131 research outputs found

    Investigation into the flow fields around bluff bodies and artificial heart valves

    Get PDF

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Austrian High-Performance-Computing meeting (AHPC2020)

    Get PDF
    This booklet is a collection of abstracts presented at the AHPC conference

    Intraoperative Fourier domain optical coherence tomography for microsurgery guidance and assessment

    Get PDF
    In this dissertation, advanced high-speed Fourier domain optical coherence tomography (FD-OCT)systems were investigated and developed. Several real-time, high resolution functional Spectral-domain OCT (SD-OCT) systems capable of imaging and sensing blood flow and motion were designed and developed. The system were designed particularly for microsurgery guidance and assessment. The systems were tested for their ability to assessing microvascular anastomosis and vulnerable plaque development. An all fiber-optic common-path optical coherence tomography (CP-OCT) system capable of measuring high-resolution optical distances, was built and integrated into di fferent imaging modalities. First, a novel non-contact accurate in-vitro intra-ocular lens power measurement method was proposed and validated based on CP-OCT. Second, CP-OCT was integrated with a ber bundle based confocal microscope to achieve motion-compensated imaging. Distance between the probe and imaged target was monitored by the CP-OCT system in real-time.The distance signal from the CP-OCT system was routed to a high speed, high resolution linear motor to compensate for the axial motion of the sample in a closed-loop control. Finally a motion-compensated hand-held common-path Fourier domain optical coherence tomography probe was developed for image-guided intervention. Both phantom and ex vivo models were used to test and evaluate the probe. As the data acquisition speed of current OCT systems continue to increase, the means to process the data in real-time are in critically needed. Previous graphics processing unit accelerated OCT signal processing methods have shown their potential to achieve real-time imaging. In this dissertation, algorithms to perform real-time reference A-line subtraction and saturation artifact removal were proposed, realized and integrated into previously developed FD-OCT system CPU-GPU heterogeneous structure. Fourier domain phase resolved Doppler OCT (PRDOCT) system capable of real-time simultaneous structure and flow imaging based on dual GPUs was also developed and implemented. Finally, systematic experiments were conducted to validate the system for surgical applications. FD-OCT system was used to detect atherosclerotic plaque and drug effi ciency test in mouse model. Application of PRDOCT for both suture and cu ff based microvascular anastomosis guidance and assessment was extensively stuided in rodent model

    Algorithms for information extraction and signal annotation on long-term biosignals using clustering techniques

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia BiomédicaOne of the biggest challenges when analysing data is to extract information from it, especially if we dealing with very large sized data, which brings a new set of barriers to be overcome. The extracted information can be used to aid physicians in their diagnosis since biosignals often carry vital information on the subjects. In this research work, we present a signal-independent algorithm with two main goals: perform events detection in biosignals and, with those events, extract information using a set of distance measures which will be used as input to a parallel version of the k-means clustering algorithm. The first goal is achieved by using two different approaches. Events can be found based on peaks detection through an adaptive threshold defined as the signal’s root mean square (RMS) or by morphological analysis through the computation of the signal’s meanwave. The final goal is achieved by dividing the distance measures into n parts and by performing k-means individually. In order to improve speed performance, parallel computing techniques were applied. For this study, a set of different types of signals was acquired and annotated by our algorithm. By visual inspection, the L1 and L2 Minkowski distances returned an output that allowed clustering signals’ cycles with an efficiency of 97:5% and 97:3%, respectively. Using the meanwave distance, our algorithm achieved an accuracy of 97:4%. For the downloaded ECGs from the Physionet databases, the developed algorithm detected 638 out of 644 manually annotated events provided by physicians. The fact that this algorithm can be applied to long-term raw biosignals and without requiring any prior information about them makes it an important contribution in biosignals’ information extraction and annotation

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 19)

    Get PDF
    Abstracts are cited for 130 patents and patent applications introduced into the NASA scientific and technical information system during the period of January 1981 through July 1981. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent
    • …
    corecore