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ABSTRACT

With continuous improvements in CMOS technology, transistor sizes are shrink-

ing aggressively every year. Unfortunately, such deep submicron process technolo-

gies are severely degraded by several wearout mechanisms which lead to prolonged

operational stress and failure. Negative Bias Temperature Instability (NBTI) is a

prominent failure mechanism which degrades the reliability of current semiconductor

devices. Improving reliability of processors is necessary for ensuring long operational

lifetime which obviates the necessity of mitigating the physical wearout mechanisms.

NBTI severely degrades the performance of PMOS transistors in a circuit, when neg-

atively biased, by increasing the threshold voltage leading to critical timing failures

over operational lifetime. A lack of activity among the PMOS transistors for long du-

ration leads to a steady increase in threshold voltage Vth. Interestingly, NBTI stress

can be recovered by removing the negative bias using appropriate input vectors. Ex-

ercising the dormant critical components in the Processor has been proved to reduce

the NBTI stress. We use a novel methodology to generate a minimal set of deter-

ministic input vectors which we show to be effective in reducing the NBTI wearout

in a superscalar processor core. We then propose and evaluate a new technique

PRITEXT, which uses these input vectors in exercise mode to effectively reduce the

NBTI stress and improve the operational lifetime of superscalar processors. PRI-

TEXT, which uses Input Vector Control, leads to a 4.5x lifetime improvement of

superscalar processor on average with a maximum lifetime improvement of 12.7x.
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1. INTRODUCTION

Moore’s Law has been a primary contributor for performance improvement in

microprocessors for several decades. The increased transistor count together with

the smaller transistors helped to design processors with aggressive microarchitecture

and higher clock frequency. The ever increasing demand for performance by emerging

applications led to the design of Out-of-Order (OOO) Processors which effectively

utilized the increased transistor count in the Chip.

However, as the transistor size of current CMOS technology approaches to

nanoscale, transistor aging is a major concern in VLSI technology. Deep submicron

process technologies are severely degraded by several physical wearout mechanisms

which lead to prolonged operational stress and failure [6][20][26]. International Tech-

nology Roadmap for Semiconductors suggests that a ten-fold decrease in wearout of

transistors is necessary to maintain the current design lifetimes without additional

timing guardband [2]. In future CMOS process technologies, the large number of

transistors are vulnerable to accelerated device degradation leading to poor reliabil-

ity. Improving reliability of any semiconductor device is essential for achieving good

lifespan in the deep submicron CMOS process technology.

The processor forms the crucial component of any computer system. With digi-

talization of crucial fields of human life such as Banking, Education, Health, Trans-

portation, Entertainment, Manufacturing and Communications, modern applications

demand superior performance and efficiency from processor. This inspired computer

architects to design superscalar processors which leverage instruction level parallelism

(ILP) in modern workloads [15]. In a modern Processor with superscalar execution

capability, a large number of instructions are concurrently processed in the dynamic

1



Figure 1.1: Superscalar processor pipeline stages

pipelines in an out-of-order fashion.

Figure 1.1 shows a block diagram of Superscalar processor. It consists of multiple

pipeline stages including instruction fetch, decode, register rename, dispatch, issue,

execute (Integer ALU, Floating Point ALU, Branch, Load Store Unit),complete, re-

tire along with uncore components (not shown in figure). Even a single timing failure

in any of the pipeline stages due to aging induced device degradation can render the

processor and the entire system useless. Hence reliability is a major concern for

semiconductor industry and has become a first-order constraint in processor design

besides Power, Performance and Area.
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Negative Bias Temperature Instability (NBTI) is the prominent failure mecha-

nisms which degrades the reliability of current and future semiconductor devices. It

stresses the transistor and increases threshold voltage Vth leading to switching delay

and critical path degradation [3]. A transistor is said to be aged when its operational

threshold voltage Vth is higher than its initial value. NBTI induced device aging is

proportional to the device stress time (fraction of time PMOS is reverse biased i.e.

its gate is at logic 0) respectively [16]. It does not result in circuit opens or shorts

but leads to critical path timing violations over operational life-time. Chip design-

ers have accounted for this aging induced circuit timing delays by adding a guard

band (about 10%) to the system clock-period. The useful (operational) lifetime of

a processor chip is limited to the time by which the transistors along the critical

path wearout to cause the cumulative increase in the switching delay to exceed the

available timing guard band i.e. the first timing failure in the circuit determines the

lifetime of the processor.

