis is exposed, where further details of the 

history of Reinforcement Learning are introduced. Although RL is useful in many 

machine learning domains, the investigation carried out is mainly focused in RL 

application in the field of Robotics, particularly, in locomotion. CPGs are then 

introduced as biologically inspired methodologies for providing rhythmic movements 

that can be optimized by learning algorithms. 

2.1 -  General Reinforcement Learning 

Learning and Reinforcement have been first studied in psychology, and those 

researches had a very strong impact in the area of Artificial Intelligence. Trial-and-error 

is one of these examples, started in psychology of animal learning, where actions 

followed by good outcomes have their tendency to be reelected by the animal, rather 

than the ones followed by bad outcomes, as stated in (Sutton and Barto 1998). 

The term "Reinforcement Learning" first appeared in (Minsky 1961). But 

previously, it had already been proposed and implemented a learning method with 

temporal-difference ideas to manage delayed reward, in Samuel's checkers player 

(Samuel 1959). 

In 1972, it was brought trial-and-error learning together with an important 

component of temporal-difference learning (Klopf 1972). This work and animal 

learning theories strongly influenced the followed research on temporal-difference 
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learning. It was then developed a method for using temporal-difference learning in trial-

and error learning, known as the actor-critic architecture (A. G. Barto, R. S. Sutton, and 

C. W. Anderson 1983). In 1988, it was introduced the TD(λ) algorithm, and proved its 

convergence properties  (Sutton 1988). 

Temporal-difference learning was brought together with optimal control in 1989, 

with the introduction of Q-learning algorithm (C. J. C. H. Watkins 1989). With this 

approach, it was developed a backgammon player, TD-Gammon (Tesauro 1992). 

Tabular TD(0) was previously proposed for use as part of an adaptive controller for 

solving MDPs in (Witten 1977). 

Although there has been a recently development in this area, as it will be verified 

throughout this section, RL makes use of earlier frameworks. MDPs were known at 

least as early as the 1950s (Bellman 1957). In 1994, Putterman studied the advances in 

Markov Decision Processes theories and applications, to provide an “up-to-date, unified 

and rigorous treatment of theoretical, computational and applied research” (Puterman 

1994). There are also approaches to non-Markov environments (Whitehead and Lin 

1992).  

An useful survey was provided by Kaelbling, Littman, and Moore, with a general 

coverage of Reinforcement Learning problems (Kaelbling, Littman, and Moore 1996). 

Recently, it has been explored RL algorithms to resolve the problem of continuous 

tasks (Ravindran 1996; Smart and Kaelbling 2000). Q-learning was adapted to 

adequately address problems with both continuous states and actions, which makes use 

of Artificial Neural Networks (ANN) (Gaskett, Wettergreen, and Zelinsky 1999). In 

2003, a biologically-based approach for solving continuous state and action problems 

was proposed in (Strosslin and Gerstner 2003), consisting in a spatial representation to 

represent the state space. A new class of algorithms, named “Continuous Actor Critic 

Learning Automaton” (CACLA) was presented in (H. van Hasselt and Wiering 2007) to 

handle continuous actions and states, and showed better performance than other existing 

methods. 

A very complete survey of continuous RL problems can be found in (H. V. Hasselt 

2012),  where the author covers methods like function approximation, policy gradient, 

evolutionary policy search or actor-critic algorithms. 

Integrated techniques of RL and evolutionary methods are also good approaches 

which become increasingly used for solving large RL problems. The application of 

evolutionary algorithms to Reinforcement Learning is presented in (Moriarty, Schultz, 
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and Grefenstette 1999), where alternative policy representations are emphasized. An 

integrated technique of RL and Genetic Programming that allows a robot to execute 

real-time learning and to carry an object to a goal area is proposed in (Kamio, Hideyuki 

Mitsuhashi, and Iba 2003). Q-learning and Genetic Algorithms were combined to 

introduce a novel algorithm which has shown great effectiveness in the acquisition of 

locomotion patterns (Ito and Matsuno 2002). 

Apart from evolutionary computation, RL has been combined with several different 

techniques. Tabu Search, a search method for mathematical optimization, was used to 

address the problem of exploring solutions in on-policy RL problems, without getting 

stuck in a local optimum (Abramson and Wechsler 2003). Particle filters, also known as 

Sequential Monte Carlo Methods, were recently integrated with RL for creating a novel 

algorithm for direct global policy search, capable of finding the globally optimal policy 

(Kormushev and Caldwell 2012). 

Inverse RL, that is, the problem of extracting a reward function given the optimal 

behavior, also had its prominence. In (A. Y. Ng and S. Russell 2000) it is overviewed 

the algorithms used in this approach. 

In (Wang and Laird 2007), it is investigated the importance of action history, 

namely, the hypothesis that historical information plays an important role in learning 

action selection via reinforcement learning. Other variants to the RL problem have 

emerged, such as the using of decision trees to learn a model, on a humanoid robot 

(Hester, Quinlan, and Peter Stone 2010). 

(Niekum, Andrew G Barto, and Spector 2010) shows an alternative way of finding 

reward functions. Namely, it is used genetic programming to find novel reward 

functions that allow systems to learn more quickly or more effectively. Multiple reward 

functions were also a research target (Lizotte, Bowling, and Murphy 2010). 

A new method for balancing exploration/exploitation was proposed in (Tokic 

2010), where the exploration parameter of ε-greedy is adapted with regard to the 

temporal-difference error observed from value function backups. This method revealed 

to be more parameter robust than, for example, the original ε-greedy. 

2.2 -  Applications and Robotics 

RL techniques are widely applied, in the most varied applications and areas, as 

seen in many different works, i.e., robotics, animal learning, scheduling, games, etc. 
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In 1995, RL was applied to the task of elevator dispatching, using a team of RL 

agents, each of which responsible for controlling one single elevator. This approach 

resorts to ANNs to store information (Crites and Andrew G. Barto 1996). 

 Reinforcement Learning was successfully applied in a job-shop scheduling 

problem, in the context of scheduling payload processing for NASA’s space shuttle 

program (Zhang and Dietterich 1995). The problem of channel assignment in cellular 

telephone systems was also addressed as a RL problem in (Singh and Bertsekas 1997), 

in order to maximize service in a stochastic caller environment. The results are 

presented on a large cellular system with approximately 4949 states. 

The task of exploring the web to find pages of a particular topic can be efficiently 

solved by a web spider which learns with resort to Reinforcement Learning techniques 

(Rennie and McCallum 1999). 

Autonomous helicopter flight, a challenging control problem, was tackled in 

several works. In (Bagnell and Schneider 2001), it is addressed a successful application 

to this problem, by means of policy search methods. 

Focusing straight in robotics applications, it has been done several experiments on 

mobile robots. In 1991, it was discussed a way of pushing large boxes by a mobile 

robot, with resort to Q-learning algorithm (Mahadevan and Connel 1991). In (Mataric 

1994), four mobile robots learn how to most efficiently search, find and collect small 

disks to transport to a destination region, by grasping and lifting them. Learning to drive 

a bicycle was also a real-world problem addressed with Reinforcement Learning, 

applying SARSA(λ) algorithm (Randløv and Alstrøm 1998). 

RL can be used to learn just simple tasks like following a corridor or avoiding 

obstacles (Smart and Kaelbling 2002) or to learn to appropriately place a swing leg, 

regarding to biped walking (Morimoto et al. 2004). In (Kohl and P. Stone 2004), it was 

presented a policy gradient approach for automatically learning a fast walk on the 

quadruped robot Aibo, given a parameterized walk, which achieved an efficient policy 

evaluation. 

The problem of learning how to intercept a ball, regarding to soccer player robots, 

was addressed in terms of reward and punishment (Muller et al. 2007).  
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2.3 -  Central Pattern Generators 

In animals' locomotion mechanism, rhythmic motor patterns are controlled by 

neural oscillators, which are known as the Central Pattern Generators. These biological 

studies provided a starting point for developing locomotion robots controlled by CPGs 

controllers. For a more complete overview of this methodology, Ijspeert reviews 

research carried out on CPGs, both on animals and robots (Auke Jan Ijspeert 2008). 

This mentioned work also shows that CPG models, which are biologically inspired, are 

increasingly used in robotics field, for controlling a variety of different types of robots 

with different types of locomotion. Moreover, “an increasing number of projects try to 

provide something back, i.e. to specifically use robots as scientific tools to test 

biological models” (Auke Jan Ijspeert 2008). 

CPGs have been used in robots inspired by insect, biped, quadruped or even 

swimming locomotion. For example, in (Klaassen et al. 2002), it is approached a 

control scheme for a 8-leg scorpion robot. In (Arena 2001), CPGs were used to generate 

proper swimming patterns for a swimming machine, where the robot reproduces the 

undulatory-like swimming of a sea-lamprey. With a similar aim, an amphibious snake 

robot was designed to achieve not only these swimming patterns, but also crawling or 

serpentine locomotion (Crespi and Auke Jan Ijspeert 2006). Also capable of these types 

of locomotion is the fish robot presented in (Lachat, Crespi, and Auke Jan Ijspeert 

2006), where the robot performs a variety of locomotor behaviors, such as swimming 

forwards, swimming backwards, turning, rolling, moving upwards/downwards, and 

crawling. 

Quadruped walking control has also been a target for the use of CPGs. Inducing a 

robot to walk on irregular terrains (Fukuoka, Kimura, and Cohen 2003) or generating 

two different types of gaits (walk and pace), testing stability and improving forward 

velocity (Rutishauser et al. 2008), were some of the aims approached to achieve this 

type of locomotion. 

For controlling biped robots, CPGs are widely used. For example, to control the 

humanoid robot HOAP-1 with many DOFs, walking locomotion is approached in (Shan 

and Nagashima 2002), where the robot even learns to walk up and down stairs. In (Jun 

Nakanishi et al. 2004), a natural-human like locomotion is the proposed goal, which is 

achieved by learning from demonstration. The biped robot learns demonstrated 

trajectories through CPGs by locally weighted regression. 
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Meanwhile, the work group at the University of Minho, "Adaptative System 

Behaviour Group" developed a bio-inspired architecture that applies autonomous 

differential equations to model the manner how behaviors related to locomotion are 

programmed in the oscillatory feedback systems of Central Pattern Generators in the 

nervous systems (Matos, Santos, and Pinto 2009; Matos and Santos 2012; Santos 2004). 

In (Vítor Matos 2009), it was developed a CPG network that appropriately generates 

omnidirectional locomotion for quadruped robots. 

It is important to take notice that one disadvantage of CPG driven methods is that it 

is not trivial to determine appropriate oscillators parameter settings in order to achieve a 

stable gait or a desired movement. So, many works reveal the necessity to address the 

problem of real time adjustment of CPGs, in order to generate optimized locomotion. 

Specifically, the robot must be able to learn to improve its own performance in several 

motor tasks, through what is perceived about the environment. 

 Therefore, works presenting RL methods for CPGs controllers have emerged, 

allowing the achievement of humanoid locomotion. The earliest references to this 

integration seems to refer back to 1997 (Benbrahim and Franklin 1997), where the CPG 

acts as a central controller and interacts with some peripheral controllers that intervene 

when their own control policies are contradicted, thus requiring knowledge integration. 

The central controller, as well as some of the other controllers, uses CMAC neural 

networks to represent the CPG, whose weights are updated based on the reinforcement 

signals received from every controller. The configuration taken in this work is based on 

the actor-critic, and it is also used algorithms like the Self-Scaling Reinforcement and 

the Stochastic Real-Valued.  

Also making use of Neural Networks, there are other approaches integrating CPGs 

with RL. In (M. Sato, Y. Nakamura, and S. Ishii 2002), a Recurrent Neural Network is 

representing the CPG, and a new method is proposed, based on the actor-critic 

configuration: the CPG-actor-critic. To complement this method, it is also used a 

Gaussian neural network with EM algorithm to approximate the Q-function. Variations 

of this work include the implementation of Policy gradient methods along with the 

CPG-actor-critic (Mori et al. 2004; Nakamura et al. 2007), whose task consists in 

adjusting the sensory feedback connections, or adjusting a feedback and connection 

controllers concerning to quadruped locomotion (Sato, Watanabe, and Igarashi 2010). 

Improved policy gradient methods, like the Off-policy Natural Policy Gradient, allowed 

the resolution of exploration/exploitation problem and the achievement of better results. 
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This method was also used together with CPG-actor-critic, to enable the adjustment of 

CPG connections (Nakamura et al. 2005). 

Another way of representing the CPG controller consists of using a neural 

oscillator model proposed by Matsuoka (Matsuoka 1985). Although its emergence dates 

back to some time ago, it is still used in the present. A common approach to this 

representation lies on the use of Policy gradient methods, aforementioned (Matsubara et 

al. 2006, 2007). 

There were other methods that studied the integration between RL and CPGs, but 

with the drawback of using discretization methods, avoiding the problem of directly 

tackling continuous spaces of states/actions (Jacob, Polani, and Nehaniv 2005; Ogino et 

al. 2004). (Jacob et al. 2005) diverges even more, since it concerns to quadruped robots, 

in which the legs are individually trained and then re-attached to the robot. Also 

diverging from humanoid locomotion is the controlling of a hexapod robot, using a 

Recurrent Neural Network to represent the CPG, and a TD-learning approach to decide 

about direction changes (Snel, Whiteson, and Kuniyoshi 2011). 

Other interesting works have emerged, not only regarding to the actual movement 

and balancing, but also with other aspects in the locomotion problem. For example, it is 

important to reduce energy consumption when generating locomotion. This problem 

can be approached by introducing a torque-free period, where no torque is applied. 

Using GARB algorithm to determine when this period is applied, it was achieved a 

reduction of 40% of the energy (Tomoyuki, Azuma, and Tomoshiro Shibata 2009). 

Apart from locomotion, the development of other useful robotic skills has also been 

approached. (Ciancio et al. 2011) proposes a computational bio-inspired model to 

investigate the development of functional rhythmic hand skills, i.e., the rotation of 

bottle cap-like objects. The model is based on an actor-critic model that searches the 

parameters of a set of CPGs. This specific work was found to be valuable for the study 

of the development of rhythmic manipulation skills in primates. 

Despite the use of RL techniques for tackling locomotion problems, all these CPGs 

approaches are very different from the architecture of differential equations developed 

by the “Adaptative System Behaviour Group”, which will be presented in 5.2. 

Dynamical Movement Primitives (DMPs) have a direct relation with CPGs, as they 

combine a set of differential equations to reflect a certain rhythmic movement (Ijspeert, 

J. Nakanishi, and S. Schaal 2002). They provide a general approach to motor control in 
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robotics and biology, being very useful due to their high flexibility in creating complex 

rhythmic and discrete behaviors, which can be quickly adapted to environment changes 

and perturbations (Stefan Schaal 2003). 

Three different algorithms have been found to address this RL continuous problems 

regarding to DMPs: Natural Actor-Critic (NAC) (Peters, Vijayakumar, and Schaal 

2003), Policy learning by Weighting Exploration with the Returns (PoWER) (Kober 

and Jan Peters 2008)  and Policy Improvement with Path Integrals (PI2) (E. Theodorou, 

J. Buchli, and S. Schaal 2010). 

Natural Actor-Critic showed efficiency in motor tasks performed by a robot arm, 

for example, playing baseball, where the goal is hitting the ball so that it flies as far as 

possible (J. Peters and S. Schaal 2006). 

Through a modified version of DMPs, robot motor skills are demonstrated with 

recourse to an Expectation-Maximization based Reinforcement Learning, known as 

PoWER (Kormushev, Calinon, and Caldwell 2010). In this work, the robot had to 

perform a reaching task, where the learned movement required an adaptation in order to 

avoid obstacles, and a dynamic pancake-flipping task. These two tasks used imitation 

learning as an initialization phase, in order to allow RL to explore for better solutions. 

Also making use of PoWER, several other motor skills can be learned on a real robot, 

i.e., ball-in-a-cup, consisting in moving a small cup to catch the ball that is attached to 

it,  and ball-padding, having a ball bouncing above a tennis paddle (Kober and Jan 

Peters 2009).  

A learning experiment on a robot dog illustrates the functionality of PI2 in a real-

world scenario, demonstrating its efficiency and robustness (Evangelos Theodorou, 

Jonas Buchli, and Stefan Schaal 2010). A hierarchical RL approach using algorithm PI2 

to sequences of DMPS was proposed in (Stulp and Stefan Schaal 2011), where a 11-

DOF arm and hand learns a pick-and-place task, grasping an object from a shelf and 

placing it on another shelve in the same cupboard. 

In the context of humanoid robots, (Stulp et al. 2010) shows two tasks which were 

addressed with PI2. A first task consists in a robot passing through a way-point with its 

right hand, and returning to the initial standing position without falling, while in the 

second task the robot learns to open a door. 

 

It is important to be aware of other alternatives for the problem of robot 

locomotion. Genetic Algorithms is widely applied in robotics field. As an example, in 
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1999, sony quadruped robot was object of study and evolutionary algorithms have 

contributed for the improvement of different gaits, like pace or trot (Hornby et al. 

1999). Also for a sony quadruped robot (AIBO), a modified version of Genetic 

Algorithms is presented in (Chernova and Veloso 2004) to autonomously optimize fast 

forward gaits. The author’s approach revealed to be very efficient, improving 20% over 

the best previous hand-tuned behaviors.  

A different method for robotic locomotion is based on human’s gait pattern 

analysis, which can easily be applied to generate the natural and stable gait pattern of 

any biped robot (Ha, Han, and Hahn 2007). Genetic Algorithms (GA) is used to 

approximate the biped locomotion to the desired human-like trajectory. (Picado 2008) 

discusses the development of some trajectory planning methods for biped locomotion, 

where CPGs are also an approach addressed. Other ways of generating trajectories are 

showed and robot walking is optimized by the application of GA. This machine 

learning technique, combined with a method based on partial Fourier series for joint 

trajectory planning, provides automatic generation of a walking gait (Picado et al. 

2009). 

Alternative learning techniques have also been addressed, i.e., the design of a 

controller for gait balancing based on a back-propagation ANN (Shieh et al. 2007), or 

the application of Support Vector Machines in humanoid robotics (Branislav, Mirko, 

and Milutin 2012). Imitation learning, which consists in learning and recognizing 

specific demonstrated movements to later perform them, can provide a basis for further 

optimization of robotic motions (S. Schaal 1999). 

2.4 -  Summary 

This chapter showed the several improvements arising since the concept of 

Reinforcement Learning first appeared. A state-of-the-art review, which was proposed 

as a goal in 1.3, was accomplished in this phase, in which works of major importance to 

RL evolution were exposed. It is realized that new methods and approaches are always 

being investigated, in order to tackle RL problems in a wide range of applications. 

It must be noticed that this chapter corresponds to the work developed through all 

stages of this thesis project. And although many works had arisen for the purpose of 

generating locomotion, this topic is still a subject of study in the present, and it was not 
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found a specific solution for the problem at hand, namely, the integration of RL and 

CPGs similar to the ones developed by the “Adaptative System Behaviour Group". 



 

 

 

Chapter 3  

Reinforcement Learning 

Reinforcement Learning functioning and related concepts are exposed in the 

present chapter. A framework widely used for RL problems is the Markov Decision 

Processes, which will be presented here. The objective of this thesis stage is to 

comprehend the whole interaction process inherent to these learning problems, and how 

the learning algorithms act before certain stimuli. As continuous cases are very 

common in the real world, RL methods for solving such problems are also presented. 

3.1 -  The Reinforcement Learning Framework 

Reinforcement Learning is a Machine Learning approach. In turn, Machine 

Learning is a field of Artificial Intelligence “concerned with the question of how to 

construct programs that automatically improve with experience” (Mitchell 1997). From 

data-mining programs to detect fraud or learn preferences in a recommender system, to 

autonomous robots that learn how to react facing a certain situation, successful machine 

learning applications have been developed in recent years. 

An interesting definition of learning on the part of machines is introduced in 

(Mitchell 1997): “A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E.”. 

There are many approaches to allow this learning from experience. Genetic 

Algorithms (GA), Artificial Neural Networks (ANN), Support Vector Machines 

(SVM), or Reinforcement Learning, are widely known techniques to address machine 
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learning problems. These and other machine learning algorithms are further detailed in 

(Mitchell 1997; Sammut and Webb 2011). 

