3,017 research outputs found

    A software test program generator for verifying system-on-chips

    Get PDF
    © 2005 IEEE.Design verification is crucial for successful systems-on-chips (SoCs). However, validating and proving the correctness of SoCs is often a bottleneck in the design project. This paper presents a technique to test the SoC at the system level using software application based programs. Our software application level verification methodology (SALVEM) employs test programs composed of dynamic sequences of software code segments. The SALVEM system implements a test generator to create these software test programs automatically. Experiments were conducted applying SALVEM tests to the Altera Nios SoC. A feedback verification flow is also feasible in our SALVEM system. SALVEM test runs are analyzed to direct the test generator toward important SoC scenarios.Cheng, A.; Cheng-Chew Lim; Parashkevov, A

    Mobile graphics: SIGGRAPH Asia 2017 course

    Get PDF
    Peer ReviewedPostprint (published version

    Large Language Models and Knowledge Graphs: Opportunities and Challenges

    Full text link
    Large Language Models (LLMs) have taken Knowledge Representation -- and the world -- by storm. This inflection point marks a shift from explicit knowledge representation to a renewed focus on the hybrid representation of both explicit knowledge and parametric knowledge. In this position paper, we will discuss some of the common debate points within the community on LLMs (parametric knowledge) and Knowledge Graphs (explicit knowledge) and speculate on opportunities and visions that the renewed focus brings, as well as related research topics and challenges.Comment: 30 page

    The impact of design techniques in the reduction of power consumption of SoCs Multimedia

    Get PDF
    Orientador: Guido Costa Souza de AraújoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: A indústria de semicondutores sempre enfrentou fortes demandas em resolver problema de dissipação de calor e reduzir o consumo de energia em dispositivos. Esta tendência tem sido intensificada nos últimos anos com o movimento de sustentabilidade ambiental. A concepção correta de um sistema eletrônico de baixo consumo de energia é um problema de vários níveis de complexidade e exige estratégias sistemáticas na sua construção. Fora disso, a adoção de qualquer técnica de redução de energia sempre está vinculada com objetivos especiais e provoca alguns impactos no projeto. Apesar dos projetistas conheçam bem os impactos de forma qualitativa, as detalhes quantitativas ainda são incógnitas ou apenas mantidas dentro do 'know-how' das empresas. Neste trabalho, de acordo com resultados experimentais baseado num plataforma de SoC1 industrial, tentamos quantificar os impactos derivados do uso de técnicas de redução de consumo de energia. Nos concentramos em relacionar o fator de redução de energia de cada técnica aos impactos em termo de área, desempenho, esforço de implementação e verificação. Na ausência desse tipo de dados, que relacionam o esforço de engenharia com as metas de consumo de energia, incertezas e atrasos serão frequentes no cronograma de projeto. Esperamos que este tipo de orientações possam ajudar/guiar os arquitetos de projeto em selecionar as técnicas adequadas para reduzir o consumo de energia dentro do alcance de orçamento e cronograma de projetoAbstract: The semiconductor industry has always faced strong demands to solve the problem of heat dissipation and reduce the power consumption in electronic devices. This trend has been increased in recent years with the action of environmental sustainability. The correct conception of an electronic system for low power consumption is an issue with multiple levels of complexities and requires systematic approaches in its construction. However, the adoption of any technique for reducing the power consumption is always linked with some specific goals and causes some impacts on the project. Although the designers know well that these impacts can affect the design in a quality aspect, the quantitative details are still unkown or just be kept inside the company's know-how. In this work, according to the experimental results based on an industrial SoC2 platform, we try to quantify the impacts of the use of low power techniques. We will relate the power reduction factor of each technique to the impact in terms of area, performance, implementation and verification effort. In the absence of such data, which relates the engineering effort to the goals of power consumption, uncertainties and delays are frequent. We hope that such guidelines can help/guide the project architects in selecting the appropriate techniques to reduce the power consumption within the limit of budget and project scheduleMestradoCiência da ComputaçãoMestre em Ciência da Computaçã

    PRITEXT: Processor Reliability Improvement Through Exercise Technique

    Get PDF
    With continuous improvements in CMOS technology, transistor sizes are shrinking aggressively every year. Unfortunately, such deep submicron process technologies are severely degraded by several wearout mechanisms which lead to prolonged operational stress and failure. Negative Bias Temperature Instability (NBTI) is a prominent failure mechanism which degrades the reliability of current semiconductor devices. Improving reliability of processors is necessary for ensuring long operational lifetime which obviates the necessity of mitigating the physical wearout mechanisms. NBTI severely degrades the performance of PMOS transistors in a circuit, when negatively biased, by increasing the threshold voltage leading to critical timing failures over operational lifetime. A lack of activity among the PMOS transistors for long duration leads to a steady increase in threshold voltage Vth. Interestingly, NBTI stress can be recovered by removing the negative bias using appropriate input vectors. Exercising the dormant critical components in the Processor has been proved to reduce the NBTI stress. We use a novel methodology to generate a minimal set of deterministic input vectors which we show to be effective in reducing the NBTI wearout in a superscalar processor core. We then propose and evaluate a new technique PRITEXT, which uses these input vectors in exercise mode to effectively reduce the NBTI stress and improve the operational lifetime of superscalar processors. PRITEXT, which uses Input Vector Control, leads to a 4.5x lifetime improvement of superscalar processor on average with a maximum lifetime improvement of 12.7x

    McVerSi: A Test Generation Framework for Fast Memory Consistency Verification in Simulation

    Get PDF

    Configurable Random Instruction Generator for RISC Processors

    Get PDF
    Processors have evolved and grown more complex to serve enormous computational needs. Even though modern-day processors share same dna with processors half century ago, verifying them today is the huge wall to scale. Verification dominates production cycle even with advances both in software (programming as well as CAD tools) and manufacturing (fabrication) as there are too many test scenarios to cover. Testing complex devices like processors with manual-testing alone in certainty missing the dead lines. Automatic verification is a great way to overcome hurdles of manual testing viz. speed, manpower, and ultimately cost. The work described in this paper targets verification of processors which have in-order instruction execution. Verification is done using SystemVerilog testbench which compares output of device under test to the output of SystemC model, when random instructions are applied
    • …
    corecore