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Purpose: The aims of this work are (1) to explore deep learning (DL) archi-
tectures, spectroscopic input types, and learning designs toward optimal quan-
tification in MR spectroscopy of simulated pathological spectra; and (2) to
demonstrate accuracy and precision of DL predictions in view of inherent bias
toward the training distribution.
Methods: Simulated 1D spectra and 2D spectrograms that mimic an extensive
range of pathological in vivo conditions are used to train and test 24 different DL
architectures. Active learning through altered training and testing data distribu-
tions is probed to optimize quantification performance. Ensembles of networks
are explored to improve DL robustness and reduce the variance of estimates. A
set of scores compares performances of DL predictions and traditional model
fitting (MF).
Results: Ensembles of heterogeneous networks that combine 1D
frequency-domain and 2D time-frequency domain spectrograms as input per-
form best. Dataset augmentation with active learning can improve performance,
but gains are limited. MF is more accurate, although DL appears to be more
precise at low SNR. However, this overall improved precision originates from a
strong bias for cases with high uncertainty toward the dataset the network has
been trained with, tending toward its average value.
Conclusion: MF mostly performs better compared to the faster DL approach.
Potential intrinsic biases on training sets are dangerous in a clinical context that
requires the algorithm to be unbiased to outliers (i.e., pathological data). Active
learning and ensemble of networks are good strategies to improve prediction
performances. However, data quality (sufficient SNR) has proven as a bottleneck
for adequate unbiased performance—like in the case of MF.
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2 RIZZO et al.

1 INTRODUCTION

MR Spectroscopy (MRS) provides a noninvasive means
for extracting biochemical profiles from in vivo tis-
sues. Metabolites are encoded with different resonance
frequency patterns, and their concentrations are directly
proportional to the signal amplitude.1,2 Metabolite quan-
tification is traditionally based on model fitting (MF),
where a parameterized model function is optimized to
explain the data via a minimization algorithm. Metabo-
lite parameters are usually estimated by a nonlinear
least-squares fit (either in time or frequency domain)
using a known basis set of the metabolite signals.3 How-
ever, despite various proposed fitting methods,3–7 robust,
reliable, and accurate quantification of metabolite con-
centrations remains challenging.8 The major problems
influencing the quantitative outcome are: (1) overlapping
spectral patterns of metabolites, (2) low SNR, and (3)
unknown background signals and line shape (no exact
prior knowledge). Therefore, the problem is ill-posed, and
current methods address it with different regularizations
and constraint strategies (e.g., parameter bounds, penal-
izations, choice of the algorithm), with discrepancies in
the results from one method to another.9

Supervised deep learning (DL) utilizes neural net-
works to discover essential features embedded in large
data sets and to determine complex nonlinear mappings
between inputs and outputs.10 Thus, DL does not require
any prior knowledge or traditional assumptions. Given the
success of the method in different areas,10–14 DL has been
introduced into MRS as an alternative to conventional
methods.15–22 Quantification of MRS datasets has been
explored as follows: (1) DL algorithms identify datasets’
features and either help reduce the parameter space
dimension or set reliable starting conditions for the fit (i.e.,
combining knowledge on the physics with DL). It showed
rapid spectral fitting of a whole-brain MRSI datasets.23

(2) Convolutional neural networks (CNNs) have been
deployed to investigate combinations of spectral input of
edited human brain MRS, which showed improved accu-
racy of straight metabolite quantitation when compared
to traditional MF techniques.24 (3) Regression CNNs have
been used to mine the real part of rat brain spectra to
predict highly resolved metabolite basis set spectra with
intensities proportional to the concentrations of the con-
tributions,17 with results comparable to traditional MF
approaches and showing readiness for (pre)clinical appli-
cations.22 (4) Targeting localized correlated spectroscopy
(L-COSY) datasets, DL algorithms have reported faster
data reconstruction and quantification compared to alter-
native acceleration techniques.16

Nevertheless, despite the reported equivalence in
quantitation performance compared to traditional
MF,14,17,22,23 questions arise concerning the robustness of

DL algorithms. A robust use within a clinical MRS context
requires the algorithm to be unbiased also for pathological
spectra. In imaging, DL has shown excellent performance
for classification or segmentation tasks but may suffer
from inherent weaknesses in subsets of representative out-
lier samples.11,25 DL architectures for MRS quantitation
have mostly been investigated for sample distributions of
near-healthy spectral metabolite content. Hence, it can
be suspected that high accuracy and precision are mainly
found when DL is deployed for new entries of similar
near-normal types. However, inaccurate estimates may
result for tests with atypical datasets.26 Here, strongly vari-
able metabolite concentrations that vary uniformly and
independently over the entire plausible parameter space
are used in the training set. This mimics the full range
from healthy to strongly pathological spectra, that is, the
full complexity of a clinical setup.

MRS signals are acquired in time domain but viewed in
frequency domain. Traditional MF works in either of the
two equivalent domains, and fit packages may allow the
user to switch from one to the other for fitting and viewing.
However, DL architectures for MRS quantification have
mainly explored the frequency domain, mostly motivated
by the reduced overlap between the constituting metabo-
lite signals. Spectrograms18 present an extension into a
simultaneous time/frequency domain representation and
offer a 2D signal support that matches the input format for
the original usage of CNN algorithms in computer vision.
This work introduces a dedicated high-resolution spec-
trogram calculation focusing on signal-rich areas in both
domains to be used as input for different CNN architec-
tures. They are compared to other inputs and networks,
inspired by previous MRS publications. Specifically, 24 net-
work designs are investigated with differing input–output
dataset types with a combined focus on depth (i.e., num-
ber of layers) and width (i.e., number of nodes/kernels)
of the networks. This focus was motivated by the fact
that the exploitation of spectrograms in deep learning
has shown top-notch performance for speech and audio
processing when deploying architectures with few lay-
ers and large convolutional kernels.27–29 Moreover, wide
and shallow networks are more suitable to detect simple
and small but fine-grained features. In addition, they are
easier and faster to train.30 Network linearity (i.e., acti-
vation function) and locality (i.e., kernel size) are also
investigated.

Besides investigating multiple architectures and input
formats, two established main strategies for improving the
outcome of predictions are also explored: active learning31

(data augmentation for critical types of spectra) and ensem-
ble learning32,33 (combination of outputs from multiple
architectures).

Active learning can improve labeling efficiency,31,34,35

where the learning algorithm can interactively select a
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RIZZO et al. 3

subset of examples that needs to be labeled. This is an
iterative process where (1) the algorithm selects a sub-
set of examples; (2) the subset is provided with labels;
and (3) the learning method is updated with the new
data.36 Uncertainty sampling37 is a specific strategy used in
active learning that prioritizes selecting examples whose
predictions are more uncertain (i.e., targeted data aug-
mentation). Because these cases are usually close to the
class separation boundaries, they contain most of the infor-
mation needed to separate different classes.38,39 In differ-
ent applications, uncertainty sampling has been shown to
improve the effectiveness of the labeling procedure signif-
icantly.34,35,37,40

DL algorithms are sensitive to the specifics of the train-
ing.41 Hence, they usually find a different set of weights
each time they are trained, producing different predic-
tions.10 A successful approach for reducing the variance
is to train multiple networks instead of one and combine
their predictions.41 This is called ensemble learning, where
the model generalization is maintained, but predictions
improve compared to any of the single models.33 From a
range of different techniques,42–44 here, stacking of models
is implemented.32

To evaluate pros and cons of all these approaches, in
silico ground truth (GT) knowledge is used (and hence no
in vivo data was included in this evaluation) to assess per-
formances via a dedicated set of metrics based on bias and
SD. The CNN-predicted distributions of concentration are
then compared to those from traditional MF. Furthermore,
to emphasize the analysis at the core of the quantifica-
tion task, the focus is placed on an idealized simulated
setting with typical single-voxel spectra that have been pre-
processed to eliminate phase as well as frequency drifts.3
This assumption aims at (1) freeing the MF algorithm
from problems with local 𝜒2 minima and (2) designing DL
models optimized for the quantification task only.

