9 research outputs found

    CAREER: motion capture from movies: video-based tracking and modeling of human motion

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    Modification of the AdaBoost-based Detector for Partially Occluded Faces

    Full text link
    While face detection seems a solved problem under general conditions, most state-of-the-art systems degrade rapidly when faces are partially occluded by other objects. This paper presents a solution to detect partially occluded faces by reasonably modifying the AdaBoost-based face detector. Our basic idea is that the weak classifiers in the AdaBoost-based face detector, each corresponding to a Haar-like feature, are inherently a patch-based model. Therefore, one can divide the whole face region into multiple patches, and map those weak classifiers to the patches. The weak classifiers belonging to each patch are re-formed to be a new classifier to determine if it is a valid face patch—without occlusion. Finally, we combine all of the valid face patches by assigning the patches with different weights to make the final decision whether the input subwindow is a face. The experimental results show that the proposed method is promising for the detection of occluded faces. 1

    A Robust and Fast System for CTC Computer-Aided Detection of Colorectal Lesions

    Get PDF
    We present a complete, end-to-end computer-aided detection (CAD) system for identifying lesions in the colon, imaged with computed tomography (CT). This system includes facilities for colon segmentation, candidate generation, feature analysis, and classification. The algorithms have been designed to offer robust performance to variation in image data and patient preparation. By utilizing efficient 2D and 3D processing, software optimizations, multi-threading, feature selection, and an optimized cascade classifier, the CAD system quickly determines a set of detection marks. The colon CAD system has been validated on the largest set of data to date, and demonstrates excellent performance, in terms of its high sensitivity, low false positive rate, and computational efficiency

    Haar Local Binary Pattern Feature for Fast Illumination Invariant Face Detection

    Get PDF
    Face detection is the first step in many visual processing systems like face recognition, emotion recognition and lip reading. In this paper, we propose a novel feature called Haar Local Binary Pattern (HLBP) feature for fast and reliable face detection, particularly in adverse imaging conditions. This binary feature compares bin values of Local Binary Pattern histograms calculated over two adjacent image subregions. These subregions are similar to those in the Haar masks, hence the name of the feature. They capture the region-specific variations of local texture patterns and are boosted using AdaBoost in a framework similar to that proposed by Viola and Jones. Preliminary results obtained on several standard databases show that it competes well with other face detection systems, especially in adverse illumination conditions

    Text Detection in Natural Scenes and Technical Diagrams with Convolutional Feature Learning and Cascaded Classification

    Get PDF
    An enormous amount of digital images are being generated and stored every day. Understanding text in these images is an important challenge with large impacts for academic, industrial and domestic applications. Recent studies address the difficulty of separating text targets from noise and background, all of which vary greatly in natural scenes. To tackle this problem, we develop a text detection system to analyze and utilize visual information in a data driven, automatic and intelligent way. The proposed method incorporates features learned from data, including patch-based coarse-to-fine detection (Text-Conv), connected component extraction using region growing, and graph-based word segmentation (Word-Graph). Text-Conv is a sliding window-based detector, with convolution masks learned using the Convolutional k-means algorithm (Coates et. al, 2011). Unlike convolutional neural networks (CNNs), a single vector/layer of convolution mask responses are used to classify patches. An initial coarse detection considers both local and neighboring patch responses, followed by refinement using varying aspect ratios and rotations for a smaller local detection window. Different levels of visual detail from ground truth are utilized in each step, first using constraints on bounding box intersections, and then a combination of bounding box and pixel intersections. Combining masks from different Convolutional k-means initializations, e.g., seeded using random vectors and then support vectors improves performance. The Word-Graph algorithm uses contextual information to improve word segmentation and prune false character detections based on visual features and spatial context. Our system obtains pixel, character, and word detection f-measures of 93.14%, 90.26%, and 86.77% respectively for the ICDAR 2015 Robust Reading Focused Scene Text dataset, out-performing state-of-the-art systems, and producing highly accurate text detection masks at the pixel level. To investigate the utility of our feature learning approach for other image types, we perform tests on 8- bit greyscale USPTO patent drawing diagram images. An ensemble of Ada-Boost classifiers with different convolutional features (MetaBoost) is used to classify patches as text or background. The Tesseract OCR system is used to recognize characters in detected labels and enhance performance. With appropriate pre-processing and post-processing, f-measures of 82% for part label location, and 73% for valid part label locations and strings are obtained, which are the best obtained to-date for the USPTO patent diagram data set used in our experiments. To sum up, an intelligent refinement of convolutional k-means-based feature learning and novel automatic classification methods are proposed for text detection, which obtain state-of-the-art results without the need for strong prior knowledge. Different ground truth representations along with features including edges, color, shape and spatial relationships are used coherently to improve accuracy. Different variations of feature learning are explored, e.g. support vector-seeded clustering and MetaBoost, with results suggesting that increased diversity in learned features benefit convolution-based text detectors

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Automatic Cascade Training with Perturbation Bias

    No full text
    Face detection methods based on a cascade architecture have demonstrated fast and robust performance. Cascade learning is aided by the modularity of the architecture in which nodes are chained together to form a cascade. In this paper we present two new cascade learning results which address the decoupled nature of the cascade learning task. First, we introduce a cascade indifference curve framework which connects the learning objectives for a node to the overall cascade performance. We derive a new cost function for node learning which yields fully-automatic stopping conditions and improved detection performance. Second, we introduce the concept of perturbation bias which leverages the statistical differences between target and nontarget classes in a detection problem to obtain improved performance and robustness. We derive necessary and sufficient conditions for the success of the method and present experimental results. 1
    corecore