Machine learning algorithms are commonly organized in two major categories of 

learning. Supervised Learning refers to a learning process capable of mapping an input 

to a corresponding output, with recourse to examples with both input and output values, 

or to an environment model. Unsupervised learning refers to a learning process that 

occurs in the absence of known examples or environment models, where there is no hint 

about the correct outputs. 

 An additional learning category has been added to these two described. In some 

works in the literature (S. J. Russell and Norvig 1995; Sammut and Webb 2011), 

Reinforcement Learning is considered as a third type of learning, making the bridge 

between supervised and unsupervised learning. Unlike in supervised learning problems, 

now there are no examples of what should be the agent behavior. However, unlike 

unsupervised learning problems, the agent receives some evaluation, but without being 

told about the correct actions. 

"Reinforcement learning is an approach to Artificial Intelligence that emphasizes 

learning by the individual from its interaction with its environment. This contrasts with 

classical approaches to artificial intelligence and machine learning, which have 

downplayed learning from interaction, focusing instead on learning from a 

knowledgeable teacher, or on reasoning from a complete model of the environment"  

(Sutton, 1999). This learning by interaction is constantly present in our lives and 

experiences, since childhood: learning how to walk or talk, or simply to learn what 

every single item around us is for.  

An agent that learns by means of Reinforcement Learning must be able to sense the 

state of environment and take actions according to the information gathered, must have 

goals, and must be able to learn from its own experience and its failures/successes. 

RL allows the agent to learn what to do depending on the circumstances in which it 

is inserted, mapping situations to actions, and always taking its goals into account. And 

these mapping has to be discovered by means of trial-and-error, favoring the actions 

that yield results that most approach the achievement of the agents' goals. Nevertheless, 

trial-and-error can only be useful if the agent can be aware if the actions performed are 

being correctly or incorrectly chosen. So, the concept of reward is the most important in 

Reinforcement Learning problems, allowing an evaluation of each executed action.  
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In many cases, actions may affect the rewards of the next actions, and not only the 

immediate one, which makes it a very challenging topic in RL area. So, it is highlighted 

two important characteristics regarding to this kind of learning: trial-and-error search, 

and delayed reward (Sutton & Barto, 1998). 

 

One of the most challenging issues in Reinforcement Learning problems is the 

tradeoff between exploration and exploitation. It is important that the agent chooses the 

actions that yield the maximum reward, so as to reach its goal of maximizing the total 

accumulated reward (exploitation). However, it is also important to try to perform 

actions not selected before, so as to discover those best actions (exploration). Neither 

exploration nor exploitation can be used exclusively, so there must be a compromise 

between these two approaches.  

The role of exploration is further detailed in (Thrun 1992), where several 

techniques are described and evaluated for exploration in finite and discrete RL 

domains. 

3.2 -  Markov Decision Processes 

As mentioned above, the information gathered by the agent includes the state of the 

environment. At each time step, it is perceived the current state of the environment, 

from a set of all possible states. The agent takes an action, from a set of all possible 

actions, that causes a transition to some successor state, and then the achievement of a 

reward (Figure 3.1). This procedure recalls to the Markov Decision Processes (MDPs), 

a framework widely used in RL research. "MDPs provide a simple, precise, general, 

and relatively neutral way of talking about a learning or planning agent interacting with 

its environment to achieve a goal" (Sutton, 1997). 

 

Figure 3.1 – The Reinforcement Learning Framework (Sutton 1999) 
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In order to a RL process be called a MDP, it must take place in an environment that 

fulfills the Markov property. To accomplish this, it is required that the probability to 

transit to a certain state and the reward received, solely depend on the current state and 

the action selected by the agent. Moreover, if the sets of actions and states are finite, the 

RL process is called a finite MDP. 

So, in addition to the set of spaces, the set of actions, and the reward function (𝑅𝑠𝑠′𝑎 ) 

a MDP also is defined by a discount factor (γ) measuring the influence of future 

rewards; and the state transition probabilities (𝑃𝑠𝑠′𝑎 ) which means the probability of 

transit to a certain successor state s', being in a state s, and performing action a. To 

synthetize, a Markov Decision Process is a 5-tuple (S, A, 𝑃𝑠𝑠′𝑎 , γ, 𝑅𝑠𝑠′𝑎 ). 

In order to be able to find a cycle of moves for the desired locomotion, it has to be 

taken into account the notion of policy, π(s). A policy is a mapping from states to 

actions, and dictates which action to take when it is perceived a certain state s. An 

optimal policy is intended to be found by the RL algorithms, for instance, Value 

Iteration or Policy Iteration, among others. Since an optimal policy reflects the actions 

to be taken for maximizing the accumulated reward, it is required a means to represent 

these estimates. So, these algorithms assign to each state a value, V(s), which represents 

the expected total reward of starting from that state and respecting a given policy. These 

state values (Eq. 3.1) and the respective greedy policy (Eq. 3.2) are calculated 

according to Bellman's equations: 

𝑉(𝑠) = 𝑚𝑎𝑥𝑎 ∑ 𝑃𝑠𝑠′𝑎 [𝑅𝑠𝑠′𝑎 + 𝛾𝑉(𝑠′)]𝑠′    ( 3.1 ) 
 

𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 ∑ 𝑃𝑠𝑠′𝑎 [𝑅𝑠𝑠′𝑎 + 𝛾𝑉(𝑠′)]𝑠′    ( 3.2 ) 

 
After the successive calculation of state values with recourse to the greediest 

actions or to the chosen policy, the algorithms end up converging.  

If separate averages are kept for each action taken in a state, it is required a 

different notation. The expected total reward of each state, previously represented by 

V(s), is now represented by Q(s,a) which symbolizes the q-values. Instead of 

representing the value of a state, the q-values Q(s,a) denote the value of taking action a 

in state s. A very important algorithm making use of such notation is Q-learning, which 

allows comparing the expected return of the available actions, by using Eq. 3.3.  

An additional learning rate α is included in the calculation of q-values, informing 

about the level of sensitivity of the reaction to rewards. Namely, it denotes to what 
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extent the new information or learned value (𝑟 + 𝛾𝑚𝑎𝑥𝑎𝑡+1𝑄(𝑠′,𝑎𝑡+1)) will overwrite 

the old (𝑄(𝑠,𝑎𝑡)), causing q-values to experience minor or abrupt changes. If the 

learning rate is assigned to its maximum value, 1, the old information will be 

completely overwritten.  

The respective policy can be calculating according to Eq. 3.4. 

𝑄(𝑠, 𝑎𝑡) = 𝑄(𝑠, 𝑎𝑡) + 𝛼�𝑟 + 𝛾𝑚𝑎𝑥𝑎𝑡+1𝑄(𝑠′,𝑎𝑡+1) −𝑄(𝑠, 𝑎𝑡)� ( 3.3 ) 

𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝑄(𝑠,𝑎))    ( 3.4 ) 

 

Several different approaches are used to deal with Markov Decision Processes and 

try to find out the optimal policy. RL algorithms can be classified into model-based or 

model-free methods. The former assume prior knowledge about the environment, 

requiring beforehand a transition probability function 𝑃𝑠𝑠′𝑎  and the reward table, 

containing the information of reinforcement signals for every state and action. If these 

data is not known, the system needs to acquire them before applying such methods, 

which can be hard to learn or represent. Contrariwise, model-free techniques have to 

learn in an unknown world since they do not assume prior knowledge, thus requiring 

more experience to achieve better value estimates. There is even a hybrid approach, 

which only requires an approximate model and which returns a near-optimal policy, 

capable of outperforming a model-based approach (Abbeel, Quigley, and Andrew Y. 

Ng 2006). 

Dynamic Programming (DP) addresses MDPs in a deterministic fashion, requiring 

a full model of the environment. DP is computationally heavy in terms of memory and 

complexity, being applicable only to smaller problems. 

Besides the RL methods of Dynamic Programming, that encloses Value Iteration 

and Policy Iteration algorithms, there are other approaches to deal with MDPs, such as 

Monte Carlo Methods and Temporal Difference (TD) Learning, this last being a 

combination of the two previous mentioned. (Szepesvári 2010) provides a general 

coverage of algorithms suitable for solving RL problems. 

Unlike DP, Monte Carlo and Temporal Difference methods do not require a full 

model of the environment to achieve their aim. They rely on sample experiences 

(samples of states, actions and rewards) to compute approximations of the value 

functions, V(s), or action-value functions, Q(s,a), and to find optimal policies, π*. 



 

Chapter 3. Reinforcement Learning 

22 

Besides sharing this idea with Monte Carlo methods, TD also shares principles with DP 

approaches, updating estimates based in part on other learned estimates. Some of the 

TD algorithms include the TD(0), SARSA and Q-Learning. 

Eligibility traces provide a bridge from TD to MC methods. They provide for a 

temporary record of the occurrence of an event, such as the visiting of a state or the 

taking of an action, and these will be eligible for undergoing learning changes (Sutton 

and Barto 1998). 

RL algorithms can also be categorized as on-policy or off-policy. Learning in an 

on-policy way means that the algorithm is learning the state or state-action values 

regarding the policy the agent is following. An alternative to this, consists in learning 

such values with respect to the optimal policy, i.e., to the greediest actions in each time 

step (off-policy) (Poole and Mackworth 2010).  

3.3 -  Continuous Reinforcement Learning 

So far, the RL discussion has been focused on MDPs with a finite number of states 

and actions. However, in real world, spaces and actions are almost always continuous 

and not discrete.  

A simple way of addressing continuous problems in RL is to discretize the state 

and action spaces, to be able to apply the algorithms earlier described, like Value 

Iteration, Q-learning, etc. This approach can be efficiently applied to many small 

problems (see Chapter 4), but there are some cases that do not support discretization. 

By discretizing, it is assumed that a set of infinite values take the same state values, 

which may represent a distorted reality. To many smooth functions, a reasonably good 

representation is only achieved with a very fine discretization, leading to the problem 

known as the curse of dimensionality. Note that the problem grows exponentially 

quickly, regarding the number of state variables and the intervals in which each one is 

divided.  

There are two distinct model-free approaches to solve continuous RL problems: 

methods that search in the space of value functions and methods that search in the space 

of policies. 

In order to generalize a state or state-action value, value functions are typically 

represented using function approximators, which provide estimates of the values. In this 

context, these approximators would be able to estimate the expected return even for 
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states that were never been experienced, taking examples from a desired function (e.g., 

a value function) and attempting to generalize from them to construct an approximation 

of the entire function (Sutton and Barto 1998). Value functions approximation was 

successfully applied to several applications (Beitelspacher et al. 2006; Buck, Beetz, and 

Schmitt 2002; Irodova and Sloan 2005).  Despite the successful implementations, the 

calculated estimates may not be capable of accurately representing the truth state or 

action values. Moreover, most implementations based on this approach lead to 

deterministic policies, even when optimal policy is stochastic, which occurs quite often 

(Richard S Sutton et al. 2000). For more effective representations for value functions 

approximators, alternative approaches can be implemented, i.e., evolutionary functions 

approximation, which combines neuroevolutionary optimization techniques with classic 

RL methods (Whiteson and Peter Stone 2006), or even fuzzy approximators (Lucian 

Busoniu et al. 2005). 

Policy Search methods are being used as an alternative to the Value Function 

Approximation techniques. These are the model-free methods that directly search in the 

space of policies. Policies have a simpler form than value functions, since the latter can 

become very complex for high-dimensional problems. Furthermore, Policy Search 

techniques are prepared to deal with continuous action spaces. An action is now 

represented by a parameterized policy π(u|x) = p(u|x,θ), which means policy follows a 

distribution p(u|x, θ) and is dependent of a set of parameters θ, which will be updated 

throughout the learning process. A very common representation for these parameterized 

policies is, for example, an ANN, whose weights correspond to the policy parameters. 

A widely known policy search approach is based on gradients. “Gradient-based 

policy search is based on the assumptions that the policy is differentiable and that the 

locally optimal parameters found by the gradient method are near the global optimum. 

When these assumptions are not satisfied, global, gradient-free optimization algorithms 

must be used to search for the policy parameters.” (L. Busoniu et al. 2011). An 

extensive survey of policy gradient methods, along with its application and evaluation 

in some tasks of robotics domain, is presented in (Jan Peters and Stefan Schaal 2006).  

With respect to gradient-free approaches, several optimization techniques can be 

applied, including mathematical optimization techniques, evolutionary computation, the 

cross-entropy method, etc. Policy search has been combined with evolutionary 

computation to create efficient and powerful algorithms like CoSyNE (Gomez, Jurgen 
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Schmidhuber, and Miikkulainen 2006), or Evolutionary Random Policy Search (H. S. 

Chang et al. 2006). Cross-entropy optimization was also used with policy search 

(Lucian Busoniu et al. 2009). 

Combined approaches are also an alternative for tackling these continuous 

problems. Natural evolution strategies (NES) algorithm combines ideas from natural 

policy-gradients and evolutionary strategies, providing efficient update steps and 

preventing premature convergence (Wierstra et al. 2008). Furthermore, 

Kalyanakrishnan and Stone investigate the strengths of both policy search and value-

function based RL to integrate them into a new algorithm (Kalyanakrishnan and Peter 

Stone 2009). 

3.4 -  Summary 

By reading this chapter, one should become familiar with Reinforcement Learning 

framework and functioning. This stage provided a basis for implementing and designing 

RL methodologies and solutions to tackle the state-of-the-art case studies proposed as 

an objective in 1.3. 

While in the beginning there was a greater focus on discrete algorithms to provide 

familiarization to the commonly used RL techniques, soon it became evident the need 

for a continuous methods research, in order to manage the CPGs parameters, as 

occurred with the gathered works presented in the previous chapter.  



 

 

 

Chapter 4  

Case Studies 

This chapter presents the application of RL on two case studies: the Crawler and 

the Inverted Pendulum. In the first, a simple robot with a two Degrees of Freedom arm 

learns a basic locomotion pattern, and in the latter, the widely known Inverted 

Pendulum is studied. A few common algorithms, such as Q-Learning and Value 

Iteration, are applied to the mentioned case studies. The purpose of this particular study 

is to investigate the strengths and abilities of RL in the prospective generation of legged 

locomotion, gaining knowledge and experience for future application to more complex 

tasks. 

4.1 -  The Crawler 

In order to characterize a locomotion problem and demonstrating in a simple way 

the learning process of RL algorithms, in this chapter it is developed the Crawler robot 

(Tokic et al. 2010; Tokic, Ertel, and Fessler 2009). Through this case study it is sought 

the ability of a simple robot to autonomously learn to move by interacting with the 

environment. The Crawler’s controller is formulated with the aim of achieving an 

emerging locomotion pattern that arises from the necessity to move. Experiments were 

performed in the physically plausible Webots simulator.  

The Crawler morphology is very simple: a two Degrees of Freedom arm at the 

front and passive wheels at the back (Figure 4.1 a)). The robot is expected to displace 

by moving the robot arm (joints gy and gx, Figure 4.1 a)), and the wheels only provide 

for hind support, not having any role in locomotion. RL algorithms are applied in order 

to find out the optimal policy, i.e., cyclical pattern of arm movements that generate 
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maximum forward displacement of the Crawler. In this context, a positive reward 

should be acquired whenever this desired displacement is accomplished.  

                      

Figure 4.1 - a) The simulated Crawler robot rendered in WebotsTM and its configuration. b) 5x5 Grid World for State 
representation. Possible actions are denoted by arrows (Tokic et al. 2009). 

4.1.1  Solution Outline 

As the learning approach is based on a MDP, the first step of the solution outline 

involves the definition of the set of the 5-tuple of representative elements of the MDP 

framework: 

- The space of states is defined as the set of all possible arm's positions. The 

continuous angular space of both joints was then discretized to form 25 possible arm's 

positions: 5 positions for each joint, gx and gy, whose combinations are represented in a 

two dimensional grid world (Figure 4.1 b)). It is essential that the definition of this 

space of states takes into account the positioning of the states’ referential beneath the 

robot’s one, to allow the border of the arm to push the ground, leading to the raise of the 

robot’s body and thus supporting the forward thrust. 

- The actions denote movements to neighbor states of the grid: {up, right, down, 

left} (Figure 4.1 b)). Each action corresponds to the movement of exclusively one joint, 

causing the gx to move face a horizontal state transition, while the gy will only move 

against a vertical state transition. It should be also noted that a state may not allow the 

action selection from the entire set of possible actions, but only a few of them (i.e., the 

edges of the grid world representation).  Figure 4.1 b) can also be seen as a transition 

graph, where the nodes represent each state and the action-arrows denote each possible 

state-action pair. 

- In this specific case, the transition probabilities are deterministic, which means 

that an action performed in a certain state, leads to the successor state with probability 

equal to one. This is due to the noise-free movement of the joint’s robot.  

- Every time the robot performs an action, and consequently, transits to a new 

state, a reward is set according to the measured distance traveled.  

gy 
gx 
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- In addition, it is employed a discount factor, γ, with value 0.9, as suggested in 

(Tokic et al. 2009), as a starting point for experimenting several others discount values. 

This is used to specify the portion of influence of neighbor–state values on V(s). The 

reward gathered at timestep t will be discounted by a factor of γt. 

 

Besides the experiments outlined for the different values of the discount factor, 

aforementioned, there is another parameter requiring attention and study: the 

exploration rate, ε. Assays were performed in order to meet an adequate solution for the 

crawler locomotion, taking into account the learning parameters γ and ε, and the 

learning process of the reward model (i.e., how to collect and learn all the rewards). 

Two potential solutions have been delineated to address this last issue:  

1. Learning based on a complete reward model 
It requires a comprehensive mockup of the rewards that would be achieved in each 

state transition. In this specific case, the entry to a certain state from different previous 

states leads to different rewards. That is, the reward depends not only on the current 

state, but also on the action that caused that transition. This fact is due to the strong 

dependence of certain states/actions on their successors, since sometimes it is only 

possible to achieve the objective after a proper sequence of joint movements. 

This approach comprises two different types of simulations. The first one, which is 

also the simplest, makes use of the available reward model provided by the original 

work (Tokic et al. 2009), which is shown  in Table 4.1. The reward table 𝑅𝑠𝑠′𝑎  presents 

the rewards that are achieved in each state transition (e.g., a transition from state (2,2) 

to state (3,2) leads to a reward of 6). 
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Table 4.1 – Original reward table 𝑹𝒔𝒔′𝒂  for all state transitions (Tokic et al. 2009) 

  0   1   2   3   4  
  0   0   0   0   0  
0 0  0 0  0 0  0 0  0 0  0 
  0   0   0   0   0  
  0   0   0   0   0  
1 0  0 0  0 0  0 0  0 0  0 
  -1   0   0   0   -1  
  0   0   0   0   0  
2 0  0 0  0 0  0 0  0 0  0 
  1   10   6   -1   0  
  -3   -22   -5   -1   1  
3 0  -41 18  -57 32  -45 29  0 1  0 
  46   50   35   40   16  
  -56   -68   -48   -64   -19  
4 0  -31 6  -28 28  -80 46  -37 43  0 
  0   0   0   0   0  

 

The second set of simulations involves the whole process of exploration of all 

possible actions performed in all possible states, while the rewards are being observed 

and updated. Note that in this stage, the robot is not concerned to learn any policy, but 

rather to gather all rewards. Once the model is complete, i.e., after a long run of 

exploration, it is possible to execute the learning algorithm and evaluate the results. 

 

2. Real-time Learning 
This approach is quite important as it is more suitable for real problems, which 

usually demand immediate adaptation to the requirements of the surrounding 

environment. Thus, the execution of the algorithm will occur at the time of the 

acquisition and update of the rewards. These two stages, which in the previous method 

were implemented separately, are now merged in a single one. In the beginning of the 

execution, there is an empty reward model, which is being built throughout the learning 

process. This real-time gathering process of the achieved rewards is represented in 

Figure 4.2. 

 

Figure 4.2 – Real-time updating of reward model 

Environment Crawler 

st st+1 
at 
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time++ 

distance 



 

     The Crawler 

29 

4.1.2  Value Iteration 

By completing the delineation of the experiments and perceiving the objectives to 

be accomplished, it is possible to make the next move and implement the learning 

algorithms. It is intended to study and implement Value Iteration, a DP approach 

suitable for MDPs resolution. DP is computationally heavy in terms of memory and 

complexity, being applicable only to smaller problems, such as this case study.  

Further experiments will address the assessment of the selected algorithm, as well 

as comparison with other RL algorithms which have also been implemented for 

evaluation purposes (presented in 4.1.6).  