2 METHODS

2.1 Simulations

This work is based on in silico simulations. A dataset of
22,500 entries was randomly split into 18,000 for training,
2000 for validation, and 2500 for testing. Larger dataset
sizes are also explored, see section 2.4.

2.1.1 MR spectra

Brain spectra were simulated using actual RF pulse shapes
for 16 metabolites at 3 T using Vespa45 for a semi-LASER46

protocol with TE = 35 ms, a sampling frequency of 4 kHz,
and 4096 datapoints.

Further specifics of the simulations include: (1) Voigt
line shapes, (2) metabolite concentration range, (3) addi-
tion of macromolecular background signal (MMBG),
(4) noise generation, and (5) spectrum or spectrogram
calculation.47 Metabolite concentrations vary indepen-
dently and uniformly between 0 and twice a normal
reference concentration for healthy human brain.1,48–50

Maximal concentrations in mM units—NAA 25.8, tCr
(1:1 sum of creatine+ phosphocreatine spectra): 18.5,
mI (myo-inositol): 14.7, Glu (glutamate): 20, Glc (glu-
cose): 2, NAAG (N-acetylaspartylglutamate): 2.8, Gln (glu-
tamine): 5.8, GSH (glutathione): 2, sI (syllo-inositol):
0.6, Gly (glycine): 2, Asp (aspartate): 3.5, PE (phos-
phoethanolamine): 3.3, Tau (taurine): 2, Lac (lactate):
1, and GABA (γ-aminobutyric acid): 1.8. The con-
centration for tCho (1:1 sum of glycerophosphoryl-
choline+ phosphorylcholine spectra) ranges from 0 to
5 mM to mimic tumor conditions.51 A constant down-
scaled water reference (64.5 mM) is added at 0.5 ppm
to ease quantitation. Metabolite T2s in ms (and hence
Lorentzian broadening) are fixed to reference values from
literature—tCr (CH2): 111, tCr (CH3): 169, NAA (CH3):
289, and all other protons: 185.49,52,53,54 MMBG content,
shim, and SNR mimicked in vivo acquisitions and varied
independently and uniformly (time-domain water refer-
enced SNR 5–40, Gaussian shim 2–5 Hz, MMBG ampli-
tude ±33%). The MMBG pattern was simulated as a sum
of overlapping Voigt lines as reported in Refs. 49 and 55
(Figure 1A).

2.1.2 Spectrograms

A spectrogram is a complex 2D representation of a spec-
trum, where frequencies vary with time: Every image
column represents the frequency content of a particular
time portion of the FID. Time information is binned along
every row of the image. It is calculated via application of a
short-time Fourier transform,18 where, depending on the
size of the Fourier analysis window, different levels of fre-
quency and time resolution can be achieved. A long win-
dow size modulated via zero-filling combined with a small
overlap interval is chosen to increase frequency resolution
and minimize the expense of time resolution (Figure 1B).
Diagonal downsampling is designed to reduce the spec-
trogram size, keeping the original resolution grid at least
as part of the time-frequency information on consecutive
bins and reducing the spectrogram size (Figure 1C) to
allow reasonable computation time for a CNN architecture
(i.e., 128 frequency bins× 32 time bins) (Figure 1D).
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4 RIZZO et al.

F I G U R E 1 Illustration of input formats. (A) Samples of spectra, real part, view of the central 1024 points. (B) Spectrogram
computation via short-time Fourier transform. Specifically, in datapoints units (corresponding to time and frequency resolution of 0.25 ms
and 1 Hz, respectively): S = 4096, Z = 6000, W = 1024, Ov = 1000, ZW = 1024. Zero-filling is tuned to select the relevant part of the spectrum
with W = 1024 datapoints. (C) (Left) Arrangement on a 2D frame of short-time Fourier transforms over time bins. Color code reference to
windows in part (B). A truncation at 32 bins (200 ms) in time domain is used to limit the matrix space, given an almost complete T∗2 relaxation
of the FID at that point. (C) (Middle) Diagonal undersampling reduces the vertical (frequency domain) matrix size. Size reduction is about a
factor N = 8. (C) (Right) Undersampled spectrogram: 128× 32 datapoints. (D) Example of constructed spectrogram matrix. FFT, fast Fourier
transform; S, support of the signal; Ov, window overlap; W, Hamming window size; Z, zero filling; ZW, truncated support of zero-filled FFT.
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RIZZO et al. 5

2.2 Design and training of CNN
architectures

A total of 24 different CNN architectures combined
with different spectroscopic input representations are
compared for MRS metabolite quantification. Current
state-of-the art networks have been taken as reference
models and adapted to the purpose and datasets used.

Scripts were written in Python56 using Keras library57

on a Tensorflow58 backend. Code ran on either of three
graphic-processing units (GPUs; NVIDIA [Santa Clara,
USA] Titan Xp, Titan RTX, or GeForce RTX 2080 Ti) or
Google [Mountain View, USA] Colaboratory.59 Samples
of the design are reported in Figure 2. Overall network
designs are given in Table S1; Figures S1, S2, S3, S4, S5;
and Text S1.

2.2.1 Architectures for straight numeric
quantification of concentrations

A total of 22 architectures were fed with 1D (spectra) or
2D (spectrograms) input and mapped as output a vector
of 17 normalized concentrations (i.e., in [0–1] interval)
of 16 metabolites and the water reference, as listed in
Table S1. Networks fed with 1D input exploit one chan-
nel with truncated spectra of 1024 datapoints from −0.5
to +6 ppm with concatenated real and imaginary parts
(i.e., 2048× 1× 1 datapoints, Figure 2A). Networks fed
with 2D input can either be configured in two chan-
nels (real and imaginary components of the spectrogram,
32× 128× 2 datapoints) or one channel (real and imag-
inary components concatenated, 64× 128× 1 datapoints,
Figure 2B).

Five networks receive 1D input: two deep convolu-
tional neural networks (DeepNet),60 two residual networks
(ResNet)61 and one inception network (InceptionNet).62–64

This work investigates deep and shallow architectures
either exploiting large or small convolutional kernel sizes.
A total of 10 networks receive two-channel spectrograms
as input. Given the limited size of the input FOV, the archi-
tecture is limited to be shallow (i.e., pooling operations to
downsampling features directly following a convolutional
layer are limited). However, a deeper architecture with
multiple convolutional operations with sparse pooling is
also compared. A further comparison is performed regard-
ing the optimal activation function, comparing batch
normalization+ rectified linear unit (ReLU) versus expo-
nential linear unit (ELU).65,66 Seven networks receive
one-channel spectrograms as input. With this configura-
tion, deeper architectures are explored: two DeepNets, four
ResNets, and one InceptionNet.

Architectures are analyzed either in a preconfig-
ured parameter state or in a parameter space that had been
optimized via Bayesian hyperparameterization.67 The opti-
mization procedure is given in Text S1. In addition, to limit
biases around zero for small concentrations,68 all network
designs are characterized by a final layer with linear acti-
vation, allowing the prediction of negative concentrations.

