278 research outputs found

    Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening.

    Get PDF
    Regular eye screening is essential for the early detection and treatment of the diabetic retinopathy. This paper presents a novel automatic screening system for diabetic retinopathy that focuses on the detection of the earliest visible signs of retinopathy, which are microaneurysms. Microaneurysms are small dots on the retina, formed by ballooning out of a weak part of the capillary wall. The detection of the microaneurysms at an early stage is vital, and it is the first step in preventing the diabetic retinopathy. The paper first explores the existing systems and applications related to diabetic retinopathy screening, with a focus on the microaneurysm detection methods. The proposed decision support system consists of an automatic acquisition, screening and classification of diabetic retinopathy colour fundus images, which could assist in the detection and management of the diabetic retinopathy. Several feature extraction methods and the circular Hough transform have been employed in the proposed microaneurysm detection system, alongside the fuzzy histogram equalisation method. The latter method has been applied in the preprocessing stage of the diabetic retinopathy eye fundus images and provided improved results for detecting the microaneurysms

    Detection of Hemorrhages and Microaneurysms for Color Fundus images: A Review

    Get PDF
    Here we address the study on detection of Hemorrhages and microaneurysms in color fundus images. In pre-Processing we find different separate red, green, blue color channel from the retinal images. The green channel will pass to the further process. The green color plane was used in the analysis since it shows the best contrast between the vessels and the background retina. Then we extract the GLCM(Gray Level Co-Occurance Matrix) feature. We made a survey of different author who have done their work in this field. We also compare the different data mining techniques that are required to perform detection in proper way

    Detection of Diabetic Retinopathy Diseases for Color Fundus Images

    Get PDF
    Here we address the detection of Hemorrhages and microaneurysms in color fundus images. In pre-Processing we separate red, green, blue color channel from the retinal images. The green channel will pass to the further process. The green color plane was used in the analysis since it shows the best contrast between the vessels and the background retina. Then we extract the GLCM(Gray Level Co-Occurance Matrix) feature. In the GLCMs, several statistics information are derived using the different formulas. These statistics provide information about the texture of an image. Such as Energy, Entropy, Dissimilarity, Contrast, Inverse difference , correlation Homogeneity, Auto correlation, Cluster Shade Cluster Prominence, Maximum probability, Sum of Squares will be calculated for texture image. After feature Extraction, we provide this feature to classifier. Finally it will predict about the retinal whether it is hemorrhages or microaneurysms . After predicting the about the retinal image we will localize the affected place. For segmenting the localized place we will use adaptive thresholding segmentation.

    Digital ocular fundus imaging: a review

    Get PDF
    Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs.Fundação para a Ciência e TecnologiaFEDErPrograma COMPET

    Detection of Hemorrhages and Microaneurysms for Color Fundus Images

    Get PDF
    Here we address the detection of Hemorrhages and microaneurysms in color fundus images. In pre-Processing we separate red, green, blue color channel from the retinal images. The green channel will pass to the further process. The green color plane was used in the analysis since it shows the best contrast between the vessels and the background retina. Then we extract the GLCM(Gray Level Co-Occurance Matrix) feature. In the GLCMs, several statistics information are derived using the different formulas. These statistics provide information about the texture of an image. Such as Energy, Entropy, Dissimilarity, Contrast, Inverse difference , correlation Homogeneity, Auto correlation, Cluster Shade Cluster Prominence, Maximum probability, Sum of Squares will be calculated for texture image. After feature Extraction, we provide this feature to classifier. Finally it will predict about the retinal whether it is hemorrhages or microaneurysms . After predicting the about the retinal image we will localize the affected place. For segmenting the localized place we will use adaptive thresholding segmentation

    Detection of Diabetic Retinopathy Diseases for Color Fundus images: A Review

    Get PDF
    Here we address the study on detection of Hemorrhages and microaneurysms in color fundus images. In pre-Processing we find different separate red, green, blue color channel from the retinal images. The green channel will pass to the further process. The green color plane was used in the analysis since it shows the best contrast between the vessels and the background retina. Then we extract the GLCM(Gray Level Co-Occurance Matrix) feature. We made a survey of different author who have done their work in this field. We also compare the different data mining techniques that are required to perform detection in proper way

    Joint segmentation and classification of retinal arteries/veins from fundus images

    Full text link
    Objective Automatic artery/vein (A/V) segmentation from fundus images is required to track blood vessel changes occurring with many pathologies including retinopathy and cardiovascular pathologies. One of the clinical measures that quantifies vessel changes is the arterio-venous ratio (AVR) which represents the ratio between artery and vein diameters. This measure significantly depends on the accuracy of vessel segmentation and classification into arteries and veins. This paper proposes a fast, novel method for semantic A/V segmentation combining deep learning and graph propagation. Methods A convolutional neural network (CNN) is proposed to jointly segment and classify vessels into arteries and veins. The initial CNN labeling is propagated through a graph representation of the retinal vasculature, whose nodes are defined as the vessel branches and edges are weighted by the cost of linking pairs of branches. To efficiently propagate the labels, the graph is simplified into its minimum spanning tree. Results The method achieves an accuracy of 94.8% for vessels segmentation. The A/V classification achieves a specificity of 92.9% with a sensitivity of 93.7% on the CT-DRIVE database compared to the state-of-the-art-specificity and sensitivity, both of 91.7%. Conclusion The results show that our method outperforms the leading previous works on a public dataset for A/V classification and is by far the fastest. Significance The proposed global AVR calculated on the whole fundus image using our automatic A/V segmentation method can better track vessel changes associated to diabetic retinopathy than the standard local AVR calculated only around the optic disc.Comment: Preprint accepted in Artificial Intelligence in Medicin
    • …
    corecore