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Abstract

With the rise of novel 3D magnetic resonance spectroscopy imaging (MRSI) acquisi-

tion protocols in clinical practice, which are capable of capturing a large number of

spectra from a subject's brain, there is a need for an automated preprocessing pipe-

line that filters out bad-quality spectra and identifies contaminated but salvageable

spectra prior to the metabolite quantification step. This work introduces such a pipe-

line based on an ensemble of deep-learning classifiers. The dataset consists of

36,338 spectra from one healthy subject and five brain tumor patients, acquired with

an EPSI variant, which implemented a novel type of spectral editing named

SLOtboom–Weng (SLOW) editing on a 7T MR scanner. The spectra were labeled

manually by an expert into four classes of spectral quality as follows: (i) noise,

(ii) spectra greatly influenced by lipid-related artifacts (deemed not to contain clinical

information), (iii) spectra containing metabolic information slightly contaminated by

lipid signals, and (iv) good-quality spectra.

The AI model consists of three pairs of networks, each comprising a convolutional

autoencoder and a multilayer perceptron network. In the classification step, the

encoding half of the autoencoder is kept as a dimensionality reduction tool, while the

fully connected layers are added to its output. Each of the three pairs of networks is

trained on different representations of spectra (real, imaginary, or both), aiming at

robust decision-making. The final class is assigned via a majority voting scheme.

The F1 scores obtained on the test dataset for the four previously defined classes

are 0.96, 0.93, 0.82, and 0.90, respectively. The arguably lower value of 0.82 was

reached for the least represented class of spectra mildly influenced by lipids.

Not only does the proposed model minimise the required user interaction, but it also

greatly reduces the computation time at the metabolite quantification step

(by selecting a subset of spectra worth quantifying) and enforces the display of only

clinically relevant information.

Abbreviations: AI, artificial intelligence; CAE, convolutional autoencoder; CSF, cerebrospinal fluid; CPU, central processing unit; EPSI, echo planar spectroscopic imaging; FFT, fast Fourier

transform; GPU, graphics processing unit; jMRUI, java magnetic resonance user interface; MIDAS, metabolic imaging data analysis system; MLP, multilayer perceptron; MR, magnetic resonance;

MRS, magnetic resonance spectroscopy; MRSI, magnetic resonance spectroscopy imaging; RF, radiofrequency; ROI, region of interest; SELU, scaled exponential linear unit; SLOW, SLOtboom–

Weng; SNR, signal-to-noise ratio; TE, echo time; TR, repetition time; UHF, ultrahigh field.
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1 | INTRODUCTION

As 3D magnetic resonance spectroscopy imaging (MRSI) gains more popularity and presence in the clinical and research practice, with novel

acquisition protocols which enable the recording of a large number of spectra from a single subject, there is an increased need for fast, robust,

and reliable processing pipelines.1,2 Such pipelines would include some form of quality assessment of the spectra followed by the quantifica-

tion of the metabolites, as opposed to the commonly used post-hoc quality-control pipelines.

There is increasing evidence that suggests that MRS image quality has a significant impact on diagnostic outcomes. In a study by Shakir et al,3

the grading accuracy of low- and high-grade glioma increased by 21% and 15%, respectively, after considering the MRS image-quality assessment.

It is known that spectral quality in spectroscopic imaging can be influenced and deteriorated by numerous factors. A review article by Kreis et al4

provides a systematic overview of various artifacts and quality assessment, as well as detailed guidelines containing quality-check considerations,

which are used when evaluating individual datasets/spectra. The artifacts mentioned commonly include (and are not limited to) region of interest

(ROI) location and shape,5,6 movements at scan time,7–9 chemical shift artifacts,10 outer volume signal bleed and ghosts,11 eddy currents,12 and

others. Numerous articles focus on the quality-filtering task in the MRSI domain. Most of these, however, rely on manually crafted and extracted

features from the spectra, followed by specific machine-learning approaches for their acceptance/rejection, typical choices being random forest

classifiers.13,14 Alternatively, they depend on particular exclusion criteria based on Cramér–Rao bounds,15 metabolite peak linewidths,16 or reli-

ability testing,17 to name a few. To the best of our knowledge, only one study has addressed the quality-filtering task from the deep-learning per-

spective, employing convolutional neural networks to detect artifact-contaminated MRSI spectra.18

