
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322390509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Model-Based Approach for Building Optimum Classiication Cascades 49

A Model-Based Approach for Building Optimum Classiication Cascades

Ezzat El-Sherif, Sherif Abdelazeem,

X

A Model-Based Approach for Building Optimum
Classification Cascades

Ezzat El-Sherif and Sherif Abdelazeem,

Electronics Engineering Department, American University in Cairo
ezzatali@aucegypt.edu, shazeem@aucegypt.edu

For a long time, the main concern of the pattern recognition research community has been to
achieve high accuracy. For example, in the area of Multi-Classifier Systems (MCS),
researchers have developed very powerful techniques that combine large number of
classifiers through complex combination schemes to achieve satisfactory accuracies.
However, this was at the expense of complexity. Even powerful single classifiers (e.g. SVM)
have very high complexity. This might give the impression that high accuracies could not be
achieved without sacrificing recognition time.
Classification cascades are relatively neglected because speed is usually considered a
secondary issue by researchers in pattern recognition field. This fact is going to change in
the near future because as the world relies more and more on the Internet, web applications
are going to include very complex pattern recognition and data mining tasks that are
required to be done online.
Classification cascades are usually created manually using domain knowledge and are
composed in most cases of two or three stages. In this chapter, a model-based algorithm of
automatic generation of optimum classification cascades is devised. Given a large pool of
classifiers (of size N), it builds a cascade that achieves the lowest possible recognition time
while preserving the accuracy of the most powerful classifier in the pool. The proposed
algorithm has a low complexity of O(N2) where N is the number of classifiers in the pool.
This gives us the freedom of using a large pool of classifiers which leads to more efficient
cascades. Other cascade design techniques devised in the literature have very high
complexity which hinders using large pool of classifiers.
In this chapter we also analyze the performance of the devised algorithm showing its
powerfulness and limitations. Also we present an algorithm for building a classification
cascade of a given fixed length. This helps building cascades with space complexity
constraints and helps in analyzing the performance of the devised algorithm for building
optimum classification cascades.

1. Introduction

Suppose we have a classification task on which we have already found a complex
classification technique that achieves a satisfactory accuracy. Suppose also while such
classification technique is very powerful, its time complexity is unacceptably high. This

3

www.intechopen.com

Pattern Recognition, Recent Advances50

scenario happens frequently in real life as many powerful but very time-consuming
techniques have been devised in recent years (e.g. SVM and multi-classifier systems). Our
goal would be to build a system that preserves the accuracy of that complex classifier while
having much better timing performance.
The high complexity of powerful classifiers might give the impression that high accuracies
could not be achieved without sacrificing recognition time. In fact, this is not true. The high
recognition time of a classifier in many cases is due to improper resource allocation. To
achieve a high recognition rate, the classifier is built to recognize the hardest of patterns;
though most of the patterns are ‘regular’ patterns and could be classified using a simple
classification technique. This observation led to the development of cascade systems which
is the main concern of this paper. In such a system, all the patterns to be classified first go
through a first stage; those patterns that are classified with confidence score higher than a
certain threshold leave the system with the labels given to them by the first stage. The
patterns that are classified with confidence scores lower than the threshold are rejected to
the second stage. In the same manner, the patterns pass through different stages until they
reach the powerful last stage that does not reject any patterns. Figure 1 illustrates this idea.
The idea of classification cascades has been well-known for long time but has not attracted
much attention in spite of its practical importance [Kuncheva 2004]. Recently, and since the
prominent work of Viola and Jones [VIOLA & JONES 2001], the idea of cascade has been
attracting considerable attention in the context of object detection which is a rare-event
classification problem [VIOLA & JONES 2001, LUO 2005, CHEN, X. & YUILLE 2005,
YUANN ET AL. 2005, Brubaker et al. 2006, SUN ET AL. 2004, WU ET AL. 2008].
To avoid any confusion, we will call the cascades used in the context of object detection
"detection cascades" while we will call the cascades used in regular classification problems
"classification cascades" in which we are interested in this chapter.

Fig 1 Typical classification cascade system.

The remaining of the chapter is organized as follows. Section 2 presents an algorithm for
automatically generating optimum classification cascades. In section 3, we present an
algorithm for generating optimum classification cascades of specific number of stages.
Section 4 presents an experimental validation of our proposed algorithms. In section 5 we
review previous works on classification cascades and in section 6 we conclude.

2. Model-Based Algorithm for Automatically Generating Optimum
Classification Cascades

In this section a novel algorithm for automatically generating optimum classification
cascades is proposed that achieves as high accuracy as we can get with the lowest
complexity possible. The proposed algorithm is built according to a model of how

stage 1 > T1?
yes

no stage 2 > T2?
yes

no final
stage

decision decision decision

classification cascade works; thus we named it ‘model-based’ approach. Assume that we
have a pool of N classifiers: S1, S2, …, SN, and a powerful classifier SF that achieves an
accuracy higher than any classifier in the pool. However, SF has a very high complexity. The
proposed algorithm automatically builds a cascade that achieves accuracy not less than that
of SF with the lowest complexity possible. Classifiers of the pool are assumed to be trained
independently before applying the proposed algorithm, and no further training is done for
any of them after applying the algorithm.

2.1 Problem statement
We first present our notation. We denote an unordered set by boldface character
surrounded by curly braces, and its elements by the same character but in italics and
subscripted by numbers (e.g. }{,...,, 321 AAAA). Note that the subscripts of the
unordered set are arbitrary and hold no ordering significance. An ordered set (or an array)
is denoted by just a boldface character and its elements by the same character but in italics
and subscripted by numbers according to their order in the array (e.g. A,...,, 321 AAA ,

where A1 is the first element in A, and A2 is the second element, etc.). AB  means that
all the elements of the ordered set B exists in the ordered set A with the same order.

}{AB  means that all the elements of the ordered set B exist in the unordered set {A}.

}{AB  means that the elements of B are the same as that of A but with order, i.e. B is an
ordered version of A. We enumerate the elements of an unordered set {A} as follows

,...},{}{ 21 AAA and the elements of an ordered set A as follows ...] [21 AAA .
C=[A B] means that the ordered set C is a concatenation of the two ordered sets A and B. In
this chapter we will represent a cascade by an ordered set whose elements are the
classification stages ordered in the set from left to right.
Here we state our problem. Given a set of N classifiers },...,,,{}{ 321 NSSSSS and a

powerful classifier }{SFS that achieves a satisfactory accuracy. The problem is to select

an ordered set }{SS opt and a corresponding ordered set of thresholds
optT that

makes] [F
opt SS if put in a cascade structure give the optimal cascade. We mean by

‘optimal cascade’ the one that gives the least possible complexity with accuracy not less than
that of FS .

2.2 The Algorithm
In this section, an algorithm that automatically generates optimal classification cascades will
be presented. The algorithm is composed of three major steps:

i. Find the set of thresholds {T}. Each element of {T} is a threshold for the

corresponding classifier in {S} such that }{TT opt .

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 51

scenario happens frequently in real life as many powerful but very time-consuming
techniques have been devised in recent years (e.g. SVM and multi-classifier systems). Our
goal would be to build a system that preserves the accuracy of that complex classifier while
having much better timing performance.
The high complexity of powerful classifiers might give the impression that high accuracies
could not be achieved without sacrificing recognition time. In fact, this is not true. The high
recognition time of a classifier in many cases is due to improper resource allocation. To
achieve a high recognition rate, the classifier is built to recognize the hardest of patterns;
though most of the patterns are ‘regular’ patterns and could be classified using a simple
classification technique. This observation led to the development of cascade systems which
is the main concern of this paper. In such a system, all the patterns to be classified first go
through a first stage; those patterns that are classified with confidence score higher than a
certain threshold leave the system with the labels given to them by the first stage. The
patterns that are classified with confidence scores lower than the threshold are rejected to
the second stage. In the same manner, the patterns pass through different stages until they
reach the powerful last stage that does not reject any patterns. Figure 1 illustrates this idea.
The idea of classification cascades has been well-known for long time but has not attracted
much attention in spite of its practical importance [Kuncheva 2004]. Recently, and since the
prominent work of Viola and Jones [VIOLA & JONES 2001], the idea of cascade has been
attracting considerable attention in the context of object detection which is a rare-event
classification problem [VIOLA & JONES 2001, LUO 2005, CHEN, X. & YUILLE 2005,
YUANN ET AL. 2005, Brubaker et al. 2006, SUN ET AL. 2004, WU ET AL. 2008].
To avoid any confusion, we will call the cascades used in the context of object detection
"detection cascades" while we will call the cascades used in regular classification problems
"classification cascades" in which we are interested in this chapter.

Fig 1 Typical classification cascade system.

The remaining of the chapter is organized as follows. Section 2 presents an algorithm for
automatically generating optimum classification cascades. In section 3, we present an
algorithm for generating optimum classification cascades of specific number of stages.
Section 4 presents an experimental validation of our proposed algorithms. In section 5 we
review previous works on classification cascades and in section 6 we conclude.

2. Model-Based Algorithm for Automatically Generating Optimum
Classification Cascades

In this section a novel algorithm for automatically generating optimum classification
cascades is proposed that achieves as high accuracy as we can get with the lowest
complexity possible. The proposed algorithm is built according to a model of how

stage 1 > T1?
yes

no stage 2 > T2?
yes

no final
stage

decision decision decision

classification cascade works; thus we named it ‘model-based’ approach. Assume that we
have a pool of N classifiers: S1, S2, …, SN, and a powerful classifier SF that achieves an
accuracy higher than any classifier in the pool. However, SF has a very high complexity. The
proposed algorithm automatically builds a cascade that achieves accuracy not less than that
of SF with the lowest complexity possible. Classifiers of the pool are assumed to be trained
independently before applying the proposed algorithm, and no further training is done for
any of them after applying the algorithm.

2.1 Problem statement
We first present our notation. We denote an unordered set by boldface character
surrounded by curly braces, and its elements by the same character but in italics and
subscripted by numbers (e.g. }{,...,, 321 AAAA). Note that the subscripts of the
unordered set are arbitrary and hold no ordering significance. An ordered set (or an array)
is denoted by just a boldface character and its elements by the same character but in italics
and subscripted by numbers according to their order in the array (e.g. A,...,, 321 AAA ,

where A1 is the first element in A, and A2 is the second element, etc.). AB  means that
all the elements of the ordered set B exists in the ordered set A with the same order.

}{AB  means that all the elements of the ordered set B exist in the unordered set {A}.

}{AB  means that the elements of B are the same as that of A but with order, i.e. B is an
ordered version of A. We enumerate the elements of an unordered set {A} as follows

,...},{}{ 21 AAA and the elements of an ordered set A as follows ...] [21 AAA .
C=[A B] means that the ordered set C is a concatenation of the two ordered sets A and B. In
this chapter we will represent a cascade by an ordered set whose elements are the
classification stages ordered in the set from left to right.
Here we state our problem. Given a set of N classifiers },...,,,{}{ 321 NSSSSS and a

powerful classifier }{SFS that achieves a satisfactory accuracy. The problem is to select

an ordered set }{SS opt and a corresponding ordered set of thresholds
optT that

makes] [F
opt SS if put in a cascade structure give the optimal cascade. We mean by

‘optimal cascade’ the one that gives the least possible complexity with accuracy not less than
that of FS .

2.2 The Algorithm
In this section, an algorithm that automatically generates optimal classification cascades will
be presented. The algorithm is composed of three major steps:

i. Find the set of thresholds {T}. Each element of {T} is a threshold for the

corresponding classifier in {S} such that }{TT opt .

www.intechopen.com

Pattern Recognition, Recent Advances52

ii. Sort the set {S} to form }{SS ord such that ordopt SS  . With the same
ordering pattern of Sord, sort {T} to form Tord.

iii. From Sord, select ordopt SS  t and the corresponding ordopt TT  .