Subsequently, the functioning of Value Iteration algorithm will be presented. 

 

Recalling Chapter 3, a very important concept for understanding Value Iteration is 

the value V(s), which represents the expected total reward of starting from the state s 

and respecting a given policy (Eq. 3.1). The algorithm task consists in assigning this 

numerical value, V(s), to each state s, repeatedly performing updates to the existing 

ones. As the state values depend on the rewards obtained, which in turn depend on the 

actions executed, some actions will lead to greater values. The algorithm must be 

capable of finding out which will be the actions that shall be taken at each particular 

circumstance, in view of the calculated values. 

In order to succeed in its purpose, it is necessary to supply the required 

information, i.e., the initial state values, the initialization of the learning parameters, the 

initial state of the robot, the complete reward model and the transition probabilities, 

when required.  

This last requirement of both the reward model and transition probabilities can be 

seen as a disadvantage, since it is assumed the knowledge of a model of the 

environment. Considering the above, one is faced with two inconveniences: first, it may 

not be trivial to get a reliable model, and second, the learned locomotion may only work 

in the modeled environment. The delineated approach of the learning process based on 

a complete reward model relies on this assumption, and thus, shares the mentioned 

disadvantages. 

However, this drawback can be overcome if the reward model is constantly being 

updated depending on the effect of the action on the environment, which is the principle 

used in the second approach of learning (real-time learning). As a model is required as 
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an input to the algorithm, all state transitions lead to a reward of zero before the robot 

starts to explore/exploit. So, a matrix of zeros will be the initialized reward table. 

Once all initializations and inputs required by Value Iteration are determined, the 

algorithm has now all the information needed to the calculation of the state values, 

which are expected to converge soon, given the small scale of the problem under study. 

Due to the Value Iteration property of calculating and updating all state values in each 

iteration of the algorithm, there is a need for storing those values. In this case, and since 

the space of states is of small dimension, a matrix will be used for storing the updated 

values, as also occurs with the storage of the rewards. 

As soon as the state values convergence is verified, Eq. 3.2 can be used to find the 

optimal policy π*, which is independent of the initial robot’s arm position. 

The representation of the complete Value Iteration algorithm is depicted in 

Algorithm 4.1. 

Algorithm 4.1 Value Iteration  
Inputs: Initial robot state; Learning parameters γ and ε; Matrices V for value states, and R for rewards 
 

1. For each state s, initialize V(s) = 0 
2. For each state transition, initialize 𝑅𝑠𝑠′𝑎  
3. Repeat 
4.     Choose and execute action (see 4.1.4) 
5.     Update reward  
6.     Observe next state 
7.     For every state s,  
8.            𝑉(𝑠) = 𝑚𝑎𝑥𝑎 ∑ 𝑃𝑠𝑠′𝑎 [𝑅𝑠𝑠′𝑎 + 𝛾𝑉(𝑠′)]𝑠′ 1 
9. Until convergence 
10. Return the optimal policy 

 
 

For a more detailed explanation on how this algorithm proceeds along its iterations, 

at the end of this document (Appendix - Value Iteration Step-by-Step) it is provided a 

step-by-step for Value Iteration execution on the approach “Learning based on a 

complete reward model”, resorting to the reward model of Table 4.1. 

 

4.1.3  Q-Learning 

This algorithm is a TD-learning approach, and in contrast with Value Iteration, 

does not require the definition of the transition probabilities, as desired. Furthermore, 

                                                
1 For this specific case, as the problem is deterministic, the equation can be simplified by removing the term 𝑃𝑠𝑠′𝑎  
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neither a complete reward model is a requisite, so the learning process, including the 

gathering and updating of the rewards, is conducted in real-time. These two advantages 

fairly compensate the assumptions required in Value Iteration. However, a disadvantage 

of Q-learning can be considered regarding Value Iteration, when dealing with small 

scale problems. In contrast to DP approaches, that update all state values in each 

iteration, Q-learning updates each Q(s,a) only when that state-action pair (s,a) is visited, 

providing less information to the learning process. 

In addition to the parameters already used in Value Iteration algorithm, Q-learning 

makes use of a further one: the learning rate, α, which indicates to what extent the new 

information will overwrite the old. A value of 1 leads to a complete overwrite and only 

the most recent information is considered. 

 

For Q-learning, the concept that stands for the expected reward of each state is 

represented by the q-values, Q(s,a), denoting the value of taking action a in state s (Eq. 

3.3). 

Similarly to Value Iteration, the algorithm task consists in assigning this numerical 

value,  Q(s,a), to each pair (state s, action a), performing updates to the existing ones. 

As these q-values depend on the rewards obtained, which in turn depend on the actions 

executed, some actions will lead to greater values. The algorithm must be capable of 

finding out which will be the actions that shall be taken at each particular circumstance, 

in view of the calculated values. 

In order to succeed in its purpose, it is firstly necessary to provide some 

information to the algorithm, i.e., the initial q-values, the initialization of the learning 

parameters and the initial state of the robot. 

Afterwards, the algorithm proceeds to the calculation of the state-action values of 

the state-action pairs it is experiencing, resorting to both exploration and exploitation. 

As soon as convergence is verified, Eq. 3.4 can be used to find the optimal policy π*, 

which is independent of the initial robot’s state. 

The representation of the complete Q-learning algorithm is depicted in Algorithm 

4.2. 
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Algorithm 4.2 Q-Learning 
Inputs: Initial robot state; Learning parameters γ, α and ε; Matrix Q for q-values; Reward function or 
table 
 

1. For each pair state-action  (s,a), initialize Q(s,a) = 0 
2. Repeat 
3.     Choose and execute action  
4.     Calculate reward  
5.     Observe next state 
6.     Update Q(s,a),  
7.           𝑄(𝑠,𝑎𝑡) = 𝑄(𝑠, 𝑎𝑡) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑎𝑡+1𝑄(𝑠′, 𝑎𝑡+1)−𝑄(𝑠,𝑎𝑡)]    
8. Until convergence 
9. Return the optimal policy 
 

 

4.1.4  Exploration  vs. Exploitation 

An important step of any algorithm lies on the selection and execution of the 

action. It was already mentioned that an RL algorithm should be capable of finding out 

which actions lead to greater calculated values. But, as also stated, it is also important to 

choose different actions from the greediest ones. 

Both approaches for the learning process of the reward model are implemented 

resorting to the use of exploration techniques. This represents one of the greatest 

challenges in the field of RL and it is important inasmuch as it will be possible to 

explore new solutions, which would not be possible to achieve with exploitation only. It 

is also important to opt for those that really lead to higher rewards, which would not be 

possible with exploration only. It is then intended that these two components are 

balanced, such that the results are the most satisfactory as possible. 

The former solution, where a reward model should be available, requires a first 

phase with total exploration to gather the complete model. It should be noted that the 

first method of this approach assumes an already existing model, provided in (Tokic et 

al. 2009), which makes this first phase of exploration disposable. The second phase 

consists in pure exploitation, since the existing reward model will not be modified and 

all the necessary information for the learning process is known, which simply leads to 

the concern of discovering the movements that approximate the robot to its main 

objective. 

In the second approach the process is not that simple, as it is not split into two 

distinct phases. There are two hypotheses under consideration which are expected to 

solve the exploration/exploitation trade-off: Is it enough to assign a value to the 
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exploration rate? Or is it better to assign different rates at different points of the 

execution? And what would be the best way to manage these variations? Such issues 

shall be answered upon the analysis of the results. 

A very simple exploration technique is called the ε-Greedy exploration. This 

technique consists in selecting an action randomly with a probability ε, independently 

of V(s), instead of following the actual policy π(s). The greediest actions are chosen 

with probability 1- ε. This procedure is the one used to manage the selection of the 

actions. 

 

4.1.5  Introduction of Stochasticity 

The purpose of this section is to create a modified situation of this case study, 

where stochasticity is introduced in state transitions. This means that an execution of an 

action in a certain state may not lead to a specific state, as occurs with the case 

previously described, prevailing several possibilities to the actual next state. For each of 

those possibilities it is assigned a given probability. 

There are several examples in which this situation can be verified. For example, if 

the actions space comprises the possibilities {north, south, east, west}, and the 

accomplishment of each possibility is via a compass, it is likely that it results in a 

certain deviation from the real direction of the cardinal point, due to the noise derived 

from the used device. 

By using this case study it is possible to create a situation capable of demonstrating 

non deterministic state transitions, by forcing the introduction of noise in the robot 

joints that leads to the occurrence of one of two different possibilities: the transition to 

the expected state, or the permanence in the same state. 

 

4.1.6  Other algorithms and their comparison 

Following (Tokic et al. 2009), Value Iteration is the original algorithm 

implemented, and it has already been presented in 4.1.2. Policy Iteration follows the 

same methodology and assumptions adopted for the Value Iteration. It is also a DP 

approach and differs from Value Iteration to the extent that the component iterated this 

time is the policy, rather than the state values. Namely, in this case it is used the policy 

as the central component of the learning process, initialized randomly, to subsequently 

calculate the Values, instead of what occurred with Value Iteration. These two 
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algorithms are very similar and it is intended to compare each other, checking for main 

differences in terms of results. 

Apart from DP, other approaches can be applied to this case study, as for example, 

Temporal Difference Learning. As a complement to this study, and for evaluation 

purposes, it has been selected a set of 5 more algorithms: Q-learning, SARSA, 

SARSA(λ), TD and TD(λ). 

TD methods use experience to solve a prediction problem and estimate state values, 

and the differences of predictions over successive time steps do justice to the name 

“temporal difference”. While in Value Iteration, state values are computed by iterating 

Eq. 3.1, a stochastic version is now used to estimate those values, without having 

knowledge of the transition model of the probabilities (model-free). The new update 

rule for the one-step TD, also known as TD(0), is presented in Eq. 4.1. A new 

parameter α appears, indicating the learning rate, that is, to what extent the new 

information will overwrite the old. 

𝑉(𝑠) = 𝑉(𝑠) + 𝛼[𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠)]   ( 4.1 ) 

Every time a state is visited, this update rule is used to estimate the value of that 

state, in contrast to Value Iteration, where all state values are updated in each step of the 

simulation. 

Q-learning, a TD-learning technique, differs from Value Iteration and TD(0) to the 

extent that the expected total reward of each state is now represented by Q(s,a). But as 

occurred with TD(0), each Q(s,a) is only updated when that that state-action pair (s,a) is 

experienced. The update rule for this algorithm can be observed recalling Eq. 3.3. 

Further detail concerning this Q-learning algorithm was discussed in section 4.1.3. 

Another TD-learning algorithm which is very similar to the aforementioned is 

SARSA. The name SARSA comes from the update rule “State-Action-Reward-State-

Action”, and was first introduced in 1994 (Rummery and Niranjan 1994), where it was 

initially known as modified Q-learning. Instead of learning values with respect to the 

optimal policy, as in Q-learning, SARSA learns values regarding the policy the agent is 

following. So, while Q-learning is an off-policy algorithm, SARSA is on-policy, and 

this single difference is translated by using this time the next state-action pair according 

to the policy rather that the greedy state-action pair. So, Eq. 3.3 of Q-learning was 

adapted to represent SARSA’s update rule, which is depicted in Eq. 4.2. Note that 
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SARSA is very similar to one-step TD, except that it makes use of action-state values, 

instead of state values. 

𝑄(𝑠, 𝑎𝑡) = 𝑄(𝑠, 𝑎𝑡) + 𝛼[𝑟 + 𝛾𝑄(𝑠′,𝑎𝑡+1) −𝑄(𝑠, 𝑎𝑡)]  ( 4.2 ) 

In 3.2, the concept of eligibility traces was introduced as a reinforcement learning 

mechanism that provides for a temporary record of the occurrence of an event. Some 

TD methods can resort to eligibility traces for the purpose of improving the learning 

process, resulting in techniques like TD(λ) or SARSA(λ), where λ refers to the use of 

an eligibility trace. 

Recalling one-step TD method, or TD(0) an estimate of the value of a certain state, 

V(s), combines old estimates of both V(s) itself and V(s') (Eq. 4.1). The next time step 

in the learning process consists in updating V(s'), which in turn resorts to old estimates 

of V(s''). TD(λ) takes advantage of the availability of this recent estimate of V(s') to 

improve the V(s) earlier updated. So, in each time step, all experienced states are 

updated, accounting for the new estimates of the current visited state. 

Considering that e(s) denotes the trace of s, and 𝛿𝑡 = 𝛼[𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠)], the 

improved estimate of V(s) is given by Eq. 4.3. Similarly, the improved Q(s,a) estimates 

for SARSA(λ) algorithm  is given by Eq. 4.4.  (Sutton and Barto 1998) provides further 

details on these λ-methods. 

𝑉(𝑠) = 𝑉(𝑠) + 𝛼𝛿𝑡𝑒(𝑠)    ( 4.3 ) 

𝑄(𝑠, 𝑎) = 𝑄(𝑠,𝑎) + 𝛼𝛿𝑡𝑒(𝑠, 𝑎)   ( 4.4 ) 

The functioning of these 5 temporal-difference techniques is very similar, except in 

the update rule, or in the case of the last two described, the use of eligibility traces. 

 

4.1.7  Results 

The results achieved in the several experiments carried out are presented 

throughout this section. For a better analysis, the assays were divided into two main 

groups, corresponding to the two approaches described for learning the rewards model.  

1. Learning based on a complete reward model 

The obtained results coincided with those exposed in Tokic’s work, as expected. 

The movement learning occurs quickly as it fails few moves until it initiates the cycle 

of the optimal policy and repeats the same movements through all the execution. This 
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optimal policy along with the resulting crawler movement is shown in Figure 4.3. The 

resulting displacement achieved by the Crawler was around 6.30 units of distance (u.d.). 

 

Figure 4.3 - a) Optimal Policy of Value Iteration with the provided reward model. The optimal cycle is encompassed 
by the rectangle. b) Resulting crawler movement. 

Whichever the initial state defined, the robot will soon enter and get trapped in the 

optimal cycle, as it can be verified by Figure 4.3 a). 

The discount factor, used as being 0.9, revealed a great impact in the results, 

because it dictates how much influence the future rewards have in the learning process. 

If this value is low and little influence is exerted by the future rewards, the algorithm 

will converge faster, but on the other hand, it may not reach the optimal cycle. To 

validate this statement, experiments were carried out, and for values below 0.8 it was 

confirmed that the algorithm is not capable of achieving the desired movement of 

walking forward, and the policy is maintained practically from the beginning to the end 

of the execution, converging too soon. 

In order to compare two different learning algorithms, it was also implemented 

Policy Iteration, since it follows the same methodology and assumptions adopted for the 

Value Iteration. This algorithm is also a DP approach and is very similar to the 

implemented one, but the policy is the component to be iterated, rather than the state 

values.  

Figure 4.4 graphically displays the state values evolution for the 6 states that 

compose the cycle of the optimal policy, along 30 iterations and for both Value and 

Policy Iteration algorithms. By analyzing the graphics, it is clear that Value Iteration 

converges faster, with regard to the state values of the six states comprised in the cycle 

of the optimal policy. This faster convergence by the Value Iteration might be explained 

by the fact that it focuses in the iteration of the values, unlike what happens with Policy 

Iteration.  

Nevertheless, this difference is not significant, as the results achieved were quite 

similar and denote the same optimal policy. 
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Figure 4.4 - Comparison between Value (in blue) and Policy (in green) Iteration; State values are presented in y-axis, 
while x-axis denote the iteration number. Each panel depicts a state variable of the cycle of the optimal policy 

The second set of experiments consists in gathering the reward model in a first 

phase, using complete exploration to achieve this task. In this approach, there is one 

important factor to be taken into account: for how long should the gathering and 

updating be performed? It was necessary to carefully analyze the several options, and 

formulate a variety of tests. After a long period of updating the reward table, the model 

achieved was given as an input to Value Iteration, in order to allow the robot to exploit 

and choose the best actions, in the second phase of these experiments. 

In terms of results, those were quite different depending on the runtime of the first 

phase. There were even a few tests that result in a movement totally opposed to what 

was expected (backwards). A reasonably acceptable solution was found after 1000 

iterations of exploration. Still, the results were fairly worse than the previous, as the 

displacement performed by the robot in each cycle was greatly reduced. 

2. Real-time Learning 

In these set of simulations, the reward model had to be collected while running the 

learning process, comprising the two stages in the previous method in only one. 

To tackle this approach, it is essential to perceive that the core of the issue is the 

exploration/exploitation trade-off. Therefore, several experiments were formulated in 

order to conclude about the best way to manage the exploration rate, concerning ε-

Greedy technique. 

As the exploration rate should not be very high, as it is intended to accomplish the 

best state value as possible, the value 0.1 was tested (i.e., 10% of cases resort to random 

actions, exploring, while 90% resort to the selection of greedy actions, exploiting). 

V(s) 

Iterations 
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However, this attempt has shown to be inadequate. A low exploration rate when there is 

no reward model is a bad idea to the extent that the robot chooses the greediest actions 

more often. And as the rewards are initialized as 0, what happens with excessive 

exploitation is that the algorithm reaches the optimal cycle soon, since it was not 

granted enough time to explore what was necessary. After a few movements, some 

rewards are updated, contributing to a value V(s) above 0. This small elite of actions 

already performed has a tendency to be selected more often than the remaining, whose 

rewards are still set to 0. So, the noise is insufficient, and it is important to include a 

higher noise rate.  

Though, if the value of the rate is increased, the results are slightly different, which 

does not mean that are best. A high exploration in the beginning can be a good option, 

to provide the algorithm with a complete and accurate reward model. However, this rate 

is not appropriate after the reward model is gathered, since it prevents the robot from 

choosing the actions it knows that will trigger higher accumulated values. It is 

indispensable to find some way of balancing which allows to better manage this issue. 

So far it can be concluded that it is not enough to assign a value to the exploration rate 

that holds along the entire execution, in this specific case study. 

Given the results, it would be ideal to assign a great rate holding at the beginning of 

the execution, which would decrease over time. This will ensure that all possibilities are 

tried out by the robot, leading to a complete model of rewards, so that it is able to select 

actions more wisely until convergence. 

After an exhaustive set of ad hoc experiments, a quite acceptable result was 

achieved with ε = 0.9 in the first 100 iterations, followed by a drastic reduction until ε = 

0, in iteration number 300. Specifically, in the beginning of the execution, 90% of cases 

resort to exploration, by executing random actions. This percentage decreases over the 

algorithm iterations, to allow the robot to perform sometimes the greediest actions. 

When 0% is reached for exploration, the robot only exploits, thus reaching the optimal 

policy. 

By allocating more time of high exploration, the robot ended up losing track of 

which had previously been the best actions, updating the earlier rewards by some 

achieved by worse actions. Thus, also the number of iterations set for the initial 

exploration must be validated, for being a great influence on the final results. From the 

moment when the exploration is lower (after 100 iterations in this case), the number of 

iterations was no longer found as an influential factor. 
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It must be noticed that even though the displacement is a good reward function for 

the current case study, if a big penalization is assigned to bad moves, i.e., moving 

backwards, the robot may opt to stand still, opting for the actions that lead to a reward 

of zero (no displacement), which is not desired. 

With these influential factors determined, the result consisted in a forward 

displacement, as expected. The states corresponding to the policy cycle are not the same 

as the implementation based on Table 4.1, because the mechanisms used and even the 

characteristics and dimensions of the robot, differ from the original (due to the lack of 

total knowledge of the problem). Moreover, the rewards model turned out to be totally 

different from that achieved in Tokic’s work. And the latter fact might be connected 

with the different ground used in the assays, since it can lead to different learning 

movements, or even with the chosen positions for the states, which was not supplied in 

the original work. Consequently, the distance traveled by the robot also differed, being 

approximately 7.57 u.d., which is a greater displacement than the one provided by the 

original policy.  

This time the optimal cycle comprises only two states (Figure 4.5), which implies 

the movement of just one joint. The fact that the robot only needs to perform two 

movements to return to the cycle start, against the 6 of the original approach, can be an 

explanation for this higher displacement achieved. One step of the first approach takes 

then three times longer, since one execution step is equivalent to one joint movement. 

Even though the robot steps in this real-time learning are considerably smaller, the 

Crawler is able to perform the triple the steps in the same learning time, which turned 

out to compensate. 