The main requirements of a quality-assessment pipeline, in this case, are its robustness and reliability (i.e., the quality checks should be as

accurate as possible) as well as its speed (i.e., the computational time should be as short as possible). In this work, we present a pipeline, based on

deep-learning classifiers, for the classification of the spectra according to their spectral content and quality. Namely, the architecture we propose

is composed of an ensemble of paired networks, each pair consisting of a convolutional autoencoder (CAE) for feature extraction19 and a multi-

layer perceptron (MLP)20 added to the encoding path of the autoencoder for classification. Autoencoding networks are proven to be useful for

unsupervised dimensionality reduction and feature extraction in numerous applications.19,21–25 The ensemble includes three pairs of the networks

mentioned, trained on either the real or imaginary parts of the spectra or both together. A simple voting scheme is then employed to assign the

final label to each spectrum. An underlying hypothesis is that the ensemble approaches add value to the model's output regarding its accuracy

and robustness.26–28 The spectra are analysed in the frequency domain. To this end, we define four spectral quality classes, including noise, two

classes containing either major or minor lipid-related artifact components, and good-quality spectra that are directly quantifiable without applying

additional processing steps. Further, we will explore the binary class consideration instead of the proposed four-class approach by classifying

spectra as either quantifiable or not, regardless of additional processing that may be needed.

With the number of spectra that can be acquired always increasing,29–31 it is becoming more and more relevant to filter out the spectra

deemed unquantifiable, such that the quantification step2 is optimised and only relevant data are presented to the user. Our proposed method

speeds up this process significantly by automatically classifying a large number of spectra in a short time. The model learns directly from the

expert's considerations used at the labeling step, which intrinsically reflect the guidelines mentioned above. A quality-filtering tool such as the

one we propose in this article can also be employed to mitigate misdiagnosis errors to a certain degree.

2 | MATERIALS AND METHODS

2.1 | Spectral quality classes

For the purpose of the automatic classification and filtering of brain MRSI spectra, we propose four different spectral quality classes, defined as

follows.

1. Noise: these are primarily spectra stemming from the extracranial region, as well as any intracranial spectra that carry no metabolic information

due to either their localisation (e.g., nasal cavity) or inadequate acquisition.

2. Spectra greatly influenced by lipid-related artifacts: these are most commonly spectra coming from the skull and subcutaneous regions,

characterised by broad components high in intensity, overpowering and overlapping the metabolic signals and thus rendering the quantifica-

tion useless.
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3. Spectra mildly influenced by lipid components: these are normal-appearing spectra coming from the brain region with a noticeable lipid com-

ponent, which can be removed using certain postprocessing steps to make them suitable for quantification. Lipid components are typically

extracted using lipid reduction algorithms, namely lipid k-space interpolation32 or constrained reconstruction.1,33–35

4. Good-quality spectra: these are spectra suitable for quantification without applying additional processing steps when using state-of-the-art

metabolite quantification algorithms.

Typical representations of each of the four defined classes of spectra are shown in Figure 1.

While the spectral classification is presented and analysed in this four-class context in most of the experiments presented in this work, it is

good to note that we can think of the problem in a more straightforward, binary way. It treats the first two classes as spectra that are not worth

quantifying. On the other hand, the last two classes are those spectra worth putting through the (rather time-consuming) quantification step, with

or without application of specific restorative preprocessing steps beforehand. This binary perspective will be referred back to when discussing the

results of the proposed model.