These three steps is illustrated in Figure 2 and described in the following subsections. But
we want here to give a note about how {S} and SF were generated. The dataset available for
training and testing the system was first partitioned into 3 parts: training set, validation set,
and test set. Then, many classifiers were generated with different accuracies and
complexities and were trained using the training set. The most powerful of these classifiers
was found and denoted by SF , and the rest were grouped in the set {S}. The validation set is
used to find the best cascade. The test set is used for testing the overall system. The
algorithm proposed in this chapter for generating classification cascade trains the classifiers
only once and uses different performance measurements (specifically, their rejection rates
and complexities, as will be discussed soon) of these classifiers using the validation set to
build the cascade. No retraining of classifiers is held.

Fig. 2. An example to show how the proposed algorithm works.

2.2.1 Step1: Find {T} for {S}
Our procedure for finding {T} of {S} will be as follows. Using every classifier }{SiS ,
classify the patterns of the validations set and order them according to the confidence scores
they are given by Si. Traverse these ordered patterns from the one that has been classified by
the highest confidence score to the lowest. While traversing the patterns, monitor whether
the patterns are correctly or falsely classified. Once you hit a pattern that is falsely classified,
check whether this same pattern is falsely classified by SF or not. If yes, then this pattern
would not contribute to the errors of the overall cascade and can be safely ignored, and we
continue traversing the patterns. We stop when we hit a pattern that is falsely classified by
the classifier under consideration Si but correctly classified by SF. Then we set the threshold
Ti of the classifier Si to be the confidence score of the pattern we stopped at. We do the same
for all the classifiers in the set {S} to form the corresponding set of thresholds {T}. This
procedure is illustrated in Figure 3.

Step(1)
 Find {T} 1S

ordS1

2S NS

ordS2

3S

ordS3 ord
NS

Step(2)
 Order {S} to
give ordS

1S FS & 2S NS 3S
Given:

{S} and SF

T1 T2 T3 TN

ordT1 ordT2 ordT3 ord
NT

optS1 optS2 opt
MS

×
optT1 optT2 opt

MT

×
Step(3)

 Select
optS

out of ordS

Solution:
The optimum

cascade
optS1 optS2 opt

MS

opt
MT

FS

optT1 optT2

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 53

ii. Sort the set {S} to form }{SS ord such that ordopt SS  . With the same
ordering pattern of Sord, sort {T} to form Tord.

iii. From Sord, select ordopt SS  t and the corresponding ordopt TT  .

These three steps is illustrated in Figure 2 and described in the following subsections. But
we want here to give a note about how {S} and SF were generated. The dataset available for
training and testing the system was first partitioned into 3 parts: training set, validation set,
and test set. Then, many classifiers were generated with different accuracies and
complexities and were trained using the training set. The most powerful of these classifiers
was found and denoted by SF , and the rest were grouped in the set {S}. The validation set is
used to find the best cascade. The test set is used for testing the overall system. The
algorithm proposed in this chapter for generating classification cascade trains the classifiers
only once and uses different performance measurements (specifically, their rejection rates
and complexities, as will be discussed soon) of these classifiers using the validation set to
build the cascade. No retraining of classifiers is held.

Fig. 2. An example to show how the proposed algorithm works.

2.2.1 Step1: Find {T} for {S}
Our procedure for finding {T} of {S} will be as follows. Using every classifier }{SiS ,
classify the patterns of the validations set and order them according to the confidence scores
they are given by Si. Traverse these ordered patterns from the one that has been classified by
the highest confidence score to the lowest. While traversing the patterns, monitor whether
the patterns are correctly or falsely classified. Once you hit a pattern that is falsely classified,
check whether this same pattern is falsely classified by SF or not. If yes, then this pattern
would not contribute to the errors of the overall cascade and can be safely ignored, and we
continue traversing the patterns. We stop when we hit a pattern that is falsely classified by
the classifier under consideration Si but correctly classified by SF. Then we set the threshold
Ti of the classifier Si to be the confidence score of the pattern we stopped at. We do the same
for all the classifiers in the set {S} to form the corresponding set of thresholds {T}. This
procedure is illustrated in Figure 3.

Step(1)
 Find {T} 1S

ordS1

2S NS

ordS2

3S

ordS3 ord
NS

Step(2)
 Order {S} to
give ordS

1S FS & 2S NS 3S
Given:

{S} and SF

T1 T2 T3 TN

ordT1 ordT2 ordT3 ord
NT

optS1 optS2 opt
MS

×
optT1 optT2 opt

MT

×
Step(3)

 Select
optS

out of ordS

Solution:
The optimum

cascade
optS1 optS2 opt

MS

opt
MT

FS

optT1 optT2

www.intechopen.com

Pattern Recognition, Recent Advances54

2.2.2 Step 2: Sort {S} to form }{SS ord
The criterion by which we sort {S} is based on the following assumption:

Assumption 1 Using sufficiently tough thresholds iT and jT for the two classifiers iS and

jS , respectively, if the classifier jS has a lower rejection rate than iS , then it is said that

jS is more powerful than iS ; and iS would reject all the patterns that jS would reject.

The "rejection rate" of a certain classifier iS using threshold iT is the number of rejected

patterns divided by the number of validation set patterns if the threshold iT is applied on
its output.

traversing

stop
here

selected
threshold

Fig. 3. A hypothetical example illustrating threshold selection process for some
classifier Si belongs to the pool {S}. Each row represents a different pattern of the
validation set classified by Si. The right entry of each record is labeled '1' if a
classification error is committed by Si while the pattern is correctly classified by the
most powerful classifier SF. The second entry of each record is the top decision
score of the corresponding pattern given to it by Si. The patterns are ordered
according to the decision score. This process is done for every classifier in {S} to get
the corresponding set of thresholds {T}.

This assumption, while not perfectly realistic, is reasonable. Since jS is more powerful than

iS , then it will be of little possibility for iS to confidently classify some pattern that was

hard for jS to classify. To what extent this assumption is valid will be discussed in section

4.2.
Assumption 1 leads to a great simplification of the system design. Suppose that while
designing a cascade system we put a classifier 2S that has high rejection rate after a

classifier 1S that has lower rejection rate. According to Assumption 1, 1S is more powerful

than 2S , and 2S would be then useless. This is because 2S would reject all the patterns

that are rejected from 1S . In this case, 2S would do nothing except increasing the
complexity of the cascade.

This means that the only reasonable criterion of sorting the classifiers in the cascade is to
sort them by decreasing rejection rates. By this principle, {S} is sorted to give Sord. The
corresponding set of thresholds for Sord will be Tord. Now we are guaranteed that

ordopt SS  , because any other order would give more complex cascade.

2.2.3 Step 3: Select Sopt out of Sord

Now we want to select ordopt SS  . This selection process, if done exhaustively, is of

complexity)2(NO . Hence, exhaustive search would not be feasible for large values of N.

In this section an algorithm is suggested for finding ordopt SS  of complexity)(2NO .

Now, a formula will be introduced to have an estimate for the average complexity of a
cascade given the complexities and rejection rates of the constituent classifiers. This formula
will be used to find the best cascade in a sequential manner without doing an exhaustive
search. How this formula is deduced can be shown through an example. Let

ord
MSSSS SS ] [321 have thresholds] [321 MTTTT T , complexities

].... [321 MCCCC C , and rejection rates].... [321 MRRRR R . Let FC be the

complexity of FS . Figure 4 represents each stage in the cascade by a rectangular
representing the validation set. The hashed portion of the rectangular is the portion that is
not rejected from the validation set. Assumption 1 is evident in Figure 4 as each stage
rejections include the rejections of preceding stage. It is obvious from Figure4 that the
cascade] [FCS has an overall complexity Ctot, where,

FMMMtot CRCRCRCRCC  132211 (1)

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 55

2.2.2 Step 2: Sort {S} to form }{SS ord
The criterion by which we sort {S} is based on the following assumption:

Assumption 1 Using sufficiently tough thresholds iT and jT for the two classifiers iS and

jS , respectively, if the classifier jS has a lower rejection rate than iS , then it is said that

jS is more powerful than iS ; and iS would reject all the patterns that jS would reject.

The "rejection rate" of a certain classifier iS using threshold iT is the number of rejected

patterns divided by the number of validation set patterns if the threshold iT is applied on
its output.

traversing

stop
here

selected
threshold

Fig. 3. A hypothetical example illustrating threshold selection process for some
classifier Si belongs to the pool {S}. Each row represents a different pattern of the
validation set classified by Si. The right entry of each record is labeled '1' if a
classification error is committed by Si while the pattern is correctly classified by the
most powerful classifier SF. The second entry of each record is the top decision
score of the corresponding pattern given to it by Si. The patterns are ordered
according to the decision score. This process is done for every classifier in {S} to get
the corresponding set of thresholds {T}.

This assumption, while not perfectly realistic, is reasonable. Since jS is more powerful than

iS , then it will be of little possibility for iS to confidently classify some pattern that was

hard for jS to classify. To what extent this assumption is valid will be discussed in section

4.2.
Assumption 1 leads to a great simplification of the system design. Suppose that while
designing a cascade system we put a classifier 2S that has high rejection rate after a

classifier 1S that has lower rejection rate. According to Assumption 1, 1S is more powerful

than 2S , and 2S would be then useless. This is because 2S would reject all the patterns

that are rejected from 1S . In this case, 2S would do nothing except increasing the
complexity of the cascade.

This means that the only reasonable criterion of sorting the classifiers in the cascade is to
sort them by decreasing rejection rates. By this principle, {S} is sorted to give Sord. The
corresponding set of thresholds for Sord will be Tord. Now we are guaranteed that

ordopt SS  , because any other order would give more complex cascade.

2.2.3 Step 3: Select Sopt out of Sord

Now we want to select ordopt SS  . This selection process, if done exhaustively, is of

complexity)2(NO . Hence, exhaustive search would not be feasible for large values of N.

In this section an algorithm is suggested for finding ordopt SS  of complexity)(2NO .

Now, a formula will be introduced to have an estimate for the average complexity of a
cascade given the complexities and rejection rates of the constituent classifiers. This formula
will be used to find the best cascade in a sequential manner without doing an exhaustive
search. How this formula is deduced can be shown through an example. Let

ord
MSSSS SS ] [321 have thresholds] [321 MTTTT T , complexities

].... [321 MCCCC C , and rejection rates].... [321 MRRRR R . Let FC be the

complexity of FS . Figure 4 represents each stage in the cascade by a rectangular
representing the validation set. The hashed portion of the rectangular is the portion that is
not rejected from the validation set. Assumption 1 is evident in Figure 4 as each stage
rejections include the rejections of preceding stage. It is obvious from Figure4 that the
cascade] [FCS has an overall complexity Ctot, where,

FMMMtot CRCRCRCRCC  132211 (1)

www.intechopen.com

Pattern Recognition, Recent Advances56

We note here that Equation (1) validity is dependent on a hypothetical model of how the
classification cascades works which is represented by Figure 4. This model in its turn is
dependent on the validity Assumption 1.

Fig. 5. Two examples to illustrate how Sopt is selected from Sord

1C 
Fig. 4. A cascade represented by accepted and rejected patterns. The
shaded region represents the accepted patterns.

2R

2C

2R
3R

3C

. . .

MC FC

MR

Equation (1) suggests a very simple algorithm to find ordopt SS  . The algorithm is going

to be described through an example. Assume that Sord is composed of four stages: ordS1 ,
ordS2 , ordS3 , ordS4 , and the last stage FS . We can represent such scheme by successive

nodes in a digraph as shown in Figure 5. For convenience, we added a dummy node
ordS0 before ordS1 . Node ordS0 is the source of all the patterns to be classified and has zero

complexity and a rejection rate of 1 (i.e. 1 and ,0 00  ordord RC). The problem now is to

get the path from ordS0 to SF that leads to the least complex cascade. Now, define the
distance from node Siord to node Sjord for j>i to be equal to RiordCjord. Hence, each cascade can
be represented by some path in Sord. For example, the path indicated in Figure 3(i) has a

distance of F
ordordordordordord CRCRCRC 442211  which is equal to the cascade

complexity. Another possible path of complexity F
ordordordord CRCRC 3322  is shown in

Figure 3(ii). The problem of finding the least complex cascade can be seen then as finding
the shortest path in a directed acyclic graph (DAG) which is a well-known problem.
However, for completeness, we will present its solution in the context of our problem.