 

Figure 4.5 - Optimal Policy of Value Iteration with real-time learning 

The final reward table presenting the rewards achieved in all state transitions, and 

which originates this optimal policy, is presented in Table 4.2. 
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Table 4.2 – Final reward table 𝑹𝒔𝒔′𝒂  for all state transitions, achieved with real-time learning  

  0   1   2   3   4  
  0   0   0   0   0  
0 0  0 0  0 0  0 0  0 0  0 
  0   0   0   0   0  
  0   0   0   0   0  
1 0  0 0  0 0  0 0  0 0  0 
  -1   0   0   0   -1  
  -4   0   -30   -6   -7  
2 0  -1 -31  -32 -6  -22 -18  -18 0  0 
  -15   0   -27   -6   0  
  -38   -62   -28   -15   -39  
3 0  -36 -74  28 -28  -28 -46  -46 -39  0 
  -38   -53   -48   0   -29  
  32   -38   -40   51   -38  
4 0  30 -57  -38 -40  -85 -10  -61 45  0 
  0   0   0   0   0  

 

The following graphic (Figure 4.6) presents the results of all experiments 

performed with different algorithms with real-time learning approach, for evaluation 

purposes and as a complement to the study carried out. As the metrics used in each 

algorithm can vary in comparison with each other (i.e., state value or action value), the 

results are evaluated in terms of the Root Mean Square (RMS) Error, which evaluates 

the algorithms in terms of the convergence velocity. This error is calculated based on 

the difference between the optimal values and the values achieved in each step of the 

simulation, averaged over the states. 

Notwithstanding the different convergence times, all algorithms were able to 

achieve the desirable forward displacement, although some in a not as effective way. Q-

learning (Tokic et al. 2010) revealed very good results in terms of convergence, along 

with Value Iteration, that despite the higher value of error in the beginning, soon 

decreases to the same level as the former. Value Iteration evinced to be very suitable for 

this small dimension problem, because all value states are updated in each step of the 

simulation, in contrast with the other approaches. This fact is assumed as an advantage 

in this specific case, but it can turn out to be a drawback, due to the heavy computation. 

The primary algorithm also revealed a very good displacement, as already stated (of 

7.57 u.d.). Q-Learning, despite the good convergence results, led to poorer 

displacement results, along with the two SARSA algorithms (less than 2 u.d.). Further, 

the resulting movement was visually quite unnatural. On the other hand, TD and TD(λ) 

achieved reasonable displacements, of around 6.93 and 5.26 u.d., respectively. TD(λ) 
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provided interesting results, reflecting a very natural and smoother movement, when 

compared to all the others, causing the actuation of the two joints, and comprising 4 

states, leading to larger steps.  

 

Figure 4.6 - Comparison of a set of algorithms according to Root Mean Square Error 

 

The experiments addressed to the created nondeterministic situation, showed that 

despite the increasing of complexity, it is also possible to quickly achieve good 

solutions. The desired movement is achieved and the optimal cycle comprises four 

states, involving the use of both joints. 

It is demonstrated that Reinforcement Learning is capable and prepared to solve 

non deterministic problems, such as the existing of noise in any device.  

 

Videos of the results exposed are available in Youtube (Duarte 2012). 

4.2 -  The Inverted Pendulum 

The Inverted Pendulum, also referred to as the pole balancing problem, is a classic 

control problem introduced by Barto, Sutton, and Anderson (A. G. Barto et al. 1983), 

and later discussed in Scherffig's work (Scherffig 2002). As the interests in the context 

of the thesis include biped locomotion, the inverted pendulum is particular appealing, 

due to its resemblance to the balancing problem in biped locomotion. As Scherffig 

states, “problems very similar to the inverted pendulum problem have to be solved by 

robots and biological organisms that walk upright”.  

The inverted pendulum problem consists in a cart that can move freely in a track 

with a pendulum attached on the top (Figure 4.7). The goal is to maintain the pole in an 
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upright position by compensating the gravity effect through forces applied on the cart, 

and maximizing the total accumulated reward through Reinforcement Learning 

techniques. In this context, a greater reward should be acquired whenever the pendulum 

is closer to the desired position. The cart is then moved along the track to the right or to 

the left, according to the pendulum position.  

 

Figure 4.7 – Inverted Pendulum rendered in WebotsTM 

4.2.1  Solution Outline 

Just as the Crawler problem, this is based on a MDP, requiring the definition of the 

set of the 5 representative attributes of the MDP framework: 

- The space of states is experimented taking into account several sets defined, in 

order to compare and study the influence of certain components comprising the states, 

namely, angular positions and angular velocities. As mentioned, the position of the 

pendulum is an essential feature for decision making, because it is what will influence 

the movement of the cart. As this feature is measured in terms of the angular position 

regarding the vertical position, it is concluded that this is a continuous problem that 

must be overcome. The space of angular positions is then discretized between –π/2 and 

π/2 rad, where the initial upright position of the pendulum corresponds to 0 rad. If these 

boundaries are exceeded, the pendulum is restarted to its original position and the 

learning process is continued. In order to know how to best discretize this interval, 

several non-overlapping and uniform intervals were formulated. 

It has also been considered important to verify the influence of the angular velocity 

in the definition of a state. Thus, this factor was also subject to discretization in several 

uniform intervals, together with the angular position, since the angular velocity itself is 

not enough information to decide something accordingly. The interval defined was 

within [-40,40] rad/s, according to some experiments carried out. 

- The actions denote movements performed by the cart to equilibrate the 

pendulum, due to external forces. These forces are the actions chosen for this concrete 
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problem, and are applied positively or negatively, depending if the intention is to move 

the cart to the right or to the left, respectively. An alternative version also includes an 

action in which the force applied is zero, which leads the algorithm to not influence the 

current movement of the cart (do nothing).  

- In this specific case, the transition probabilities are very difficult to assign, 

since it involves a series of calculations dependent on the velocity and position of the 

pendulum, as well as the force applied to the car. For this reason, Value Iteration 

algorithm applied previously is not suitable for the inverted pendulum problem, as it 

requires the definition of this element. It is then selected an algorithm in which these 

probabilities do not need to be defined to accomplish a reliable solution.  

- Every time the robot performs an action, and consequently, transits to a new 

state, a reward is acquired. The maximum reward is reached when the pendulum meets 

the upright position, and is reduced depending on the distance to that desired angle. 

Therefore, it is given by -(angular position)2. 

- It is employed a discount factor, γ, with value 0.9, as it was the best alternative 

found in the previous case study. This value acts a starting point for assessing several 

other discount values. 

 

As the exploration rate was found to be a very influent parameter, experiments 

were outlined in order to achieve a better solution. 

It must be retained that in a real environment, the position of the cart would be 

important since it is not possible to perform an infinite route. However, in this problem, 

this point will not be taken into account, thus assuming an infinite track whereby the 

cart can move freely. Note that in order to simulate an environment as close as possible 

to reality, physic issues must be taken into account (e.g., the gravity). And that is one of 

the major advantages of Webots simulator, because these issues can be automatically 

considered in the simulation, which facilitates a process that otherwise would have to be 

addressed, lying outside the scope of this dissertation. 

 

4.2.2  Experiments 

By completing the delineation of the experiments and perceiving the objectives to 

be accomplished, it is now available all the information required to formulate the 

learning process. It is intended to study and implement Q-learning, a TD-learning 
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technique also suitable for MDPs resolution (Watkins and Dayan 1992). Q-learning was 

chosen according to the followed approach (Scherffig 2002). The complete algorithm 

was shown in Algorithm 4.2, in section 4.1.3. 

The experiments formulated for the Inverted Pendulum problem will be focused 

mainly on the 3 learning parameters (γ, ε and α) and the space of states and actions 

picked. 

 

States and actions 

As remains unclear how to best split the space of states and actions, these issues 

shall be answered upon the analysis of the results. 

Learning parameters 

It is intended to obtain the best value for the discount factor and evaluate the 

influence of future rewards. In this specific case, will it be expected to obtain the same 

best value as for the Crawler? Will the learning of an optimal policy take place even 

with lower rates, unlike the Crawler problem? 

To evaluate and be aware of whither the new information should overlap the new 

one, it is necessary to test the range of possible values, αЄ[0,1]. If α=0, no learning 

occurs (Eq. 3.3), but is it appropriate if the rate is too high? 

Regarding the trade-off of exploration/exploitation, the technique to be assayed in 

this case study is the already mentioned ε-Greedy exploration. The process to be 

followed is equivalent to the second approach implemented in the Crawler case (real-

time learning). As different situations are being dealt, the assumptions made for the 

former case study cannot be formulated for the current one. So, the 

exploration/exploitation balancing issue remains for consideration, in order to analyze 

the best way of managing the exploration rate. 

 

4.2.3  Results 

The results are analyzed and evaluated throughout this section, for each formulated 

and carried out experiment. 

The execution starts with the pendulum in the upright position, i.e., angular 

position = 0 rad. After, it is expected that the system will achieve the desirable 

behavior, after a number of unsuccessful attempts, keeping the pendulum in a vertical 

position without tumble. Specifically, it is expected that the cart will perform contrary 

actions repeatedly, moving to the left and to the right in an attempt to keep the 
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pendulum balanced. By means of common sense, it is not difficult to deduce that this 

cart movement should be towards the direction of the fall of the pendulum, so as to 

compensate the gravity forces. 

States and actions 

The selection of 100 states for representing the angular positions was shown to be a 

poor option, as the pendulum cannot achieve an infinite equilibrium. In this specific 

case, the number of actions (2 or 3) did not influence the results, since the states 

definition was not properly formulated. Note that these trials result in a period of 

stability for the pendulum, which is not too extended. It was also difficult to perform 

actions in all visited states, as the pendulum velocity is quite high to allow enough time 

for executing and evaluating them all. This suggests a decrease in the number of states 

in the hope of providing the necessary time for the learning algorithm. The division of 

the space of states in 20 intervals results in better outcomes. It is achieved a state of 

equilibrium, but nonetheless with several oscillations.  

By changing the reward model, for evaluation purposes, and in order to provide 

more clues about the actions that should be performed, it was noticed an improvement 

in the results achieved. The referred reward consists in distinguish whether if the 

pendulum is moving away or approaching the upright position. This reward was under 

consideration because of the following hypothesis: sometimes, a position closer to the 

goal may suggest worst results than one farther away, if in the present situation the 

pendulum is moving away in the former case, and approaching the goal in the latter. 

In fact, this last experiment led to good results, even if there are 100 intervals for 

defining the states space, which previously did not work. All these trials suggest the 

inclusion of the angular velocity as part of the state definition, as it denotes the direction 

of the pendulum movement. Regular intervals were defined in the range of [-40, 40] 

rad/s. 

Several combinations were tested in order to conciliate these two state components. 

The results have indicated that a space of possible states of 4x20 (4 position states and 

20 angular states) or 20x20 yield particularly good results, when compared with several 

other combinations tested, including the previously described ones. Regarding the 

number of actions, the selection of only two possibilities {+force, -force} did not result 

in the pendulum equilibrium. The addition of the third possibility that does not 

influence the cart movement (null force) revealed to be necessary, because not always 
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the movement must be counteracted or further strengthened. For example, there are 

situations when it is too soon to contradict the movement, causing a fall, but at the same 

time, reinforcing it, would cause the car and pendulum to move faster, being more 

difficult to cause a change of the pendulum direction. 

The results achieved matched the expected ones, as a fall to the right direction 

implies applying a positive force to counteract the pendulum movement, and a fall to 

the left direction leads to a negative force applied to the cart (Figure 4.8). The cart’s 

alternate movements to the left and to the right are sometimes imperceptible.  

 

Figure 4.8 – Resultant movement of the car in order to balance the pendulum 

After a few attempts, the cart is able to balance the pendulum for a certain period of 

time, until the oscillations become increasingly wider and the pendulum falls. Other 

falls are followed until an infinite stability is finally reached. The video of the results 

exposed can be found in (Duarte 2012). 

Other alternatives to further refine the best number of actions were tested, given 

different forces magnitudes. In the view of the obtained results, the magnitude is not 

much relevant to the learning process; however, it seems to influence the pendulum 

oscillations during the balancing period. To verify this assumption, the initial 

configuration was tested by varying the magnitude of the applied forces. With a force 

value lower than the original, the cart was also able to balance the pendulum, although 

with less oscillations. The results of this experiment can be examined in Figure 4.9, 

where one can analyze the angular position in radians throughout 5000 iterations. From 

a certain point, if the force is 4N, there are more variations in the angular positions, 

meaning additional oscillations and instability. With the force of 0.5N, there is a higher 

stability of the pendulum, without major variations. When the pendulum reaches the 1.5 

rad angular position, it means that the cart was not able to balancing it, causing a 

pendulum fall.  
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Figure 4.9 - The force magnitude as an influence factor in the pendulum oscillations 

 

 

Learning parameters 

The discount factor, which denotes the amount of influence of future rewards, was 

first tested as 0.9, which led to the aforementioned results. Nevertheless, for inferior 

values the achievement of similar results also takes place. For discount rates equal or 

inferior than 0.3, the cart was not capable of balancing the pendulum. As the future 

rewards are not taken into account, the learning of the optimal policy does not occur. 

What seems to happen with the Inverted Pendulum problem is that it does not 

require much information on future rewards as the crawler does.  In the Crawler 

problem, too much dependence on subsequent actions was noticed. If no dependence 

was taken into consideration, all actions and the consequent transition to a following 

state would lead to reward=0, because no displacement would take place. So, the 

rewards achieved in Crawler are dependent of a sequence of actions (minimum of two 

actions). In the current case, all actions lead to a reward different than 0, except for the 

exactly upright position, and so there is a not so strong dependence.  

Considering the learning rate, if this has the value 0, there is no learning because 

the new information has no importance in the calculation of Q-values. For this reason, 

Q-values remain the same during all execution, being selected and performed constantly 

the same action. If α>0, the learning with good performance occurs, independent of the 

value assigned. As a first glance, no difference within the range of learning rate values 

is noticed, and thus the learning period was extended. Scherffig argues that this 

parameter has a great influence on the oscillations even though sometimes this can only 

be proved throughout a very long execution (Scherffig 2002). A set of values was then 
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tested along 20,000 iterations and the results for 4 chosen rates are presented in Figure 

4.10, for the variation of the angular position, in radians, over time. 

 

Figure 4.10 - Influence of learning rate in the angular position over time 

Low values for the parameter α, reflect minor changes in the values of Q, while 

high values (α=1) reflect more abrupt changes (Eq. 3.3). This point revealed influence 

on the oscillations and stability of the pendulum in the long term. As verified via the 

graphic, the value for which α is minimum, α=0.01, offers the greater stability of the 

pendulum, so that it is maintained in a vertical position with constant oscillations over all 

iterations. On the other hand, learning takes longer, with more falls at the beginning of the 

execution that end up being compensated by the stability later found. 

For α=0.1, whose value is also low, the results revealed to be less stable, even though a 

period of very weak oscillations (around iteration 12,000) was achieved. Despite having 

reached good results, some falls were noticed, as well as greater oscillations of the 

pendulum. 

Higher values (α=0.5 and α=1) result in more instability and oscillations. They 

present too much variation of the angular position, along with some falls. However, the 

differences within this range of values were not as significant as those found for the 

lowest ones. 

The exploration rate did not show considerable influence in this specific problem, 

as opposed to the Crawler case study. The results did not seem to improve or worsen, 
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except that it might take longer to reach the desired movement, depending on the period 

defined for the exploration phase. One explanation for this occurrence is related to the 

fact that the values are initialized with the maximum value that they could achieve. That 

is, as the rewards depend on the function -(angular position)2, their values will always 

be negative, unless the position is exactly 0. As the rewards are negative, the q-values 

will also be. Therefore, when experiencing an action and updating the corresponding 

value, this will be negative and consequently the worst of all, since the others continue 

to be 0. This means that in the next situation that the system visits this state, it will 

choose another action, and so forth. This ensures that all actions are tested in each state, 

so there is no risk of not testing the greediest actions. 

4.3 -  Summary 

The case studies discussed in this chapter provided experience and knowledge that 

are expected to be useful in the formulation of future experiments. In this chapter it was 

demonstrated the functioning of various important RL algorithms, and the theory 

described in the previous chapter was put into practice. The algorithms are analyzed and 

evaluated for the experiments carried out, for these two simple case studies. The results 

showed that the selected algorithms were able to achieve good results and successfully 

accomplish the goals delineated (for videos of the results, see (Duarte 2012)). 

After this phase of the thesis’ work, one should be familiar with the MDP 

framework and understand the major challenges of the used RL techniques. This phase 

also provided a familiarization with Webots simulator, who proved to be very useful in 

the development of the solutions.  

The work developed so far resulted in a paper published in the International 

Conference of Numerical Analysis and Applied Mathematics (ICNAAM) (Duarte et al. 

2012).  
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Chapter 5  

A Natural Actor-Critic Solution 

This chapter first introduces the elements provided for the solution development 

concerning the DARwIN-OP robot model and the CPGs architecture. The main purpose 

of the thesis is approached, with the help of the knowledge and experience acquired 

throughout the earlier stages, and it is presented a RL approach designed to tackle the 

problem of tuning CPGs parameters, with the aim of optimizing the basic movement. 

The applied RL methodology is Natural Actor-Critic (NAC) which is described along 

with the achieved results. 

5.1 -  DARwIN-OP 

DARwIN is a family of autonomous robots capable of human walking and 

motions, developed by Dr. Dennis Hong and his team at the Robotics & Mechanisms 

Laboratory. The DARwIN humanoid robots first appeared in 2004 and have evolved 

thereafter through various generations. 

DARwIN-OP2, which stands for Dynamic Anthropomorphic Robot with 

Intelligence–Open Platform, is a recent miniature-humanoid robot that provides a 

research platform for studying robot locomotion, autonomous behaviors and several 

other topics on Artificial Intelligence. 

This robot comprises a total of 20-DOF (6 DOF each leg + 3 DOF each arm + 2 

DOF neck), measures approximately 455mm and weighs about 2.8Kg. 

                                                
2 See http://www.robotis.com/xe/darwin_ko and 
http://www.romela.org/main/DARwIn_OP:_Open_Platform_Humanoid_Robot_for_Research_and_Education 

http://en.wikipedia.org/wiki/Anthropomorphic
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Open_Platform
http://www.robotis.com/xe/darwin_ko
http://www.romela.org/main/DARwIn_OP:_Open_Platform_Humanoid_Robot_for_Research_and_Education
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The DARwIn-OP simulation in Webots features a complete dynamics model of the 

robot. It is capable of achieving movements through its 20-DOF and perform tasks with 

its accelerometer, camera, gyro and LEDs, similarly to the real robot. This model is 

presented in Figure 5.1 b), along with the real robot platform (Figure 5.1 a)).  

    

Figure 5.1 - a) The real DARwIN-OP robot b) The simulated Crawler robot rendered in WebotsTM 

Biped locomotion is achieved by moving the robot legs, through its 12-DOF legs 

joints. Each joint is controlled by a specific motion generated by the CPGs, as it will be 

presented in section 5.2. The schematic view of the leg joints, and the corresponding 

movements for which they are responsible for, is depicted in Figure 5.2, where the 

rolling of the cylinders indicate the direction of the joint’s movements. Arms and neck 

will be ignored since they do not contribute to locomotion, the purpose of this thesis. 

 

Figure 5.2 – Schematic view of legs joints 

5.2 -  Central Pattern Generators 

The CPG approach to biped locomotion developed by the group work “Adaptative 

System Behaviour Group” (Vítor Matos and C. Santos 2012) is based on phase 
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oscillators, where there is a capability of incrementally adding basic motion primitives. 

This locomotion system is a bio-inspired architecture that is implemented as an 

organized network of unit generators as non-linear differential equations. Each unit 

generator is responsible for the activation of one joint and it is composed by motion 

pattern generators driven by a global rhythmic generator (Figure 5.3). The combined 

produced behaviors will model the locomotion pattern. 

 

Figure 5.3 - CPGs and corresponding phase oscillators, motion generators and corresponding joints (Vítor Matos and 
C. Santos 2012) 

 
It is considered that as a starting point in the life of the robot, there should be a 

basic motor repertoire of motion primitives capable of achieving basic, but sufficient, 

walking behavior. Afterwards, it is presented the functioning of the CPGs and the 

description of the general motions, translated by a set of differential equations that 

control the robot actions. 