2.2 | Dataset

The brain MRSI data used in this research were collected with an EPSI variant, which implements a novel type of spectral editing named

SLOtboom–Weng (SLOW) editing29 on a UHF 7T MR scanner (Terra, Siemens Healthineers, Erlangen, Germany), using the CE-labeled clinical

mode. Whole-brain spectral editing can be obtained within 10 minutes of acquisition time (TE = 68 ms, TR = 1500 ms). Due to the implicit water

suppression of SLOW editing, no additional water removal postprocessing step is necessary. The raw SLOW EPSI data were processed with the

metabolic imaging data analysis system (MIDAS),36 including the following steps: (i) EPSI k-space regridding, (ii) echo combination and drift correc-

tion, (iii) spatial fast Fourier transform (FFT), (iv) multichannel acquisition combination, and (v) eddy-current correction.

The dataset used in the initial development stages to assess intrareader variability consisted of 26,460 spectra from a single healthy subject, man-

ually labeled twice by an expert rater (JS). The labeling here refers to assigning one of the four class labels to each spectrum in the frequency domain,

as defined in the previous section. It was performed by evaluating the spectra using the built-in labeling tool available in the SpectrIm plugin37 of the

java magnetic resonance user interface (jMRUI) software.38 Double labeling was performed to improve certainty and reduce the intrarater variability.

A total of 22,878 spectra were labeled the same in both iterations and kept for training, validating, and testing the model. We conducted a simple

intrarater variability experiment, comparing the labels in two labeling iterations. It serves as an interesting potential benchmark for our model.

Further, an extended dataset, which includes an additional 13,460 spectra from five tumor patients, was labeled to account for class imbal-

ance and data variability. It is also used to test the robustness and generalisation of the proposed model in the cross-validation experiments. These

F IGURE 1 Typical examples of the four quality classes defined, showing the real parts of the corresponding spectra: (A) noise, (B) spectra
greatly influenced by lipid-related artifacts, (C) spectra mildly influenced by lipid-related artifacts, (D) good-quality spectra. Note that the good-
quality spectrum has phasing distortions, but, as long as the metabolite content is clearly distinguishable, the proposed method does not require
zero-phased spectra.
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spectra originate from one axial slice per patient, which contains the largest region of interest (i.e., a cranial region with or without tumor, as

opposed to axial slices with a greater number of extracranial voxels containing noise).

Additionally, we demonstrate the qualitative aspects of the developed model on an unlabeled dataset originating from a second healthy sub-

ject. Therefore, this dataset is not used in the training phase but only to assess the model's capabilities when evaluated on unseen data.

2.3 | Model architecture

The spectra are classified using a deep-learning ensemble model of three pairs of networks, illustrated in Figure 2. Each pair consists of two mod-

ules: a CAE for feature extraction and an MLP classifier network for labeling the spectra. Each pair of networks is trained on different aspects of

the spectra in the frequency domain, namely (i) real, (ii) imaginary, and (iii) both real and imaginary concatenated parts of the spectra. The principal

reason behind the introduction of the three pairs of networks is to establish a voting scheme that would help improve the robustness and margin

of error in the classification model, while at the same time not increasing the computational resources/time significantly. It should be noted that

the spectra were normalised to the unit norm (using the l2 normalisation) prior to passing them to the network in order to increase the robustness

to outliers and to avoid difficulties in training due to the high values typically present in spectra influenced greatly by lipids.

CAEs are a popular type of neural networks used for compression and feature extraction tasks. An autoencoder, by definition, tries to recon-

struct the signal presented at its input as its output by inferring essential features in the latent space. A CAE comprises an encoding path, which

compresses the input signal through a series of convolutional and max pooling layers into a lower-dimensional representation of the extracted

features of importance, followed by a decoding path, which, again through a chain of transposed convolutional layers,39 tries to reconstruct the

input from its latent space representation.

A classifier network in the form of an MLP is then trained in a supervised manner to learn to differentiate the four defined classes of spectra.

It takes the input signals and their corresponding labels and tries to update the layer weights in order to minimise the loss function. Instead of

feeding the entire spectra to the classification network directly, our approach presents their latent space versions learned by the appropriate CAE

as inputs to the classifier. That way, the features of interest that are distinguishable among the classes are preserved in the input signal, while the

noise and redundancy are minimised. In other words, in the classification step, we “freeze” the encoding path of the already trained CAEs, and

replace the decoding path with the trainable classifying layers. Note that the CAEs and the MLPs are trained separately. This is because we

F IGURE 2 A visual representation of a pair of classification networks. Three pairs of networks process either real, imaginary, or both spectral
parts concatenated, respectively. CAEs serve as feature extractors and a dimensionality reduction tool, while the fully connected classifiers label
the spectra by training on their latent space representations obtained from autoencoders. (Conv1D, one-dimensional convolution layer;
MaxPool2, max pooling layer of size 2; DeConv1D, one-dimensional deconvolution, i.e., transposed convolution layer).