2.2.2 Architectures for estimation
of metabolite base spectra

1D input (real part only, 0–4.7 ppm, 1406× 1× 1 data-
points after zero-filling of original FID) was used to input
and output to/from the CNNs. U-Net architectures69 anal-
ogous to those of Ref. 22 are implemented here to map
the ideal high-resolved noiseless base spectrum of a tar-
get metabolite as output. CNNs are trained one by one
for each metabolite such that each CNN filters out signals
only from the designated target metabolite. A base U-Net
design (Figure 2C) is optimized for individual metabolites
as follows:

1. UNet-1DR-hp : A total of 17 different networks with the
same base architecture but adapted weights for each
metabolite;

2. Unet-1DR-hp-met: A total of 17 different networks with
adapted Bayesian-optimized architecture and weights
for each metabolite.

Configurations are reported in Figure S5. First,
metabolite concentrations are evaluated by feeding an
input spectrum to the 17 metabolite-specific CNNs. Inte-
gration of the predicted metabolite base spectrum is
then referenced to the integrated water reference to pro-
duce concentrations for a fully automated quantification
pipeline.22

2.2.3 Training

Training and validation sets were randomly assigned for
training the CNN on a maximum of 200 epochs with
batch normalization of 50. The adaptive moment estima-
tion algorithm (ADAM)70 was used with dedicated starting
learning rates for each network.71,72 The loss function was
the mean-squared error (MSE). Visualization of training
and validation loss over epochs combined with imple-
menting an early-stopping criterion monitoring minimiza-
tion of validation loss with patience= 10 has been used for
tuning the network parameter space.57 Training time and
test loss function are listed in Table S1.

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29561 by U

niversität B
ern, W

iley O
nline L

ibrary on [20/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 RIZZO et al.

F I G U R E 2 Examples of three CNN structures and schematic input–output relationships. (A) and (B) depict architectures for straight
quantification, with metabolites relative concentrations as output. (C) depicts a U-Net architecture similar to what was proposed in Ref. 22
for NAA basis set prediction. Input details: (A) Deep neural network with 1D-spectral input from concatenated real and imaginary parts (-1D).
(B) Shallow neural network with 2D-spectral input from two-channel spectrograms (-2D2c). (C) U-Net architecture fed with only the real part
of a spectroscopic input (-1DR). CNN, convolutional neural network.
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RIZZO et al. 7

2.2.4 Evaluation

Regression plots mapping GT concentrations versus CNN
predicted concentrations from the whole test set are taken
as indicators of the network’s prediction performance.
Four scores are defined:

• a (slope of the regression line): must be close to 1 for
ideal mapping of concentrations over the whole range
of simulated metabolite content;

• q (intercept of the regression line, mM): must be close
to 0 to minimize prediction offsets/biases;

• R2 (coefficient of determination): must be close to 1 to
assess full model explanation of the variability of the
data;

• 𝜎 (RMS error [RMSE] of prediction vs. GT, mM): as
low as possible. However, expected to be comparable to
Cramer Rao Lower Bounds (CRLBs) from MF.73

To easily compare different networks and input setups
quantitatively in the Results section, these scores or com-
binations thereof have been used. The combinations are
referred to as concise scores: a ⋅ R2 as measure of linearity,
𝜎 to compare with CRLBs. q was excluded because it is
mostly negligible.

2.3 Influence of inclusion of water
reference peak

For the evaluation of the potential benefit of includ-
ing a water reference peak, two slightly different
ShallowNet-2D2c-hp networks are compared. Network A
outputs 17 neurons (16 metabolites and water), whereas
network B outputs 16 neurons only (no water output).
Two adapted datasets are used for the investigation, one
with (dataset A), and one without (dataset B) downscaled
water reference at 0.5 ppm. Metabolite concentrations are
calculated for both cases (assuming known water content
in case A). Networks have been independently trained

five times to monitor network variability over multiple
trainings.

2.4 Active learning and dataset size

In this part, data augmentation techniques to smartly gen-
erate training sets are investigated. Subsets with 5000 new
entries of the dataset where predictions scored worst are
defined: specific subsets of spectrally weakly represented
metabolites in either very low or very high concentra-
tions and spectra with low SNR. New weighted datasets
of 25,000 entries (20,000 training – 5000 validation set)
or 40,000 entries (35,000 training – 5000 validation set)
are generated (example in Figure 3, full description in
Figure S6). Datasets with matching size and the testing
set are kept unchanged from the previous simulation,
thus with uniformly distributed concentrations and SNR.
ShallowNet-2D2c-hp is selected as architecture and trained
10 times with a given augmented training set to minimize
training variance.

Complementarily, given the network trained on a uni-
form span of concentrations, active learning is inves-
tigated in the testing phase on three different test
sets where concentrations are clipped to a progres-
sively smaller range of 20%–80%, 20%–80% with SNR
>20, and 40%–60% concentration range relative to the
training set.

2.5 Ensemble of networks

In this section, ensembles of networks are implemented
via stacking of models.32 This consists of designing a DL
architecture called stacking model (a multilayer percep-
tron (MLP) with two hidden layers is selected for this
case) that will take as input the combination of a given
number of independently pretrained models. The stacking
model aims at weighting predictions from single models.
It is trained using the same training and validation sets

F I G U R E 3 Examples of dataset
augmentation techniques representing
sample distributions for two metabolites
(NAA and GABA). (A) Dataset size
increment with uniformly distributed
concentrations. (B) Active learning weighted
on higher occurrences of low and high
concentrations for all metabolites. GABA,
γ-aminobutyric acid.
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8 RIZZO et al.

F I G U R E 4 Illustration of ensemble
learning. (A) Stacking model concept. (B)
Examples of considered models: the
stacking model consists of the two-layer
MLPs (i.e., first layer with 1000 neurons,
second layer with 500 neurons). HybridEns:
an ensemble of two different networks (-2n).
In this study, ShallowNet-2D2c and
ResNet-1D are combined with two or 10
networks. ShallowEns: an ensemble of five
different networks (-5n) of the same type,
specifically ShallowNet-2D2c. HybridEns,
hybrid ensemble; MLP, multi-layer
perceptron; ResNet, residual network;
ShallowNet, shallow network.

used to train single models while keeping the weights of
the pretrained input models fixed. Three different ensem-
bles are investigated: ShallowEns-5n groups five identi-
cal ShallowNet-2D2c-hp architectures, whereas HybridEns
tests heterogeneous inputs grouping either two or 10 dif-
ferent networks (ShallowNet-2D2c-hp and ResNet-1D-hp)
(Figure 4).

2.6 Model fitting

Spectra are fitted using FiTAID7 given its top performance
in the ISMRM fitting challenge9 and to be expected for the
spectra as used in the current setup (in particular, with-
out undefined spurious baseline). The model consists of
a linear combination of the metabolite base spectra with
Voigt lineshape, where the Lorentzian component was
kept fixed at the known GT value. The areas of the metabo-
lites are restricted in a range corresponding to [−0.5 +
2.5 𝜇], where 𝜇 is the average concentration in the test-
ing set distribution (i.e., the normal tissue content). These
bounds mimic the effective boundaries of the DL algo-
rithms. CRLBs are used as a precision measure74 and are
considered for three subgroups of the testing set (high
[SNR > 28.4], medium [16.7< SNR< 28.4], and low [SNR
< 16.7] relative SNR, respectively).