The rhythmic generator of the mentioned unit generators uses a phase oscillator 

(𝜙), increasing monotonically and linearly with rate ω, to produce the rhythmicity for 

the motion patterns, following Eq. 5.1. In this case, only two phases are generated in 

each time step, one for each robot leg, which means that joints placed in the same leg 

share the same phase oscillator. 

𝜙̇ = ω      ( 5.1 ) 
 

Joint position (𝑧𝑖(𝑡)) is generated by the motion pattern generators according to the 

current phase of the CPG, through the following non-linear differential equation (Eq. 

5.2), where each 𝑓𝑖,𝑗𝑛  corresponds to a motion primitive to be included in the generated 

motion of each joint, j defines the unit generator of a joint in a leg (hip roll, ankle pitch, 
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etc), i defines the left or right leg, 𝛰𝑖,𝑗 specifies the equation offset, and 𝛽 is a relaxation 

parameter for the offset. 

𝑧̇𝑖,𝑗 =  ∑ 𝑓𝑖 ,𝑗𝑛𝑁
𝑛=1 �𝑧, 𝜙̇𝑖,𝑗 ,𝜙𝑖,𝑗� −  𝛽(𝑧𝑖,𝑗 − 𝛰𝑖,𝑗)   ( 5.2 ) 

 

By acting on the hip roll and ankle roll joints, the robot achieves a balancing 

movement, shifting horizontally the pelvis at the hip. As the biped steps alternately, it 

must correctly land over the supporting leg during a step cycle, allowing the 

contralateral leg to execute the swing phase. So this is a very important motion of 

bipedal walking, since an incorrect displacement over the supporting foot may lead to a 

fall. The designed movements for the hip and ankle roll joints are generated according 

to the following Eq. 5.3 and Eq. 5.4. 

𝑓𝑖 ,ℎ𝑅𝑜𝑙𝑙
𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 =  𝐴𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝐻𝑖𝑝𝜙̇𝑖sin (𝜙𝑖)   ( 5.3 ) 

𝑓𝑖,𝑎𝑅𝑜𝑙𝑙
𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 =  𝐴𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝐴𝑛𝑘𝜙̇𝑖sin (𝜙𝑖)    ( 5.4 ) 

In order to add some natural resemblance to human walking, a pelvic rotation must 

be performed at the hip yaw joints, as follows (Eq. 5.5). 

𝑓𝑖,ℎ𝑌𝑎𝑤
𝑝𝑒𝑙𝑣𝑖𝑠𝑅𝑜𝑡 =  𝐴𝑝𝑒𝑙𝑣𝑖𝑠𝑅𝑜𝑡𝜙̇𝑖sin (𝜙𝑖 +  𝜋

2
)   ( 5.5 ) 

Leg flexion motion is performed by the non-supporting leg during swing phase, by 

actuating on the three pitch joints: hip (Eq. 5.6), knee (Eq. 5.7) and ankle (Eq. 5.8). 

Parameter σ specifies the duration of leg flexion during the step cycle and is set to 𝜋
6
. 

𝑓𝑖 ,ℎ𝑃𝑖𝑡𝑐ℎ
𝑓𝑙𝑒𝑥𝑖𝑜𝑛 =  𝐴𝐻𝑖𝑝𝜙̇𝑖

𝜎2
exp(− 𝜙𝑖

2

2𝜎2
)    ( 5.6 ) 

𝑓𝑖 ,𝑘𝑃𝑖𝑡𝑐ℎ
𝑓𝑙𝑒𝑥𝑖𝑜𝑛 =  −𝐴𝐾𝑛𝑒𝑒𝜙̇𝑖

𝜎2
exp(− 𝜙𝑖

2

2𝜎2
)   ( 5.7 ) 

𝑓𝑖,𝑎𝑃𝑖𝑡𝑐ℎ
𝑓𝑙𝑒𝑥𝑖𝑜𝑛 =  𝐴𝐴𝑛𝑘𝐾𝑛𝑒𝑒𝜙̇𝑖

𝜎2
exp �− 𝜙𝑖

2

2𝜎2
� −  𝐴𝐴𝑛𝑘𝐻𝑖𝑝𝜙̇𝑖

𝜎2
exp �− 𝜙𝑖

2

2𝜎2
�  ( 5.8 ) 

To flatten the trajectory occurred when the knee supports the body weight during 

stance phase, a small flexion on the knee joint is added during the stance phase to the 

knee (Eq. 5.9) and ankle (Eq. 5.10) pitch joints. π provides for a phase shift to allow the 

flexion to occur at the middle of the stance phase. 

𝑓𝑖,𝑘𝑃𝑖𝑡𝑐ℎ
𝑓𝑙𝑒𝑥𝐾𝑛𝑒𝑒 =  𝐴𝑓𝑙𝑒𝑥𝐾𝑛𝑒𝑒𝜙̇𝑖sin (𝜙𝑖 + 𝜋)   ( 5.9 ) 

𝑓𝑖,𝑎𝑃𝑖𝑡𝑐ℎ
𝑓𝑙𝑒𝑥𝐾𝑛𝑒𝑒 =  𝐴𝑓𝑙𝑒𝑥𝐴𝑛𝑘𝜙̇𝑖sin (𝜙𝑖 + 𝜋)   ( 5.10 ) 
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The generation of body propulsion, allowing the legs to move forward and 

backward, occurs when actuating on the pitch joints of hip (Eq. 5.11) and ankle (Eq. 

5.12). 

𝑓𝑖 ,ℎ𝑃𝑖𝑡𝑐ℎ
𝑐𝑜𝑚𝑝𝑎𝑠𝑠 =  𝐴𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝐻𝑖𝑝𝜙̇𝑖sin (𝜙𝑖 +  𝜋

2
)  ( 5.11 ) 

𝑓𝑖,𝑎𝑃𝑖𝑡𝑐ℎ
𝑐𝑜𝑚𝑝𝑎𝑠𝑠 =  𝐴𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝐴𝑛𝑘𝜙̇𝑖sin (𝜙𝑖 +  𝜋

2
)   ( 5.12 ) 

 

The combination of all these motions leads to the desired biped walking.  

The motions performed by each joint are summarized in the following equations 

(Eq. 5.13 - 5.18). 

𝑧̇𝑖,ℎ𝑅𝑜𝑙𝑙 = 𝑓𝑖,ℎ𝑅𝑜𝑙𝑙
𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 − 𝛽(𝑧𝑖,ℎ𝑅𝑜𝑙𝑙 − 𝛰𝑖,ℎ𝑅𝑜𝑙𝑙)   ( 5.13 ) 

𝑧̇𝑖,ℎ𝑌𝑎𝑤 = 𝑓𝑖,ℎ𝑌𝑎𝑤
𝑝𝑒𝑙𝑣𝑖𝑠𝑅𝑜𝑡 − 𝛽(𝑧𝑖,ℎ𝑌𝑎𝑤 − 𝛰𝑖,ℎ𝑌𝑎𝑤)   ( 5.14 ) 

𝑧̇𝑖,ℎ𝑃𝑖𝑡𝑐ℎ = 𝑓𝑖 ,ℎ𝑃𝑖𝑡𝑐ℎ
𝑓𝑙𝑒𝑥𝑖𝑜𝑛 + 𝑓𝑖,ℎ𝑃𝑖𝑡𝑐ℎ

𝑐𝑜𝑚𝑝𝑎𝑠𝑠 − 𝛽(𝑧𝑖,ℎ𝑃𝑖𝑡𝑐ℎ − 𝛰𝑖,𝑃𝑖𝑡𝑐ℎ)  ( 5.15 ) 

𝑧̇𝑖,𝑘𝑃𝑖𝑡𝑐ℎ = 𝑓𝑖,𝑘𝑃𝑖𝑡𝑐ℎ
𝑓𝑙𝑒𝑥𝑖𝑜𝑛 + 𝑓𝑖,𝑘𝑃𝑖𝑡𝑐ℎ

𝑓𝑙𝑒𝑥𝐾𝑛𝑒𝑒 − 𝛽(𝑧𝑖,𝑘𝑃𝑖𝑡𝑐ℎ − 𝛰𝑖,𝑘𝑃𝑖𝑡𝑐ℎ)  ( 5.16 ) 

𝑧̇𝑖,𝑎𝑃𝑖𝑡𝑐ℎ = 𝑓𝑖 ,𝑎𝑃𝑖𝑡𝑐ℎ
𝑓𝑙𝑒𝑥𝑖𝑜𝑛 + 𝑓𝑖,𝑎𝑃𝑖𝑡𝑐ℎ

𝑓𝑙𝑒𝑥𝐾𝑛𝑒𝑒 + 𝑓𝑖 ,𝑎𝑃𝑖𝑡𝑐ℎ
𝑐𝑜𝑚𝑝𝑎𝑠𝑠 − 𝛽(𝑧𝑖,𝑎𝑃𝑖𝑡𝑐ℎ − 𝛰𝑖,𝑎𝑃𝑖𝑡𝑐ℎ) ( 5.17 ) 

𝑧̇𝑖,𝑎𝑅𝑜𝑙𝑙 = 𝑓𝑖 ,𝑎𝑅𝑜𝑙𝑙
𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 − 𝛽(𝑧𝑖,𝑎𝑅𝑜𝑙𝑙 − 𝛰𝑖,𝑎𝑅𝑜𝑙𝑙)   ( 5.18 ) 

5.3 -  Natural Actor-Critic 

To successfully accomplish the task at hand, it is important to idealize a RL 

solution for the humanoid locomotion problem. This solution involves the investigation 

of the algorithms and methodologies used for the continuous cases, and the gathering of 

the state-of-the-art regarding to Reinforcement Learning with the use of CPGs (see 2.3). 

It is also important to understand the essentials behind the CPGs approaches.  

Most of the works investigated made use of Artificial Neural Networks for their 

architecture of the neural oscillators. As the approach of the work group is considerably 

different, as it is based on differential equations, the adaptation of the solution was 

found to be a very difficult task. One of the most used algorithms based on the state-of-

the-art, is the Actor-Critic with Policy Gradient methods. This appeared to be a good 

approach for the problem at hand, but the methodologies described were only applied 

for ANNs, as can be stated from 2.3.  

DMPs share the aims of the CPGs, being capable of generating rhythmic behaviors 

(see section 2.3). Investigations on this mentioned approach led to better target the 
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idealization of the solution. From the investigation carried out, it was concluded that 

there are very few approaches to these CPGs representation that apply the 

Reinforcement Learning framework, and those are mostly implemented towards the 

goal of moving an arm (playing baseball, making pancakes…), in contrast to the present 

project. 

The next step in the idealization of the solution, leads to a thorough investigation, 

attempting to understand the different algorithms used. Three have been found, suitable 

for dealing with DMPs: the Natural Actor-Critic, the Policy learning by Weighting 

Exploration with the Returns, and the Policy Improvement with Path Integrals. 

Explored all three, it was decided to use the NAC algorithm, due to the higher 

familiarity with the operations, in comparison with the other two algorithms, and 

because Actor-Critic is a widely used approach, even in the earlier implementations 

studied, which were addressed to ANN.  

As already stated in the state-of-the-art review, Natural Actor-Critic was introduced 

by Jan Peters (Peters, Vijayakumar, and Schaal 2003) and further developed in (Peters 

2007; Peters and Schaal 2008). NAC is a known sub-class of policy gradient methods, 

which is based on the simultaneous online estimation of two structures: the actor, which 

corresponds to a conventional action-selection policy, and the critic, which operates as 

a state-value function (Bhatnagar et al. 2009).  

The actor is responsible for updating the policy, via natural policy gradients, and 

towards the direction of the average reward gradient. The critic obtains both the natural 

policy gradient and additional parameters of a value function by linear regression. It 

evaluates the current policy to provide a basis for an actor improvement (Jan Peters and 

Stefan Schaal 2008). Several methods can be used by the critic to address its task, but 

the ones based on TD learning have proved in the literature more efficiency in large 

applications (Bhatnagar et al. 2009).  

Although distinguishable, actor and critic must be solved simultaneously to find an 

optimal policy. The interaction between these two structures is illustrated in Figure 5.4. 
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Figure 5.4 – Interaction of actor and critic structures 

Sensed a particular state, an action is chosen by the actor from a stochastic and 

parameterized policy π(u|x) = p(u|x,θ), leading to a state transition and the achievement 

of a scalar reward, on the part of the critic, which will cause the actor to reconsider its 

actions. It is assumed that the policy π(u|x) is linear and continuously differentiable 

with respect to its parameters θ. 

It is also assumed the existence of a set of linearly independent basis functions ϕ(x) 

so that the state-value function can be approximated with linear function approximation. 

These basis functions reflect the important features used to describe an environment 

state, and which can be useful for an efficient decision making. There are no general 

rules to the design of these features. Therefore, experience, analysis and intuition are 

needed to provide a good selection (Roy 1998). This mentioned work states that “a 

good choice of basis functions is critical to success”. Given a set of state variables, the 

simplest process of deriving basis functions is to use each variable directly as a basis 

function, plus a constant function, ϕ0(x) = 1 (Konidaris, Osentoski, and Thomas 2011). 

The critic evaluation makes use of Least-Squares Temporal Difference (λ) 

(LSTD(λ)) policy evaluation algorithm (Bradtke and Barto 1996), which is a derivation 

from a TD-learning rule on least-square techniques. The algorithm makes use of a set of 

statistics, z, A and b (Boyan 1999), which support the calculation of the natural gradient 

w. This gradient serves in updating policy parameters, following Δθt = αwt, where α is 

the learning rate. After the parameters update, the critic has to forget part of its 

accumulated statistics using a forgetting factor 𝛽 ∈ [0,1]. 

To adequately adapt LSTD(λ) in the current approach, new basis functions must be 

defined, reducing bias and variance of the learning process (Jan Peters and Stefan 

Schaal 2008): 𝜙�𝑡, resorting to the current state features and 𝜙�𝑡, which uses the next 

state features.  
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The complete NAC algorithm, including details of the calculation of the set of 

statistics, parameter updates and the new basis functions, is depicted in Algorithm 5.1. 

Algorithm 5.1 Natural Actor-Critic 
Inputs: Parameterized policy π(u|x) = p(u|x,θ), basis functions ϕ(x), policy derivative ∇log π(u|x), 
reward function, learning parameters α, β, γ and λ   
 

1. Initialize basis functions and statistics 
2. Repeat 
3.      Select and execute action: ut~ π(u|x) 
4.      Calculate reward rt and observe next state 
5.      Critic (Evaluation) 
6.           Update: 
7.                Basis functions: 𝜙�𝑡 = [𝜙(𝑥𝑡+1)𝑇 , 0𝑇]𝑇; 
8.                                           𝜙�𝑡 = [𝜙(𝑥𝑡)𝑇 ,∇log𝜋(𝑢|𝑥)]𝑇 
9.                Statistics: 𝑧𝑡 = 𝜆𝑧𝑡−1 + 𝜙�𝑡 ; 
10.                                 𝐴𝑡 = 𝐴𝑡−1 + 𝑧𝑡(𝜙�𝑡 − 𝜙�𝑡)𝑇; 
11.                                 𝑏𝑡 = 𝑏𝑡−1 + 𝑧𝑡𝑟𝑡  
12.                Critic parameters: [𝑣𝑡𝑇 ,𝑤𝑡𝑇]𝑇 = 𝐴𝑡−1𝑏𝑡 
13.      Actor (Updating) 
14.           If gradient estimate is accurate, update: 
15.                Policy parameters: 𝜃𝑡 = 𝜃𝑡−1 + 𝛼𝑤𝑡 ; 
16.           Forget statistics: 
17.                 𝑧𝑡 = 𝛽𝑧𝑡; 𝐴𝑡 = 𝛽𝐴𝑡; 𝑏𝑡 = 𝛽𝑏; 
18. Until convergence 
 

 

The information required for the algorithm described herein, which is not 

initialized or considered, will be discussed in the next section.  

NAC has been applied to several recent works to solve Reinforcement Learning 

tasks in the field of robotics and control. For example, NAC was applied with recursive 

least-squares method for optimizing the locomotion of a two-linked robot arm, similar 

to Crawler, achieving good performance results (Park, Kim, and Kang 2005). In (Ueno 

et al. 2006), RL is used to accelerate the automatic learning of a set of parameters, 

employing a modified natural actor-critic method, the off-policy NAC. Works 

approaching motor primitives have been developed, mainly for optimizing an arm 

movement, i.e., for playing baseball (Peters and Schaal 2007). In (Girgin and Preux 

2008) it is presented a new approach to automatically construct a set of basis functions 

within the context of NAC algorithms, which allow the representation of more complex 

policies. Recently, a Switching Max-Plus-linear model was developed to apply 

episodic-NAC to a hexapod robot, with the aim of maximizing velocity in flat or 

irregular terrains (Knobel 2011). 
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5.4 -  Solution Outline 

Comprehended the RL methodology addressed to the continuous cases, as well as 

the organization of the CPGs implemented and the chosen algorithm, it is now possible 

to define all the variables required to the learning process in order to get closer to the 

proposed goal.  

Abstracting from the issues related to the approaches’ details, it is essential to 

comprehend the process of interaction between RL and CPGs, and to realize what are 

the duties associated to each module. The following diagram (Figure 5.5) illustrates the 

interaction between the two modules and the physical environment (Robot). CPG 

controller calculates joint velocities using pre-defined non-linear equations. The 

velocities will then be integrated in order to provide the joint positions to the robot, 

which will result in a smooth and rhythmic locomotion movement. The introduction of 

a RL module aims at optimizing the robot locomotion by updating particular 

parameters, resorting to the information about the state of the robot, so that the 

movement generated by the CPG is now optimized with respect to the basis movement. 

The RL module is translated by the Natural Actor-Critic algorithm, exposed in the 

previous Figure 5.4. 

 

Figure 5.5 – The integration of RL and CPGs modules 

After, it is summarized the necessary information to the implementation of the 

algorithm and the choices made for each component required as an input. 
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In the beginning of a project like this, it is imperative to define smaller goals to 

achieve in each phase. So, in a first attempt to develop the solution and test its 

feasibility, it is going to be addressed the RL framework only to two joints of each leg, 

performing the movement of balancing: hip and ankle roll joints. If good results are 

achieved, then it is time to move forward and tackle the other joints of the robot. 

Balancing movement seemed a good optimization target since only two joints are 

responsible for this sort of motion. The most intuitive reward, in terms of the distance 

traveled, is difficult to control targeting only two joints, since it is the result of the 

combination of all leg joints. Therefore, as it is intended to optimize the balancing 

movement, the reward to use by NAC is in terms of the distance from Center Of 

Pressure (COP) to foot center. Specifically, this distance shall be the nearest to 0, 

during stance phase (in swing phase there is no COP). This should encourage the robot 

to maintain the balance and stability. Additionally, a penalization should be included 

whenever the learning process causes the robot to fall down. 

It is assumed in this concrete case that the hip roll and ankle roll joints perform 

exactly the same movement. As to the distinction of the two legs, the only difference is 

the phase, which leads to the adoption of the same trajectory for both legs (dephased). 

Note that although the phase-dependent kernel functions for each leg are different, the 

policy parameters should be the same for both legs. 

Despite being based on similar principles, DMPs and the CPGs used in this project 

slightly differ. DMPs are composed of weighted kernel functions, whose weights are to 

be updated, while the equations used in this project are rhythmic sin or Gaussian 

functions, with all the common parameters of sinusoidal waves (amplitude, frequency, 

phase). As a basic movement is provided, in terms of a (or a set of) well-defined 

sin/Gaussian function(s), how can the equations of DMPs be integrated with the 

current CPG approach? The answer is not trivial, but as the CPGs equations are non-

linear dynamical systems, they easily allow the sum of more components or motor 

primitives (e.g., Eq. 5.17 has 3 summed primitives). Therefore, the component of the 

DMPs (F) will be summed to the CPG original equations of hip and ankle roll, in an 

attempt to optimize the robot movement of balancing in locomotion. The value of this 

summed component corresponds to the action to take by the robot, as follows (Eq.  

5.19).  