Assume that each node tries to find the shortest path from itself to SF as well as the distance
of this path. All the nodes can easily collect this information if we started by last stage and

proceeded backwardly to the first. For example, in Figure 5 we start by ordS4 . The shortest

path from ordS4 to SF is obviously [ordS4 SF] as this is the only possible path. The distance of

this path is F
ordCR4 . For node ordS3 , we have two possible paths: [ordS3 ordS4 SF] and

[ordS3 SF]. Hence, we compare the two paths distances: F
ordordord CRCR 443  and F

ordCR3 ,

respectively. The shortest path as well as its distance are found and saved at node ordS3 .

Then, we proceed to ordS2 . Node ordS2 has just 3 options: to jump to ordS3 , to jump to
ordS4 , or to jump to SF. If we jumped form ordS2 to ordS3 , and if we are interested in just

shortest paths, the path from ordS3 to SF would be previously decided by ordS3 and need

not to be recalculated; and the complexity of the path in this case is ordordCR 32 + the

distance of shortest path from ordS3 to SF. The remaining two options for ordS2 (to jump to
ordS4 and to jump to SF.) are also examined and the option of the least distance is saved at

node ordS2 . The same procedure is done for ordS1 and ordS0 . Finally, the shortest path from
ordS0 to SF is the cascade of least complexity.

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 57

We note here that Equation (1) validity is dependent on a hypothetical model of how the
classification cascades works which is represented by Figure 4. This model in its turn is
dependent on the validity Assumption 1.

Fig. 5. Two examples to illustrate how Sopt is selected from Sord

1C 
Fig. 4. A cascade represented by accepted and rejected patterns. The
shaded region represents the accepted patterns.

2R

2C

2R
3R

3C

. . .

MC FC

MR

Equation (1) suggests a very simple algorithm to find ordopt SS  . The algorithm is going

to be described through an example. Assume that Sord is composed of four stages: ordS1 ,
ordS2 , ordS3 , ordS4 , and the last stage FS . We can represent such scheme by successive

nodes in a digraph as shown in Figure 5. For convenience, we added a dummy node
ordS0 before ordS1 . Node ordS0 is the source of all the patterns to be classified and has zero

complexity and a rejection rate of 1 (i.e. 1 and ,0 00  ordord RC). The problem now is to

get the path from ordS0 to SF that leads to the least complex cascade. Now, define the
distance from node Siord to node Sjord for j>i to be equal to RiordCjord. Hence, each cascade can
be represented by some path in Sord. For example, the path indicated in Figure 3(i) has a

distance of F
ordordordordordord CRCRCRC 442211  which is equal to the cascade

complexity. Another possible path of complexity F
ordordordord CRCRC 3322  is shown in

Figure 3(ii). The problem of finding the least complex cascade can be seen then as finding
the shortest path in a directed acyclic graph (DAG) which is a well-known problem.
However, for completeness, we will present its solution in the context of our problem.

Assume that each node tries to find the shortest path from itself to SF as well as the distance
of this path. All the nodes can easily collect this information if we started by last stage and

proceeded backwardly to the first. For example, in Figure 5 we start by ordS4 . The shortest

path from ordS4 to SF is obviously [ordS4 SF] as this is the only possible path. The distance of

this path is F
ordCR4 . For node ordS3 , we have two possible paths: [ordS3 ordS4 SF] and

[ordS3 SF]. Hence, we compare the two paths distances: F
ordordord CRCR 443  and F

ordCR3 ,

respectively. The shortest path as well as its distance are found and saved at node ordS3 .

Then, we proceed to ordS2 . Node ordS2 has just 3 options: to jump to ordS3 , to jump to
ordS4 , or to jump to SF. If we jumped form ordS2 to ordS3 , and if we are interested in just

shortest paths, the path from ordS3 to SF would be previously decided by ordS3 and need

not to be recalculated; and the complexity of the path in this case is ordordCR 32 + the

distance of shortest path from ordS3 to SF. The remaining two options for ordS2 (to jump to
ordS4 and to jump to SF.) are also examined and the option of the least distance is saved at

node ordS2 . The same procedure is done for ordS1 and ordS0 . Finally, the shortest path from
ordS0 to SF is the cascade of least complexity.

www.intechopen.com

Pattern Recognition, Recent Advances58

To present the algorithm more formally, it would be of much help to introduce some simple

definitions. Define ‘single-hop distance’),(ord
j

ord
ih SSd between stages

ord
iS and

ord
jS , ij  , jiSS ordord

j
ord
i ,, S ,














ij
ji
ijCR

SSd

ord
j

ord
i

ord
j

ord
ih

 , undefined
, 0
,

),((2)

Define also the shortest distance),(ord
j

ord
i SSD between stages

ord
iS and

ord
jS , ij  as the minimum distance between stages

ord
iS and

ord
jS . Note that as in

the case of single-hop distance, for i=j, the distance will be 0 and undefined for i>j. Clearly
the shortest path is a succession of single hops, whose distances are calculated as given in
Equation (2).

Finally, define the shortest path),(ord
j

ord
i SSP between stages

ord
iS and

ord
jS , ij  as

the path of shortest distance (that is of),(ord
j

ord
i SSD) between stages

ord
iS and

ord
jS

represented as an ordered set starting with
ord
iS and ending with

ord
jS . If i=j, then

),(ord
j

ord
i SSP = [

ord
iS]; and),(ord

j
ord
i SSP is undefined for i>j.

Algorithm 1 shows the three steps of the proposed algorithm for automatic generation of
optimum classification cascades. Step 3 uses the definitions given above to show how to

Select ordopt SS  .

Algorithm 1 The three steps of the proposed algorithm to find optimum classification
cascade

3. An Algorithm for Generating the Optimum Classification Cascade of a
Given Length

In the previous section, we introduced an algorithm that finds the least complex cascade
that achieves an accuracy not less than that of SF. The found cascade in this case would be of
any length ≤ N (for convenience, the cascade length would be used to mean the number of
stages of the cascade excluding SF). In some cases, due to memory limitation, we would like

Step 1. Use the validation set to get a set of thresholds
{T} for {S} that ensures that none of the classifiers in
{S} commits any error that is not committed by FS .

Step 2. Sort {S} in a descending order of rejection rates
to form ordS .

Step 3. Select ordopt SS  as follows,

complexity its is),(and//

] [),(//

 wherecascade, optimum theis),(//

 end
)],([),(

),(),(),(

)),(),((minarg
0 down to 1for

][),(

),(),(

0

0

0

,...,2,1

F
ord

F
opt

F
ord

F
ord

F
ord
k

ord
iF

ord
i

F
ord
k

ord
k

ord
ihF

ord
i

F
ord
j

ord
j

ord
ih

Niij

FF
ord
N

F
ord
NF

ord
NhF

ord
N

SSD
SSS

SS

SSPSSS
SSDSSdSSD

SSDSSdk
Ni

SSSP
CRSSdSSD

SP
P

P

















www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 59

To present the algorithm more formally, it would be of much help to introduce some simple

definitions. Define ‘single-hop distance’),(ord
j

ord
ih SSd between stages

ord
iS and

ord
jS , ij  , jiSS ordord

j
ord
i ,, S ,














ij
ji
ijCR

SSd

ord
j

ord
i

ord
j

ord
ih

 , undefined
, 0
,

),((2)

Define also the shortest distance),(ord
j

ord
i SSD between stages

ord
iS and

ord
jS , ij  as the minimum distance between stages

ord
iS and

ord
jS . Note that as in

the case of single-hop distance, for i=j, the distance will be 0 and undefined for i>j. Clearly
the shortest path is a succession of single hops, whose distances are calculated as given in
Equation (2).

Finally, define the shortest path),(ord
j

ord
i SSP between stages

ord
iS and

ord
jS , ij  as

the path of shortest distance (that is of),(ord
j

ord
i SSD) between stages

ord
iS and

ord
jS

represented as an ordered set starting with
ord
iS and ending with

ord
jS . If i=j, then

),(ord
j

ord
i SSP = [

ord
iS]; and),(ord

j
ord
i SSP is undefined for i>j.

Algorithm 1 shows the three steps of the proposed algorithm for automatic generation of
optimum classification cascades. Step 3 uses the definitions given above to show how to

Select ordopt SS  .

Algorithm 1 The three steps of the proposed algorithm to find optimum classification
cascade

3. An Algorithm for Generating the Optimum Classification Cascade of a
Given Length

In the previous section, we introduced an algorithm that finds the least complex cascade
that achieves an accuracy not less than that of SF. The found cascade in this case would be of
any length ≤ N (for convenience, the cascade length would be used to mean the number of
stages of the cascade excluding SF). In some cases, due to memory limitation, we would like

Step 1. Use the validation set to get a set of thresholds
{T} for {S} that ensures that none of the classifiers in
{S} commits any error that is not committed by FS .

Step 2. Sort {S} in a descending order of rejection rates
to form ordS .

Step 3. Select ordopt SS  as follows,

complexity its is),(and//

] [),(//

 wherecascade, optimum theis),(//

 end
)],([),(

),(),(),(

)),(),((minarg
0 down to 1for

][),(

),(),(

0

0

0

,...,2,1

F
ord

F
opt

F
ord

F
ord

F
ord
k

ord
iF

ord
i

F
ord
k

ord
k

ord
ihF

ord
i

F
ord
j

ord
j

ord
ih

Niij

FF
ord
N

F
ord
NF

ord
NhF

ord
N

SSD
SSS

SS

SSPSSS
SSDSSdSSD

SSDSSdk
Ni

SSSP
CRSSdSSD

SP
P

P

















www.intechopen.com

Pattern Recognition, Recent Advances60

to use a cascade of smaller length. In this section, an algorithm will be introduced that
builds the best cascade of any preferred length. This will also help in studying the effect of
increasing the number of stages in a cascade on its performance (refer to section 4.3).

To introduce the algorithm, we will first add two more definitions. Define the shortest path

of length n,),(ord
j

ord
in SSP , between stages

ord
iS and

ord
jS as the shortest path of n hops

between nodes
ord
iS and

ord
jS . Define also shortest distance of length n,

),(ord
j

ord
in SSD , between nodes

ord
iS and

ord
jS as the distance (complexity) of

),(ord
j

ord
in SSP .

The algorithm for finding the best cascades of different lengths is presented in Algorithm 2.
Step 1 and 2 of the algorithm is the same as that of Algorithm 1. Step 3 is a modified version
of Step 3 of Algorithm 1. Instead of saving only the information of best path, each node
saves the best path of every possible length.

4. Experiments and Discussion

In this section we present some experiments that validate the proposed approach and shed
light on its strengths and limitations.

4.1 Model-Based Approach versus DFS
The problem of finding optimal classification cascades has other possible solutions than that
proposed (e.g. using stochastic search techniques [Chellapilla et al. 2006a]). But we will
compare the proposed technique with the most elegant solution, that is the one using depth-
first search (DFS) devised by Chellapella et al. [Chellapilla et al. 2006b] (refer to section 5.6
for more details on this technique). Given a set of N ordered classifiers, the DFS algorithm
searches systematically all possible cascade structures with Q permissible threshold values
to find the optimum cascade. Using some heuristics, all the search space need not be visited
and extensive pruning of search space is possible. The goal of the DFS algorithm is more
general than ours. Given a certain permissible margin of error, it finds the least complex
cascade. The proposed model-based system design procedure on the other hand finds least
complex cascade that commits no more error than the last stage in the cascade. Actually, The
DFS algorithm could be used to solve the problem if we adjusted the margin of error to be
that of the final stage.