3 RESULTS

3.1 S1Metabolite quantification
referenced to the downscaled water peak

As illustrated for three different networks, Figure 5 shows
that CNN predictions perform better if the spectra are

referenced to a downscaled water peak: Regression slope
a and R2 are closer to 1; 𝜎 is appreciably lower. Moreover,
the spread of the scores is on average reduced, display-
ing improved stability over multiple trainings. Extended
results are presented in Figures S7 and S8.

3.2 Network design

Figure 6 reports CNN predictions versus GT values of
a ResNet-1D-hp architecture for nine metabolites (see
Figures S9 and S10 for extended results on 16 metabo-
lites or different CNN architecture). Distributions of GT
and predicted values are displayed for the test set (as
for all results). Predictions relate very well to the GT
for well-represented metabolites (top row). However, for
metabolites with lower relative SNR, predicted distribu-
tions of concentrations tend to be less uniform and are
biased toward average values of the GT distributions.
Thus, concentrations at distribution boundaries are sys-
tematically mispredicted, particularly for low SNR. This is
reflected in lower a and R2 values and higher𝜎. Figures S11
and S12 include a comparison of multiple networks via bar
graphs (which are ill-suited to express the systematic bias)
and a plot of distributions of predictions.

The performance of all networks and fitting models for
nine metabolites is reported in Figure 7 via a 2D plot of
the concise scores a ⋅ R2 and 𝜎 (see Figure S13 for extended
results on 16 metabolites). Top performance corresponds
to the top-left corner where a ⋅ R2 approaches 1 and 𝜎 is
low. Metabolites can roughly be divided into three groups:

1. Well-represented metabolites: NAA, tCho, tCr, mI, Glu
with averaged DL scores a ⋅ R2

> 0.80 and 𝜎 < 15%, as
well as MF scores a ⋅ R2

> 0.95 and 𝜎 < 10%;
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RIZZO et al. 9

F I G U R E 5 Boxplot statistics of the
prediction scores for four metabolites
showing the effect of water referencing.
Results reported for ShallowNET-2D2c-hp,
ResNet-1D-hp, and U-Net-hp trained and
tested on datasets with (red, black, or blue)
and without (yellow, gray, or green) water
reference (mean values plotted in orange).
On average, water referencing yields better
performance with higher coefficients a and
R2 as well as lower offset q and lower RMSE
𝜎. RMSE, RMS error.

2. Medium-represented metabolites: Glc, NAAG, Gln,
GSH with averaged DL scores 0.50 < a ⋅ R2

< 0.75 and
20% < 𝜎 < 35%, as well as MF scores 0.75 < a ⋅ R2

<

0.90 and 15% < 𝜎 < 35%;
3. Weakly represented metabolites: sI, Gly, Asp, PE, Tau,

Lac, GABA with averaged DL scores a ⋅ R2
< 0.40 and

average 𝜎 > 35%, as well as MF scores a ⋅ R2
< 0.65 and

𝜎 > 35%.

Overall, multiple DL networks perform similarly, but
some general differences are noteworthy. Optimized spec-
trogram representation via two channels combined with
a shallow architecture (i.e., dark blue squares) is found to
be well suited for MRS quantification, showing mostly bet-
ter performances than alternative deeper designs (i.e., light
blue, pink, and gray squares), with one-channel designs
(diamonds) or 1D spectra as signal representation (cir-
cles). Benefits are evident for medium and weakly rep-
resented metabolites. Performances of direct quantifica-
tion and two-step quantification via base spectrum pre-
diction followed by integration (stars) are similar. MF is
found superior to DL for all medium- and weakly repre-
sented metabolites with significant average improvements
for a ⋅ R2

. However, 𝜎 tends to be higher for many cases.
A more detailed presentation of performance is given in
Figures S14 and Text S2.

Figure 8 displays plots of prediction errors (i.e.,
𝛥 = prediction−GT) and their spread 𝜎 as a function

of SNR and shim for tCho, NAAG, and sI. Prediction
uncertainties increase with noise level approxi-
mately linearly with 1/SNR and reach a plateau for
weakly represented metabolites when the spread
represents essentially the whole training range. No
dependence on shim is apparent for the investigated
range.

3.3 Dataset size, active learning,
and ensembles of networks

Figure 9 reports on performance improvements by active
learning in training phase and dataset sizing (part 9A) as
well as by using an ensemble of networks (part 9B) for
four metabolites as reflected by concise scores. Outcomes of
emulated active learning approaches in limiting the test-
ing sets are illustrated through regression plots for Gln in
Figure 9C. Detailed comparisons for 16 metabolites are
given in Figure S15, Table S2, Table S3, Figure S16, and
Table S4.

3.3.1 Dataset size

The performance showed moderate improvements for
most metabolites when dataset size was increased from
25,000 to 40,000 samples (Figure S9).
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10 RIZZO et al.

F I G U R E 6 Maps and marginal distributions of predictions versus GT for a ResNet_1D_hp network. Results for nine metabolites are
arranged in approximate decreasing order of relative SNR from top left to bottom right. RMSE (𝜎) is reported as an overall measure of
variability. A regression model (y = ax+ q) is also provided to judge prediction quality. R2 measures how well a linear model explains the
overall data. Mispredictions can be monitored either by a decrease in a and R2 or by visual biases in distributions of predictions (bell shape).
The prediction bias toward the mean value of the training distribution is evident for medium- to weakly represented metabolites (e.g., sI, Asp,
PE, Tau, Lac). On average, metabolites with lower SNR yield higher errors (q and 𝜎 in mM units). Further metabolite results are shown in
Figure S11 and results for ShallowNet-2D2c-hp in Figure S15. GT, ground truth; Asp, aspartate; Lac, lactate; PE, phosphoethanolamine; sI,
syllo-inositol; Tau, taurine.
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RIZZO et al. 11

F I G U R E 7 Concise scores presented to compare quantification quality for different networks and input setups (all with water
reference). Network identification is chosen as follows: NetworkType-InputType-properties. 1c, 1 channel; 1D, spectra; 2D, spectrograms;
f, factorized convolution; hp, Bayesian hyperparameterized architecture; ks3, convolutional kernel size = 3; R, exploiting ReLU activations;
rb, downsampling via reduction blocks; x2, double convolution before MaxPooling.

3.3.2 Active learning

Dataset augmentation to favor training with combina-
tions of low or high concentrations of weakly repre-
sented metabolites (see Figure S6B–S6D) does not sub-
stantially improve performance (Figure 9A, Figure S15,

Table S2). Mild improvements (<6% for a, q, R2 and 𝜎)
are seen for GABA and sI, respectively, when exploit-
ing metabolite-specifically augmented datasets (GABA-w,
sI-w). Increased dataset size combined with data augmen-
tation to favor high and low concentrations of different
metabolites (GSPT-w) moderately improves performances
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12 RIZZO et al.

F I G U R E 8 Illustration of the SNR and shim dependence of prediction quality. The CNN’s prediction error Δ (prediction – GT) and the
RMSE (𝜎) are plotted as a function of SNR (top row) and shim (bottom row) for four metabolites. Results reported for network type
ShallowNet-2D2c-hp with water reference. RMSE is averaged over bins with an equal number of samples. Bins’ width increases for low SNR
values. Errors scale approximately linearly with 1/SNR and are insensitive to different shim setups.

for the augmented metabolites (GABA, sI, PE, Tau). It
also extends mild improvements to medium- to weakly
represented metabolites that have not undergone data aug-
mentation (e.g., Lac, Gly, Gln). A dataset that is strongly
weighted toward extreme combinations of low or high
concentration for all metabolites (fully-w) or a dataset
weighted toward low SNR (SNR-w) deteriorated perfor-
mances.

