1,622 research outputs found

    Evidence of pervasive biologically functional secondary structures within the Genomes of Eukaryotic Single-Stranded DNA Viruses

    Get PDF
    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.Department of HE and Training approved lis

    Evidence of pervasive biologically functional secondary-structures within the genomes of eukaryotic single-stranded DNA viruses

    Get PDF
    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary-structures through Watson-Crick base-pairing between their constituent nucleotides. A few of the structural elements formed by such base-pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. What is unknown, however, is (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist, and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae andGeminiviridae, and analysed these for evidence of natural selection favouring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base-paired than it is at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary-structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterised structural elements that likely have important functions within some of the ssDNA virus genomes analysed here

    Conserved RNA secondary structures in Flaviviridae genomes

    Get PDF
    Presented here is a comprehensive computational survey of evolutionarily conserved secondary structure motifs in the genomic RNAs of the family Flaviviridae. This virus family consists of the three genera Flavivirus, Pestivirus and Hepacivirus and the group of GB virus C/hepatitis G virus with a currently uncertain taxonomic classification. Based on the control of replication and translation, two subgroups were considered separately: the genus Flavivirus, with its type I cap structure at the 5′ untranslated region (UTR) and a highly structured 3′ UTR, and the remaining three groups, which exhibit translation control by means of an internal ribosomal entry site (IRES) in the 5′ UTR and a much shorter less-structured 3′ UTR. The main findings of this survey are strong hints for the possibility of genome cyclization in hepatitis C virus and GB virus C/hepatitis G virus in addition to the flaviviruses; a surprisingly large number of conserved RNA motifs in the coding regions; and a lower level of detailed structural conservation in the IRES and 3′ UTR motifs than reported in the literature. An electronic atlas organizes the information on the more than 150 conserved, and therefore putatively functional, RNA secondary structure elements

    Multiple sequence alignments of partially coding nucleic acid sequences

    Get PDF
    BACKGROUND: High quality sequence alignments of RNA and DNA sequences are an important prerequisite for the comparative analysis of genomic sequence data. Nucleic acid sequences, however, exhibit a much larger sequence heterogeneity compared to their encoded protein sequences due to the redundancy of the genetic code. It is desirable, therefore, to make use of the amino acid sequence when aligning coding nucleic acid sequences. In many cases, however, only a part of the sequence of interest is translated. On the other hand, overlapping reading frames may encode multiple alternative proteins, possibly with intermittent non-coding parts. Examples are, in particular, RNA virus genomes. RESULTS: The standard scoring scheme for nucleic acid alignments can be extended to incorporate simultaneously information on translation products in one or more reading frames. Here we present a multiple alignment tool, codaln, that implements a combined nucleic acid plus amino acid scoring model for pairwise and progressive multiple alignments that allows arbitrary weighting for almost all scoring parameters. Resource requirements of codaln are comparable with those of standard tools such as ClustalW. CONCLUSION: We demonstrate the applicability of codaln to various biologically relevant types of sequences (bacteriophage Levivirus and Vertebrate Hox clusters) and show that the combination of nucleic acid and amino acid sequence information leads to improved alignments. These, in turn, increase the performance of analysis tools that depend strictly on good input alignments such as methods for detecting conserved RNA secondary structure elements

    Memory efficient folding algorithms for circular RNA secondary structures

    Get PDF
    Background: A small class of RNA molecules, in particular the tiny genomes of viroids, are circular. Yet most structure prediction algorithms handle only linear RNAs. The most straightforward approach is to compute circular structures from ‘internal’ and ‘external’ substructures separated by a base pair. This is incompatible, however, with the memory-saving approach of the Vienna RNA Package which builds a linear RNA structure from shorter (internal) structures only. Result: Here we describe how circular secondary structures can be obtained without additional memory requirements as a kind of ‘post-processing’ of the linear structures