4 of 12 RAKI�C ET AL.

 10991492, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/nbm

.5012 by U
niversität B

ern, W
iley O

nline L
ibrary on [02/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



wanted to avoid introducing potential bias toward the ground truth. Specifically, by training the networks simultaneously, the feature extraction

learned by the autoencoders would be biased toward the ground-truth labels, as the joint training would not be unsupervised.

At the validation and testing stages, the corresponding spectra are given to the three pairs of feature extraction/classification modules, and a

simple majority voting scheme is applied to assign the final labels. In the case of a tie when counting the votes from individual classifiers, the

highest assigned label is kept as final, since we deem it more important not to miss a potentially good-quality spectrum among the noisy ones than

the other way around.

The network is implemented using the Keras open-source software library, which provides a Python interface for artificial neural networks.40

The CAEs are trained by monitoring and minimising the mean-squared error loss function. The input vectors to the CAEs are of size either 1024

or 2048, depending on whether the real and imaginary parts of the spectra are processed independently or in a concatenated manner. Each CAE

comprises four encoding layers containing 32, 64, 64, and 128 convolutional kernels (Conv1D layers, kernel size 2), each followed by a max

pooling layer (MaxPooling1D) of size 2. Note that we tested different kernel sizes (2, 3, and 4) and selected the one that yielded the best perfor-

mance. A smaller receptive field seems more favorable in our task, where local characteristics can differentiate among different spectral quality

classes better than global ones. Scaled exponential linear unit (SELU) activation is also applied in each convolutional layer.41 It includes self-

normalising properties and has no problem with vanishing gradients. The decoding path also includes four analogously defined transposed con-

volutional layers (Conv1DTranspose), each comprising 128, 64, 64, and 32 kernels, respectively. On the other hand, the classifier networks try to

minimise the categorical cross-entropy, a typical loss function present in multiclass classification approaches. Three dense layers with

256, 64, and 4 nodes, respectively, are trained using stochastic gradient descent as the optimiser. SELU activation is also incorporated in the clas-

sification modules of the model, except after the last dense layer, which is followed by a softmax activation.

2.4 | Experiment design

This section provides an overview of the experiments conducted, the results of which are discussed later. As a brief reminder, the dataset consists

of one healthy subject, labeled twice by the expert, and five tumor subjects, partially labeled based on a single slice.

Firstly, we analyse the intrarater variability by comparing the labels assigned by the expert during two labeling iterations of the healthy sub-

ject. The spectra assigned the same label both times are kept in the dataset, and the rest are discarded.

Secondly, we analyse the performance of a model using only the spectra retained from the healthy subject. This was done by randomly split-

ting the healthy subject's dataset into 64% training, 16% validation, and 20% testing spectra.

Thirdly, we observe a model's performance when using a more diverse dataset. Here we combine the healthy subject's spectra with the five

partially labeled tumor subjects. A model is trained similarly to the previous experiment by randomly splitting all the spectra into 64% training,

16% validation, and 20% testing spectra. It is important to note that this is the most complete and the largest of the datasets we used in this arti-

cle. If an experiment does not explicitly state otherwise, it is understood that the dataset composition used in it is the same as in this one.

Additionally, cross-validation experiments are conducted to evaluate the performance of a model on unseen data, reflecting its robustness

and generalisation abilities. We propose fivefold cross-validation by splitting the dataset five times into training, validation, and testing sets. In

each fold, we keep the healthy subject and four tumor subjects for training and validation, while the remaining patient is used as a testing dataset.

This testing subject is a different one in each of the five folds.