Clipping the test set to 20%–80% or 40%–60% of the
concentration range in training renders improved per-
formances (on average a+ 4.5%, q−10.2%, 𝜎 −23.9% and
a+ 4%, q−37.5%, 𝜎 −36.2%, respectively), which is even
enhanced further when the testing set includes sam-
ples with higher SNR (on average a+ 15.4%, q−45.4%,

𝜎 −36.2%). Given the limited range on the y-axis, R2 is less
representative (Figure 9C, Table S3).

3.3.3 Ensemble of networks

Ensembles of Bayesian-optimized networks show consis-
tent and relevant a ⋅ R2 improvements for medium- to
weakly represented metabolites without deteriorating per-
formance for well-defined metabolites. A hybrid ensem-
ble outperforms the ensemble of networks of the same
type. The performance of the ensemble increases with
the number of combined networks (Figures 9B, S16)
(Table S4).
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RIZZO et al. 13

F I G U R E 9 Outcome comparison for the influence of dataset size, active learning approaches, and ensemble of networks (all with
water reference). Concise scores evaluated on the same testing set for tCr, Glu, sI, and GABA in different setups: (A) Dataset size and active
learning on the training set (for abbreviations alluding to types of active learning extensions, see Results 3.3.2). (B) Ensemble of networks (for
naming, see Figures 3 and 4). Ensemble models improve predictions for weakly to medium-represented metabolites without worsening the
already good single-network performances for well-represented metabolites (higher a ⋅ R2 and lower 𝜎). (C) Active learning on the testing set
monitored via maps and marginal distribution of predictions versus GT for glutamine. Improvements for clipped concentration ranges can be
monitored via scores. However, the 40%–60% interval shows a significant number of outliers. Prediction distributions are still far from being
uniform. GABA, γ-aminobutyric acid; Glu, glutamate; sI, syllo-inositol; tCr, total creatine.

3.4 CNN predictions versus model
fitting estimates

A general juxtaposition of CNN and MF performance is
contained in Figure 7. In Figure 10, detailed results are pre-
sented for two metabolites in the form of regression plots
for ShallowNet-2D2c-hp and MF with FiTAID. In addition,

the estimated CRLBs from MF are displayed and then com-
pared in subgroups of SNR with the variance found in MF
estimates and CNN predictions.

Area-constrained MF shows biases at the parameter
boundaries for weakly represented metabolites (e.g., Asp).
However, traditional MF outperforms quantification via
DL: regression lines show less bias (a and q), and the
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14 RIZZO et al.

F I G U R E 10 Comparison of performance for deep learning and model fitting reported for two illustrative metabolites. (Left) DL
prediction versus GT mapped via ShallowNet-2D2c-hp with water reference. (Middle) Estimates versus GT for the MF approach. (Right)
CRLBs evaluated on the fitted estimates. Histograms on the right group three subsets of an equal number of samples with different levels of
SNR—group 1: SNR< 16.7, group 2: 16.7< SNR< 28.4, and group 3: SNR> 28.4 displaying the distribution of estimated CRLBs. For group 1,
given the skewness of distribution, mode (Mo) and mean (𝜇) values are reported. For comparison, RMSEs (𝜎s) are reported as estimated for
each SNR group for both DL and MF. DL’s RMSEs (𝜎s) underestimate CRLBs for low relative SNR metabolites.

distribution shape of estimates is closer to a uniform pat-
tern within the GT range. RMSEs (𝜎s) are higher in the
case of MF for medium- to weakly represented metabo-
lites (e.g., Asp) but lower for well-defined metabolites
(e.g., Glu) (as formerly noted in Figure 7). Consequently,
although 𝜎s of MF are bigger than the CRLBs estimated for
their SNR reference group, 𝜎s of DL overestimate CRLBs
for well-defined metabolites and underestimate CRLBs for
weakly represented metabolites.

4 DISCUSSION

Quantitation of brain metabolites using deep learning
methods with spectroscopy data in 1D, 2D, and a com-
bined input format was implemented in multiple network
architectures. The main aim of the investigation was to
compare the core performance of quantification in an ide-
alized setting of simulated spectra. In fact, the analysis of
the optimal performance of both, MF and DL, may other-
wise be blurred by additional experimental inaccuracies or

artifacts from actual in vitro or in vivo spectra. Moreover,
these nuisance contributors may be tackled in separate
traditional or DL preprocessing steps that are beyond the
current analysis. Many of the methods proved successful in
providing absolute concentration values even when using
a very large concentration range for the tested metabolites
that goes way beyond the near-normal range that has often
been used in the past. In addition, different forms of net-
work input were tested, including a specifically tailored
time-frequency domain representation and a downscaled
water peak for easing of quantification. Whereas data aug-
mentation by active learning schemes showed only modest
improvements, ensembles of heterogeneous networks that
combine both input representation domains improve the
quantitation tasks substantially.

Results from DL predictions were compared to esti-
mates from traditional MF, where it was found that
MF is more accurate than DL at high and modest rela-
tive noise levels. MF yields higher variance at low SNR,
with estimated concentrations artificially aggregated at
the boundaries of the fitting parameter range. Predictions
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RIZZO et al. 15

obtained with DL algorithms delusively appear more
precise (lower RMSE) in the low SNR regime, which
may misguide nonexperts to believe that the DL predic-
tions are reliable even at low SNR. However, these pre-
dicted concentrations are strongly biased by the dataset
the network has been trained with. Hence, in case of
high uncertainty (e.g., metabolites with low relative SNR
or present in concentrations at the edge of the param-
eter/training space), the predicted concentration tends
toward the most likely value: the average value from the
training set.

4.1 Forms of input to networks

Previously, 1D spectra have mostly been used as input
for DL algorithms. Here, they have been compared and
combined with 2D time-frequency domain spectrograms
that had explicitly been designed to be of manageable
size while retaining those areas of the high-resolved stan-
dard spectrogram that contain the most relevant informa-
tion, that is, rich in detail in frequency domain to dis-
tinguish overlapping spectral features but also maintain-
ing enough temporal structure to characterize T∗2 signal
decay. This comes at the cost that the spectrogram cre-
ation cannot be reversed mathematically. However, this
is irrelevant when serving as input to a DL network. It
was found that this tailored time-frequency representation
as input in combination with a shallow CNN architec-
ture performs best and outperforms the use of traditional
1D frequency-domain input for straight quantification or
for metabolite basis spectrum isolation with subsequent
integration. Furthermore, DL quantitation performance
improved upon the inclusion of a downscaled water peak
for reference, likely solving scaling issues if no reference is
provided.

4.2 Active learning

Active learning has been explored by extending the train-
ing dataset with cases that appeared challenging to pre-
dict in the original setup. In particular, new training data
with nonequal distribution of metabolite concentrations
have been used with a predominance of single or mul-
tiple metabolites at low or high concentrations. None of
these trials led to substantial improvements, although it
might be helpful if specific metabolites are targeted pri-
marily. Such data augmentation for all metabolites simul-
taneously even deteriorated the overall network perfor-
mance. This can be understood given that augmentation at
the border of the concentration range inherently leads to
an underrepresentation of intermediate cases, which are

equally relevant for the overall performance. Extending
the size of the training set even further in an unspecific
manner appears to still yield modest improvements.75 In
addition, an unconventional way of active learning was
probed by using unequal dataset ranges in training and
testing by limiting testing on the central portion of the
training range. This setup clearly ameliorated some of the
issues at the edges of the testing range found in the typical
setup. This approach was only implemented by reducing
the test range rather than expanding the training range,
which would yield better comparable outcome scores (e.g.,
R2). However, expanding the training range to negative
concentrations may be questionable.