𝐴𝑐𝑡𝑖𝑜𝑛 = 𝐹 = ∑𝜓𝜃
∑𝜓

    ( 5.19 ) 
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𝜓𝑖 = exp (ℎ(cos(𝜙𝑖 − 𝑐𝑖) − 1)), h = 2.5N , 𝒄𝒊 ∈ [0, 2π]  ( 5.20 ) 
 

DMPs resort to kernel functions 𝜓 (Eq. 5.20) (Gams et al. 2009), which are phase 

dependent and pre-defined, and which are weighted by a set of parameters 𝜃, whose 

function is to determine the waveform of the produced periodic trajectories. So, the 

action selection is based on a parameterized policy π(u|x) = p(u|x,θ), as it was 

previously stated. The initial set of parameters, θ= θ0, is populated with zeros, so that 

the initial movement that NAC attempts to optimize is equivalent to the basic 

movement provided by the original CPGs. Furthermore, this policy follows a normal 

distribution N(F,σ) to allow some exploration:  π(u|x) = p(u|x,θ) = 1
√2𝜋𝜎2

exp (− 1
2𝜎2

(𝑥 −

𝐹)2).  

With the summed component of the DMPs, the new hip and ankle roll movement 

equations are given, respectively, by Eq. 5.21 and Eq. 5.22. 

𝑧̇𝑖,ℎ𝑅𝑜𝑙𝑙 = 𝑓𝑖,ℎ𝑅𝑜𝑙𝑙
𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 − 𝛽(𝑧𝑖,ℎ𝑅𝑜𝑙𝑙 − 𝛰𝑖,ℎ𝑅𝑜𝑙𝑙) + ∑𝜓𝜃

∑𝜓
          ( 5.21 ) 

𝑧̇𝑖,𝑎𝑅𝑜𝑙𝑙 = 𝑓𝑖 ,𝑎𝑅𝑜𝑙𝑙
𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 − 𝛽(𝑧𝑖,𝑎𝑅𝑜𝑙𝑙 − 𝛰𝑖,𝑎𝑅𝑜𝑙𝑙) + ∑𝜓𝜃

∑𝜓
   ( 5.22 ) 

 

To approximate the state-value function with linear function approximation, as 

seen in section 5.3, it is necessary to define the set of basis functions ϕ(x), so as to 

more accurately describe an environment state. It can be difficult to set the important 

features of a state. In this context, the most intuitive state variables correspond to the 12 

joint positions of robot legs, along with the 2 phases, one for each leg.  So, 15 basis 

functions are initialized in all iterations:  

ϕ(X) = {1, 𝑧𝑙𝑒𝑓𝑡,ℎ𝑅𝑜𝑙𝑙 , 𝑧𝑙𝑒𝑓𝑡,ℎ𝑌𝑎𝑤 , 𝑧𝑙𝑒𝑓𝑡,ℎ𝑃𝑖𝑡𝑐ℎ , 𝑧𝑙𝑒𝑓𝑡 ,𝑘𝑃𝑖𝑡𝑐ℎ , 𝑧𝑙𝑒𝑓𝑡,𝑎𝑃𝑖𝑡𝑐ℎ , 𝑧𝑙𝑒𝑓𝑡,𝑎𝑅𝑜𝑙𝑙 , 

𝑧𝑟𝑖𝑔ℎ𝑡,ℎ𝑅𝑜𝑙𝑙 , 𝑧𝑟𝑖𝑔ℎ𝑡,ℎ𝑌𝑎𝑤 , 𝑧𝑟𝑖𝑔ℎ𝑡,ℎ𝑃𝑖𝑡𝑐ℎ, 𝑧𝑟𝑖𝑔ℎ𝑡,𝑘𝑃𝑖𝑡𝑐ℎ , 𝑧𝑟𝑖𝑔ℎ𝑡,𝑎𝑃𝑖𝑡𝑐ℎ , 𝑧𝑟𝑖𝑔ℎ𝑡,𝑎𝑅𝑜𝑙𝑙 , 𝜙𝑙𝑒𝑓𝑡 , 

𝜙𝑟𝑖𝑔ℎ𝑡}. 

These basis functions are initialized according to the initial state of the robot. 

Note that, because of the number chosen for the basis functions, policy parameters 

are also 15 in total, so that all matrix calculations are possible. Consequently, it is 

required a set of 15 kernel functions, each one weighted by each policy parameter. 

In critic evaluation stage, NAC makes use of LSTD(λ) algorithm, which in turn 

makes use of a set of statistics, z, A and b.  The matrices z and b are populated with 
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zeros. As A cannot be a zero matrix, it must be initialized with a small positive multiple 

of the identity matrix, in order to allow the calculation of its inverse.  

Finally, it is assumed that the problem is a Markov Decision Process in discrete 

time and with a continuous state set and a continuous action set.  

 

It should be noticed that the algorithm presented in Algorithm 5.2 and further 

discussed in the current section, works for one degree-of-freedom (DOF), and it must 

be adapted to solve multiple-joint problems. Even though a single execution is needed in 

the present case, because there is only one set of parameters to update, the implementation 

should be prepared to parallel executions, for the further addition of more DOFs, where 

several parameter sets should be encountered.  

It is intended to evaluate the solution and understand the changings caused by 

learning, when compared to the pre-learning phase (CPGs only), analyzing the variation 

of the rewards achieved and the changing of the joints trajectories. 

5.5 -  Results 

The implementation described in the previous section didn’t result in the expected 

outcome. First, it is important to highlight that the NAC algorithm presented several 

problems during its implementation. Due to matrix operations as inversions, numerical 

instabilities had emerged, causing large increments to the values of the parameters, 

which exponentially increased and led to infinite leg’s movements. To solve this, the 

basis functions must be normalized by the standard deviation (except the “1”, that is 

normalized by the number of samples). Another important step is to include and apply 

ridge regression method, that is, “a number δ is added to the elements on the diagonal 

of the matrix to be inverted” (Bjorkstrom 2001).  

With the solution to solve inversion problems, the parameters did not increased 

exponentially as before, but they still do not stabilize in the long run, only for a short 

period of time. Also, the reward variation reveals no improvement, when compared to 

that before the introduction of RL, where the same function was achieved. The distance 

from COP to foot center was already close to 0, and the values after optimization 

remain the same. 

The next figures present an overview of the results achieved, by means of the 

variation of F’s sum (Figure 5.6 a)), and the consequent 𝑧̇𝐿𝑒𝑓𝑡,ℎ𝑅𝑜𝑙𝑙  trajectory (Figure 
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5.6 b)). It is observed that the trajectory achieved with the NAC algorithm is very 

similar to the one generated by the CPGs, in spite of existing an increase of the 

component F. This can be indicative that the parameters chosen are not very sensitive to 

slight changes, needing more abrupt modifications of their values to result in 

differences in the trajectories. But on the other hand, if parameters take too high values, 

consequently leading to a huge increasing of component F, the rewards will get worse, 

thus resulting in a robot fall. 

 

 

Figure 5.6 – a) F’s variation b) 𝑧̇𝐿𝑒𝑓𝑡,ℎ𝑅𝑜𝑙𝑙 trajectory before learning (green) and after learning (blue) 
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Taking these results into account, a question arises: why did not the NAC algorithm 

lead to some reasonable results? Two hypotheses immediately arise to answer this 

question: 

1- The algorithm is not appropriate to the problem exposed.  

2- The solution conceived to implement Reinforcement Learning to the tuning of CPGs 

is not the ideal one:  

a. Is the sin function of the basic movement good enough to model the desired 

movement? As the rewards values are too close from the maximum of rewards function, 

this could be a strong hypothesis. In this case, the NAC algorithm (or other) would not 

be capable of improving it, taking into account the current solution.  

b. Is the reward model unsuitable? This is also a very strong hypothesis, that later 

became more obvious, throughout the development of the entire project. No matter how 

the solution is worsened, the rewards achieved are always around the same values, 

which reveals that they do not reflect enhancements or worsenings. So, how to pick a 

good reward model, appropriate for this case? This is a question that remains 

unanswered, and is further evidence that the reward model has a huge influence in RL 

problems. 

 

Analyzing the conceived hypotheses, it is important to identify the possibilities of 

tackling the problem in a different way.  One potential solution passes through the 

implementation of other algorithm, which implies further study and investigation. 

However, as the solution seems not very suitable, either due to reward function, either 

due to the addition of the DMPS to the basis movement performed by the sin functions, 

also the solution had to be improved. This suggests a different investigation target, 

leaving the concept of DMPs aside. 

An additional possibility consists in implementing DMPs as they are presented in 

the literature, removing the sin functions of the used CPGs, and providing a basic 

movement with some initial hand-tuned parameters. This hypothesis does not seem to 

be viable since it suggests a major change to the existing CPGs, which is not a purpose 

of this thesis.    

There is also a possibility of changing the target joints to better idealize a reward 

model, but this issue revealed to be very difficult to conceive, as the use of only few 

joints is recommended to verify the viability of the solution, due to the increasing 

number of parameters. 
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5.6 -  Summary 

In this phase it was developed an integrated solution of CPGs and RL, which has 

revealed to be a nontrivial task, due to the differences observed in the provided CPGs 

and those commonly used in the literature. The solution was idealized as an adaptation 

of the known DMPs, widely applied in robotic control. However, it did not result in any 

optimization, whether due to the unsuitable reward model, or even to the solution itself, 

as it was hypothesized that the sin function was already very good and well-defined. 

Natural Actor-Critic revealed some numerical instabilities and sensibility to particular 

parameters. This last detail was not further explored due to the several difficulties 

encountered and the absence of satisfactory results.   

Although it was not achieved the desired results, this stage provided more 

experience and knowledge, which has allowed to convincingly state about the viability 

or not of following some conjectured paths. Due to the complexity of the problem at 

hand, further investigation and study are required, to properly design a solution capable 

of handling with the integration of the two proposed approaches.  
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Chapter 6  

A Cross-Entropy Solution 

In the previous chapter it was verified that the use the NAC algorithm, along with 

the solution designed, did not result in any optimization. This chapter presents the 

design of a different solution, as well as the implementation of a different algorithm 

which shares similar concepts with some classic RL methods: the known Cross Entropy 

Method (CEM). This is a general algorithm, widely applied in many contexts of robot 

control. 

6.1 -  The Cross Entropy Method 

From the state-of-the-art review, it is realized that Policy Search methods are 

providing more interesting results and are the core of the most recent investigations in 

solving continuous RL problems. One of the most popular approaches is the use of 

gradient-based methods. NAC and PoWER algorithms are examples of this general 

approach. But despite the good results in the literature, such gradient-based methods are 

in general complex and still difficult to apply to many continuous state and action 

problems, since they are sensitive to parameterization. Moreover, they may comprise 

numerical instabilities. 

Gradient-free policy search represents a set of several gradient-free optimization 

techniques that can be used rather than gradient-based methods, allowing a richer policy 

parameterization, which can be non-differentiable. One of these alternative approaches 

that has been a study target lately is based on trajectory rollouts, e.g., PI2. Many works 

have shown that these methods are able to outperform the previously mentioned, in 

terms of speed of convergence, quality of the solution, and even the need for less 
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parameter tuning (E. Theodorou et al. 2010). Instead of using gradient estimates, this 

algorithm is based on the concept of “probability-weighted averaging”, which reveals 

similarity with some other methods, like Covariance Matrix Adaptation – Evolution 

Strategy (CMA-ES) (Hansen and Ostermeier 2001) and Cross Entropy Method (CEM) 

(R. Y. Rubinstein 1997). These algorithms seem to share very similar concepts, as well 

as identical parameter update rules, and this relationship can be examined in (Stulp and 

Sigaud 2012). CMA-ES was even efficiently applied for solving RL problems in the 

optimization of the weights of neural networks (Igel 2003). CEM was used in similar 

problems, for optimizing a set of weights of basis functions in a Reinforcement 

Learning task (Menache, Mannor, and Shimkin 2005). 

Afterwards, comparisons between policy gradient methods, e.g., NAC, and CMA-

ES have arisen, as two different methods of tackling Reinforcement Learning tasks 

(Heidrich-meisner and Igel 2008a, 2008b). The experiments described to compare the 

two methodologies suggest that CMA-ES outperforms the NAC algorithm. Despite 

these results, Heidrich-meisner and Igel argue that these approaches are quite similar, 

and even refer to CMA-ES as an evolutionary RL algorithm, as it can be applied to the 

optimization of RL parameterized policies and to MDPs, which are the basic formalism 

to describe RL problems. Furthermore, in (Whitley et al. 1993) it is stated that 

“although not often thought of in this way, genetic algorithms are, in a sense, inherently 

a reinforcement learning technique”, a statement which can also be generalized to 

CMA-ES and CEM. However, although in some problems this assertion may be closer 

to the truth, it must be taken into account that one distinguishing feature of RL is the 

possibility of sequential decision-making. 

(Stulp and Sigaud 2012) states that CEM is a special case of CMA-ES, by setting 

some parameters of the latter to specific values. Because of the similarity encountered 

between CEM and RL methods like PI2, and given the great theoretical complexity that 

PI2 has demonstrated, CEM appeared to be a good way of tackling the problem at hand, 

since it has been evidenced to be suitable for solving MDPs. The purpose of this section 

is then to introduce the Cross Entropy Method as a starting point for the design and 

implementation of a possible solution. 

The Cross Entropy Method is a simple, efficient and general Monte Carlo approach 

for solving continuous optimization problems (R. Y. Rubinstein 1999), suitable for 

problems of robot control. Its aim consists in achieving a solution that optimizes some 

objective (cost/reward) function, by testing a distribution of solutions, instead of just 
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one solution iterated over time. That distribution is intended to be approximated 

towards the proposed goal, until convergence to the optimal solution. The term “cross-

entropy” denotes the distance between distributions. 

The basic principle, which is very similar with PI2 principle, is illustrated in Figure 

6.1. 

 

Figure 6.1 - Schematic view of CEM (Marin et al. 2011) 

Four simple steps sequentially organized can be used to synthesize this algorithm: 

Sample, by taking K samples from a given distribution; Sort and Select, by sorting the 

samples with respect to a cost calculated for each one and selecting the first elite ones; 

Update, using the chosen best vectors to calculate the new distribution, and finally, 

Iterate, returning to the first step with the last distribution calculated (Stulp and Sigaud 

2012). Resorting to Figure 6.1, stages 1 and 2 constitutes Sample phase; stage 3 

represents Sort and Select phase; stages 4 and 5 make up Update phase; and Iterate is 

represented by stage 6. 

The similar PI2 algorithm also attempts to approximate a distribution towards the 

direction of lower cost. However, in this case all vectors are chosen to calculate the new 

distribution, in terms of weighted average, instead of using just the best ones. 
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The distribution most commonly used is the Normal Distribution, N(θ,Σ), where θ 

and Σ denote, respectively, the mean and the covariance of that distribution. Note that 

the mean θ may denote a set of parameters, rather than just one, which are represented 

by a vector and thus leading to a matrix representation of the covariance of the 

distribution. The K samples derived from N(θ,Σ), which are represented by θk, are in 

this case vectors, whose parameter values differ slightly from the ones of the 

distribution’s mean. 

The representation of the complete CEM algorithm is depicted in Algorithm 6.1. 

Algorithm 6.1 Cross Entropy Method 
Inputs: Initial distribution N(θ,Σ); Cost/reward function; Parameters: K and elite (number of chosen 
vectors) 
 

1. Repeat 
2.      From the chosen initial distribution N(θ,Σ), compute K samples: 
3.           θk ~ N(θ,Σ) 
4.      For each sample K 
5.           Run the execution for N time steps, and calculate the cost of the sample 
6.      Sort the samples in ascending order with respect to the cost and choose the first elite ones      
7.      Attribute probabilities of P = 1/elite to each chosen vector 
8.      Compute the weighted mean and covariance of the set of elite samples, according to the 

Normal distribution 
9. Until convergence 

 
 

The information required for the algorithm described herein, within the context of 

biped locomotion, will be discussed in the next section. 

To better understand the functioning and the details of CEM, and in order to 

conceive a suitable solution in the subsequent section, taking into account the setting of 

all inputs required to the algorithm implementation, a simple case study is hereafter 

demonstrated, based on (Stulp and Sigaud 2012).  

Considering a parameter space with just two dimensions, represented by a 

Cartesian space, a vector θk symbolizes a point in the referential, with coordinates (x,y). 

The aim of the application of CEM in this case study is to approximate an initial point 

to the origin of the referential. Starting with an original multivariate normal distribution, 

with N(�88�, �
9 0
0 9�), K = 10 samples are taken in each round of the optimization 

process. As they are points in Cartesian space, the cost calculation is immediate, with 

no need of running each sample during N time steps. After calculating the chosen cost 

of each sample in terms of distance to the origin, elite = 5 vectors are chosen to 
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participate in the calculation of the next distribution, each one with probability of 1
5
. 

Vectors with a great distance from the origin are eliminated, in favor of those which 

achieve a distance closer to 0. The mean of the distribution, which before took values 

(8,8), assuming a cost of approximately 11.31, is now taking x and y-values closer to 

the origin (0,0), and consequently, lower costs as desired. Initially, no amount of noise 

is added to the covariance matrix, i.e., stage 5 of Figure 6.1 is not considered. 

After a number of CEM updates, the algorithm converges to a mean with values 

(7,0), achieving a reward of 7, which is closer to 0 than the 11.31 of the first iteration 

was. Despite this improvement, the objective of approximating the point to the origin 

was not accomplished. So, as no value noise was added to the covariance matrix, it was 

verified premature convergence. 

An amount of 0.8 was added as the noise value, and after some updates, CEM is 

now able to achieve a solution with a reward very close to 0. Due to the noise 

introduced in the implementation, an error of about 0.1 was found taking into account 

the origin (0,0). CEM was found efficient in solving this simple problem, but the 

achievement of a better or worse solution is dependent on the decisions made by the 

programmer, i.e., the amount of noise included, the elite number chosen, etc. 

 

Apart from these simpler optimization problems, this algorithm has been applied to 

different applications, like the traveling salesman problem (R. Y. Rubinstein 1999), 

simulated helicopters (Kobilarov 2001), DNA sequence alignment (Keith and Kroese 

2002), etc.    

CEM for policy optimization, such as in this work, was introduced in (Mannor, R. 

Rubinstein, and Gat 2003) for solving MDPs with large state spaces. The extension to 

MDPs with continuous action spaces can be found in (Stulp and Sigaud 2012). There 

were not encountered works with similar aims of this thesis, e.g., robot locomotion 

using CPGs. 

6.2 -  Solution Outline 

The current chapter aims to expose a possible and appropriate solution for the 

tuning of particular CPGs parameters, to optimize biped locomotion. Both CEM and 
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NAC (Chapter 5) solutions are intended to address the main purpose of the thesis, 

described in 1.3. 

The CEM algorithm described in the previous section requires the setting of some 

inputs, e.g., the actions and rewards, as well as considerations whether about attributes 

initializations, or the iterations itself. The necessary information to the implementation 

of the algorithm is carried out below. 

It is desired to formulate this problem as a RL problem, so it is important the 

setting of particular features which are characteristic of RL methods. The states are 

represented by all important environment features, or more specifically in this case, 

they comprise the set of the 12 leg joints’ positions. The combination of the appropriate 

set of positions is crucial to a good performance, thus states play a very important role 

in the optimization process despite they are not directly required for the algorithm 

inputs or calculations.  

The action selection, as in the previous chapter and other policy search methods, is 

based on a parameterized policy π(u|x) = p(u|x,θ), which will lead to a state transition 

and the achievement of a scalar reward. The action chosen for the NAC solution was 

related to the DMPs component to sum to the original CPGs equations, due to the 

parameterization sensibility that the method appears to have.  

“For PI2 learning, the linear parameterization in θ is among the most important 

features” (Stefan Schaal et al. 2010). This requirement of linearity criterion of NAC or 

PI2 algorithm, especially conceived for solving DMPs, is a quite strong limitation 

regarding the project at hand.  Recalling Eq. 5.1 - 5.18, it can be realized that the used 

CPGs are very well defined, as well as the adjustable parameters. As opposed to the 

known DMPs in the literature, the parameters are clear and distinct, and the meaning of 

each one is acknowledged. For example, changing the amplitude parameters will 

influence the maximum and minimum angular positions that each robot joint can reach. 

It would be really interesting to study this influence of a particular parameter, directly 

controlling it. That is an advantage of using CEM, as it has no linearity restrictions 

(Mannor et al. 2003). The algorithm can be applied directly to the parameters, requiring 

a simpler solution than in Chapter 5.  

Therefore, in the present case, a single action will be performed during a trial. Due 

to the advantages stemming from the used CPGs, i.e., the generation of continuous and 

rhythmic movements, the parameters to be tuned only need to be set at the beginning of 
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the execution. The joint positions observed during a robot step will be repeated 

throughout all steps.   