Algorithm 2. Generating optimum cascades of different lengths

Step 1. Use the validation set to get a set of thresholds {T} for {S} that
ensures that none of the classifiers in {S} commits any error that is
not committed by FS .

Step 2. Sort {S} in a descending order of rejection rates to form ordS .

Step 3. Select cascades of different lengths,

),(is complexity its and//

1,2,...., ,length //of
cascadecomplex least theis),(//

 end

 end
)],([),(

),(),(),(

)),(),((minarg

1 to2for

] [),(

),(),(

0 down to 1for

][),(

),(),(

0

0

1

1

1
2,...,2,1

1

1

1

1

F
ord

n

F
ord

n

F
ord
kn

ord
iF

ord
in

F
ord
kn

ord
k

ord
ihF

ord
in

F
ord
jn

ord
j

ord
ih

nNiij

F
ord
iF

ord
i

F
ord
iF

ord
ihF

ord
i

FF
ord
N

F
ord
NF

ord
NhF

ord
N

SSD
Nnn

SS
i

n
SSSSS

SSDSSdSSD

SSDSSdk
iNn

SSSS

CRSSdSSD

Ni

SSS

CRSSdSSD




























P

PP

P

P

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 61

to use a cascade of smaller length. In this section, an algorithm will be introduced that
builds the best cascade of any preferred length. This will also help in studying the effect of
increasing the number of stages in a cascade on its performance (refer to section 4.3).

To introduce the algorithm, we will first add two more definitions. Define the shortest path

of length n,),(ord
j

ord
in SSP , between stages

ord
iS and

ord
jS as the shortest path of n hops

between nodes
ord
iS and

ord
jS . Define also shortest distance of length n,

),(ord
j

ord
in SSD , between nodes

ord
iS and

ord
jS as the distance (complexity) of

),(ord
j

ord
in SSP .

The algorithm for finding the best cascades of different lengths is presented in Algorithm 2.
Step 1 and 2 of the algorithm is the same as that of Algorithm 1. Step 3 is a modified version
of Step 3 of Algorithm 1. Instead of saving only the information of best path, each node
saves the best path of every possible length.

4. Experiments and Discussion

In this section we present some experiments that validate the proposed approach and shed
light on its strengths and limitations.

4.1 Model-Based Approach versus DFS
The problem of finding optimal classification cascades has other possible solutions than that
proposed (e.g. using stochastic search techniques [Chellapilla et al. 2006a]). But we will
compare the proposed technique with the most elegant solution, that is the one using depth-
first search (DFS) devised by Chellapella et al. [Chellapilla et al. 2006b] (refer to section 5.6
for more details on this technique). Given a set of N ordered classifiers, the DFS algorithm
searches systematically all possible cascade structures with Q permissible threshold values
to find the optimum cascade. Using some heuristics, all the search space need not be visited
and extensive pruning of search space is possible. The goal of the DFS algorithm is more
general than ours. Given a certain permissible margin of error, it finds the least complex
cascade. The proposed model-based system design procedure on the other hand finds least
complex cascade that commits no more error than the last stage in the cascade. Actually, The
DFS algorithm could be used to solve the problem if we adjusted the margin of error to be
that of the final stage.

Algorithm 2. Generating optimum cascades of different lengths

Step 1. Use the validation set to get a set of thresholds {T} for {S} that
ensures that none of the classifiers in {S} commits any error that is
not committed by FS .

Step 2. Sort {S} in a descending order of rejection rates to form ordS .

Step 3. Select cascades of different lengths,

),(is complexity its and//

1,2,...., ,length //of
cascadecomplex least theis),(//

 end

 end
)],([),(

),(),(),(

)),(),((minarg

1 to2for

] [),(

),(),(

0 down to 1for

][),(

),(),(

0

0

1

1

1
2,...,2,1

1

1

1

1

F
ord

n

F
ord

n

F
ord
kn

ord
iF

ord
in

F
ord
kn

ord
k

ord
ihF

ord
in

F
ord
jn

ord
j

ord
ih

nNiij

F
ord
iF

ord
i

F
ord
iF

ord
ihF

ord
i

FF
ord
N

F
ord
NF

ord
NhF

ord
N

SSD
Nnn

SS
i

n
SSSSS

SSDSSdSSD

SSDSSdk
iNn

SSSS

CRSSdSSD

Ni

SSS

CRSSdSSD




























P

PP

P

P

www.intechopen.com

Pattern Recognition, Recent Advances62

The proposed algorithm has a number of advantages over the DFS algorithm:

i. DFS algorithm has a training complexity of)(NQO , where Q is the number
of thresholds quantization levels which equals 32 as suggested by [Chellapilla
et al. 2006b]. While extensive pruning of search space is possible, the algorithm
takes very long training times especially for large N. On the other hand, the

proposed algorithm is of only a complexity of)(2NO . This means that the
proposed procedure is faster in training.

ii. Besides being faster, the proposed algorithm is scalable to large numbers of N.

While the actual number of stages selected for the optimum cascade is only
around 6 or 7 stages, making a large number of classifiers N available for the
algorithm gives it more flexibility to select the most suitable stages for the
cascade. In case of DFS, and to make the algorithm terminates with reasonable
time, we should select by hand around 8 stages for the algorithm as done by
[Chellapilla et al. 2006b]. This makes the proposed algorithm a means for
system design and for classifier selection at the same time. This means also
that the proposed system is more automatic than DFS.

In this section, we will compare the performance of the proposed system design procedure
with the DFS algorithm on the digit recognition problem. The dataset used in the
experiments is the MNIST [LECUN ET AL. 1998]. The MNIST has a total of 70,000 digits
which partitioned into 3 parts: i) a training set, which includes 50,000 digits and used for
training the classifiers, ii) a validation set, which contains 10,000 digits used for optimizing
the cascade system, and iii) a test set, which is used for final testing of the cascade. Each
digit image of all sets was transformed into 200-element feature vector using the gradient
feature extraction technique [LIU ET AL. 2003].

Forty-eight different classifiers were trained with different complexities and accuracies on
the training set. Three different types of classifiers are used: one-layer neural network (1-NN
or linear classifier), two-layer neural network (2-NN), and RBF SVM [WEBB 2002]. For
each classifier type, a number of classifiers of different structures were generated. First all
200 gradient feature elements were ranked according to their importance using ReliefF
feature ranking technique [KONONENKO 1994]. Then, for 1-NN, a classifier was generated
that has as the most important 25 feature elements as input, and then another one with the
most important 50 feature elements, then 75, and so on, till finally a classifier with all the 200
feature elements was generated. Hence, we have 8 different 1-NN classifiers. The same was
done for SVM; hence, we have additional 8 different classifiers. This also was done for 2-
NN, but for each number of inputs, a classifier was generated with different number of
hidden units: 50, 100 150, and 200 (i.e. 2-layer neural network of structures: 25-50-10, 25-100-
10, …, 25-200-10, 50-50-10, 50-100-10, ……, 200-200-10). Hence, we have 8 1-NN classifiers, 8
SVMs, and 8×4 2-NN classifier; hence we have a total of 48 classifiers of different structure
and accuracies. Table 1 shows the performance of the most powerful classifier (that is, the
SVM classifier with 200 feature elements): its number of errors and its complexity on the test
set. The complexity of a certain classifier is measured as the number of floating point

operations (flops) [RIDDER ET AL. 2002] it needs to classify one pattern divided by the
number of flops the least complex classifier generated (that is, the 1-NN with 25 inputs)
needs to classify one pattern.

Test set errors Complexity
66 5638.2

Table 1 The performance of the most powerful classifier (SVM with 200 features as input)

 Complexity Errors Number of
 Stages

Model-Based on 5 randomly
selected stages from {S} 376.9 67.3 3.5

DFS on 5 randomly selected stages
from {S} 358.7 66.5 4.9

Table 2 Average complexity, average errors, and average number of stages when applying
both model-based approach and DFS on 5 randomly selected stages from the pool of
classifiers

 Complexity Errors Number of
Stages

Model-Based applied to the whole {S}
187.8 70 6

Table 3 Complexity and errors of model-based approach on the entire pool of classifiers

Now, all the generated 48 classifiers can be handed to the proposed algorithm to generate
the best cascade out of them. However, this would not be possible for the DFS algorithm
due to its large complexity. In order to compare the proposed algorithm with DFS, the most
powerful classifier (that is, the SVM with 200 features) was used as the last stage and then
randomly selected 5 classifiers from the remaining 47 classifiers. The same was done 15
times; each time with different randomly selected 5 classifiers. For each of these selections,
both model-based algorithm and DFS was used to select the optimum cascade. The averages
of the 15 trials of both cases are calculated and summarized in Table 2. The average cascade
length (number of stages excluding SF) is also indicated for both cases. Table 2 shows that
DFS got slightly better results.

However, the main advantage of the proposed approach is that we can use classifiers pools
of large sizes N which is impossible for DFS. The entire set of 48 classifiers was given to the
proposed algorithm to build the optimum cascade out of them. The results are shown in
Table 3. We see that the cascade built when the proposed algorithm is given all the 48 has a
complexity of 187.8 which is lower than that of both model-approach and DFS when applied
to 5 randomly selected stages. This clarifies the importance of using large number of
classifiers N, and hence, the importance of the low complexity of our proposed algorithm.

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 63

The proposed algorithm has a number of advantages over the DFS algorithm:

i. DFS algorithm has a training complexity of)(NQO , where Q is the number
of thresholds quantization levels which equals 32 as suggested by [Chellapilla
et al. 2006b]. While extensive pruning of search space is possible, the algorithm
takes very long training times especially for large N. On the other hand, the

proposed algorithm is of only a complexity of)(2NO . This means that the
proposed procedure is faster in training.

ii. Besides being faster, the proposed algorithm is scalable to large numbers of N.

While the actual number of stages selected for the optimum cascade is only
around 6 or 7 stages, making a large number of classifiers N available for the
algorithm gives it more flexibility to select the most suitable stages for the
cascade. In case of DFS, and to make the algorithm terminates with reasonable
time, we should select by hand around 8 stages for the algorithm as done by
[Chellapilla et al. 2006b]. This makes the proposed algorithm a means for
system design and for classifier selection at the same time. This means also
that the proposed system is more automatic than DFS.

In this section, we will compare the performance of the proposed system design procedure
with the DFS algorithm on the digit recognition problem. The dataset used in the
experiments is the MNIST [LECUN ET AL. 1998]. The MNIST has a total of 70,000 digits
which partitioned into 3 parts: i) a training set, which includes 50,000 digits and used for
training the classifiers, ii) a validation set, which contains 10,000 digits used for optimizing
the cascade system, and iii) a test set, which is used for final testing of the cascade. Each
digit image of all sets was transformed into 200-element feature vector using the gradient
feature extraction technique [LIU ET AL. 2003].

Forty-eight different classifiers were trained with different complexities and accuracies on
the training set. Three different types of classifiers are used: one-layer neural network (1-NN
or linear classifier), two-layer neural network (2-NN), and RBF SVM [WEBB 2002]. For
each classifier type, a number of classifiers of different structures were generated. First all
200 gradient feature elements were ranked according to their importance using ReliefF
feature ranking technique [KONONENKO 1994]. Then, for 1-NN, a classifier was generated
that has as the most important 25 feature elements as input, and then another one with the
most important 50 feature elements, then 75, and so on, till finally a classifier with all the 200
feature elements was generated. Hence, we have 8 different 1-NN classifiers. The same was
done for SVM; hence, we have additional 8 different classifiers. This also was done for 2-
NN, but for each number of inputs, a classifier was generated with different number of
hidden units: 50, 100 150, and 200 (i.e. 2-layer neural network of structures: 25-50-10, 25-100-
10, …, 25-200-10, 50-50-10, 50-100-10, ……, 200-200-10). Hence, we have 8 1-NN classifiers, 8
SVMs, and 8×4 2-NN classifier; hence we have a total of 48 classifiers of different structure
and accuracies. Table 1 shows the performance of the most powerful classifier (that is, the
SVM classifier with 200 feature elements): its number of errors and its complexity on the test
set. The complexity of a certain classifier is measured as the number of floating point

operations (flops) [RIDDER ET AL. 2002] it needs to classify one pattern divided by the
number of flops the least complex classifier generated (that is, the 1-NN with 25 inputs)
needs to classify one pattern.