The continuous increase in transistor density together with the aggressive mi-

croarchitecture of modern processors leads to unbalanced utilization of processor

critical paths. This has resulted in higher device stress making NBTI degradation

a threat to future processor designs [26][13][7][23]. As per IBM Reports, NBTI is

the most severe degradation mechanism in current CMOS process technologies be-

low 90-nm. The impact of NBTI stress on degradation of circuit delay is about 15

percent in 65-nm process technology [20].

In older process technologies, designers have dealt with the aging induced device

degradation through additional timing guardband and ensured a reliable system per-

formance over the expected lifetime of the Processor. However, in current and future

CMOS process technologies, such guardband will be ineffective and new techniques

at both microarchitectural and circuit level are necessary to mitigate the perfor-
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mance degradation due to the accelerated physical device wearout mechanisms. Our

work develops novel microarchitectural technique for NBTI mitigation and lifetime

improvement of superscalar processors.

Several researchers have proposed various circuit level and microarchitec-

tural techniques to manage device degradation due to NBTI induced transistor

aging[27][13][7][16][14][25][17][5][12]. Several of these approaches use a well known

technique called Input Vector Control (IVC)[27][13][7][12][29]. The idea is that since

the NBTI stress depends on the logic level at the gate of the internal PMOS transis-

tors, input vectors can be used to reduce the amount of time the PMOS transistors

observe logic 0 at their gate inputs. Hence an input vector can be used to change

the state of the combinational logic and reduce the NBTI induced stress.

Kim et al. have proposed one such technique to derive a set of input vectors to

decelerate the aging induced by NBTI stress in a Network-on-chip (NoC) router of

a Chip Multiprocessor (CMP)[16]. They developed critical path based timing model

and characterized the timing delay degradation due to NBTI wearout across timing

sensitive paths in NoC router. The study confirms the fact that NBTI induced aging

is a major wearout mechanism and is accelerated because of the under utilization of

various paths leading to biased duty cycles (fraction of time at logic 0) across the

timing critical paths. We extend the work done by Kim et al.[16] to improve the

lifetime of Superscalar processors and propose a novel microarchitectural technique,

PRITEXT, which significantly prolongs the lifetime of processor by exercising the

internal nodes along the timing critical paths using input vectors to achieve a bal-

anced utilization (duty cycle). Our results are promising and PRITEXT achieves

an average lifetime improvement of 4.5x compared to a reference processor with no

NBTI mitigation.

The rest of the thesis is organized as follows. In chapter 2, we provide a brief

4



description of transistor aging and critical path delay degradation by NBTI stress

as well as the interesting recovery phenomenon exhibited by NBTI degradation. We

also explain the mathematical modeling of operational lifetime improvement factor

originally proposed by Kim et al [16]. Chapter 3 provides a description of Input

Vector Control technique and the intuition behind using input vectors to alleviate

the NBTI stress. We also give a working example of NBTI acceleration factors in

Priority Scheduler, a synthetic combinational logic which implements an arbitration

module in several complex designs. In chapter 4, we introduce the algorithm de-

veloped by Kim et al. to generate a deterministic set of input vectors to achieve

balanced utilization across PMOS transistors on the timing critical paths of the

processor. Chapter 5 presents a brief description of superscalar processor microar-

chitecture. In Chapter 6, we present the workload characterization of all the timing

critical paths which are sensitive to NBTI stress and describe our proposed lifetime

extending micro-architectural technique, PRITEXT, which uses the exercise vectors

generated from the novel algorithm described in Chapter 4. Chapter 7 evaluates the

efficiency of our proposed methodology in mitigating the NBTI stress and provides

the lifetime improvement results achieved. Chapter 8 discusses the prior work done

by the research community. Finally Chapter 9 concludes our work and provides

future work suggestions.

5



2. BACKGROUND∗

In this chapter, we present the transistor aging model under NBTI stress followed

by the modeling of degradation of critical path delay in a combinational circuit.

We also describe the NBTI stress recovery phenomenon exhibited by the PMOS

transistors when forward biased.