Further, we want to investigate the added value of using the ensemble of networks. To do this, we compare the performance of a model

when using only one pair of networks with the performance when using all three pairs.

Moreover, we show the importance of having a well-labeled dataset. We do this by comparing the model's performance on the healthy sub-

ject after only one labeling iteration by the expert with the performance of the model trained on retained data after two labeling iterations.

Lastly, we present qualitative results when evaluating the model (trained on the labeled healthy subject and the five partially labeled tumor

subjects) on an unseen, unlabeled, healthy subject. The qualitative analysis is done to observe the model's generalisation capabilities and robust-

ness when applied to independent datasets.

2.5 | Performance metrics

The model's performance is evaluated by comparing its output with the expert's labels on the test set (which comprises 20% of the total spectra

in the dataset) or on a single held-out patient dataset in the case of the cross-validation experiment. Quantitative results are demonstrated as con-

fusion matrices, showing the number of spectra labeled a certain way by the model against the true labels assigned by the expert. The matrices

allow for the computation of F1 scores, indicative of the number of spectra classified correctly and, conversely, the number of misclassified

spectra.
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The F1 score measures the test's accuracy and is commonly computed by applying the following formula for each of the four classes defined:

F1¼ 2TP
2TPþFNþFP

: ð1Þ

In the formula above, TP, FN, and FP signify counts of spectra labeled as true positives, false negatives, and false positives, respectively, from

the perspective of the observed class of spectra. For example, considering the confusion matrix, the TP count for the specific class is the value

found on the main diagonal in the row/column of that class. In contrast, FN and FP are all the values found in the row/column for that class, but

outside the main diagonal.

3 | RESULTS

Table 1 contains a confusion matrix providing deeper insight into the intrarater variability for two labeling iterations for the spectra from a single

healthy subject. It also shows interesting information pertaining to class representation in the dataset. We can observe a relative imbalance, evi-

dent by the fact that almost half of the spectra in the dataset are noise. In contrast, about 14.9% of the spectra are of good quality, and only about

7.7% of the dataset contains spectra mildly influenced by lipid components. However, the addition of another 13,460 labeled spectra from five

patients with brain tumor changed the class representation.

TABLE 1 Intrarater variability confusion matrix, showing the number of spectra that were labeled a certain way during two labeling iterations.
In an ideal scenario with an expert rater with no doubts as to how to label spectra, all values greater than zero would be found on the main
diagonal of the matrix. F1 scores for each of the four classes are given, as a way to quantify consistency.

Iteration 2

Classes 1 2 3 4 F1 score

Iteration 1 1 10,845 264 1 0 0.92

2 1744 6862 419 10 0.84

3 4 231 1753 468 0.69

4 0 1 440 3418 0.88

TABLE 2 Confusion matrix and the corresponding class F1 scores coming from the model trained and validated on a single, twice labelled
healthy subject. The values are computed on the test set, comprising 20% of the total number of spectra.

Model output: one subject

Classes 1 2 3 4 F1 score

Expert labels 1 2116 32 0 0 0.98

2 67 1312 24 0 0.94

3 0 40 265 42 0.81

4 0 0 17 661 0.96

TABLE 3 Confusion matrix and the corresponding class F1 scores coming from the model trained and validated on all the available labeled
data, comprising one healthy and five tumor subjects. The values are computed on the test set, comprising 20% of the total number of spectra.

Model output: all subjects

Classes 1 2 3 4 F1 score

Expert labels 1 2705 153 3 0 0.96

2 95 2435 30 0 0.93

3 3 71 701 117 0.82

4 0 0 81 874 0.90
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The initial results were obtained via training, validating, and testing the model on the dataset coming only from the healthy subject (more spe-

cifically on the subset of the spectra labeled the same in both labeling iterations) by splitting the spectra randomly into 64% training, 16% valida-

tion, and 20% testing cases. The confusion matrix after training the three classifiers and applying the majority voting to assign the final labels is

shown in Table 2.

