1,045 research outputs found

    Classifying malignant brain tumours from 1H-MRS data using Breadth Ensemble Learning

    Get PDF
    In neuro oncology, the accurate diagnostic identification and characterization of tumours is paramount for determining their prognosis and the adequate course of treatment. This is usually a difficult problem per se, due to the localization of the tumour in an extremely sensitive and difficult to reach organ such as the brain. The clinical analysis of brain tumours often requires the use of non-invasive measurement methods, the most common of which resort to imaging techniques. The discrimination between high-grade malignant tumours of different origin but similar characteristics, such as glioblastomas and metastases, is a particularly difficult problem in this context. This is because imaging techniques are often not sensitive enough and their spectroscopic signal is overall too similar. In spite of this, machine learning techniques, coupled with robust feature selection procedures, have recently made substantial inroads into the problem. In this study, magnetic resonance spectroscopy data from an international, multicentre database were used to discriminate between these two types of malignant brain tumours using ensemble learning techniques, with a focus on the definition of a feature selection method specifically designed for ensembles. This method, Breadth Ensemble Learning, takes advantage of the fact that many of the frequencies of the available spectra convey no relevant information for the discrimination of the tumours. The potential of the proposed method is supported by some of the best results reported to date for this problem.Postprint (author's final draft

    A review of machine learning applications for the proton MR spectroscopy workflow

    Get PDF
    This literature review presents a comprehensive overview of machine learning (ML) applications in proton MR spectroscopy (MRS). As the use of ML techniques in MRS continues to grow, this review aims to provide the MRS community with a structured overview of the state-of-the-art methods. Specifically, we examine and summarize studies published between 2017 and 2023 from major journals in the MR field. We categorize these studies based on a typical MRS workflow, including data acquisition, processing, analysis, and artificial data generation. Our review reveals that ML in MRS is still in its early stages, with a primary focus on processing and analysis techniques, and less attention given to data acquisition. We also found that many studies use similar model architectures, with little comparison to alternative architectures. Additionally, the generation of artificial data is a crucial topic, with no consistent method for its generation. Furthermore, many studies demonstrate that artificial data suffers from generalization issues when tested on in vivo data. We also conclude that risks related to ML models should be addressed, particularly for clinical applications. Therefore, output uncertainty measures and model biases are critical to investigate. Nonetheless, the rapid development of ML in MRS and the promising results from the reviewed studies justify further research in this field.</p

    Deep learning pipeline for quality filtering of MRSI spectra.

    Get PDF
    With the rise of novel 3D magnetic resonance spectroscopy imaging (MRSI) acquisition protocols in clinical practice, which are capable of capturing a large number of spectra from a subject's brain, there is a need for an automated preprocessing pipeline that filters out bad-quality spectra and identifies contaminated but salvageable spectra prior to the metabolite quantification step. This work introduces such a pipeline based on an ensemble of deep-learning classifiers. The dataset consists of 36,338 spectra from one healthy subject and five brain tumor patients, acquired with an EPSI variant, which implemented a novel type of spectral editing named SLOtboom-Weng (SLOW) editing on a 7T MR scanner. The spectra were labeled manually by an expert into four classes of spectral quality as follows: (i) noise, (ii) spectra greatly influenced by lipid-related artifacts (deemed not to contain clinical information), (iii) spectra containing metabolic information slightly contaminated by lipid signals, and (iv) good-quality spectra. The AI model consists of three pairs of networks, each comprising a convolutional autoencoder and a multilayer perceptron network. In the classification step, the encoding half of the autoencoder is kept as a dimensionality reduction tool, while the fully connected layers are added to its output. Each of the three pairs of networks is trained on different representations of spectra (real, imaginary, or both), aiming at robust decision-making. The final class is assigned via a majority voting scheme. The F1 scores obtained on the test dataset for the four previously defined classes are 0.96, 0.93, 0.82, and 0.90, respectively. The arguably lower value of 0.82 was reached for the least represented class of spectra mildly influenced by lipids. Not only does the proposed model minimise the required user interaction, but it also greatly reduces the computation time at the metabolite quantification step (by selecting a subset of spectra worth quantifying) and enforces the display of only clinically relevant information

    Quantification of MR spectra by deep learning in an idealized setting: Investigation of forms of input, network architectures, optimization by ensembles of networks, and training bias.

    Get PDF
    PURPOSE The aims of this work are (1) to explore deep learning (DL) architectures, spectroscopic input types, and learning designs toward optimal quantification in MR spectroscopy of simulated pathological spectra; and (2) to demonstrate accuracy and precision of DL predictions in view of inherent bias toward the training distribution. METHODS Simulated 1D spectra and 2D spectrograms that mimic an extensive range of pathological in vivo conditions are used to train and test 24 different DL architectures. Active learning through altered training and testing data distributions is probed to optimize quantification performance. Ensembles of networks are explored to improve DL robustness and reduce the variance of estimates. A set of scores compares performances of DL predictions and traditional model fitting (MF). RESULTS Ensembles of heterogeneous networks that combine 1D frequency-domain and 2D time-frequency domain spectrograms as input perform best. Dataset augmentation with active learning can improve performance, but gains are limited. MF is more accurate, although DL appears to be more precise at low SNR. However, this overall improved precision originates from a strong bias for cases with high uncertainty toward the dataset the network has been trained with, tending toward its average value. CONCLUSION MF mostly performs better compared to the faster DL approach. Potential intrinsic biases on training sets are dangerous in a clinical context that requires the algorithm to be unbiased to outliers (i.e., pathological data). Active learning and ensemble of networks are good strategies to improve prediction performances. However, data quality (sufficient SNR) has proven as a bottleneck for adequate unbiased performance-like in the case of MF

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics.

    Get PDF
    The annotation of small molecules remains a major challenge in untargeted mass spectrometry-based metabolomics. We here critically discuss structured elucidation approaches and software that are designed to help during the annotation of unknown compounds. Only by elucidating unknown metabolites first is it possible to biologically interpret complex systems, to map compounds to pathways and to create reliable predictive metabolic models for translational and clinical research. These strategies include the construction and quality of tandem mass spectral databases such as the coalition of MassBank repositories and investigations of MS/MS matching confidence. We present in silico fragmentation tools such as MS-FINDER, CFM-ID, MetFrag, ChemDistiller and CSI:FingerID that can annotate compounds from existing structure databases and that have been used in the CASMI (critical assessment of small molecule identification) contests. Furthermore, the use of retention time models from liquid chromatography and the utility of collision cross-section modelling from ion mobility experiments are covered. Workflows and published examples of successfully annotated unknown compounds are included
    corecore