The action then corresponds to the test of a single parameter vector, i.e., each of the 

K generated vectors. The parameters chosen for the implementation and test of the 

outlined solution are the CPGs amplitudes, and so, each action coincides to the vector: 

θk = {𝐴𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝐻𝑖𝑝 , 𝐴𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝐴𝑛𝑘 , 𝐴𝐻𝑖𝑝, 𝐴𝐾𝑛𝑒𝑒 , 𝐴𝐴𝑛𝑘𝐻𝑖𝑝 , 𝐴𝐴𝑛𝑘𝐾𝑛𝑒𝑒 , 𝐴𝑓𝑙𝑒𝑥𝐾𝑛𝑒𝑒 , 

𝐴𝑓𝑙𝑒𝑥𝐴𝑛𝑘 , 𝐴𝑝𝑒𝑙𝑣𝑖𝑠𝑅𝑜𝑡 , 𝐴𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝐻𝑖𝑝 , 𝐴𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝐴𝑛𝑘} 

The mean vector θ of the initial distribution, also representing the initial set of 

parameters of the parameterized policy, is defined by the initial hand-tuned amplitudes, 

which allow the robot to perform the basis movement to be optimized. 

This parameter selection will allow to control how large should be a robot step, how 

high must be lifted the knee, how much the hip should swing, etc. Because of this large 

control and as it is now possible to address all leg joints as opposed to what occurred in 

the previous chapter, the balancing problem is no longer the target of optimization. 

With the control lying on all robot joints, rather than just two, it is now possible to 

improve or decrease the distance traveled, the new optimization target. It has to be 

noticed that as the reward chosen is in terms of the distance traveled in a certain period 

of time, it is only necessary to gather a single reward, at the end of each complete trial. 

Unlike the case studies of Chapter 4, or even the NAC solution of Chapter 5, CEM 

does not make use of a discount factor, so the influence of future rewards cannot be 

measured. In this specific case, this turns out to be irrelevant, since only a single reward 

is gathered, with no need of considering future rewards.  

With this, all RL features are set out. However, CEM has its specific features to be 

set. Defined the mean vector, it is possible to initialize the covariance matrix. As there 

is no rule to attribute values to the covariance, as it depends on the problem at hand, 

different options have to be tested. It has to be taken into account that high values lead 

to high exploration, and slight changes of joint positions can lead to major changes in 

the resulting movement. Therefore, it is then initialized as an identity matrix, as to 

allow a properly tradeoff between exploration and exploitation. 

Premature convergence is a very common problem, and in order to address it, a 

noise value needs to be added to the covariance matrix during the calculation of the new 

distribution. This corresponds to stage 5 in Figure 6.1. There is no rule to define this 

amount of noise, so several values need to be verified. 
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Another specific feature of CEM is the elite number, namely, the number of best 

vectors to be chosen in the end of each round to take part in the calculation of the new 

distribution. As with the previous mentioned parameter, a set of tests is required to 

determine the best option.  

 

Each vector from the set of vectors initially generated has to be executed for a given 

period of time, to assess the effect of the action and to be later evaluated in terms of the 

cost or reward achieved. Therefore, for each round, it was generated 10 vectors (K=10), 

each of which runs during 1000 iterations/timesteps, to allow the robot to take a few 

steps and evaluate the distance travelled. This value could not be chosen taking into 

account only one step, because different parameters lead to different step lengths, which 

influence the number of time steps needed to perform a robot step. Those trials that 

result in the fall of the robot are given a high penalization that prevents them from being 

chosen by the CEM algorithm. 

The first of the K generated vectors was set to be the mean vector itself, used for 

evaluation purposes, which means that each set of parameter vectors includes the mean 

vector and K-1 others. 

 

The algorithm was then implemented with the decisions described above, resorting 

to Webots simulator.  

Assays were performed in order to meet a quite adequate solution for this 

optimization problem, taking into account several parameters: the number of generated 

vectors K, the elite number, and the noise value. This last factor seems to have a lot of 

influence on the convergence of the learning process, exactly as occurred with the 

exploration rate of the previous cases. Hence, it is faced again the 

exploration/exploitation problem, which seems to persist regardless of the 

circumstances. Note that while the covariance matrix remains not null (i.e., in the 

beginning of the execution where it is equal to an identity matrix), some exploration is 

always included, which is translated in the generation of different vectors. However, it 

will sooner or later converge to a null matrix, and the K generated vectors will be all the 

same. That is why the noise value is so important, propelling the continuity of the 

execution.  

To address these problems, it is intended to answer the following set of questions: 

what is the best way of managing the noise value? Is the addition of this noise value 
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worthwhile to achieve better results? How many vectors should be generated in each 

round? And how many should participate in the calculation of the new distribution? 

6.3 -  Results 

Throughout the implementation and analysis processes, it was noticed that there are 

two parameters that can influence a lot the results: the noise value and elite number. For 

this, the algorithm was tested with and without a noise value, to confirm the problem of 

premature convergence, and to what extent the solution achieved with exploration is 

better and remote from the noise-free one. It was also tested a set of elite numbers, for 

each of the two sets of noise tests. 

The following describes the results for the various tests carried out. The results are 

presented in terms of a cost to minimize rather than a reward to maximize as occurred 

in the previous implemented solutions. In fact, a cost corresponds to a negative reward 

(𝑐𝑜𝑠𝑡 = −𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒). 

Without noise 

As foreseen, it was verified premature convergence. In all evaluated testes, what 

happens is that the covariance matrix will soon stabilize and converge to zero, which 

leads to no exploration. As a consequence, the execution reaches a point where the K 

vectors generated are all the same, and the parameters stabilize.  

If only the best vector is chosen for the elite group, after one round the algorithm 

has converged, because the covariance of the new distribution is 0. This fact makes this 

number a poor choice, when no noise is added to the covariance matrix. The distance 

attained by this approach was near 0.07 unities of distance (u.d.), while with the original 

parameters it was only around 0.0036 u.d.. 

Values {2,3,4} were also subject of study, and the costs achieved are exposed in 

Figure 6.2. The results evaluation is made resorting to the minimum cost achieved.  

The cost of the set of elite numbers {3,4} is minimized to a certain point, but soon 

these two approaches lead to consecutive falls of the robot, from round 3 and 25, 

respectively, not achieving a result better than 0.16 (round 11) and 0.07 u.d. (round 3). 

Using an elite number of 2, CEM was capable of accomplishing better results, 

performing a trial with the achievement of approximately 0.33 u.d. (round 6), with no 

falls. The cost of this approach, as well as the parameters, tends to converge.  
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Figure 6.2 - Costs variation: without noise and elite numbers: 2 (in blue), 3 (in black) and 4 (in red). Vertical lines 
(round 3 and 25) represent a robot fall.  

 
With the experiments carried out, it is straightforward to conclude one of the 

disadvantages of the CEM algorithm. As the parameter update is a vector of the mean 

of the best vectors, one cannot be assured that this set of parameters is going to achieve 

a good result, since it was not tested before. Only the elite vectors used to calculate the 

mean were tested and with guaranteed results. As a result, the robot can travel a shorter 

distance, or it may even fall if the mean parameters do not result as a good and 

operational set. This last graphic (Figure 6.2), for example, translates this situation, 

where the mean of 4 different good sets results in the fall of the robot, in round 3. As it 

was mentioned before, slight changes of joint positions can lead to major changes in the 

resulting movement, which can cause these disparities of the mean vector results. The 

parameters of the policy are dependent among them. As they are not independent, they 

are combined to work as a whole, and the change of values of one parameter no longer 

ensures the correct functioning of the chosen set. 

 

It is verified that the selection of elite number = 1, does not allow an exploration 

and the consequent achievement of different sets of parameters, that could accrue in 

better results. On the other hand, choosing the elite number of 4 vectors is also not a 

good alternative. It includes excessive exploration, which may cause the deviation from 

the main purpose, in contrast to what is desired. It should be recalled one of the great 

issues of Reinforcement Learning, also valid for CEM, that is the tradeoff between 

exploration and exploitation. And as one parameter update is reflected in the mean 

vector of the chosen vectors, which was not tested before, it is convenient not to include 

too much diversification, or more likely it would fail the experiments that make use of 
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the new mean vector. Note that it can also result in better outcomes that could not have 

been reached otherwise. Nevertheless, from the carried out experiments, the bad 

outcomes are more frequent, and the greater the variability introduced in the mean 

vector (elite number = {3,4} in contrast with {1,2}), more distorted the results can be. 

Despite the results and handicaps described herein, the CEM algorithm has found 

to be able to enhance the hand-tuned solution, in view of the chosen reward function. 

The best value achieved for the distance traveled was around 0.33 u.d. (for elite number 

= 2), against the value of 0.0036 u.d. from the initial solution, which is nearly 100 times 

more than the hand-tuned solution. A summary table (Table 6.3) is displayed after 

analysis of all tests carried out, to allow the comparison of the several obtained results. 

Subsequently, it will be checked whether this best solution has come from a 

premature convergence. An exploration noise was added to the diagonal of the 

covariance matrix, in order to experiment a wider range of possible solutions. 

 
With noise 

After some tests to the noise value, a value of 0.8 was included to allow more 

exploration and in order to overcome the premature convergence problem. The chosen 

amount of noise also avoids the great apartness from the mean values, in order to not 

include further variability. 

As with the experiments without noise, the set of elite numbers to test consists in 

the values {1,2,3,4}. 

The solution with elite = 1 is now feasible, comparatively to the solution without 

noise, since both the cost and the parameters do not stabilize immediately, due to the 

noise added. A value of approximately 0.23 u.d. was reached for the distance traveled. 

However, when comparing to the best solution achieved so far (elite number = 2, no 

noise, distance = 0.32), this approach does not seem a good option in terms of 

optimization. A very similar cost was accomplished with elite number = 4. This value 

for the elite has revealed to be a poor alternative, since it provides excessive exploration 

arising from noise introduction plus the high elite number chosen. So, the optimization 

process leads to robot falls. It is interesting to notice that in the previous 

implementations (without noise), these two approaches (elite = 1 and 4) also achieved 

similar minimum costs. 
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A reasonable distance was performed by the robot when CEM algorithm applies 

the value 3 to elite number, of approximately 0.39 u.d.. But as in the approach using 

value 4, excessive exploration is also included, converging to consecutive falls. Note 

that either value 3 or value 4 accomplished better results with noise addition than they 

achieved with the absence of this rate. 

Both implementations, with/without noise, achieved the best solution with elite 

number = 2. The problem of premature convergence was solved, and it is now possible 

to attain a distance of about 0.55 u.d. (Figure 6.3), which is the best achieved so far (in 

round 42). The problem of the mean among the best vectors remains in this 

implementation, as expected. Therefore, and as it is included more exploration due to 

the noise value, some rounds result in robot falls, unlike what occurred with the same 

elite number, without noise. Table 6.3 at the end of this section displays the summary of 

the results achieved. 

 

Figure 6.3 - Costs variation: with noise = 0.8 and elite = 2. Vertical lines (e.g., round 34) represent a robot fall. 

 

For the elite number = 2, and for evaluation purposes, it was tested different 

exploration noise values. The value 1 is not as convenient as 0.8, because it introduces 

an excessive amount of exploration, which leads to worse results. The noise value of 

0.2 slightly improves the rewards achieved during the execution process, but the noise 

introduced was unable to exceed the 0.8-noise rewards. Furthermore, the convergence 

to its best value was slower than with a noise value of 0.8. 

So, for the best solution and vector achieved (noise = 0.8; elite = 2; distance = 

0.55), it is next presented the set of parameters achieved, as well as the hand-tuned 

initial values (Table 6.1).  
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Table 6.1 — Achieved parameters: noise = 0.8; elite = 2; distance = 0.55 

Parameters Hand-tuned values CEM values 
𝑨𝒃𝒂𝒍𝒂𝒏𝒄𝒊𝒏𝒈𝑯𝒊𝒑 11.0 2.979604 

𝑨𝒃𝒂𝒍𝒂𝒏𝒄𝒊𝒏𝒈𝑨𝒏𝒌 11.0 4.339130 

𝑨𝑯𝒊𝒑  20.0 29.370636 

𝑨𝑲𝒏𝒆𝒆  40.0 35.984702 
𝑨𝑨𝒏𝒌𝑯𝒊𝒑  20.0 15.705181 

𝑨𝑨𝒏𝒌𝑲𝒏𝒆𝒆  40.0 23.451423 
𝑨𝒇𝒍𝒆𝒙𝑲𝒏𝒆𝒆 2.0 2.894878 

𝑨𝒇𝒍𝒆𝒙𝑨𝒏𝒌 2.0 5.565523 

𝑨𝒑𝒆𝒍𝒗𝒊𝒔𝑹𝒐𝒕 0.0 23.346823 

𝑨𝒄𝒐𝒎𝒑𝒂𝒔𝒔𝑯𝒊𝒑 0.0 6.059359 

𝑨𝒄𝒐𝒎𝒑𝒂𝒔𝒔𝑨𝒏𝒌 0.0 1.057788 

 
It is straightforward to verify that some values differ considerably from the ones 

hand-tuned. But once more it is highlighted that the parameters set has to work as a 

whole. If one parameter is changed, the solution’s functioning is not guaranteed. 

 

Reward with penalization 

It was verified that some of the parameter sets which result in better outcomes in 

terms of the distance traveled, led the robot to deviate from the frontal axis that it was 

supposed to follow (z axis). In spite of the high distance value that can be achieved with 

this approach, the fact of the robot deviating sideways may be evidence of clumsy 

movements. Hence, it is introduced a penalization for any lateral displacement in the 

cost calculation. Figure 6.4 presents the results achieved with this new reward model, 

for the best solution achieved previously (noise = 0.8 and elite = 2). 

 

Figure 6.4 - Costs variation: with penalization, noise = 0.8 and elite = 2. Vertical lines represent a robot fall. 

The hand-tuned solution led to a very small distance, about 0.0009 u.d.. The best 

displacement achieved was approximately 0.47 u.d. (round 58), therefore it is safe to 
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state that the optimization process was quite efficient. Once more, due to the introduced 

exploration and as there is no guarantee of mean vector functioning, some rounds result 

in the fall of the robot. 

 

Generating more vectors 

One way to accomplish an improvement in the optimization process is to increase 

the number of generated vectors, K, in the first step of the CEM algorithm, which 

would require far more computational resources. Note that runtime is proportional to 

the vectors chosen to be tested. Increasing the number of vectors for each round, the 

execution will last more. Thus, for the elite number 2 and noise value 0.8, and with no 

lateral displacement penalization due to evaluation purposes, different vector numbers 

were experimented.  

For 20 vectors generated in each round, the algorithm soon found very good cost 

values. Although the execution takes longer to meet its optimal displacement, due to the 

need of testing 20 trials in each round, fewer rounds are required to meet reasonably 

good cost values. For example, to accomplish the same displacement as in K=10, 0.55 

u.d., here it is only required a total of 8 rounds, as opposed to the previous 42 rounds. 

As each round with 20 vectors takes twice the time of each round with 10, it can be 

stated that less time was now needed to achieve those 0.55 u.d.. Furthermore, this 

approach was able to reach higher values than previously, getting a maximum distance 

of approximately 1 unity of distance (round 40). So even spending more resources, this 

option has revealed more reasonable than the former. The costs evolution is exposed in 

Figure 6.5, where it is verified that despite the high values of distance, this approach 

also resulted in more falls than the original.   

 

Figure 6.5 - Costs variation: with K = 20, noise = 0.8 and elite = 2. Vertical lines represent a robot fall 
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Towards these results, it would be interesting to comprehend how the algorithm 

would behave if the value of produced vectors was further enlarged. For this propose, 

an assessment of 50 trials per round was executed, each round requiring a 5 times 

longer runtime than in the original solution. Therefore, the execution took even more 

time (see Table 6.3) due to this higher number of trials to test, but a best displacement 

was achieved, of about 1.78 u.d. (in round 42). This minimum cost differs significantly 

from the one achieved in 20 trials, thus it turns out to compensate the expenditure of the 

additional resources required. These results can be checked in Figure 6.6. 

 

Figure 6.6 - Costs variation: with K = 50, noise = 0.8 and elite = 2. Vertical lines represent a robot fall 

The set of parameters that achieved this great displacement is shown in the 

following table (Table 6.2). 

 
Table 6.2 — Achieved parameters: K = 50; noise = 0.8; elite = 2; distance = 1.78 

Parameters Hand-tuned values CEM values 
𝑨𝒃𝒂𝒍𝒂𝒏𝒄𝒊𝒏𝒈𝑯𝒊𝒑 11.0 3.886218 

𝑨𝒃𝒂𝒍𝒂𝒏𝒄𝒊𝒏𝒈𝑨𝒏𝒌 11.0 12.091291 

𝑨𝑯𝒊𝒑  20.0 28.796737 

𝑨𝑲𝒏𝒆𝒆  40.0 33.628418 
𝑨𝑨𝒏𝒌𝑯𝒊𝒑  20.0 29.245331 

𝑨𝑨𝒏𝒌𝑲𝒏𝒆𝒆  40.0 38.766492 
𝑨𝒇𝒍𝒆𝒙𝑲𝒏𝒆𝒆 2.0 7.986102 

𝑨𝒇𝒍𝒆𝒙𝑨𝒏𝒌 2.0 0.801668 

𝑨𝒑𝒆𝒍𝒗𝒊𝒔𝑹𝒐𝒕 0.0 5.145981 

𝑨𝒄𝒐𝒎𝒑𝒂𝒔𝒔𝑯𝒊𝒑 0.0 25.679888 

𝑨𝒄𝒐𝒎𝒑𝒂𝒔𝒔𝑨𝒏𝒌 0.0 18.227246 

 
The robot steps are now larger and it is easy to observe the movement differences 

achieved with this approach, in comparison to the hand-tuned solution, or even to the K 

= 20 approach. (see videos (Duarte 2012)).  
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Figure 6.7 shows the robot walking forward, where it can be verified how large the 

steps are. In order to compare the differences of step length, and consequently, the 

displacement achieved, Figure 6.8 shows the robot at the end of the swing phase, for 

these three approaches with elite = 2 and noise = 0.8: K = 10 (Figure 6.8 b)), K = 20 

(Figure 6.8 c)) and K = 50 (Figure 6.8 d)), along with the original hand-tuned solution 

(Figure 6.8 a)). 

     

Figure 6.7 – DARwIN-OP robot walking forward, with K = 50, noise = 0.8 and elite = 2 

    

Figure 6.8 – Comparison between the various approaches: a) original hand-tuned. b) K = 10, noise = 0.8 and elite = 
2. c) K = 20, noise = 0.8 and elite = 2. d) K = 50, noise = 0.8 and elite = 2. 

 

But what is the impact these visual differences have in joints trajectory? This is an 

important point to analyze, and the Figure 6.9 illustrates the 6 left leg joints, for the 

hand-tuned (in blue) and the best solution achieved in the K = 50 approach (in green). 

The trajectories of the right leg are exactly the same, but dephased. 

As verified in Table 6.2, the optimized amplitude of ankle roll (middle left panel) is 

very close to the hand-tuned one. This fact is reflected in Figure 6.9, when analyzing 

ankle roll trajectory. The same happens with hip roll joint (top left panel), where the 
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amplitude found takes lower values than the originals, or with hip yaw joint (bottom 

right panel), whose amplitude is now not null. The remaining trajectories translate the 

sum of various motion primitives, in which the ankle (top right panel) and hip pitch 

(bottom left panel) joints achieve very different results.  

 

Figure 6.9 – Differences in joints trajectories between the optimized (in green) and the original (in blue) CPGs 

 

As the results seem to improve with the increased number of trials, further tests 

were added to the set of experimented ones. However, increasing the number of 

generated vectors beyond 50 revealed not as good solutions. Testing 100 or even 70 

trials leads to a great consumption of resources which unveiled to not compensate the 

results achieved.  