2.1 NBTI degradation

Negative Bias Temperature Instability, being one of the major wear out mecha-

nisms in deep submicron process technologies, is responsible for gradual degradation

of circuit performance over lifetime. Notably, NBTI affects PMOS transistor of a

gate when reverse biased but does not significantly affect NMOS transistor. As

shown in Figure 2.1, when the gate of the PMOS transistor is pulled to logic 0 by

a corresponding internal net, the transistor is reverse biased (Vgs = -Vdd) and is

continuously stressed[6][20][26]. This leads to generation of interface traps due to

disassociation of Si-H bonds in Si/Sio2 interface which leads to an increase in the

threshold of the transistor and a simultaneous reduction in the drive current due

to charge carrier mobility degradation. A continuous increase in threshold voltage

results in accelerated transistor aging leading to steady decrease in switching speeds.

In long term, NBTI stress of PMOS transistor leads to circuit timing failures which

undermine the operational lifetime of the device.

∗Part of this chapter is reprinted with permission from Kim, H. “Use It or Lose It: Proac-
tive, Deterministic Longevity in Future Chip Multiprocessors,” Proceedings of ACM Transactions
on Design Automation of Electronic Systems (TODAES), Vol. 20, Issue 4, c©2015 ACM, Inc.
http://doi.acm.org/10.1145/2770873
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Figure 2.1: PMOS transistor under NBTI stress when reverse biased

2.2 NBTI recovery

NBTI has an interesting recovery phenomenon. Whenever the stress is removed

i.e., the gate is not reverse biased( Vgs =0), most of the Hydrogen atoms diffuse

back and bond with Silicon leading to recovery of the threshold voltage[6][20][26].

However, the recovery in the threshold voltage is only partial as shown in Figure 2.2.

The increase in operating threshold voltage due to NBTI stress is sensitive to the

fraction of the time the transistor is under negative bias(stress). Figure 2.2 illustrates

the net increase in Vth assuming the PMOS transistor to be in stress for 50% of the

time while figure 2.3 illustrates the net increase in Vth assuming the transistor is in

stress mode for 75% of the time. The rate of increase in Vth is much higher when the

fraction of stress mode is greater than recovery mode. This recovery phenomenon is

exploited by several researchers to minimize the degradation of performance due to

NBTI stress on PMOS transistors.

7



Figure 2.2: Increase in PMOS Vth during stress and recovery phases assuming 50% stress
time

Figure 2.3: Increase in PMOS Vth during stress and recovery phases assuming 75% stress
time

2.3 Transistor delay degradation model

As stated earlier, NBTI does not induce hard failures. It shifts the circuit param-

eters (threshold voltage, switching delays) over time under operational stress. We

use Reaction-Diffusion (R-D) model that correlates Vth shift as an approximation

8



for NBTI stress [28]. Since the PMOS transistor is under NBTI stress only when it

is reverse biased, the amount of stress is dependent on the fraction of time for which

the gate terminal of the transistor is held at a low voltage level (logic 0) . Based on

the AC stress model for NBTI degradation proposed by Lu et al. [19], the increase

in threshold voltage Vth for PMOS transistor is estimated by the equation

∆Vth NBTI = A

(
β

1− β

)n
tne

(
−nEaNBTI

kT

)
, (2.1)

where T is the temperature, EaNBTI is the activation energy, t is the operating

time, k is Boltzmann’s constant, n is the time exponent(=1/6), and A is a fitting

constant[19].

Alpha Power law[22] states that an increase in Vth leads to increase in transistor

switching delay as shown here

dg ∝
Vdd

µ(Vdd − Vth)α
(2.2)

where dg is the transition delay, µ ∝ T−1.5 (T being Temperature) and α = 1.3.

Based on the above two equations , the increase in transistor switching delay can

be estimated as

∆dg NBTI = Â

(
β

1− β

)n
tne

(
−nEaNBTI

kT

)
. (2.3)

Lifetime of a device can be defined as the time until which an integral component

degrades beyond the point which the device is no longer guaranteed to function for

an intended application. Since designers consider a 10% guardband, an increase of

10% in transistor Vth is considered to be the end of lifetime since the transistor is

considered to be over-aged [28]. Therefore the lifetime of a single transistor which is

9



Figure 2.4: Delay increase in a multi-gate path between two latches

alternatively under stress and recovery phases can be estimated from above equations

as

TTFNBTI =

[
ANBTI

(
1− β
β

)n
e

(
nEaNBTI

kT

)]1/n
. (2.4)

2.4 Path delay

Section 2.3 gives a detailed analysis of a delay degradation of a transistor in a sin-

gle gate. Any complex digital circuit has sequential and combinational logic. Such

combinational logic has several timing paths between primary input and primary

output with multiple gates in each path. In case of a multi-gate path having several

transistors along the timing path, the cumulative transistor delay shift must be con-

sidered as the aggregate increase in timing delay rather than the worst-case delay

degradation of a single gate [16]. Therefore , the lifetime of a device with combina-

tional and sequential logic is limited by the operational time when the cumulative

increase in the timing delay across any of the multi-gate paths exceed the timing

guardband(typically 10% of clock period).