    Structural divergence creates new functional features in alphavirus genomes

    Get PDF
    Alphaviruses are mosquito-borne pathogens that cause human diseases ranging from debilitating arthritis to lethal encephalitis. Studies with Sindbis virus (SINV), which causes fever, rash, and arthralgia in humans, and Venezuelan equine encephalitis virus (VEEV), which causes encephalitis, have identified RNA structural elements that play key roles in replication and pathogenesis. However, a complete genomic structural profile has not been established for these viruses. We used the structural probing technique SHAPE-MaP to identify structured elements within the SINV and VEEV genomes. Our SHAPE-directed structural models recapitulate known RNA structures, while also identifying novel structural elements, including a new functional element in the nsP1 region of SINV whose disruption causes a defect in infectivity. Although RNA structural elements are important for multiple aspects of alphavirus biology, we found the majority of RNA structures were not conserved between SINV and VEEV. Our data suggest that alphavirus RNA genomes are highly divergent structurally despite similar genomic architecture and sequence conservation; still, RNA structural elements are critical to the viral life cycle. These findings reframe traditional assumptions about RNA structure and evolution: rather than structures being conserved, alphaviruses frequently evolve new structures that may shape interactions with host immune systems or co-evolve with viral proteins

    In silico approach towards H5N1 virus protein and transcriptomics-based medication

    Get PDF
    H5N1 influenza A virus is a serious threat to human population. With a considerable mortality rate, strategies for coping with the infection are being developed. Our research group and some others investigated the potential therapeutic and preventive measures for tackling H5N1 infections. Protein based and transcriptomics analyses are getting more important in this field. The trends towards the integration of both protein-based and transcriptomics for H5N1 analysis are indeed feasible.Keywords: H5N1, protein-based, transcriptomics, siRNA, hemagglutinin (HA), matrix1 (M1), non-structural 1 (NS1), neuraminidase (NA), and matrix2 (M2)African Journal of Biotechnology Vol. 12(21), pp. 3110-311

    Searching genomes for ribozymes and riboswitches

    Get PDF
    A discussion of experimental approaches and theoretical difficulties in the identification of ribozymes with novel catalytic functions

    Prediction of RNA secondary structure in hepatitis C and related viruses

    Get PDF
    The existence and functional importance of RNA secondary structure in the replication of positive-stranded RNA viruses is increasingly recognised. In this thesis several computational methods to detect RNA secondary structure in the coding regions of hepatitis C virus (HCV), hepatitis G virus (HGV)/GB virus C (GBV-C) and related viruses have been used. These include thermodynamic prediction of folding free energies (FFEs), evolutionary conservation of minimum energy structures between virus genotypes, suppression of synonymous variability and analysis of covariant and semi covariant substitutions in thermodynamically favoured structures. Each of the predictive methods provided evidence for conserved RNA secondary structure in the core and NS5B encoding regions of HCV and throughout the entire coding region of HGV/GBV-C.Positions in the HCV genome with predicted RNA structure localise precisely to regions of marked suppression of variability at synonymous sites, indicating that RNA structure constrains sequence change at what are generally regarded as phenotypically neutral sites. Combining these methods, the computational data obtained in this thesis demonstrates the existence of at least ten conserved stem loop structures within the NS5B coding region and three in that coding for the core protein both within the coding region of HCV. Analysis of the NS5B coding region and 3' untranslated region (3'UTR) of HGV/GBV-C indicates an even greater degree of RNA secondary structure. Remarkably, it appears from analysis of FFEs that extensive RNA secondary structure may exist along the entire length of both the HCV and HGV/GBV-C genomes, a finding with considerable implications for future functional studies.The existence of predicted RNA structures in the HCV genome was determined using controlled nuclease mapping of RNA transcripts from the core and NS5B regions under conditions which retained potential long-range RNA interactions. The pattern of cleavage sites of nucleases specific for single and double stranded RNA provided strong experimental support for structures previously predicted in this study. Electron microscopy was also used to directly visualise the RNA folding structure of HGV/GBV-C and provided some evidence for at least four structures within the NS5B coding region and long range RNA folding across the length of the virus genome.The degree of structural conservation between diverse HCV and HGV/GBV-C genotypes and related viruses suggests roles in virus replication, and/or RNA packaging for the discrete structures identified in this thesis. Whilst this role and that of the genome wide structure identified is currently not understood the structures predicted in this work are providing a starting point for such functional studies using the HCV replicon
    • …
    corecore