While data augmentation with a bigger proportion of
low SNR spectra leads to worse performance, the theo-
retical prediction limits for good SNR data are probed in
the noiseless scenario in which training and testing are
run with GT data. Example results for a ShallowNet archi-
tecture are reported in Figure S17 for NAA, GSH, and
Lac. This, combined with the results discussed, suggests
that the bottleneck that limits higher prediction perfor-
mances is SNR, just like in traditional MF, regardless of
the implementation of state-of-the-art networks, network
optimization, or dataset augmentation. It thus reflects lim-
itations in clinical applications where high enough SNR
is just not available. According to this study, DL cannot
do miracles unless one accepts the bias toward training
conditions.73

4.3 Ensemble of networks

An ensemble of networks has been implemented, and it
shows improvements for quantifying metabolites. A com-
bination of networks is less sensitive to the specifics of
the training and helps reduce the variance in the predic-
tions. Furthermore, ensembles of networks where mul-
tiple noise-sensitive predictions are weighted are more
robust to noise. However, even the thus optimized net-
works underperform in comparison to MF. For MF, CRLBs
clearly indicate limits for the confidence in the fit results.
For DL, including the optimized ensemble of networks,
such limits can only vaguely be deduced from the distri-
butions of predicted values with the major danger of bias
toward training data norms.76,77 The CRLB would pro-
vide good guidance for the valid range of DL predictions
as well—although of course they are not readily available
without the model. New tools to estimate precision and
replace CRLB in the case of DL76,77 still have to prove their
value in practice. The situation will be different again if the
DL quantification is trained to include cleaning of spectra
from artifacts (ghosts, baseline interference) where CRLBs
are not available.
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16 RIZZO et al.

4.4 Low SNR regime

Both MF and DL show lower reliability in quantifying
metabolites in the low SNR regime. Clear-cut SNR lim-
its for validity of concentration estimates are not avail-
able, neither for MF nor for DL, although SNR values
are often indicated as measure of spectral quality. While
CRLBs provide a widely used and easy-to-interpret relia-
bility measure that includes the influence of SNR, a sim-
ilar widely accepted concept does currently not extend
to DL approaches.77 Obviously, a SNR threshold for DL
reliability would have to be metabolite-SNR specific, but
already the definition of a meaningful metabolite-specific
SNR would be cumbersome given that peak-splitting pat-
terns and number of contributing protons as well as
lineshape introduce ambiguity. On top, such a metabo-
lite SNR would depend on the estimated metabolite con-
tent, whose reliability is at stake. Therefore, just like for
MF, global or metabolite-specific SNR will not be infor-
mative enough. An uncertainty measure is needed that
is based on the predictions and noise distribution but
also integrating the uncertainty propagation of the DL
model prediction78,79 (like the inverse of the Fisher infor-
mation matrix used in the CRLB definition74). Despite
flourishing literature,80,81 addressing uncertainty estima-
tion as a complementary tool for DL interpretability, a
full-scale analysis of the robustness and reliability of such
models is still challenging.82–84 First attempts to extend
these concepts in DL for MRS quantification are just
subject of recent investigations76,77 but far from general
acceptance.

4.5 Limitations

The current investigation focused on probing multiple DL
techniques and input forms for a full range of metabo-
lite concentrations but a limited range of spectral quality.
In particular, the shim remained in a broadly acceptable
range, no phase or frequency jitter was considered, and
no artifactual data was included. Such features could have
been integrated in the current setup to arrive at a more
realistic framework. However, the core of the findings (per-
formance of the actual quantification step) is expected to
remain in place. In addition, it is recommended to add
separate preprocessing steps to prepare the data for the
presented algorithms rather than to combine processing
and quantification in a single process.3 They could be real-
ized in the form of dedicated DL networks, such as those
proposed for phase and frequency drift corrections,20,85,86

and stacked before the quantification model. This would
also ensure the essential gain in speed expected from DL
quantification models.

Direct comparison with previously proposed suc-
cessful DL quantification implementations like Ref.
22 was not possible or meaningful for lack of open
access network details and differences in the considered
spectra.

Our particular implementation used to create spectro-
grams was optimized to maintain relevant resolution but
downweights the initial part of the FID (initialization of
Hamming window). CNN inputs may thus not be fully sus-
ceptible to changes in broad signals. Alternative recipes
with, for example, prefilled filters or circular datasets, were
not explored.

Furthermore, active learning has been explored for a
single network type and could in principle be more bene-
ficial for other networks or types of input than what has
been found here.

5 CONCLUSIONS

Quantification of MR spectra via diverse and optimized DL
algorithms and using 1D and 2D input formats have been
explored and have shown adequate performance as long as
the metabolite-specific SNR is sufficient. However, as soon
as SNR becomes critical, CNN predictions are strongly
biased to the training dataset structure.

Traditional MF requires parameter tuning and
algorithm convergence, making it more time consuming
than DL-based estimates. On the other hand, we have
shown that ideally (i.e., with simulated cases) and sta-
tistically (i.e., within a variable cohort of cases), it can
achieve higher performances when compared to a faster
DL approach. DL does not require feature selection by
the user, but the potential intrinsic biases at training set
boundaries act like soft constraints in traditional mod-
eling,9 leading estimated values to the average expected
concentration range, which is dangerous in a clinical con-
text that requires the algorithm to be unbiased to outliers
(i.e., pathological data).

Active learning and ensemble of networks are attrac-
tive strategies to improve prediction performances. How-
ever, data quality (i.e., high SNR) has proven as bottleneck
for adequate unbiased performance.
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9. Marjańska M, Deelchand DK, Kreis R, et al. Results and inter-
pretation of a fitting challenge for MR spectroscopy set up by the
MRS study group of ISMRM. Magn Reson Med. 2022;87:11-32.
doi:10.1002/mrm.28942

10. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature.
2015;521:436-444. doi:10.1038/nature14539

11. Lundervold AS, Lundervold A. An overview of deep learning in
medical imaging focusing on MRI. Z Med Phys. 2019;29:102-127.
doi:10.1016/j.zemedi.2018.11.002

12. Lam F, Li Y, Peng X. Constrained magnetic resonance spectro-
scopic imaging by learning nonlinear low-dimensional models.
IEEE Trans Med Imaging. 2020;39:545-555. doi:10.1109/TMI.
2019.2930586

13. Klukowski P, Augoff M, ZieRba M, Drwal M, Gonczarek A,
Walczak MJ. NMRNet: a deep learning approach to auto-
mated peak picking of protein NMR spectra. Bioinformatics.
2018;34:2590-1597. doi:10.1093/bioinformatics/bty134

14. Hatami N, Sdika M, Ratiney H. Magnetic resonance spec-
troscopy quantification using deep learning. Lect Notes Comput
Sci. 2018;11070:467-475. doi:10.1007/978-3-030-00928-1_53

15. Lee H, Lee HH, Kim H. Reconstruction of spectra from trun-
cated free induction decays by deep learning in proton magnetic
resonance spectroscopy. Magn Reson Med. 2020;84:559-568.
doi:10.1002/mrm.28164

16. Iqbal Z, Nguyen D, Thomas MA, Jiang S. Deep learning
can accelerate and quantify simulated localized correlated
spectroscopy. Sci Rep. 2021;11:8727. doi:10.1038/s41598-021-
88158-y