Test set errors Complexity
66 5638.2

Table 1 The performance of the most powerful classifier (SVM with 200 features as input)

 Complexity Errors Number of
 Stages

Model-Based on 5 randomly
selected stages from {S} 376.9 67.3 3.5

DFS on 5 randomly selected stages
from {S} 358.7 66.5 4.9

Table 2 Average complexity, average errors, and average number of stages when applying
both model-based approach and DFS on 5 randomly selected stages from the pool of
classifiers

 Complexity Errors Number of
Stages

Model-Based applied to the whole {S}
187.8 70 6

Table 3 Complexity and errors of model-based approach on the entire pool of classifiers

Now, all the generated 48 classifiers can be handed to the proposed algorithm to generate
the best cascade out of them. However, this would not be possible for the DFS algorithm
due to its large complexity. In order to compare the proposed algorithm with DFS, the most
powerful classifier (that is, the SVM with 200 features) was used as the last stage and then
randomly selected 5 classifiers from the remaining 47 classifiers. The same was done 15
times; each time with different randomly selected 5 classifiers. For each of these selections,
both model-based algorithm and DFS was used to select the optimum cascade. The averages
of the 15 trials of both cases are calculated and summarized in Table 2. The average cascade
length (number of stages excluding SF) is also indicated for both cases. Table 2 shows that
DFS got slightly better results.

However, the main advantage of the proposed approach is that we can use classifiers pools
of large sizes N which is impossible for DFS. The entire set of 48 classifiers was given to the
proposed algorithm to build the optimum cascade out of them. The results are shown in
Table 3. We see that the cascade built when the proposed algorithm is given all the 48 has a
complexity of 187.8 which is lower than that of both model-approach and DFS when applied
to 5 randomly selected stages. This clarifies the importance of using large number of
classifiers N, and hence, the importance of the low complexity of our proposed algorithm.

www.intechopen.com

Pattern Recognition, Recent Advances64

4.2 The Validity of Assumption 1
The optimality of Algorithm 1 is guaranteed if Equation (1) is valid. Equation (1) on its turn
is based on the validity of Assumption 1. In this section we are going to explore the
condition under which Assumption 1 is valid.

Assumption 1 states that the weaker classifier rejects all the patterns that the stronger
classifier rejects. In fact, this is true only when the stronger classifier is much stronger than
the weaker. Classifiers of near degree of strength reject overlapping sets of patterns; but
never totally conform to Assumption 1; this phenomenon is called ‘diversity’ and is
exploited in building classifiers ensembles [Kuncheva 2000]. Figure 6 is a scatter plot
showing the dependency of the invalidity of Assumption 1 for different classifier pairs
(taken from the pool of 48 classifiers mentioned above) on the difference in strength
between them. The invalidity of Assumption 1 is measured by the number of cases that
violated it and put on the vertical axis. The difference in strength between two classifiers is
represented by the difference in rejection rates between them. As clear from Figure 6, the
more the difference in rejection rates between two classifiers is, the less the number of
violations of Assumption 1 is found.

Fig. 6. A scatter plot that showing the dependency of the validity of Assumption 1 on the
difference in strength between the two classifiers.

But how could the inaccuracy of Assumption 1 affect the structure of cascades built by the
model-based approach? In fact, Assumption 1 leads us to believe that putting two classifiers
of near degree of strength one after the other is of no use. This is because the second
classifiers will not confidently recognize much of the patterns rejected from the first
classifier, and hence would not do but just increasing the complexity of the cascade. This
leads the model-based approach selects classifiers of very distant rejection rates from each
other to build the cascade. Because the rejection rate domain is finite (from 0 to 1), this
makes the model-based approach tends to build cascades of small lengths. This is clear if we

refer to Table 2 and compared the average cascades lengths built by model-based approach
and DFS.

Now, would this lead us to miss an opportunity for building less complex cascades? The
answer is yes. Putting a classifier of near strength to some classifiers increases its complexity
indeed but might result in a drop in rejection rate. Consider the following hypothetical
example. Suppose that there are two classifiers; both have rejection rate of 0.5. According to
Assumption 1, there is no point of putting one after the other in a cascade as this will lead to
more complex system of the same rejection rate of 0.5. But according to the concept of
diversity, there is. To take the extreme case of Assumption 1 violation, assume that the sets
of patterns rejected from the two classifiers are exclusive. This will make the overall
rejection rate of both classifiers when put one after the other in a cascade drop to 0. Of
course, this extreme case does not occur in reality, but this shows how two classifiers of near
strength could lead to rejection rates enhancements, and hence to more efficient
classification cascades. This is clear from Table 2, as the DFS (which is an exhaustive
procedure) finds cascades of better performance than model-based approach. However, DFS
is of very high complexity and does not scale to large pool sizes and this leads us to select
classifiers for it by hand which leads to inferior results to model-based approach as clear
from Table 3.

4.3 The Effect of Number of Stages on the Cascade Performance
In section 3 we presented an algorithm that builds the best cascade of specific length.
Besides being useful for memory-limited applications, it is very helpful in studying the
effect of increasing the number of cascade stages on its performance. Figure 7 shows the
complexities of best cascades with i stages, where i = 2, 3, 4, …, 48. It is clear from the figure
that the complexity decreases as we add more stages until certain limit, after which the
complexity starts to increase. Note that the complexities are calculated using the test set.

It would be interesting if we compared the theoretical cascade complexities anticipated by
Equation (1) with the actual cascade complexities. Because the theoretical complexities were
calculated using the validation set while building the cascade; hence, we will compare them
to the actual complexities calculated using the validation set, not the test set. This is to
clarify the difference between the theoretical and actual complexity setting aside the
differences between the validation and test sets. Figure 8 compares the theoretical and actual
complexities of best cascades with i stages, where i = 2, 3, 4, …, 48. From Figure 8, we note
that the theoretical complexity decreases with adding more stages until we reach the
cascade with 5 stages, then the complexity starts to increase again. On the other hand, the
actual complexities continue to decrease with adding more stages till reaching the cascade
with 22 stages. The actual complexity difference between best 5 stages and best 22 stages
cascade is not substantial; however, it sheds the light on the concept of diversity discussed
in section 4.2. In the point of view of Assumption 1, adding more stages after 5 stages limit
does nothing but increasing the complexity; however, in reality, the diversity continues to
enhance the performance and the cascade complexity continues to drop. We also note that
with adding more and more stages, the difference between the theoretical and actual
complexities increases since the effect of diversity increases between more classifiers.

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 65

4.2 The Validity of Assumption 1
The optimality of Algorithm 1 is guaranteed if Equation (1) is valid. Equation (1) on its turn
is based on the validity of Assumption 1. In this section we are going to explore the
condition under which Assumption 1 is valid.

Assumption 1 states that the weaker classifier rejects all the patterns that the stronger
classifier rejects. In fact, this is true only when the stronger classifier is much stronger than
the weaker. Classifiers of near degree of strength reject overlapping sets of patterns; but
never totally conform to Assumption 1; this phenomenon is called ‘diversity’ and is
exploited in building classifiers ensembles [Kuncheva 2000]. Figure 6 is a scatter plot
showing the dependency of the invalidity of Assumption 1 for different classifier pairs
(taken from the pool of 48 classifiers mentioned above) on the difference in strength
between them. The invalidity of Assumption 1 is measured by the number of cases that
violated it and put on the vertical axis. The difference in strength between two classifiers is
represented by the difference in rejection rates between them. As clear from Figure 6, the
more the difference in rejection rates between two classifiers is, the less the number of
violations of Assumption 1 is found.

Fig. 6. A scatter plot that showing the dependency of the validity of Assumption 1 on the
difference in strength between the two classifiers.

But how could the inaccuracy of Assumption 1 affect the structure of cascades built by the
model-based approach? In fact, Assumption 1 leads us to believe that putting two classifiers
of near degree of strength one after the other is of no use. This is because the second
classifiers will not confidently recognize much of the patterns rejected from the first
classifier, and hence would not do but just increasing the complexity of the cascade. This
leads the model-based approach selects classifiers of very distant rejection rates from each
other to build the cascade. Because the rejection rate domain is finite (from 0 to 1), this
makes the model-based approach tends to build cascades of small lengths. This is clear if we

refer to Table 2 and compared the average cascades lengths built by model-based approach
and DFS.

Now, would this lead us to miss an opportunity for building less complex cascades? The
answer is yes. Putting a classifier of near strength to some classifiers increases its complexity
indeed but might result in a drop in rejection rate. Consider the following hypothetical
example. Suppose that there are two classifiers; both have rejection rate of 0.5. According to
Assumption 1, there is no point of putting one after the other in a cascade as this will lead to
more complex system of the same rejection rate of 0.5. But according to the concept of
diversity, there is. To take the extreme case of Assumption 1 violation, assume that the sets
of patterns rejected from the two classifiers are exclusive. This will make the overall
rejection rate of both classifiers when put one after the other in a cascade drop to 0. Of
course, this extreme case does not occur in reality, but this shows how two classifiers of near
strength could lead to rejection rates enhancements, and hence to more efficient
classification cascades. This is clear from Table 2, as the DFS (which is an exhaustive
procedure) finds cascades of better performance than model-based approach. However, DFS
is of very high complexity and does not scale to large pool sizes and this leads us to select
classifiers for it by hand which leads to inferior results to model-based approach as clear
from Table 3.

4.3 The Effect of Number of Stages on the Cascade Performance
In section 3 we presented an algorithm that builds the best cascade of specific length.
Besides being useful for memory-limited applications, it is very helpful in studying the
effect of increasing the number of cascade stages on its performance. Figure 7 shows the
complexities of best cascades with i stages, where i = 2, 3, 4, …, 48. It is clear from the figure
that the complexity decreases as we add more stages until certain limit, after which the
complexity starts to increase. Note that the complexities are calculated using the test set.

It would be interesting if we compared the theoretical cascade complexities anticipated by
Equation (1) with the actual cascade complexities. Because the theoretical complexities were
calculated using the validation set while building the cascade; hence, we will compare them
to the actual complexities calculated using the validation set, not the test set. This is to
clarify the difference between the theoretical and actual complexity setting aside the
differences between the validation and test sets. Figure 8 compares the theoretical and actual
complexities of best cascades with i stages, where i = 2, 3, 4, …, 48. From Figure 8, we note
that the theoretical complexity decreases with adding more stages until we reach the
cascade with 5 stages, then the complexity starts to increase again. On the other hand, the
actual complexities continue to decrease with adding more stages till reaching the cascade
with 22 stages. The actual complexity difference between best 5 stages and best 22 stages
cascade is not substantial; however, it sheds the light on the concept of diversity discussed
in section 4.2. In the point of view of Assumption 1, adding more stages after 5 stages limit
does nothing but increasing the complexity; however, in reality, the diversity continues to
enhance the performance and the cascade complexity continues to drop. We also note that
with adding more and more stages, the difference between the theoretical and actual
complexities increases since the effect of diversity increases between more classifiers.

www.intechopen.com

Pattern Recognition, Recent Advances66

Fig. 7. The cascade actual complexity as the number of stages increases (calculated using the
test set)

Fig. 8. The cascade actual as well as theoretical complexities as the number of stages
increases (calculated using the validation set)

5. Related Works

In this section, we first present a taxonomy for the classification cascade research and then
review some related works.