Figure 2.4 shows the multi-gate path between two latches. The cumulative delay

increase in the path is dependent on the individual delays of every transistor along

10



the path. The increase in switching delay due to the PMOS transistor of the ith gate

can be expressed as

∆di(βi, t) = ψ × tn ×
(

βi
1− βi

)n
(2.5)

where βi is the duty cycle fof the ith gate and ψ is a proportionality constant shown

in equation earlier.

The cumulative increase in delay along a path with N gates at time t can be

estimated as a sum of individual gate delay increase as shown below

∆d(t) =
N−1∑
i=0

∆di(βi, t) = ψ × tn ×
N−1∑
i=0

(
βi

1− βi

)n
(2.6)

A device is said to be functionally reliable as long as the increase in the switching

delay of the critical timing path does not exceed the timing guard band. Hence,

Lifetime, Tlifetime, is defined such that ∆d(Tlifetime) is less than the guard band. The

lifetime improvement is quantified by acceleration factor defined as follows:

AF (x) =
Tlifetime(x)

Tlifetime(ref)
=


M−1∑
j=0

(
βj

1− βj

)n
N−1∑
i=0

(
βi

1− βi

)n


1/n

(2.7)

where Tlifetime(x) is the operational lifetime of device enhanced with NBTI mitigation

techniques using PRITEXT , Tlifetime(ref) is the operational lifetime of the reference

device with no reliability mitigation[16]. Also βi and βj represent the duty cycle of

the ith gate on the critical path of the enhanced device and of the jth gate on the

critical path of the reference device assuming the numbers of gates on the equivalent

critical path are N and M respectively.
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3. NBTI SENSITIVITY TO INPUT VECTOR

In this chapter, we present a brief description of Input Vector Control(IVC) tech-

nique and the intuition behind using input vectors to alleviate the NBTI stress. We

also give a working example of NBTI acceleration factors in Priority Scheduler, a

synthetic combinational logic which implements an arbitration module in several

complex designs.

3.1 Input vector control

The state of any combinational circuit depends on the input vectors. Any in-

ternal net, which drives the gate of PMOS transistor, can be switched to logic 1

using an appropriate input vector as shown in figure 3.1. This technique of con-

trolling the state of the internal combinational logic is termed Input Vector Control

(IVC)[27][13][7][12][29]. It is a well known technique in minimizing the leakage cur-

rent in CMOS devices [27][4][29].

NBTI strongly depends on the state of the internal nets. An internal net at

logic 0 leads to NBTI stress on PMOS transistor as shown in figure 2.1. The NBTI

degradation experienced by a transistor is directly dependent on the duration of stress

i.e. the amount of time the transistor is reverse biased. IVC can be used to drive the

internal nets to logic 1 thereby removing the negative bias on the PMOS transistor

during standby mode when the device is not in active use. Hence by balancing

the ratio of stress time to the total operational time i.e. fraction of the time the

corresponding internal net is at logic 0, NBTI degradation can be greatly alleviated.

This idea of controlling the state of the internal net using IVC and balancing its duty

cycle is the basis of our approach in building the PRITEXT microarchitecture.

Note that a single input vector cannot activate (i.e. pull up) all the internal nets

12



Figure 3.1: A synthetic combinational circuit with primary inputs I[4 : 0], primary output
Y and internal nets n 1, n 2, n 3

on any single timing path. Consider the path I[4]− > n 1− > n 3− > Y in the

synthetic circuit shown in figure 3.1 where I is the Primary input, n 1, n 3 are the

internal nets and Y is the primary output. Input vector I = 11111 switches net n 1

to logic 1 while simultaneously it switches net n 3 to logic 0. Hence a set of input

vectors are required to activate all the internal nets and balance the duty cycles. Our

aim is to achieve a minimum set of deterministic input vectors to achieve balanced

duty cycles across the internal nets. Switching internal nets to logic 1 during standby

time using IVC is often known as exercise mode[16]. Since the input vectors are used

to exercise (i.e. switch) the internal nets, the set of input vectors are termed as

exercise vectors.

