11 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Machine Learning in Compiler Optimization

    Get PDF
    In the last decade, machine learning based compilation has moved from an an obscure research niche to a mainstream activity. In this article, we describe the relationship between machine learning and compiler optimisation and introduce the main concepts of features, models, training and deployment. We then provide a comprehensive survey and provide a road map for the wide variety of different research areas. We conclude with a discussion on open issues in the area and potential research directions. This paper provides both an accessible introduction to the fast moving area of machine learning based compilation and a detailed bibliography of its main achievements

    An efficient design space exploration framework to optimize power-efficient heterogeneous many-core multi-threading embedded processor architectures

    Get PDF
    By the middle of this decade, uniprocessor architecture performance had hit a roadblock due to a combination of factors, such as excessive power dissipation due to high operating frequencies, growing memory access latencies, diminishing returns on deeper instruction pipelines, and a saturation of available instruction level parallelism in applications. An attractive and viable alternative embraced by all the processor vendors was multi-core architectures where throughput is improved by using micro-architectural features such as multiple processor cores, interconnects and low latency shared caches integrated on a single chip. The individual cores are often simpler than uniprocessor counterparts, use hardware multi-threading to exploit thread-level parallelism and latency hiding and typically achieve better performance-power figures. The overwhelming success of the multi-core microprocessors in both high performance and embedded computing platforms motivated chip architects to dramatically scale the multi-core processors to many-cores which will include hundreds of cores on-chip to further improve throughput. With such complex large scale architectures however, several key design issues need to be addressed. First, a wide range of micro- architectural parameters such as L1 caches, load/store queues, shared cache structures and interconnection topologies and non-linear interactions between them define a vast non-linear multi-variate micro-architectural design space of many-core processors; the traditional method of using extensive in-loop simulation to explore the design space is simply not practical. Second, to accurately evaluate the performance (measured in terms of cycles per instruction (CPI)) of a candidate design, the contention at the shared cache must be accounted in addition to cycle-by-cycle behavior of the large number of cores which superlinearly increases the number of simulation cycles per iteration of the design exploration. Third, single thread performance does not scale linearly with number of hardware threads per core and number of cores due to memory wall effect. This means that at every step of the design process designers must ensure that single thread performance is not unacceptably slowed down while increasing overall throughput. While all these factors affect design decisions in both high performance and embedded many-core processors, the design of embedded processors required for complex embedded applications such as networking, smart power grids, battlefield decision-making, consumer electronics and biomedical devices to name a few, is fundamentally different from its high performance counterpart because of the need to consider (i) low power and (ii) real-time operations. This implies the design objective for embedded many-core processors cannot be to simply maximize performance, but improve it in such a way that overall power dissipation is minimized and all real-time constraints are met. This necessitates additional power estimation models right at the design stage to accurately measure the cost and reliability of all the candidate designs during the exploration phase. In this dissertation, a statistical machine learning (SML) based design exploration framework is presented which employs an execution-driven cycle- accurate simulator to accurately measure power and performance of embedded many-core processors. The embedded many-core processor domain is Network Processors (NePs) used to processed network IP packets. Future generation NePs required to operate at terabits per second network speeds captures all the aspects of a complex embedded application consisting of shared data structures, large volume of compute-intensive and data-intensive real-time bound tasks and a high level of task (packet) level parallelism. Statistical machine learning (SML) is used to efficiently model performance and power of candidate designs in terms of wide ranges of micro-architectural parameters. The method inherently minimizes number of in-loop simulations in the exploration framework and also efficiently captures the non-linear interactions between the micro-architectural design parameters. To ensure scalability, the design space is partitioned into (i) core-level micro-architectural parameters to optimize single core architectures subject to the real-time constraints and (ii) shared memory level micro- architectural parameters to explore the shared interconnection network and shared cache memory architectures and achieves overall optimality. The cost function of our exploration algorithm is the total power dissipation which is minimized, subject to the constraints of real-time throughput (as determined from the terabit optical network router line-speed) required in IP packet processing embedded application

    An input centric paradigm for program dynamic optimizations and lifetime evolvement

    Get PDF
    Accurately predicting program behaviors (e.g., memory locality, method calling frequency) is fundamental for program optimizations and runtime adaptations. Despite decades of remarkable progress, prior studies have not systematically exploited the use of program inputs, a deciding factor of program behaviors, to help in program dynamic optimizations. Triggered by the strong and predictive correlations between program inputs and program behaviors that recent studies have uncovered, the dissertation work aims to bring program inputs into the focus of program behavior analysis and program dynamic optimization, cultivating a new paradigm named input-centric program behavior analysis and dynamic optimization.;The new optimization paradigm consists of three components, forming a three-layer pyramid. at the base is program input characterization, a component for resolving the complexity in program raw inputs and extracting important features. In the middle is input-behavior modeling, a component for recognizing and modeling the correlations between characterized input features and program behaviors. These two components constitute input-centric program behavior analysis, which (ideally) is able to predict the large-scope behaviors of a program\u27s execution as soon as the execution starts. The top layer is input-centric adaptation, which capitalizes on the novel opportunities created by the first two components to facilitate proactive adaptation for program optimizations.;This dissertation aims to develop this paradigm in two stages. In the first stage, we concentrate on exploring the implications of program inputs for program behaviors and dynamic optimization. We construct the basic input-centric optimization framework based on of line training to realize the basic functionalities of the three major components of the paradigm. For the second stage, we focus on making the paradigm practical by addressing multi-facet issues in handling input complexities, transparent training data collection, predictive model evolvement across production runs. The techniques proposed in this stage together cultivate a lifelong continuous optimization scheme with cross-input adaptivity.;Fundamentally the new optimization paradigm provides a brand new solution for program dynamic optimization. The techniques proposed in the dissertation together resolve the adaptivity-proactivity dilemma that has been limiting the effectiveness of existing optimization techniques. its benefits are demonstrated through proactive dynamic optimizations in Jikes RVM and version selection using IBM XL C Compiler, yielding significant performance improvement on a set of Java and C/C++ programs. It may open new opportunities for a broad range of runtime optimizations and adaptations. The evaluation results on both Java and C/C++ applications demonstrate the new paradigm is promising in advancing the current state of program optimizations
    corecore