Classification cascades could be categorized according to four different aspects:

1- Accuracy versus speed oriented cascades.
One could build a cascade to increase the accuracy [RAHMAN & FAIRHURST 1999], or
to increase the speed of the classification system [KAYNAK & ALPAYDIN 1997, PUDIL
et al. 1992, GIUSTI ET AL. 2002, GORGEVIK & CAKMAKOV 2004, ,FERRI et al. 2004,
Chellapilla et al. 2006a, Chellapilla et al. 2006b].

2- Reevaluation-based versus information-passing cascades.
In reevaluation-based cascades, the pattern to be classified is presented to the first
classifier to give a decision with a confidence score. If the confidence score is higher
than some threshold, the classification process terminates and the decision taken by the
first classifier is declared to be the final decision. If the confidence score is lower than
the threshold, the pattern is passed to the next classifier to re-classify it, and the process
continues in the same manner. There is no information passed from one stage to the
next. Each stage, if evoked, starts the classification process from scratch. In information
passing cascades, each stage passes some information to the next stage. The most
important of this category is the class reduction cascade, in which each stage passes a
list of the most probable classes the pattern could belong to. Each stage focuses only on
this list neglecting other classes [TSAY ET AL. 2004].

3- Dependent versus independent training of classifiers.
Each stage in the cascade could be trained independently using all the training set
patterns [Chellapilla et al. 2006a, Chellapilla et al. 2006b This is called ‘independent
training of stages’. On the other hand, each stage could be trained using only the
patterns rejected from the previous stage [FERRI ET AL. 2004]. This is called ‘dependent
training of stages’.

4- Manual versus automatic building of cascades.
A cascade could be manually built [GORGEVIK & CAKMAKOV 2004,], or
automatically built [Chellapilla et al. 2006a, Chellapilla et al. 2006b]. The degree of
cascade building automation differs. For example, in some cascade design technique,
the structure of the cascade is automated but some other parameters (e.g. thresholds)
are not.

According to this categorization scheme, the proposed model-based approach for building
classification cascades is: speed-oriented, re-evaluation based, with independent training of
classifiers, and entirely automatic.

There are many cascade design techniques in the literature. However, they have common
themes. In the following some works on classification cascades will be presented, each
representing some theme, mentioning similar works.

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 67

Fig. 7. The cascade actual complexity as the number of stages increases (calculated using the
test set)

Fig. 8. The cascade actual as well as theoretical complexities as the number of stages
increases (calculated using the validation set)

5. Related Works

In this section, we first present a taxonomy for the classification cascade research and then
review some related works.

Classification cascades could be categorized according to four different aspects:

1- Accuracy versus speed oriented cascades.
One could build a cascade to increase the accuracy [RAHMAN & FAIRHURST 1999], or
to increase the speed of the classification system [KAYNAK & ALPAYDIN 1997, PUDIL
et al. 1992, GIUSTI ET AL. 2002, GORGEVIK & CAKMAKOV 2004, ,FERRI et al. 2004,
Chellapilla et al. 2006a, Chellapilla et al. 2006b].

2- Reevaluation-based versus information-passing cascades.
In reevaluation-based cascades, the pattern to be classified is presented to the first
classifier to give a decision with a confidence score. If the confidence score is higher
than some threshold, the classification process terminates and the decision taken by the
first classifier is declared to be the final decision. If the confidence score is lower than
the threshold, the pattern is passed to the next classifier to re-classify it, and the process
continues in the same manner. There is no information passed from one stage to the
next. Each stage, if evoked, starts the classification process from scratch. In information
passing cascades, each stage passes some information to the next stage. The most
important of this category is the class reduction cascade, in which each stage passes a
list of the most probable classes the pattern could belong to. Each stage focuses only on
this list neglecting other classes [TSAY ET AL. 2004].

3- Dependent versus independent training of classifiers.
Each stage in the cascade could be trained independently using all the training set
patterns [Chellapilla et al. 2006a, Chellapilla et al. 2006b This is called ‘independent
training of stages’. On the other hand, each stage could be trained using only the
patterns rejected from the previous stage [FERRI ET AL. 2004]. This is called ‘dependent
training of stages’.

4- Manual versus automatic building of cascades.
A cascade could be manually built [GORGEVIK & CAKMAKOV 2004,], or
automatically built [Chellapilla et al. 2006a, Chellapilla et al. 2006b]. The degree of
cascade building automation differs. For example, in some cascade design technique,
the structure of the cascade is automated but some other parameters (e.g. thresholds)
are not.

According to this categorization scheme, the proposed model-based approach for building
classification cascades is: speed-oriented, re-evaluation based, with independent training of
classifiers, and entirely automatic.

There are many cascade design techniques in the literature. However, they have common
themes. In the following some works on classification cascades will be presented, each
representing some theme, mentioning similar works.

www.intechopen.com

Pattern Recognition, Recent Advances68

5.1 Risk analysis of multistage pattern recognition with reject option by Pudil et al.
One way to build a multistage system is to generate different systems with different
structures and then to asses each of them using some criterion. Then the best cascade in
terms of this criterion is selected. One problem with this method is that there are two
conflicting requirements of a cascade system: high accuracy and low complexity. Any
reasonable criterion should consider both requirements. Pudil et al. [PUDIL ET AL. 1992]
suggested a criterion to assess the performance of multistage systems using a modified
version of average risk analysis [DUDA et al. 2000].

Pudil’s et al. technique is then considered according to the proposed categorization of
cascades: speed-oriented, reevaluation-based, independent learning of stages, and automatic
if we are ready to generate very large set of cascades and select the best; and partly-manual
if we used our experience of the problem to select some reasonable set of cascades.

5.2 Kaynak-Alpaydin cascade
Kanyak and Alpaydin [KAYNAK & ALPAYDIN 1997] suggested a technique for building
classification cascades that achieves high accuracy with low complexity. In this technique, a
sequence of learners jS ’s is used, where 1jS learner is more complex than jS .

Associated with each learner is a confidence score jconf such that we say jS is confident

of its output and can be used if jj tconf  where 10 1  jj tt is the confidence

threshold. Learner jS is used if all the preceding learners are not confident. Starting with

1j , given a training set, jS is trained. All the patterns on which jS ’s performance is

not acceptable are found and used to train 1jS . This means that Kaynak-Alpaydin cascade

falls in the category of dependent-training cascades.

This technique is to some degree similar to AdaBoost learning [DUDA et al. 2000, CHEVA
(2004)]. Both techniques build a sequence of classifiers, each specializes in recognizing the
pattern not recognized (or not confidently recognized) by the previous stage. However,
there are some important differences between the two techniques. In AdaBoost
classification, all the stages should be evoked in order to get the final classification decision.
In Kaynak-Alpaydin cascade, the decision could be made at any stage according to the
decision confidence of that stage. This property is behind the low complexity of the cascade
classifier. AdaBoost uses weak learners of the same type. Kaynak-Alpaydin cascade uses
different learner of increasing powerfulness and complexity.

Experiments show good performance of Kaynak-Alpaydin cascade. However, Kaynak-
Alpaydin technique is not fully automatic, and relies of the users’ experience to select the
classifiers constituting the cascade as well as their rejection thresholds by hand.

Kaynak-Alpaydin cascade is considered according to the proposed categorization of
classification cascades: speed-oriented, reevaluation-based, dependent training of stages,
and manual.

5.3 Delegating classifier
Delegating classifier is another name coined by Ferri et al. [FERRI ET AL. 2004] for cascade
classifier. Ferri et al. first suggest a two-stage system in which the first stage has a threshold
at its output to reject the uncertain classifications to the second stage. This threshold is
found such that the first stage would reject a certain percentage of the examples to the
second stage. Here the first stage is trained using all the available examples and the second
stage is trained using only the samples rejected by the first stage. This idea is also
generalized to the case of more than two stages.

Ferri et al. suggest an interesting modification to the two-stage system. They put another
threshold on the second stage output of the two-stage system. If the confidence score of the
second stage falls below this threshold, the decision of the second stage is ignored and the
final decision would be of the first stage. This approach is verified by the fact that the second
stage inclines to overfit as it is trained using the noisy patterns rejected by the first stage.
This technique was called ‘Round Rebound’ and was shown to slightly improve the results
of the two-stage system.

Delegating classifier is considered according to the proposed categorization of classification
cascades: speed-oriented, reevaluation-based, dependent training of stages. Ferri et al.
suggested an automatic way of building cascade, though it is not theoretically verified and
needs some manual calibration.

5.4 Two-stage system of Giusti et al.
Kaynak et al. [KAYNAK & ALPAYDIN 1997] studied one implementation of Kaynak-
Alpaydin Cascade in which there is only two stages: the first stage is a global classifier like
ANN, and the second stage is a local classifier like KNN. Giusti et al. [GIUSTI ET AL. 2002]
studied a similar system theoretically with the addition to one time-saving technique. That
is, if the first stage rejects some patterns, it indicates the h top most probable classes that the
pattern belongs to. The KNN does not need then to search in its whole database, only within
patterns belonging to the h top classes.

Giusti’s two-stage system is considered according to the proposed categorization of
classification cascades: speed-oriented, information-passing-based, dependent training of
stages, and manual. Similar works to Giusti’s system are [TSAY ET AL. 2004, GORGEVIK &
CAKMAKOV 2004,].

5.5 Sequential combination of classifiers by Rahman and Fairhurst
 ‘Sequential classifier’ is another name for cascade classifier. Rahman and Fairhurst
[RAHMAN & FAIRHURST 1999] presented two versions of the cascade classifiers: one is
reevaluation-based and the other is information-passing-based. The information-passing-
version passes a subset of most probable classes from one stage to the next narrowing down
the scope of classes we search in. The first version resembles Kaynak-Alpaydin cascade but
the stages are trained independently. The second version resembles the work of Giusti et al.
but the role of successive stages is only to narrow down the list of possible classes more and
more; an intermediate stage cannot classify a pattern; just the last stage can.

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 69

5.1 Risk analysis of multistage pattern recognition with reject option by Pudil et al.
One way to build a multistage system is to generate different systems with different
structures and then to asses each of them using some criterion. Then the best cascade in
terms of this criterion is selected. One problem with this method is that there are two
conflicting requirements of a cascade system: high accuracy and low complexity. Any
reasonable criterion should consider both requirements. Pudil et al. [PUDIL ET AL. 1992]
suggested a criterion to assess the performance of multistage systems using a modified
version of average risk analysis [DUDA et al. 2000].

Pudil’s et al. technique is then considered according to the proposed categorization of
cascades: speed-oriented, reevaluation-based, independent learning of stages, and automatic
if we are ready to generate very large set of cascades and select the best; and partly-manual
if we used our experience of the problem to select some reasonable set of cascades.

5.2 Kaynak-Alpaydin cascade
Kanyak and Alpaydin [KAYNAK & ALPAYDIN 1997] suggested a technique for building
classification cascades that achieves high accuracy with low complexity. In this technique, a
sequence of learners jS ’s is used, where 1jS learner is more complex than jS .

Associated with each learner is a confidence score jconf such that we say jS is confident

of its output and can be used if jj tconf  where 10 1  jj tt is the confidence

threshold. Learner jS is used if all the preceding learners are not confident. Starting with

1j , given a training set, jS is trained. All the patterns on which jS ’s performance is

not acceptable are found and used to train 1jS . This means that Kaynak-Alpaydin cascade

falls in the category of dependent-training cascades.

This technique is to some degree similar to AdaBoost learning [DUDA et al. 2000, CHEVA
(2004)]. Both techniques build a sequence of classifiers, each specializes in recognizing the
pattern not recognized (or not confidently recognized) by the previous stage. However,
there are some important differences between the two techniques. In AdaBoost
classification, all the stages should be evoked in order to get the final classification decision.
In Kaynak-Alpaydin cascade, the decision could be made at any stage according to the
decision confidence of that stage. This property is behind the low complexity of the cascade
classifier. AdaBoost uses weak learners of the same type. Kaynak-Alpaydin cascade uses
different learner of increasing powerfulness and complexity.