3.2 Intuition behind NBTI mitigation

As explained in earlier section, NBTI is highly sensitive to duty cycle due to the

1
(1−β) factor which is evident from the mathematical expression in equation 2.3. Using

IVC, the highly skewed duty cycles (closer to 1.0) of internal nets can be balanced

(bring down to 0.0) in exercise mode. In order to demonstrate the sensitivity of

NBTI to duty cycle, let us assume an internal net having a duty cycle of 0.99. The
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delay degradation is proportional to

(
0.99

1− 0.99

)n
= (99)n (3.1)

where n is the time exponent and is equal to 1/6. Considering a worst case scenario

in which the device is in standby mode for 10% of the operational time, the average

duty cycle can be brought down by 10% to 0.9 by using exercise vectors and driving

the net to logic 1. The delay degradation is now proportional to 9n which is 11n times

better than a reference device with no exercise mode. The lifetime improvement (AF)

can be computed from equation 2.7 as:

(
99n

9n

)1/n

= 11 (3.2)

3.3 Analysis of skewed duty cycles in a combinational circuit

As evident from the equation 2.6, NBTI sensitivity of a multi-gate timing path

is highly dependent on the total switching delay of the path and the duty cycle

(probability of signal to be at logic 0) of the transistors on the path [17][11]. The

total switching delay of the path depends on the microarchitecture of the design

and increases exponentially with the design complexity. The duty cycle of the gates

depend on the utilization of the critical paths in the circuit and the design choices

of the various components of the processor [14][5]. Some of the observations based

on the common design choices of processors are listed below:

• Most data-path components in processors exhibit a substantial non-uniformity

in their utilization for real world workloads. This contributes to skewed duty

cycle of the gates along the under-utilized critical paths of the circuit [5].

• Most designs of various components of a processor are highly biased to logic 0.
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Figure 3.2: Block diagram of 4 input priority scheduler

PMOS transistors of Adder module observe logic 0 at their gate for significant

fraction of time. The probability of logic 0 for various patterns at the inputs of

register files, data caches, schedulers and various other components of a super-

scalar processor ranges between 65% to 90% [14]. This leads to a accelerated

aging of PMOS transistors due to NBTI Stress.

• Modern superscalar processors have aggressive microarchitecture and imple-

ment complex state machines which handle several scenarios. Such designs

tend to have several corner cases which get synthesized to timing paths having

several gates along the path. Paths having many gates have higher cumulative

switching delays and hence a higher probability to violate the timing guard-

band leading to timing failures. Moreover paths with larger switching delays

experience accelerated NBTI stress which further exacerbates the problem[16].

We demonstrate the existence of above three observations in Priority Scheduler,

a common design component in a sequential circuit which implements a priority

among the various scenarios (quantified by input signals being logic 1). Figure 3.2

and figure 3.3 illustrate the block diagram and the gate level netlist of a priority

scheduler module with 4 inputs which establishes priority between the inputs and

functions as an arbiter with higher precedence for certain inputs.

The Priority Scheduler enables only one output signal at any time. Assuming
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Figure 3.3: Synthesized netlist of priority scheduler module with the critical timing path
highlighted in red

random service requests from the four inputs, the probability of D ack to be high is

small since the corresponding input D req will be served only when the other inputs

A req, B req and C req are not requesting for service. This follows the observation

1. Most of the internal nets are also biased to logic 0 confirming observation 2. Also

it is visible that D req lies in the critical path and has the longest switching delay as

seen in the figure 3.3 with a red dashed line which confirms the observation 3. This

is evident from the Boolean equations for D ack as listed here

A ack = A req (3.3)

B ack = A req.B req (3.4)

C ack = A req.B req.C req (3.5)
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D ack = A req.B req.C req.D req (3.6)
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4. DETERMINISTIC VECTOR GENERATION ALGORITHM

The efficiency of Input Vector Control in exercising the internal nets on the timing

critical path to balance the corresponding duty cycles determines the efficiency of our

NBTI mitigation approach in reducing the transistor degradation and improving the

processor lifetime. As mentioned earlier in chapter 3, exercise vectors are injected

into the combinational circuit during the exercise (standby) mode when the processor

is in idle state. In an ideal scenario, a single input vector should be able to exercise

(switch to logic 1) all the internal nets on the timing critical path. However as stated

in section 3.1, multiple vectors are needed to activate all the nets. An individual

vector exercises more than one internal net on a timing path, however the rest of the

nets are deactivated (switched to logic 0) simultaneously. In order to ensure the nets

are activated for majority of the time during standby mode, the number of input

exercise vectors should be kept as low as possible.