Additionally, a model was trained and evaluated using the entire dataset comprising all the retained spectra from the healthy subject and five

partially labeled tumor patients. Again, the entire dataset was split randomly into 64% training, 16% validation, and 20% testing spectra. The

corresponding confusion matrix and the F1 scores obtained are shown in Table 3. Note that the performance stays relatively similar between

Tables 2 and 3.

When it comes to cross-validation experiments, to simplify the outcome and avoid showing five individual confusion matrices from each of

the folds, a matrix obtained by summing up the five is shown in Table 4, together with the corresponding F1 class scores. A crucial performance

remark of the model is that it does not discard spectra coming from tumor regions during the quality control. To this end, we show in Figure 3

qualitative results when evaluating the model in two of the cross-validation folds on the single left-out subject for testing purposes. These exam-

ples demonstrate that the model deems tumor spectra quantifiable (class 3 or 4) and show how they compare with the spectra from brain tissue

unaffected by a tumor. The testing subjects in the remaining folds have significant differences in MRSI grid and brain orientation, which do not

allow for nice visual single-slice representation, though the tumor prediction remains unchanged.

If we consider spectra given to the network as inputs, there is arguably redundancy that should be remarked on. While two of the classifying

modules take real and imaginary parts of the spectra, the third one takes both concatenated together. It is hence essential to demonstrate

whether there is any improvement when using an ensemble of classifiers. Table 5 compares the F1 scores obtained in the experiments analysed

TABLE 4 Confusion matrix and the corresponding class F1 scores coming from the fivefold cross-validation experiments, obtained by
summing up the five individual matrices.

Model output: cross-val

Classes 1 2 3 4 F1 score

Expert labels 1 3241 531 20 5 0.90

2 195 5451 72 1 0.92

3 3 148 2124 364 0.81

4 1 2 409 893 0.70

F IGURE 3 Example results from two folds of the cross-validation experiments. Each row corresponds to a single left-out tumor patient used
for testing in each of the folds. Images in the left column show a map overlay of the labels produced by the model (class 1: dark blue, class 2: light
blue, class 3: yellow, class 4: red). The middle column includes appropriate anatomical images of the same axial slices. Spectra in the right column
are obtained by averaging the blue and red marked voxels in the leftmost images. Blue selection relates to the tissue affected by the tumor, while
the voxels selected in red are a typical representation of healthy-appearing tissue, classified as good-quality spectra by the classifier network.
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above, which use majority voting of all three networks, with the F1 scores coming from the corresponding experiments, which use only the third

pair of the deep-learning modules for classification (the one trained on concatenated real and imaginary spectra). The best-performing cases are

highlighted appropriately in the table.

Referring to the intrarater assessment, we want to note the importance of a well-labeled dataset. As mentioned previously, an expert manu-

ally labeled one healthy subject in the dataset twice. While Table 2 shows the results of the model trained on a subset of spectra labeled the same

in both labeling iterations, it is interesting to showcase the difference when training on all spectra of the healthy subject after only the first label-

ing iteration. Table 6 demonstrates these values and indicates a decreased agreement compared with the results shown in Table 2.

Further, regarding the class mixing, we observe that, in all of the confusion matrices, most of the values outside the main diagonals tend to be

concentrated in the matrix fields corresponding to adjacent classes. This is true for both the model outputs and the intrarater variability analysis.

Going back to the binary consideration of the classes in place of the four-class approach introduced earlier, we can indeed think of classes 1 and

2 as “unquantifiable” and classes 3 and 4 as “quantifiable”, albeit with or without certain additional processing steps. Repurposing the confusion

matrices for this binary perspective (by considering each of the four two-by-two quadrants of a matrix as a single cell), we can obtain some

remarkable F1 scores, presented in Table 7 for easy comparison.

Moreover, a qualitative assessment is shown in Figure 4. It shows the same examples as in Figure 3, but, while the color maps on the left visu-

alise the model output, the color maps in the middle column represent the ground truth, as labeled by the expert. The color maps on the right are

the absolute voxelwise difference of the previous two. Finally, Figure 5 shows the performance of the model on an unseen, unlabeled, healthy

subject. It serves as an additional qualitative assessment of the model performance when introducing new data from a subject that was not part

of training/validation datasets.