17. Lee HH, Kim H. Intact metabolite spectrum mining by deep
learning in proton magnetic resonance spectroscopy of the
brain. Magn Reson Med. 2019;82:33-48. doi:10.1002/mrm.27727

18. Kyathanahally SP, Döring A, Kreis R. Deep learning approaches
for detection and removal of ghosting artifacts in MR spec-
troscopy. Magn Reson Med. 2018;80:851-863. doi:10.1002/mrm.
27096

19. Gurbani SS, Schreibmann E, Maudsley AA, et al. A
convolutional neural network to filter artifacts in spectroscopic
MRI. Magn Reson Med. 2018;80:1765-1775. doi:10.1002/mrm.
27166

20. Tapper S, Mikkelsen M, Dewey BE, et al. Frequency and phase
correction of J-difference edited MR spectra using deep learning.
Magn Reson Med. 2021;85:1755-1765. doi:10.1002/mrm.28525

21. Jang J, Lee HH, Park JA, Kim H. Unsupervised anomaly detec-
tion using generative adversarial networks in 1H-MRS of the
brain. J Magn Reson. 2021;325:106936. doi:10.1016/j.jmr.2021.
106936

22. Lee HH, Kim H. Deep learning-based target metabolite isolation
and big data-driven measurement uncertainty estimation in pro-
ton magnetic resonance spectroscopy of the brain. Magn Reson
Med. 2020;84:1689-1706. doi:10.1002/MRM.28234

23. Gurbani SS, Sheriff S, Maudsley AA, Shim H, Cooper LAD.
Incorporation of a spectral model in a convolutional neu-
ral network for accelerated spectral fitting. Magn Reson Med.
2019;81:3346-3357. doi:10.1002/mrm.27641

24. Chandler M, Jenkins C, Shermer SM, Langbein FC. MRSNet:
metabolite quantification from edited magnetic reso-
nance spectra with convolutional neural networks. 2019
arXiv:1909.03836v1 [eess.IV]. 10.48550/arXiv.1909.03836

25. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in
medical image analysis. Med Image Anal. 2017;42:60-88. doi:10.
1016/J.MEDIA.2017.07.005

26. Gyori NG, Palombo M, Clark CA, Zhang H, Alexander DC.
Training data distribution significantly impacts the estimation
of tissue microstructure with machine learning. Magn Reson
Med. 2022;87:932-947. doi:10.1002/MRM.29014

27. Espi M, Fujimoto M, Kinoshita K, Nakatani T. Exploiting
spectro-temporal locality in deep learning based acoustic event
detection. J Audio Speech Music Proc. 2015;2015:26. doi:10.1186/
s13636-015-0069-2

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29561 by U

niversität B
ern, W

iley O
nline L

ibrary on [20/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/
https://mrshub.org/
https://mrshub.org/
https://orcid.org/0000-0003-4572-5120
https://orcid.org/0000-0003-4572-5120
https://orcid.org/0000-0002-7399-8487
https://orcid.org/0000-0002-7399-8487
https://orcid.org/0000-0002-7399-8487
https://orcid.org/0000-0001-8342-3284
https://orcid.org/0000-0001-8342-3284
https://orcid.org/0000-0001-8342-3284
https://orcid.org/0000-0002-8618-6875
https://orcid.org/0000-0002-8618-6875
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0


18 RIZZO et al.

28. Thomas S, Ganapathy S, Saon G, Soltau H. Analyzing convo-
lutional neural networks for speech activity detection in mis-
matched acoustic conditions. In 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP);
2014:2519–2523. 10.1109/ICASSP.2014.6854054

29. Alaskar H. Deep learning-based model architecture for
time-frequency images analysis. Int J Adv Comput Sci Appl.
2018;9:486-494. doi:10.14569/IJACSA.2018.091268

30. Zagoruyko S, Komodakis N. Wide residual networks. In ArXiv;
2017:arXiv:1605.07146. 10.5244/C.30.87

31. Cohn DA, Ghahramani Z, Jordan MI. Active learning with sta-
tistical models. J Artif Intell Res. 1996;4:129-145. doi:10.1613/
JAIR.295

32. Hansen LK, Salamon P. Neural network ensembles. IEEE
Trans Pattern Anal Mach Intell. 1990;12:993-1001. doi:10.1109/
34.58871

33. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classifica-
tion with deep convolutional neural networks. Commun ACM.
2017;60:84-90. doi:10.1145/3065386

34. Patra S, Bruzzone L. A cluster-assumption based batch
mode active learning technique. Pattern Recognit Lett.
2012;33:1042-1048. doi:10.1016/J.PATREC.2012.01.015

35. Maiora J, Ayerdi B, Graña M. Random forest active learning for
AAA thrombus segmentation in computed tomography angiog-
raphy images. Neurocomputing. 2014;126:71-77. doi:10.1016/J.
NEUCOM.2013.01.051

36. Kutsuna N, Higaki T, Matsunaga S, et al. Active learning frame-
work with iterative clustering for bioimage classification. Nat
Commun. 2012;3:1032. doi:10.1038/ncomms2030

37. Lewis DD, Gale WA. A sequential algorithm for training text
classifiers. In the 17th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
1994: 3–12. 10.1007/978-1-4471-2099-5_1

38. Tuia D, Ratle F, Pacifici F, Kanevski MF, Emery WJ. Active
learning methods for remote sensing image classification.
IEEE Trans Geosci Remote Sens. 2009;48:2218-2232. doi:10.1109/
TGRS.2008.2010404

39. Silva C, Ribeiro B. Margin-based active learning and background
knowledge in text mining. In the 4th International Conference on
Hybrid Intelligent Systems, 2005: 8–13. 10.1109/ICHIS.2004.70

40. Pedrosa de Barros N, McKinley R, Wiest R, Slotboom J. Improv-
ing labeling efficiency in automatic quality control of MRSI data.
Magn Reson Med. 2017;78:2399-2405. doi:10.1002/mrm.26618

41. Bishop CM. Neural Networks for Pattern Recognition. Oxford
University Press; 2005.

42. Freund Y, Schapire RE. A decision-theoretic generalization of
on-line learning and an application to boosting. J Comput Syst
Sci. 1997;55:119-139. doi:10.1006/jcss.1997.1504

43. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In
the 22nd International Conference on Knowledge Discovery and
Data Mining; 2016: 785–794. 10.1145/2939672

44. Ke G, Meng Q, Finley T, et al. LightGBM: a highly efficient gra-
dient boosting decision tree. In the 31st International Conference
on Neural Information Processing Systems; 2017: 3149–3157. 10.
5555/3294996

45. Soher BJ, Semanchuk P, Todd D, Steinberg J, Young K.
VeSPA: integrated applications for RF pulse design, spec-
tral simulation and MRS data analysis. In Proceedings of the
19th Annual Meeting of ISMRM, Montréal, Québec, Canada.
2011, 1410.

46. Oz G, Tkac I. Short-echo, single-shot, full-intensity proton mag-
netic resonance spectroscopy for neurochemical profiling at 4 T:
validation in the cerebellum and brainstem. Magn Reson Med.
2011;65:901-910. doi:10.1002/mrm.22708

47. The Mathworks Inc. MATLAB (R2019a).MathWorks Inc 2019.
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SUPPORTING INFORMATION
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online version of the article at the publisher’s website.