The task of finding input vectors to activate/exercise internal nets resembles the

Automatic Test Pattern Generation (ATPG) process, a well-known NP-complete

problem used in developing test vectors used for validation of integrated circuits

[8][9]. The process of ATPG is intended to generate a set of test vectors which

are used in testing the integrated circuit for possible manufacturing defects such as

stuck-at faults. Each test case intends to check if a particular internal net in a circuit

comprising of logical gates such as NAND, NOR, NOT is stuck at either logic 0 or

at logic 1 due to possible shorts occurring during the chip fabrication [9].

4.1 Basics of ATPG

The process of generating an ATPG test vector for catching a stuck-at-fault

comprises of two phases: fault activation phase and fault propagation phase. Figure
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4.1(a) depicts the idea behind activation and propagation phases. During the fault

activation phase, the corresponding internal net f (fault location) is forced to the

opposite logic level of the fault value i.e. if the net is stuck-at-0, it is forced to logic

1 during the activation phase and vice versa. The primary inputs and all the gates

which lie in the fan-in of the internal net are called as the activation cone. Note

that only few of the primary inputs are sufficient to activate an internal net. For

example, as visible in the figure 4.1, input pins I[2], I[1], I[0] do not lie in the fan-in

of the internal net n 1. In order to confirm a valid stuck-at fault, the signal from

the activation phase must be propagated to any primary output signal where it is

observable such that a comparison can be made with the anticipated output signal.

The combinational logic which lies between the internal net and the output signals

and forms all the possible paths for propagating the fault to observable output is

referred to as propagation cone. Activation cone and propagation cone for the fault

location f in the gate-level Netlist of device under consideration are illustrated in

Figure 4.1(a).

In the context of ATPG vectors, the procedure of enabling each of the activation

and propagation phase using appropriate input vectors is referred to as Justification

procedure. Fault activating Justification procedure determines the input signals (test

vector) such that the stuck-at-fault is activated. Justification during fault propaga-

tion phase determines the values of the corresponding input signals to make sure

the fault is propagated to a particular output signal through a certain propagation

path. One working example of justification procedure for activation and propagation

of fault f is illustrated in Figure 4.1 (b) and (c). As a part of justification during

activation phase, input signals B and C are set to 1 and 1 respectively in order to

activate (switch to logic 1) the stuck-at-0 fault location f. Also, as part of justification

for propagation phase, input signal D is set to 1 in order to propagate the fault to the
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Figure 4.1: (a) Activation and propagation cones for fault location f; (b) Stuck-at-0 fault
location f; activated with B=1 and C=1, propagated by D=1 to output O2; effective test
vectors ABCD of the form X111, (c) Assuming the critical net f to be stuck-at-0 fault, it
can be activated by inputs B=1, C=1.

output signal O2. From the figure 4.1(a), it is evident that input signal A does not

play a role in either activation or propagation of fault. Hence signal A does not have

a deterministic value and is considered to be a don’t care value (X) which means it

can be set to either logic 0 or logic 1. In case of stuck-at-0 fault at location f, the

value at the output O2 is ’1’, otherwise it is ’0’ as illustrated in figure 4.1 (b). This

is denoted by the symbol vff/vf where vff stands for fault-free-value and vf stands

for fault-value which is 0/1 in this illustration.

Justification procedure during both activation and propagation phase is a NP-

Complete problem and the time complexity of such non-polynomial problem is ex-

ponential to the number of input signals in the worst case. However, our aim in

mitigating NBTI stress by balancing the duty cycles only incorporates the activation

phase of the ATPG problem. We only need to activate (i.e. exercise) the internal nets

using appropriate input signals (exercise vector) since there is no need to propagate

the internal value of the signal to any output signal. Hence, it is sufficient to justify

the activation phase of ATPG in order to exercise the internal nets. For example,

it sufficient to set B=1 and C=1 in Figure 4.1 (c) in order to exercise signal( i.e.

internal net) f . The possible input signals (vector) which can achieve this are of the

form ABCD= X11X where X stands for dont cares.
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4.2 Exercise vector compaction