Experiments show good performance of Kaynak-Alpaydin cascade. However, Kaynak-
Alpaydin technique is not fully automatic, and relies of the users’ experience to select the
classifiers constituting the cascade as well as their rejection thresholds by hand.

Kaynak-Alpaydin cascade is considered according to the proposed categorization of
classification cascades: speed-oriented, reevaluation-based, dependent training of stages,
and manual.

5.3 Delegating classifier
Delegating classifier is another name coined by Ferri et al. [FERRI ET AL. 2004] for cascade
classifier. Ferri et al. first suggest a two-stage system in which the first stage has a threshold
at its output to reject the uncertain classifications to the second stage. This threshold is
found such that the first stage would reject a certain percentage of the examples to the
second stage. Here the first stage is trained using all the available examples and the second
stage is trained using only the samples rejected by the first stage. This idea is also
generalized to the case of more than two stages.

Ferri et al. suggest an interesting modification to the two-stage system. They put another
threshold on the second stage output of the two-stage system. If the confidence score of the
second stage falls below this threshold, the decision of the second stage is ignored and the
final decision would be of the first stage. This approach is verified by the fact that the second
stage inclines to overfit as it is trained using the noisy patterns rejected by the first stage.
This technique was called ‘Round Rebound’ and was shown to slightly improve the results
of the two-stage system.

Delegating classifier is considered according to the proposed categorization of classification
cascades: speed-oriented, reevaluation-based, dependent training of stages. Ferri et al.
suggested an automatic way of building cascade, though it is not theoretically verified and
needs some manual calibration.

5.4 Two-stage system of Giusti et al.
Kaynak et al. [KAYNAK & ALPAYDIN 1997] studied one implementation of Kaynak-
Alpaydin Cascade in which there is only two stages: the first stage is a global classifier like
ANN, and the second stage is a local classifier like KNN. Giusti et al. [GIUSTI ET AL. 2002]
studied a similar system theoretically with the addition to one time-saving technique. That
is, if the first stage rejects some patterns, it indicates the h top most probable classes that the
pattern belongs to. The KNN does not need then to search in its whole database, only within
patterns belonging to the h top classes.

Giusti’s two-stage system is considered according to the proposed categorization of
classification cascades: speed-oriented, information-passing-based, dependent training of
stages, and manual. Similar works to Giusti’s system are [TSAY ET AL. 2004, GORGEVIK &
CAKMAKOV 2004,].

5.5 Sequential combination of classifiers by Rahman and Fairhurst
 ‘Sequential classifier’ is another name for cascade classifier. Rahman and Fairhurst
[RAHMAN & FAIRHURST 1999] presented two versions of the cascade classifiers: one is
reevaluation-based and the other is information-passing-based. The information-passing-
version passes a subset of most probable classes from one stage to the next narrowing down
the scope of classes we search in. The first version resembles Kaynak-Alpaydin cascade but
the stages are trained independently. The second version resembles the work of Giusti et al.
but the role of successive stages is only to narrow down the list of possible classes more and
more; an intermediate stage cannot classify a pattern; just the last stage can.

www.intechopen.com

Pattern Recognition, Recent Advances70

The major difference between Rahman and Fairhurst’s cascade and other cascades is that it
is accuracy-oriented. However, it is remarked that it has much less complexity than other
accuracy-oriented classifiers combination scheme. Also, while they optimized the cascade
accuracy, they could optimize its speed as well or they could optimize a cost function that
considers both accuracy and speed.

It is understood how could a cascade enhance the speed; but how could it enhance the
accuracy? The answer is different for each of the two versions of Rahman and Fairhurst’s
cascade. For the reevaluation version, the cause is as follows. If all stage before the last
rejects or misclassify the patterns of the last stage, there will be no gain in accuracy. But
actually what happens is that some stages correctly and confidently classify some patterns
that are not correctly classified by the last stage (the concept of diversity discussed earlier).
This is why the accuracy increases. For the information-passing version of the cascade, the
cause behind the increase in accuracy is as follows. It happens that the last stage confuses
between the true class of some pattern and other class. If this other class has been omitted
from the list of considered classes passed through the cascade, this will lead the last stage
make the correct classification as the rival class is omitted beforehand. This could increase
the overall accuracy of the system.

Rahman and Fairhurst’s cascade is considered according to the proposed categorization of
classification cascades: accuracy-oriented but can easily modified to speed-oriented,
reevaluation-based for the first version and information-passing-based for the second
version, independent training of stages, and manual.

5.6 Searching in the space of thresholds by Chellapilla et al.
The most elegant work on classification cascade design is that of Chellapilla et al.
[Chellapilla et al. 2006a, Chellapilla et al. 2006b]. They first presented a framework for the
cascade design problem as an optimization problem that can be solved using any
combinatorial optimization technique. Their cascade is speed-oriented, reevaluation-based,
with independent training of stages, and is automatic to a large extent.

They start with a cascade of N classifier S1, S2, . . ., SN; each has a complexity Ci and a
threshold ti, i=1, 2, . . ., N. The stages are ordered in the cascade in an ascending order of
complexities (i.e. C1<C2< . . . <CN). The pattern to be classified goes initially through the first
stage. If it is classified with confidence score higher than t1, then it is absorbed (i.e. the
classification process terminates taking the decision of S1 to be the final decision). If the
confidence score is below t1, the pattern is rejected to the next stage S2, and the process
continues. The last stage has a threshold tN=0 (i.e. it absorbs all the patterns it receives and
rejects nothing).

The problem of cascade design now reduces to the setting of the set of N thresholds t1, t2, . . ,
tN. Note that a stage could be excluded from the cascade by setting its threshold to 1 (i.e. it
rejects everything). The problem is then formulated into an optimization problem. There are
actually two optimization problems reflecting the goal from building the cascade. The first
goal is to minimize the overall system complexity given some error constraint. The second
goal is to minimize the error given some complexity constraint. The search space of

solutions is then V={t1}×{t2}× . . . ×{tN}, where {ti} is the set of all thresholds of stage i. The

goal is then to find the optimal threshold vector],...,,[**
2

*
1

*
NtttT  that solves one of the

following two optimization problems,

i) minimizing the complexity,

})(,|)(min{arg max
* eTeVTTCT  (3)

or ii) minimizing the error,

})(,|)(min{arg max
* CTCVTTeT  (4)

where C(T) is the complexity of the cascade with threshold vector T=[t1, t2,..., tN], e(T) is the
error rate of the cascade with threshold vector T, emax is the error constraint, and Cmax is the
complexity constraint.

Left is the procedure by which the set of possible threshold {ti} for the stage Si for each i, i=1,
2, …, N is prepared. First, each stage Si is used to classify all the examples of a validation set.
The examples are then sorted in a descending order according to the confidence scores they
are given by Si. The examples are partitioned into Q-2 subset. The thresholds {ti} are then the
confidence score of the first example of each subset, plus the two thresholds: 0 (means Si
absorbs all the examples) and 1 (means Si rejects all the examples). Here then we have Q
thresholds in the set {ti}. This is equivalent to quantizing ti to Q quantization levels. Then the
size of the space of thresholds V is QN. The optimization problem is then to search through
the space V of threshold to satisfy either Equation (3) or Equation (4).

This problem can be solved using any combinatorial optimization technique. Cellapilla et al.
tried solving the problem using steepest descent, dynamic programming, simulated
annealing, depth first search (DFS). All these algorithms are suboptimal except DFS. The
DFS [Chellapilla et al. 2006b] is a simple search algorithm that searches through the space of
solution intelligently. It prunes large sections of the search space that are guaranteed not to
give the best solution.

This framework is elegant and fully automatic except that the procedure of ordering the
stages by increasing complexity is not verified theoretically. The DFS solution is elegant and
optimal but it has an exponential complexity in N (that is, O(QN)) which means that using
large value number of stages is computationally prohibitive. This made Chellapilla et al. do
manual selection of the N classifiers to be used with algorithm. Hence, though DFS could be
fully automatic, its high computational complexity hinders it to be.

6. Conclusion

In this chapter, we presented a model-based approach for automatically building
classification cascades. The experiments showed that the algorithm is efficient and scalable.
The algorithm was also analyzed and its strengths and limitations were clarified. In
addition, we presented an algorithm that builds cascades with given lengths which is useful
in memory-limited systems helped in studying the effect of increasing the number of stages
in a cascade on its performance.

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 71

The major difference between Rahman and Fairhurst’s cascade and other cascades is that it
is accuracy-oriented. However, it is remarked that it has much less complexity than other
accuracy-oriented classifiers combination scheme. Also, while they optimized the cascade
accuracy, they could optimize its speed as well or they could optimize a cost function that
considers both accuracy and speed.

It is understood how could a cascade enhance the speed; but how could it enhance the
accuracy? The answer is different for each of the two versions of Rahman and Fairhurst’s
cascade. For the reevaluation version, the cause is as follows. If all stage before the last
rejects or misclassify the patterns of the last stage, there will be no gain in accuracy. But
actually what happens is that some stages correctly and confidently classify some patterns
that are not correctly classified by the last stage (the concept of diversity discussed earlier).
This is why the accuracy increases. For the information-passing version of the cascade, the
cause behind the increase in accuracy is as follows. It happens that the last stage confuses
between the true class of some pattern and other class. If this other class has been omitted
from the list of considered classes passed through the cascade, this will lead the last stage
make the correct classification as the rival class is omitted beforehand. This could increase
the overall accuracy of the system.

Rahman and Fairhurst’s cascade is considered according to the proposed categorization of
classification cascades: accuracy-oriented but can easily modified to speed-oriented,
reevaluation-based for the first version and information-passing-based for the second
version, independent training of stages, and manual.

5.6 Searching in the space of thresholds by Chellapilla et al.
The most elegant work on classification cascade design is that of Chellapilla et al.
[Chellapilla et al. 2006a, Chellapilla et al. 2006b]. They first presented a framework for the
cascade design problem as an optimization problem that can be solved using any
combinatorial optimization technique. Their cascade is speed-oriented, reevaluation-based,
with independent training of stages, and is automatic to a large extent.

They start with a cascade of N classifier S1, S2, . . ., SN; each has a complexity Ci and a
threshold ti, i=1, 2, . . ., N. The stages are ordered in the cascade in an ascending order of
complexities (i.e. C1<C2< . . . <CN). The pattern to be classified goes initially through the first
stage. If it is classified with confidence score higher than t1, then it is absorbed (i.e. the
classification process terminates taking the decision of S1 to be the final decision). If the
confidence score is below t1, the pattern is rejected to the next stage S2, and the process
continues. The last stage has a threshold tN=0 (i.e. it absorbs all the patterns it receives and
rejects nothing).

The problem of cascade design now reduces to the setting of the set of N thresholds t1, t2, . . ,
tN. Note that a stage could be excluded from the cascade by setting its threshold to 1 (i.e. it
rejects everything). The problem is then formulated into an optimization problem. There are
actually two optimization problems reflecting the goal from building the cascade. The first
goal is to minimize the overall system complexity given some error constraint. The second
goal is to minimize the error given some complexity constraint. The search space of

solutions is then V={t1}×{t2}× . . . ×{tN}, where {ti} is the set of all thresholds of stage i. The

goal is then to find the optimal threshold vector],...,,[**
2

*
1

*
NtttT  that solves one of the

following two optimization problems,

i) minimizing the complexity,

})(,|)(min{arg max
* eTeVTTCT  (3)

or ii) minimizing the error,

})(,|)(min{arg max
* CTCVTTeT  (4)

where C(T) is the complexity of the cascade with threshold vector T=[t1, t2,..., tN], e(T) is the
error rate of the cascade with threshold vector T, emax is the error constraint, and Cmax is the
complexity constraint.