4 | DISCUSSION

Before the in-depth analysis of the observed results, we want to note an essential aspect of the proposed method. By employing this deep-

learning approach, there is no need to distinguish specific artifacts (e.g., noise or lipid contamination) except during the labeling step of the training

set. The model learns from an expert and produces quality-control classification mimicking the expert's knowledge.

While it is true that the F1 scores obtained from the model trained and tested on a single healthy subject are the highest among the

experiments presented, the interpretation of the scores observed in the other experiments should not be diminished. A model trained and

evaluated on the same data type is bound to be biased toward the data seen during the training.42,43 It is also noteworthy that the F1 score

for class 3 in that experiment was significantly lower than those of the other three classes, but the dataset arguably suffers from class

imbalance.

TABLE 5 Comparison of the F1 scores across different experiments when using three pairs of classifying modules, or just one that is trained
on both real and imaginary parts of the spectra. Values listed in the cross-validation columns are the mean values across five folds of the
corresponding experiment.

One subject One subject All subjects All subjects Cross-val Cross-val

One pair Three pairs One pair Three pairs One pair Three pairs

F1 scores Class 1 0.98 0.98 0.96 0.96 0.89 0.90

Class 2 0.94 0.94 0.93 0.93 0.92 0.92

Class 3 0.81 0.81 0.81 0.82 0.80 0.81

Class 4 0.96 0.96 0.89 0.90 0.67 0.70

TABLE 6 Confusion matrix and the corresponding F1 scores obtained from the model trained on the healthy subject's dataset after the first
manual labeling iteration. The values are computed on the test set, comprising 20% of the total number of spectra.

Model output: one subject, first labeling iteration

Classes 1 2 3 4 F1 score

Expert labels 1 2456 63 0 3 0.96

2 146 1307 29 0 0.89

3 0 87 339 93 0.71

4 0 0 69 700 0.89

8 of 12 RAKI�C ET AL.

 10991492, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/nbm

.5012 by U
niversität B

ern, W
iley O

nline L
ibrary on [02/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Though slightly lower, the F1 scores from the model trained and tested on six subjects are still comparable with the ones obtained in the orig-

inal experiment. They demonstrate the generalisation and robustness capabilities of the model when introducing more diverse data.

If we look further into the confusion matrices presented, some additional conclusions can be inferred. While the values on the main diagonals

represent true positives (i.e., the cases where the model output matched the expert's labels), we dub all other values “class mixing”. This class

mixing is arguably the result of two possible scenarios. The first one relates to a simple misclassification of the model when labeling spectra with

labels that do not match the ones from the expert. The second one, alternatively, is associated with potential mislabeling by the expert. We should

consider the fact that all supervised models “suffer” from their inherent reliability on what is considered to be the ground truth. Referring back to

TABLE 7 F1 scores comparing different experiments, inferred using the binary approach, which considers classes 1 and 2 as unquantifiable
and classes 3 and 4 as quantifiable.

Intrarater One subject All subjects Cross-validation

Binary Classes 1+2 0.98 0.99 0.99 0.99

F1 scores Classes 3+4 0.95 0.97 0.97 0.97

F IGURE 4 A qualitative comparison of model output (left) and ground truth labeled by the expert (middle) shows that most differences tend
to cluster at the boundaries of regions with particular predominant classification. Absolute voxelwise difference of the corresponding left and
middle color maps is shown on the right.

F IGURE 5 The quality filtering model was applied on an unseen dataset coming from a healthy subject, and the spatial representation
matches what is expected (left). The average spectrum of the selected voxels is shown on the right.
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Table 1, we can see that the F1 scores calculated from two independent labeling iterations are lower than the ones the models yielded for certain

classes.