Exercise mode vectors need to be stored in an On-Chip ROM in order to be

accessed during standby mode for NBTI mitigation. The size of the On-chip ROM

adds to the hardware complexity of our technique implementation. Moreover, several

multiplexers are needed to select between the exercise vectors in standby mode and

the operational vectors during active mode. The operational vectors are the input

signals from either a primary input or from a pipeline stage of the processor. The size

of the ROM and the number of MUXes depend on the dimensions of the exercised

vector. In order to reduce the hardware complexity due to additional ROM and

MUXes, it is necessary to reduce the size of individual vector and the number of

exercise vectors. Consider the figure 4.2 which illustrates one example of a On-

chip ROM matrix having 3 vectors each of which are 10 bits wide. The number

of exercise vectors determines the depth of the matrix whereas the width of each

exercise vector determines the width of the matrix. The number of MUXes needed

to select between normal and exercise vectors is equal to the width of the vector

(number of input signals which lie in the activation cone of the internal net) which

is 10 in this example. Hence the vector generation algorithm should try to achieve

a set of minimum number of vectors, each of which can activate a larger number of

critical nets. This will help to activate each internal net for major fraction of the

time as well as helps to reduce the hardware complexity by lowering the number of

MUXes. This is also referred to as the test vector compaction problem in the ATPG

domain [9].

Consider the table in figure 4.2 (a). It represents an On-Chip ROM with 3 vectors

each of which are 10 bits wide. The exercise mode will need 10 MUXes for each of the

input signal bit in a simple implementation. However, it can be noticed that several
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Figure 4.2: (a) On-Chip ROM with 3 vectors each with 10 bits; Size = 3 X 10, possible
MUXs needed = 10, (b) After vector compaction: ROM Size = 3 X 4, MUXes needed =
4(unique values) + 4 (constants) = 8.

bits of the exercise vectors are dont cares and hence ideally there is no need of MUX

to select these signals( I3, I10 in our example). Also consider the columns I2, I7 in

which all the vectors have same value. There is no need to store a constant bit of all

the vectors in the table and can be removed from the ROM but a MUX is still needed

which has to be set to a constant value. An even more interesting observation can be

made in this vector table for the columns I4, I8. These columns have only one valid

logic value and the rest are dont cares. These columns can be removed from the

table and a MUX can be used with its corresponding value set to a constant value

for each of the columns. The rest of columns, I1, I5, I6 and I9 represent vectors with

unique value for each of the bits. Hence the optimized ROM will can be compressed

to a size of 3 x 4(three vectors each 4 bits wide) as illustrated in figure 4.2(b). The

number of MUXes needed will be equal to the number of columns having at least one

constant value, which is 8 in our example: Columns I1, I2, I3, I4, I5, I7, I8 and I10.

Figure 4.2 (b) illustrates the final size of ROM and MUXes incorporated to achieve

exercise mode using compressed vectors.

Based on the above example, it is evident that the vector generation algorithm

should strive for generating a minimum number of exercise vectors with as many

dont care bits as possible in each vector. One such algorithm has been proposed by

Kim et al and is described here.
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Procedure Exercise Vector Generation ( )
Inputs: Baseline Processor core netlist P, critical nets list N , duty cycle per
critical net D
Outputs: Set of exercise vectors V , list of exercised critical nets Ne

01: Sort the elements of the critical nets list N based on D
02: Ne = NULL; // list of exercised critical nets
03: Nred = NULL; // list of redundant critical nets
04: j=1 ; // exercise vector index
05: while (N 6= ∅)
06: vj = X ; // initialize vj with all unassigned values (don’t
cares)
07: ∀ critical net ni ∈ N // for each net not exercised yet
08: vj’= justify (R, ni, vj); // justify additional values of vj in order to
exercise ni
09: if (vj’ != NULL )
10: add ni in Ne and delete ni from N
11: simulate vj’ on R
12: ∀ nk ∈ N // for each net not exercised yet
13: if (nk == 1)
14: add nk in Ne and delete nk from N
15: vj = vj’; // update current vector
16: else
17: add ni to Nred and delete ni from N
18: add vj in V
19: j++;
20: return V , Ne;

Figure 4.3: Algorithm for deterministic vector generation .