Table S1. List of probed networks for straight quan-
tification of metabolites and some of their charac-
teristics. The listed characteristics includes the com-
plexity (defined as number of trainable parameters),
test loss performance, and training time in sec/epoch.
The network identifications were chosen as follows:
NetworkType-InputType-properties. 1D: spectra, 2D: spec-
trograms, 1c: 1 channel, ks3: convolutional kernel size= 3,
hp: Bayesian hyper-parameterized architecture, R: exploit-
ing ReLU activations, x2: double convolution before Max-
Pooling, f: factorized convolution, rb: down-sampling via
Reduction-Blocks
Figure S1. Schemes of Residual Network configurations
with 1D (a) and 2D (b) inputs, as well as a deep resid-
ual network (c). The basic network structure is sketched
on the left, the architectures of Residual, Identity, and
Convolutional Blocks are reported on the right, while spec-
ifications are detailed in the tables in the middle, and
symbols are explained near the bottom. The deeper Resid-
ual Network configuration has two convolutional layers at
the beginning without pooling.
Figure S2. Schemes of Deep CNN configurations with 2D
(a) and 1D (b) inputs, as well as an InceptionNet with
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1D inputs (c). Network specifications are detailed in the
tables, while the architectures of Reduction Blocks are
reported on the bottom right. Symbols are explained near
the bottom.
Figure S3. Schemes of InceptionNet configurations with
2D inputs on 2 channels. Networks (a) and (b) share the
same configuration but (b) exploits convolutional factor-
ization to speed-up training time. (c) Simple concatena-
tion in architectures (a) and (b) are replaced by Reduc-
tion Blocks. The architectures of the Reduction Blocks are
reported in Figure-S6. Symbols are explained on the right.
Figure S4. Schemes of (a) InceptionNet with 2D inputs
and 1 channel, (b) EfficientNetB7, (c) ResNet50 and (d–f)
Shallow Network configurations. Networks (a), (b) and (c)
are modified from [1–3], respectively. (d) Implements ELU
activations, (e) implements RELU activations, whereas (f)
implements a deeper configuration with consecutive con-
volutional layers with sparse pooling. Network specifica-
tions are detailed in the tables. Symbols are explained near
the bottom.
Figure S5. Scheme and detail of U-Net-1DR-hp
configurations for metabolite basis-set prediction.
Metabolite-specific network specifications are detailed in
the tables. Symbols are explained at the bottom left.
Text S1. Details of Bayesian hyper-parameterization
Figure S6. Examples of dataset augmentation techniques
representing sample distributions for two metabolites
(NAA and GABA). (a) Dataset size increment with uni-
form distributed concentrations. (b) and (c) Active Learn-
ing weighted on higher occurrences of small and high
concentrations for all metabolites in (b) and for selected
metabolites in (c). (d) Active Learning weighted on more
occurrences of low SNR entries whereas concentration
distributions are kept uniform.
Figure S7. Comparison of prediction scores for
well-represented and medium-represented metabolites for
three CNN architectures with datasets with (red, black, or
blue) and without (yellow, gray, or green) water reference.
Mean values in orange. On average, water referencing
yields higher coefficients a and R2 and lower offset q and
RMSE 𝜎.
Figure S8. Comparison of prediction scores for
medium-represented and weakly-represented metabolites
for three CNN architectures with datasets with (red,
black, or blue) and without (yellow, gray, or green) water
reference. Mean values in orange. On average, water refer-
encing yields higher coefficients a and R2 and lower offset
q and RMSE 𝜎.
Figure S9. Maps and marginal distributions of predic-
tions vs. GT for a ResNet_1D_hp network. Results for 16
metabolites are arranged in approximate decreasing order
of relative SNR from top left to bottom right. RMSE (𝜎) is
reported as an overall measure of variability. A regression

model (y = ax+ q) is also provided to judge prediction
quality. R2 measures how well a linear model explains the
overall data. Mis-predictions can be monitored either by
a decrease in a and R2 or by visual biases in distributions
of predictions (bell-shape). The prediction bias towards
the mean value of the training distribution is evident for
medium- to weakly-represented metabolites (e.g., sI, Gly,
Asp, PE, Tau, Lac, GABA). On average, metabolites with
lower SNR yield higher errors. (q and 𝜎 in mM units.).
Figure S10. Maps and marginal distributions of predic-
tions vs. GT for a ShallowNet-2D2c-hp network. Results
for 16 metabolites are arranged in approximate decreas-
ing order of relative SNR from top left to bottom right.
RMSE (𝜎) is reported as an overall measure of variability.
A regression model (y = ax+ q) is also provided to judge
prediction quality. R2 measures how well a linear model
explains the overall data. Mis-predictions can be moni-
tored either by a decrease in a and R2 or by visual biases
in distributions of predictions (bell-shape). The prediction
bias towards the mean value of the training distribution
is evident for medium- to weakly-represented metabo-
lites (e.g., sI, Gly, Asp, PE, Tau, Lac, GABA). On average,
metabolites with lower SNR yield higher errors. (q and 𝜎
in mM units.)
Figure S11. Boxplots comparing the distributions of pre-
dictions for 8 metabolites via 7 different CNN architec-
tures vs. Model Fitting estimate distributions (MF) and
uniform Ground Truth (GT) distributions. Mis-prediction
is evident for medium- to weakly-represented metabolites
(e.g., sI, Asp, Tau, Lac) and can be monitored by different
degrees of skewness of the boxplot. However, the bias to
training distribution is not evident given the visual limita-
tion of boxplots. For better visibility of this outcome, see
Figure S14.
Figure S12. Comparison of distributions of predictions
for 8 metabolites via 7 different CNN architectures vs.
Model Fitting’s estimate distributions (MF) and Ground
Truth (GT) uniform distributions. Mis-prediction is evi-
dent for medium- to weakly-represented metabolites (e.g.,
sI, Asp, Tau, Lac) and can be monitored by visual biases
(bell-shape) towardstoward the mean value of the train-
ing distribution (i.e., regression to the mean). Note: y-axes
scale inhomogeneously between different networks. How-
ever, all distributions integrate to 1.
Figure S13. Concise scores presented to compare quan-
tification quality for different networks and input setups
for 16 metabolites. Results reported using the proposed
artificial water signal reference. Network identification
is chosen as follows: NetworkType-InputType-properties.
Keywords: 1D: spectra, 2D: spectrograms, 1c: 1 chan-
nel, ks3: convolutional kernel size = 3, hp: Bayesian
hyper-parameterized architecture, R: exploiting ReLU
activations, x2: double convolution before MaxPooling, f:
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factorized convolution, rb: down-sampling via
Reduction-Blocks.
Figure S14. Comparison of performance scores from
different networks for 16 metabolites. Model fitting is
included in the comparison.
Text S2. Comparison of predictions from different CNNs.
Figure S15. Comparison of outcomes of Active Learning
approaches using concise scores.
Figure S16. Quantification outcome as reflected by con-
cise scores for differently trained single networks and
three ensembles of networks (identical training set for 16
metabolites).
Figure S17. Maps and marginal distributions of pre-
dictions vs. GT obtained for three metabolites using
ShallowNet-2D2c-hp as contrasted for a realistic and noise-
less dataset.
Table S2. Results of Active Learning on training set: scores
of 16 metabolites for every augmented training set.

Table S3. Results of emulated Active Learning on test
set: scores of 16 metabolites for every concentration range
considered.
Table S4. Outcome for ensemble learning: scores for 16
metabolites for average network or ensemble of network
considered.
Table S5. MRSinMRS checklist.87

How to cite this article: Rizzo R, Dziadosz M,
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Quantification of MR spectra by deep learning in an
idealized setting: Investigation of forms of input,
network architectures, optimization by ensembles
of networks, and training bias. Magn Reson Med.
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