Left is the procedure by which the set of possible threshold {ti} for the stage Si for each i, i=1,
2, …, N is prepared. First, each stage Si is used to classify all the examples of a validation set.
The examples are then sorted in a descending order according to the confidence scores they
are given by Si. The examples are partitioned into Q-2 subset. The thresholds {ti} are then the
confidence score of the first example of each subset, plus the two thresholds: 0 (means Si
absorbs all the examples) and 1 (means Si rejects all the examples). Here then we have Q
thresholds in the set {ti}. This is equivalent to quantizing ti to Q quantization levels. Then the
size of the space of thresholds V is QN. The optimization problem is then to search through
the space V of threshold to satisfy either Equation (3) or Equation (4).

This problem can be solved using any combinatorial optimization technique. Cellapilla et al.
tried solving the problem using steepest descent, dynamic programming, simulated
annealing, depth first search (DFS). All these algorithms are suboptimal except DFS. The
DFS [Chellapilla et al. 2006b] is a simple search algorithm that searches through the space of
solution intelligently. It prunes large sections of the search space that are guaranteed not to
give the best solution.

This framework is elegant and fully automatic except that the procedure of ordering the
stages by increasing complexity is not verified theoretically. The DFS solution is elegant and
optimal but it has an exponential complexity in N (that is, O(QN)) which means that using
large value number of stages is computationally prohibitive. This made Chellapilla et al. do
manual selection of the N classifiers to be used with algorithm. Hence, though DFS could be
fully automatic, its high computational complexity hinders it to be.

6. Conclusion

In this chapter, we presented a model-based approach for automatically building
classification cascades. The experiments showed that the algorithm is efficient and scalable.
The algorithm was also analyzed and its strengths and limitations were clarified. In
addition, we presented an algorithm that builds cascades with given lengths which is useful
in memory-limited systems helped in studying the effect of increasing the number of stages
in a cascade on its performance.

www.intechopen.com

Pattern Recognition, Recent Advances72

7. References

Brubaker, S., Mullin, M., and Rehg J., (2006), “Towards optimal training of cascaded
detectors,” ECCV06, vol. 1, pp. 325-337, Graz, Austria, May.

Chellapilla, K., M. Shilman, P. Simard, (2006a) “Combining Multiple Classifiers for Faster
Optical Character Recognition”, DAS, pp. 358-367.

Chellapilla, K.; Shilman, M. , Simard, P., (2006b), “Optimally Combining a Cascade of
Classifiers”, SPIE Document Recognition and Retrieval (DRR).

Chen, X. & Yuille, A., (2005), “A time-efficient cascade for real-time object detection: with
application for the visually impaired,” IEEE CVPR-05, vol. 3, pp. 28, San Diego, CA,
USA, June 20-25.

Duda, R., Hart, P., Stork, D., (2000), Pattern Classification, 2nd Edition, Wiley, New York.
Ferri, C.; Flach, P. ,and Hernandez-Orallo, J., (2004) “Delegating classifiers,” Proceedings of

21st International Conference on Machine Learning, pp. 37.
Giusti, N.; Masulli, F. and Sperduti, A. (2002), “Theoretical and experimental analysis of a

two-stage system for classification,” IEEE TPAMI, vol. 24, no. 7, pp. 893-904.
Gorgevik, D.& Cakmakov, D. (2004), "An efficient three-stage classifier for handwritten

digit recognition", ICPR'04, pp. 1051-4651.
Kaynak, C. & Alpaydin, E. (1997), “Multistage classification by cascaded classifiers,”

Proceedings of 1997 IEEE international symposium on Intelligent Control, pp. 95-
100.

I. Kononenko,(1994) “Estimating attributes: analysis and extensions of Relief,” ECML-94,
pp. 171–182.

Kuncheva, L., (2004), Combining Pattern Classifiers, Wiley-Interscience.
LeCun, Y.; Bottou, L. Bengio, Y. and Haffner, P. (1998), “Gradient-Based Learning Applied

to Document Recognition”, Proceedings of the IEEE, vol. 86 no. 11, pp. 2278-2324.
Liu, C.; Nakashima, K. Sako, Fujisawa, H. H., (2003), “Handwritten digit recognition:

benchmarking of state-of-the-art techniques,” Pattern Recognition, vol. 36, pp. 2271
– 2285.

Luo, H. , (2005), “Optimization design of cascades classifiers,” IEEE CVPR-05, vol. 1, pp.
480- 485, San Diego, CA, USA, June 20-25.

Pudil, P. ; Novovicova, J. , Blaha, S., Kittler, J., (1992), “Multistage pattern recognition with
reject option,” 11th IAPR, pp. 92-95.

Rahman, A. & Fairhurst, M,. (1999), “Serial combination of multiple experts: a unified
evaluation,” Pattern Analysis and Applications, vol. 2, no. 4, pp. 292-311.

Ridder, D.; Pekalska, E., Duin, R. (2002), “The economics of classification: error vs.
complexity”, The 16th International Conference on Pattern Recognition, pp. 244-
247.

Sun, J., Regh, J., Bobick, A. ,(2004), “Automatic cascade training with perturbation bias,”
IEEE CVPR-04, vol. 2, pp. 276-283, Washington, DC, June 27 – July 2.

Tsay, J., Lin, C. ,Hung, C. ,and Lin, C. , 2004 ,“Cascaded class reduction for time-efficient
multi-class classification,” 18th Annual ACM International Conference on
Supercomputing (ICS’04), pp. 189-194, Saint-Malo, France, June 26-July 1.

Viola, P. & M. Jones, (2001), “Rapid object detection using a boosted cascade of simple
features”, ICPR, vol 1., pp. 511-518.

Webb, (2002), Statistical pattern recognition, 2nd Edition, Wiley.

Wu, J., Brubaker, S., Mullin, M., and Regh, J. ,(2008), “Fast asymmetric learning for cascade
face detection,” IEEE PAMI, vol. 30, no. 3, pp. 369-382.

Yuann, Q. Thangali, A. . Sclaroff, S,(2005) ,“Face identification by a cascade of rejection
classifiers,” IEEE CVPR-05, vol. 3, p. 152, San Diego, CA, USA, June 20-25.

www.intechopen.com

A Model-Based Approach for Building Optimum Classiication Cascades 73

7. References

Brubaker, S., Mullin, M., and Rehg J., (2006), “Towards optimal training of cascaded
detectors,” ECCV06, vol. 1, pp. 325-337, Graz, Austria, May.

Chellapilla, K., M. Shilman, P. Simard, (2006a) “Combining Multiple Classifiers for Faster
Optical Character Recognition”, DAS, pp. 358-367.

Chellapilla, K.; Shilman, M. , Simard, P., (2006b), “Optimally Combining a Cascade of
Classifiers”, SPIE Document Recognition and Retrieval (DRR).

Chen, X. & Yuille, A., (2005), “A time-efficient cascade for real-time object detection: with
application for the visually impaired,” IEEE CVPR-05, vol. 3, pp. 28, San Diego, CA,
USA, June 20-25.

Duda, R., Hart, P., Stork, D., (2000), Pattern Classification, 2nd Edition, Wiley, New York.
Ferri, C.; Flach, P. ,and Hernandez-Orallo, J., (2004) “Delegating classifiers,” Proceedings of

21st International Conference on Machine Learning, pp. 37.
Giusti, N.; Masulli, F. and Sperduti, A. (2002), “Theoretical and experimental analysis of a

two-stage system for classification,” IEEE TPAMI, vol. 24, no. 7, pp. 893-904.
Gorgevik, D.& Cakmakov, D. (2004), "An efficient three-stage classifier for handwritten

digit recognition", ICPR'04, pp. 1051-4651.
Kaynak, C. & Alpaydin, E. (1997), “Multistage classification by cascaded classifiers,”

Proceedings of 1997 IEEE international symposium on Intelligent Control, pp. 95-
100.

I. Kononenko,(1994) “Estimating attributes: analysis and extensions of Relief,” ECML-94,
pp. 171–182.

Kuncheva, L., (2004), Combining Pattern Classifiers, Wiley-Interscience.
LeCun, Y.; Bottou, L. Bengio, Y. and Haffner, P. (1998), “Gradient-Based Learning Applied

to Document Recognition”, Proceedings of the IEEE, vol. 86 no. 11, pp. 2278-2324.
Liu, C.; Nakashima, K. Sako, Fujisawa, H. H., (2003), “Handwritten digit recognition:

benchmarking of state-of-the-art techniques,” Pattern Recognition, vol. 36, pp. 2271
– 2285.

Luo, H. , (2005), “Optimization design of cascades classifiers,” IEEE CVPR-05, vol. 1, pp.
480- 485, San Diego, CA, USA, June 20-25.

Pudil, P. ; Novovicova, J. , Blaha, S., Kittler, J., (1992), “Multistage pattern recognition with
reject option,” 11th IAPR, pp. 92-95.

Rahman, A. & Fairhurst, M,. (1999), “Serial combination of multiple experts: a unified
evaluation,” Pattern Analysis and Applications, vol. 2, no. 4, pp. 292-311.

Ridder, D.; Pekalska, E., Duin, R. (2002), “The economics of classification: error vs.
complexity”, The 16th International Conference on Pattern Recognition, pp. 244-
247.

Sun, J., Regh, J., Bobick, A. ,(2004), “Automatic cascade training with perturbation bias,”
IEEE CVPR-04, vol. 2, pp. 276-283, Washington, DC, June 27 – July 2.

Tsay, J., Lin, C. ,Hung, C. ,and Lin, C. , 2004 ,“Cascaded class reduction for time-efficient
multi-class classification,” 18th Annual ACM International Conference on
Supercomputing (ICS’04), pp. 189-194, Saint-Malo, France, June 26-July 1.

Viola, P. & M. Jones, (2001), “Rapid object detection using a boosted cascade of simple
features”, ICPR, vol 1., pp. 511-518.

Webb, (2002), Statistical pattern recognition, 2nd Edition, Wiley.

Wu, J., Brubaker, S., Mullin, M., and Regh, J. ,(2008), “Fast asymmetric learning for cascade
face detection,” IEEE PAMI, vol. 30, no. 3, pp. 369-382.

Yuann, Q. Thangali, A. . Sclaroff, S,(2005) ,“Face identification by a cascade of rejection
classifiers,” IEEE CVPR-05, vol. 3, p. 152, San Diego, CA, USA, June 20-25.

www.intechopen.com

Pattern Recognition, Recent Advances74

www.intechopen.com

Pattern Recognition Recent Advances

Edited by Adam Herout

ISBN 978-953-7619-90-9

Hard cover, 524 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nos aute magna at aute doloreetum erostrud eugiam zzriuscipsum dolorper iliquate velit ad magna feugiamet,

quat lore dolore modolor ipsum vullutat lorper sim inci blan vent utet, vero er sequatum delit lortion sequip

eliquatet ilit aliquip eui blam, vel estrud modolor irit nostinc iliquiscinit er sum vero odip eros numsandre

dolessisisim dolorem volupta tionsequam, sequamet, sequis nonulla conulla feugiam euis ad tat. Igna feugiam

et ametuercil enim dolore commy numsandiam, sed te con hendit iuscidunt wis nonse volenis molorer suscip

er illan essit ea feugue do dunt utetum vercili quamcon ver sequat utem zzriure modiat. Pisl esenis non ex

euipsusci tis amet utpate deliquat utat lan hendio consequis nonsequi euisi blaor sim venis nonsequis enit, qui

tatem vel dolumsandre enim zzriurercing

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ezzat El-Sherif and Sherif Abdelazeem (2010). A Model-Based Approach for Building Optimum Classification

Cascades, Pattern Recognition Recent Advances, Adam Herout (Ed.), ISBN: 978-953-7619-90-9, InTech,

Available from: http://www.intechopen.com/books/pattern-recognition-recent-advances/a-model-based-

approach-for-building-optimum-classification-cascades

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