The vectors are generated within a very restrict interval. Furthermore, the 

generation of solutions is much guided since the algorithm follows a normal distribution 

based in the best vectors achieved. However this point leads to a faster convergence to 

the solution, this can also mean a premature convergence in a local minimum, quite 

depending on the amount of noise added to the covariance matrix. Still, CEM attested to 

be an algorithm that quickly provides good solutions and a great optimization for this 

specific case, being a good choice despite the few disadvantages aforementioned. A 

great advantage of this method is the automatic learning and adaptation of the 

covariance matrix, as its definition is only necessary in the first round. 
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Table 6.3 synthesizes the results attained in the implemented set of tests. First row 

of the table represents the original hand-tuned solution, so the CEM parameters are not 

set. The results are presented for K = {10,20,50} for the approaches with (0.8) or 

without noise, and elite numbers = {1,2,3,4}. The optimal distance achieved in each of 

the executed tests is shown in the 4th column of the table, and the round in which this 

distance occurs is also depicted in order to provide a comparison of the several 

approaches, regarding the runtime of the executions. For example, if 10 vectors are 

being tested (K = 10), each round of tests lasts a time of t (Time/Round), which means 

that achieving an optimal solution in round R (e.g., 42) makes a total time (Runtime) of 

R*t (e.g., 42t).   

  
Table 6.3 — Results synthesis of the several tested approaches. First row represents the original hand-tuned solution. 

K Noise Elite Optimal Distance Time/round  Round Runtime 
- - - 0.003596 -  - - 

10 

No 

1 0.068321 t  2 2t 
2 0.328687 t  6 6t 
3 0.161517 t  11 11t 
4 0.072173 t  3 3t 

0.8 

1 0.234469 t  7 7t 
2 0.549083 t  42 42t 
3 0.390968 t  23 23t 
4 0.235189 t  6 6t 

20 0.8 2 1.019418 2t  40 80t 
50 0.8 2 1.782815 5t  42 210t 

 

 

In conclusion, there are no rules that dictates which are the best values and 

parameters that should be used, as they are highly dependent on the circumstances in 

which they operate. To find out the best way of obtaining optimal results it is required 

an exhaustive testing of different parameters or values.  

It is important to notice that as the equations that provide the CPGs’ basic motion 

remain the same along all execution, except for the phase, one single action is 

performed in the beginning of each trial. This means that no sequential decision-making 

is required, and thus CEM is suitable for solving this Reinforcement Learning problem. 

The chosen reward has allowed a faster locomotion, since the robot can now travel 

a greater distance for unit of time than before. However, some additional features to the 
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reward function could lead to better results, concerning the naturalness of the 

movements, and the higher similarity to human locomotion.  

Answering the questions that remained outstanding in the previous section, the 

noise value is very important to avoid premature convergence and the results achieved 

with this addition were far better than without any addition. 50 revealed to be a good 

number for the generation of vectors and the selection of just 2 was always the best 

option obtained, independently from the approach used. For the noise value, supervision 

was required to observe the behavior of the algorithm with several values tested. After a 

few experiments, it was encountered a good value, capable of handling the tradeoff of 

exploration/exploitation. 

At this point of the thesis is now possible to conclude about some intriguing issues 

exposed in section 1.2. The hand-tuned parameters provide a very good movement for a 

starting point in the learning process. However, considering the distance traveled, this 

solution could be further optimized. So, the optimization proposed evolved from the 

previous original one, and proved to be very worthwhile when examining the robot’s 

evolution. CEM was found to be very suitable to solve the problem at hand, 

particularly, with the used CPGs, which revealed a few differences with the literature 

approaches. In contrast to the Natural Actor-Critic solution, this integrated approach 

resulted as desired, approaching the proposed goals. 

Strong advantages arise from the use of this integrated approach, CEM with CPGs, 

since few parameters are used for the optimization (only 11) and there is a well-defined 

movement already supplied by the CPGs themselves. If no CPG was used, the 

possibility of generating rhythmic and continuous movements would become harder 

and the movements would not be natural and defined. This is very important, as a set of 

hand-tuned parameters is essential for the beginning of the optimization, to provide a 

starting point for the learning algorithm. Moreover, if a comparison with human 

learning is made, it can be verified that babies already have a pre-defined and intuitive 

movement of their legs, which needs to be enhanced to perform walking. 

Another advantage is the possibility of existing non-linearity in the policy 

parameters, in contrast to the majority of algorithms suitable for CPGs optimization. 

When using DMPs, there is a larger amount of parameters to update. For example, in 

NAC solution, there were 15 parameters for each joint of the robot, which can lead to a 

heavier and slower process. 
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As in all approaches, not everything is an advantage. In this case, a parameter 

change can be very sensible and can result in a very different movement (or a fall). In 

DMPs approach, these changes seem not so sensible and more noise is needed to 

explore all possibilities. Though, this was considered a drawback of minor importance. 

The results presented can be seen via video in (Duarte 2012). 

 

With regard to Webots, this phase was helpful to notice an apparent disadvantage 

of this simulator, as it seems to not be capable of resetting both the robot and 

environment in order to execute all roll-outs reliably, without noisy trials. The reset had 

to be complete, including the controller, which required a lot of writing and reading of 

files, to guarantee that the values of all variables needed throughout the execution 

would not be lost. Apart from this flaw, the simulation revealed to be very 

advantageous taking into account the amount of trials performed to achieve the desired 

goal. Such experiments on the part of a real robot would take much longer and require 

further assistance, quite apart the possibility of damaging the robot with so many falls. 

6.4 -  Summary 

In this chapter it was demonstrated the functioning of the Cross Entropy Method 

and results were evaluated. The solution discussed proved to be capable of achieving a 

quite efficient optimization, since the maximum distance attained was vastly superior 

than the one traveled by the robot with a CPG-only approach. It is expected that the 

experience gained in the implementation and testing of this algorithm will be useful and 

capable of guiding future experiments.  

This phase was very important, although it did not contribute directly with a 

solution of classic Reinforcement Learning. Nevertheless, it achieved an optimization 

and provided a familiarization with some useful concepts shared by RL methods, like 

PI2. In fact, these two algorithms revealed to be very similar, as stated in 6.1, and CEM 

was even successfully applied to RL tasks, both in the literature and in the current thesis 

work. Furthermore, it contributes with a solution whose application was not 

encountered in the literature. 

A conclusion can be extended to PI2, since it can also be expected to achieve 

parameter vectors that could not work, due to the weighted average used for their 

calculation.  



 

 

Chapter 7  

Conclusions 

Throughout the previous chapters, Reinforcement Learning was studied and 

implemented, providing knowledge and experience for carrying out the latest and the 

future experiments, and deciding about the viability of following some conjectured 

paths. In this chapter a results discussion is presented, focusing on the main conclusions 

drawn from this thesis work, including the advantages and drawbacks of the used RL 

techniques along with the designed techniques. 

Despite the achievement of a good solution at the end of the project, some issues 

remained to be further explored. These issues will be discussed in the present chapter, 

for a potential inclusion in future works. 

7.1 -  Discussion 

7.1.1 Objectives discussion 

From the carried out study and investigation, it is concluded that Reinforcement 

Learning is a very useful technique, suitable for learning problems that require a lot of 

interaction with the environment, and which do not support the provision of a complete 

supervision. It can be applied in a wide range of applications, including locomotion in 

Robotics, a field which has been widely addressed in recent years. 

Recalling the first intermediate goal defined in 1.3, a state-of-the-art was 

successfully gathered, covering the problem of learning and optimization of robotic 

locomotion with the use of Reinforcement Learning, that despite being derived from 

ancient principles and making use of not so recent frameworks, it is currently the 
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subject of study of many investigators, leading to the frequently emergence of 

developments and new approaches and techniques.  

Also, knowledge and experience were achieved, in order to provide a greater 

comprehension of RL framework and functioning, which revealed much utility in the 

latest project stages. However, as some RL issues were found to be very dependent of 

the circumstances, further experience will be required in order to more easily make 

decisions accordingly, in future case studies. 

As proposed, experiments based on the state-of-the-art were carried out in order to 

better understand RL. Thus, the Crawler and Inverted Pendulum case studies were 

successfully solved by Reinforcement Learning techniques, allowing a greater 

familiarization to the algorithms and the Webots environment. With this familiarization, 

it was possible to idealize a RL solution considering the use of Central Pattern 

Generators, which were studied and compared to other state-of-the-art approaches. Due 

to the non-desired results of the application of Natural Actor-Critic, a second solution 

was designed, based on CEM, an algorithm that shares very similar concepts to some 

RL methods. Hereupon, the objectives were all addressed and successfully solved. 

Furthermore, the two case studies resulted in a publication in ICNAAM conference.  

 

7.1.2 Conclusions from the developed work 

Webots simulator revealed advantages against the use of real robots, whose tests 

would take much longer and which would require further assistance, quite apart the 

possibility of damaging the robot with so many falls.  

Another advantage from using Webots is related to the possibility of simulating 

environments as close as possible to reality, where physic issues must be taken into 

account. In Inverted Pendulum case study this advantage was strongly perceived, due to 

the major role that gravity has. Such issues are all automatically included in the 

simulation, which facilitates a process that otherwise would have to be addressed, lying 

outside the scope of this dissertation. Furthermore, for implementing the solution of 

biped locomotion in DARwIN-OP, Webots revealed great utility, featuring a complete 

dynamics model of the robot, similarly to the real one. However, the simulator has also 

a weakness as it seems not capable of resetting both the robot and environment in order 

to execute all roll-outs reliably, without noisy trials. 

From the case studies and solutions implemented, it can be concluded that there are 

several factors that influence the achievement of good results. First, it is very important 
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to have an appropriate reward function, or otherwise, the results could be contrary of 

the desired ones. Sometimes, rewards are very hard to achieve, and that is one of the 

great challenging issues in Reinforcement Learning area. For example, an agent whose 

task is related to playing a game will receive a good reward if it wins the game, and a 

bad one in case of losing it. In these cases, it is important to understand which particular 

moves lead to the loss of the game, taking into account every single action performed 

by the agent. Experiments related to the Crawler case study demonstrate that a big 

penalization of bad moves may take the robot to stand still, opting for the actions that 

lead to a reward of zero, and not resulting in the desired displacement. Also, the first 

conceived solution based on Natural Actor-Critic, revealed, upon the results 

interpretation, that the reward model was not correctly chosen. What occurred in this 

case was that no matter how the solution is worsened, the rewards achieved are always 

around the same values, which reveals that they do not reflect enhancements or 

worsenings. It was found a difficult task to select an appropriate reward to address the 

balancing joints of the robot. 

The discount factor γ, and the learning and exploration rate, α and ε, are three other 

influence factors in the results achieved, and are also considered as challenging issues 

in RL problems.  

If γ value is low and little influence is exerted by the future rewards, the algorithm 

converges faster, but on the other hand, it may not reach the optimal cycle. A quite 

acceptable value valid for all the experiments performed is 0.9. While Crawler 

experiments revealed much sensibility to this parameter, not allowing a value less than 

0.8 in order to achieve an optimal policy, Inverted Pendulum works with a wider range 

of values. The latter does not require as much information on future rewards as the 

former, because in Crawler it was found greater dependence on subsequent actions.  

 The learning rate α, which is not a requirement for all algorithms, translates the 

changes in Q-values. Low values for the parameter α, reflected minor changes in the 

values of Q, while high values (α=1) reflect more abrupt changes. This point revealed 

influence on the oscillations and stability of the pendulum in the long term. However, it 

must be noticed that the learning period should be extensive enough so that it is 

possible to verify the differences within the range of learning rate values. 

Regarding the exploration rate, this was handled differently, according to the 

problem under study. The Crawler results showed that the exploration rate must be 
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managed in such a way that it is ensured that all possibilities are tried out in order to 

wisely select the greediest actions. So, a high learning rate was assigned in the 

beginning of the execution, decreasing over time. The Cross-Entropy-based solution 

also revealed sensibility to this added noise, as it prevents premature convergence. But 

if it is assigned a high value to this rate, too much deviation from the original solution is 

verified. In this case this high deviation is a drawback due to the sensibility of the CPGs 

parameters: minor changes of joint positions can lead to major changes in the resulting 

movement. 

This last statement translates a disadvantage of CEM, as the resulting parameters 

are the mean of two or more vectors, which does not guarantee the properly 

displacement of the robot, with the possibility of resulting in a fall. 

Apart from the mentioned challenging issues, Reinforcement Learning reveals 

some other bottlenecks, which are still difficult to solve, and which have been 

approached in recent works. In the real world, the Markov property is not always met 

and spaces and actions are almost always continuous and not discrete. With regard to 

robot locomotion and Central Pattern Generators, there are very few approaches 

suitable to address the problem at hand. In fact, the available techniques for the 

integration of RL and CPGs proved to be unsuitable, due to the differences encountered 

between the provided CPGs and the ones implemented in the literature. 

The DMPs approach was considered in Chapter 5, by applying a Natural Actor-

Critic technique to update the DMPs parameters. This required an adaptation of the 

basic CPGs, which do not result in any optimization. For this reason, the proposed 

problem was tackled differently, using both a different solution and a different 

algorithm.  

CEM was then very capable of achieving a quite efficient and quick optimization, 

since the maximum distance attained was vastly superior than the one traveled by the 

robot with a CPG-only approach. This integrated approach is a good method of tackling 

robot locomotion problems, as strong advantages were verified. First, a well-defined 

movement is already supplied by the basic CPGs which allow the generation of 

rhythmic and continuous natural movements. Second, only 11 parameters are used in 

the optimization process, against the large amount of parameters in the DMPs approach, 

which in the implemented solution, included 15 parameters for each joint. Another 

advantage of applying CEM to CPGs is the possibility of existing non-linearity in the 

policy parameters, in contrast to the majority of algorithms suitable for CPGs 
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optimization. However, it must be noticed that CEM did not consider sequential 

decision-making. In this specific problem, this was not required, as the phase-varying 

equations that provide the CPGs’ basic motion remain the same along all execution. So, 

one single action is performed in the beginning of each trial, as opposed, for example, 

to the Crawler, where at least two sequential actions are required to achieve a forward 

step.  

This solution was a major contribute of this thesis, as it was not encountered works 

with similar aims of this thesis, e.g., robot locomotion using CPGs.  

Apart from these continuous states and actions approaches, some RL algorithms 

were compared for evaluation purposes. In Crawler case study, Value Iteration showed 

great potential, as the robot was able to found the desired movement with no 

information provided except the reinforcement signal. It was very suitable for this small 

dimension problem, because all value states are updated in each step of the simulation, 

in contrast with the other approaches. This fact can turn out to be a drawback in large 

state and action spaces problems, due to the heavy computation. In terms of 

convergence, it also showed great performance. On the other hand, TD(λ) has also 

shown very interesting results, providing a smoother and more natural locomotion, in 

which the Crawler enlarges its steps. 

From all experiments carried out, it can be concluded that there are no rules that 

dictates which are the best values and parameters that should be used, as they are highly 

dependent on the circumstances in which they operate. To find out the best way of 

obtaining optimal results it is required a sound planning of a set of different tests. 

Nevertheless, experience is a very important factor in designing solutions, as it may 

contribute to accelerate and facilitate both the process of this first phase of conception, 

and the results interpretation. 

7.2 -  Future work 

After the successful implementation of the solution in Webots simulator, it would 

be interesting to transfer to the real DARwIN-OP the achieved optimal policy, 

analyzing the differences between the real and simulated environments. 

As stated when interpreting CEM results, additional features to the reward function 

could lead to better results, concerning the naturalness of the movements, and the 

higher similarity to human locomotion. This is a point that should be addressed, in order 
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to find suitable rewards to further optimize the human-like locomotion. Also, to invest 

in this successful approach, other parameters could be added to the optimization target, 

i.e., the offset and sigma of the CPGs equations. 

Also concerning the rewards, it would be curious to validate the hypothesis raised 

upon the results analysis of Natural Actor-Critic solution. Namely, the viability of the 

solution should be verified, finding a more suitable reward function, even having to 

select other leg-joints for the target of optimization. If the solution turned out to be 

feasible, other algorithms could be tested for evaluation purposes, e.g., PI2. In case of 

failure, DMPs could be used to approximate the provided CPGs to the state-of-the-art 

approaches, by replacing the original sin functions by the DMPs equations, with a 

properly set of hand-tuned parameters. 

A paper is being worked out for a Journal submission concerning the final results 

of Cross-Entropy Method.  

 



 

 

Appendix  

Value Iteration Step-by-Step  

This section pretends to provide a detailed explanation on Value Iteration 

algorithm. Namely, a step-by-step will be presented for the Crawler case study, in order 

to show how this algorithm proceeds, i.e., how the actions are selected or even how the 

values are calculated.  

In section 4.1.1, it was conceived a first solution of learning resorting to a complete 

reward model, where Value Iteration shall be implemented with Table 4.1 as input. 

Along with Table 4.1 for the reward model, it is also provided the discount factor γ, 

which was set to 0.9, the initial robot state (0,0), and the state-values matrix V, 

initialized with zeros (Table A.1). 
Table A.1 — Initialized matrix of the state values 

 0 1 2 3 4 
0 0.000000 0.000000 0.000000 0.000000 0.000000 
1 0.000000 0.000000 0.000000 0.000000 0.000000 
2 0.000000 0.000000 0.000000 0.000000 0.000000 

3 0.000000 0.000000 0.000000 0.000000 0.000000 

4 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Having the essential information for the execution of Value Iteration, the first two 

iterations are detailed: 

 

Iteration 1: 

• Crawler is in state (0,0). 
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• Possible actions: {down, right}. Which one is the greediest, i.e., has the greatest 

state value? 

• Values Calculation for the actions of (0,0) (see Eq. 3.1): 

V(0,0) for action down = 𝑅(0,0)(1,0)
𝑑𝑜𝑤𝑛 + 𝛾𝑉(1,0) = 0 + 0.9*0.0 = 0.0 

V(0,0) for action right = 𝑅(0,0)(0,1)
𝑟𝑖𝑔ℎ𝑡 + 𝛾𝑉(0,1) = 0 + 0.9*0.0 = 0.0 

 V(1,0) and V(0,1) can be consulted in the last state-values matrix, in Table A.1. 

• As the values of the possible actions are equal, any action can be chosen, e.g., 

down, which causes a transition to state (1,0) with a reward of 0. 

• As the value for, e.g., down was the greatest, 

 V(0,0) = V(0,0) for action down = 0.0 

• Values of the subsequent states are calculated in a similar way. Note that the 

entire matrix has to be updated. The new V matrix is shown in Table A.2. 
 

Table A.2 — Matrix of the state values at the end of Iteration 1 

 0 1 2 3 4 
0 0.000000 0.000000 0.000000 0.000000 0.000000 
1 0.000000 0.000000 0.000000 0.000000 0.000000 
2 1.000000 10.000000 9.000000 8.100000 7.290000 

3 46.000000 59.400000 85.460000 105.914000 96.322600 

4 -14.600000 -7.140000 28.914000 72.022600 107.820340 

 

 

Iteration 2: 

• Crawler is in state (1,0). 

• Possible actions: {up, down, right}. Which one is the greediest, i.e., has the 

greatest state value? 

• Values Calculation for the actions of (1,0): 

V(1,0) for action up = 𝑅(1,0)(0,0)
𝑢𝑝 + 𝛾𝑉(0,0) = 0 + 0.9*0.0 = 0.0 

V(1,0) for action down = 𝑅(1,0)(2,0)
𝑑𝑜𝑤𝑛 + 𝛾𝑉(2,0) = -1 + 0.9*1.0 = -0.1 

V(1,0) for action right = 𝑅(1,0)(1,1)
𝑟𝑖𝑔ℎ𝑡 + 𝛾𝑉(1,1) = 0 + 0.9*0.0 = 0.0 

V(0,0), V(2,0) and V(1,1) can be consulted in the last state-values matrix, in 

Table A.2. 

• As the values of the two best actions (up and right) are equal, any action can be 

chosen, e.g., up, which causes a transition to state (0,0) with a reward of 0. 
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• As the value for, e.g., up was the greatest, 

 V(1,0) = V(1,0) for action up = 0.0 

• The new V matrix is shown in Table A.3. 

 
Table A.3 — Matrix of the state values at the end of Iteration 2 

 0 1 2 3 4 
0 0.000000 0.000000 0.000000 0.000000 0.000000 
1 0.000000 9.000000 8.100000 7.290000 6.561000 

2 42.400000 63.460000 82.914000 94.322600 86.690340 

3 35.160000 49.644000 76.679600 104.820340 113.038306 

4 -24.356000 -1.977400 26.220340 69.598306 105.638475 

 

The following iterations are executed in a similar way. The values are updated until 

they converge and the optimal policy is found. 
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