If we consider the scores obtained in the cross-validation experiments, we can notice the drop in performance in class 4. This drop happens

in two of the five folds of the cross-validation. However, it should be taken into consideration that the model classifies the spectra coming from

completely unseen data during its training phase. This can mean that some interpatient variability is more difficult for the model to capture. How-

ever, class mixing also happens mostly between adjacent classes, and the binary class performance is comparable with other results, as shown in

Table 7. This means that even the interpatient variability, which caused the drop in the performance in class 4, does not result in the model dis-

carding the useful spectra as unquantifiable. For the qualitative assessment and the demonstration of the method in practice, we show in Figure 5

the output of the model (trained on the intersection of the twice labeled dataset) on an unlabeled healthy subject that has not been used during

the training steps. In the example, dark blue voxels correspond to the noisy class 1 spectra, while the light blue, yellow, and red voxels relate to

classes 2, 3, and 4, respectively. The image shows an axial slice from the middle region of the cerebrum at the approximate height of the slice

directly above the lateral ventricles. Some of the voxels are highlighted, and the mean spectrum from the highlighted region is shown in the same

figure on the right. Yellow voxels in the middle of the axial slice classified as class 3 are a likely result of a partial volume effect from cerebrospinal

fluid (CSF) or low signal-to-noise ratio (SNR) volume due to RF inhomogeneity of Bþ
1 .

We can be confident in the model's performance on unseen data acquired using the same protocol as the datasets we used during the train-

ing, as demonstrated in the experiment on data from an independent, healthy subject and the cross-validation experiments. However, regarding

the generalisation of our method, it is difficult to say how the model would translate to spectra acquired using different sequences. A solution

would be to expand the training and validation datasets by adding more labeled spectra to account for new sources of variability and to retrain

the model. Additionally, we would like to address the fact that our current dataset is labeled by a single expert and, as a result, our model is essen-

tially reproducing the expert's opinion. While that might arguably be considered a limitation, we want to highlight the rater's expertise, which is

reflected, among other things, in them having analysed clinical routine neuroradiologic MRSI data of more than 4000 patients over the span of

several decades.

Comparison of our method with the existing ones is challenged for several reasons. Firstly, the method was developed on EPSI 3D-MRSI

data acquired with a novel SLOW spectral editing, which introduces unique features to our dataset. Secondly, the comparison is limited by our

definition of classes and the unique four-class framework. Lastly, validating the method on publicly available datasets would also be influenced

by the rater bias. Finally, one additional significant benefit of the proposed model is its computational speed. On an average CPU, the model

can classify 3D MRSI datasets similar to the ones used in this research (which contain about 25,000 spectra) in under a minute. The perfor-

mance is naturally considerably faster when running the model on a GPU, where the same results can be obtained within seconds of

processing time.

5 | CONCLUSIONS

First and foremost, we highlight the proposed approach's uniqueness. While acknowledging the previous works that have attempted similar goals,

we note that this is the first to target SLOW MRSI spectra. Moreover, with the introduction of more labeled data to the training set, this simple

deep-learning approach should deal efficiently with vast MRSI datasets.

We attempted to approach the problem from the four-class perspective, which would distinguish the defined classes of spectral quality suc-

cessfully. As mentioned previously, the aim was to split the usable spectra class into two, thus inferring the extent to which the spectra require

simpler or more complex postprocessing steps for metabolite quantification. It is apparent, though, that such a distinction was hard to make. Both

the intrareader assessment and the model results demonstrate this.

However, we have proven the model's generalisation capabilities in terms of having different subjects and anatomic variability that can influ-

ence the results. It is important to stress that the model does not discard spectra coming from tumor regions and still deems them proper for

quantification purposes.

Another thing to consider is how difficult it would be to adapt the method if something changed in the acquisition protocol of brain MRSI

(e.g., different echo time or other spectral editing). The model could be retrained to incorporate such variations by adding additional labeled data

at the training stages. It allows for the processing of different kinds of spectra as long as the spectral dimensions match the input dimensions of

the network, which can be adjusted with sampling techniques should they not match. The most time-consuming step in this scenario would be to

label the new data manually.

Lastly, we want to highlight the importance of a pipeline such as the one we present for when MRSI becomes an integral part of the clinical

routine. Having a robust quality-control model that can process a large number of spectra in a short time would be very effective in saving time

and guiding the clinician toward valuable spectral information for decision-making. The method presented in this article is being integrated into

the SpectrIm plugin for the jMRUI software.
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