4.3 Algorithm for exercise vector generation

Figure 4.3 illustrates the deterministic vector generation algorithm proposed by

Kim et al.[16]. The algorithm takes two inputs: (1) the combinational logic cone of

the critical timing path which is available from the synthesized gate-level Netlist of

superscalar processor P, (2) list of the internal nets N on the critical timing path

with corresponding average duty cycles (fraction of the net is at logic 0) D. The
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average duty cycles are obtained from the gate level simulations explained in section

6.2. The algorithm prioritizes to exercise the internal nets with highly skewed duty

cycles (closer to 1.0) since NBTI stress is highly sensitive to duty cycles. The next

set of vectors aims to exercise all other critical nets. The algorithm outputs a set

of exercise vectors V along with the list of the critical nets Ne which are exercised

at least once by any one of the vectors. The algorithm initially starts with a vector

having all bits as dont cares(vj = X) and then iteratively attempts to exercise (lines

7-17) as many critical nets as possible by trying to justify the individual bits of the

current vector vj similar to the justification procedure for the activation phase of

ATPG tests. Each justification vector may be able to activate/exercise more than

one critical net on the timing path. All the nets which are exercised by the current

vector vj are removed from the list of critical nets N and the current vector is added

to the set of deterministic exercise vectors V. The procedure is iteratively executed

with all the bits of the new vector being set to dont care (X) as seen in line 6 of

the algorithm. The algorithm runs until all the critical nets are exercised by any

of the vectors (line 5). It is highly unlikely that the algorithm does not terminate

due to lack of exercise vector which can exercise the critical nets. Redundant nets

Nred consists of such nets that cannot be exercised under any possible input vector

justification and existence of such nets indicates a possibility of problem in synthesis

of the gate level netlist. In our analysis, we did not encounter any redundant nets in

the critical path logic circuit which could not be exercised using an exercise vector

from the justification procedure.

The above algorithm proposed by Kim et al. aims to achieve the two goals of

vector generation. Firstly, it generates a minimum number of vectors to exercise all

the critical nets. It achieves this criterion by making sure that a large number of

critical nets are exercised simultaneously by a single vector. The algorithm initially
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targets a particular set of critical net explicitly and then simulates the vector values

for any other internal nets that could be activated without explicitly being targeted

in current iteration as detailed in lines 7-17. Secondly, the algorithm uses a large

number of unspecified bits in the exercise vectors to reduce the vector size and helps

in improving the hardware complexity due to additional ROM and MUXes. This

is achieved using a novel justification procedure which specifies only the necessary

bits of the current vector in each iteration of the algorithm to target a new set of

critical nets as enumerated in line 8. The justification procedure is developed using

a powerful PODEM-based ATPG tool developed by Neophytou et al.[21]. This tool

accepts the gate level netlist having only universal gates such as NOR, NAND, NOT,

AND, OR. We used a Python script to convert the Verilog netlist having compound

gates into a bench format netlist containing only universal gates.

4.4 Use of existing DFT infrastructure

Design for Testability (DFT) is a crucial part of Integrated Circuit(IC) Design

intended to add testability features . It makes the development of manufacturing

tests for ICs easier. DFT infrastructure such as scan chains are incorporated in

most modern processor designs. Scan chains can be used instead of the additional

hardware overhead of PRITEXT microarchitecture to exercise the combinational

logic using the appropriate input patterns (vectors). We give a brief introduction to

scan chain testing here.

4.4.1 Scan chains

Scan Chains are the crucial components in the scan-based DFT techniques that

are inserted in the IC designs to shift the test data into the chip and out of the chip.

This ensures that every point in the combinational logic of the chip is controllable

and observable. A scan chain is formed by a series of flip-flops connected back to
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back in a chain formation with output of one flop Q connected to the input of another

adjacent flop. The input of first flop , called as scan-in , is connected to the input pin

of the chip from where scan data is fed. The output of the last flop, called scan-out,

is connected to the output pin of the chip (which is used to take the shifted data

out. The scan chains help to achieve two important goals of DFT. First, to test the

stuck-at-faults in the manufacturing process of the semiconductor devices. Second,

to test the paths in the manufactured circuits for possible switching delays to ensure

the device works for the maximum frequency specification.

In order to enable scan chains, the regular flip-flops are modified in order to enable

scan-in and scan-out of the input data. An additional multiplexer is introduced for

every flip-flop to select between the scan input SI and the normal input D. The

scan-enable input acts as the control signal. It has the following major steps:

• Assert scan-enable to enable SI to Q path for every flip-flop.

• Setup the desired inputs at each flip-flop by shifting in the scan data.

• De-assert scan-enable for one clock cycle to enable D to Q path so that the

combinational cloud output can be captured at the next clock edge. All the

target flip-flops have the intended values.

• Re-assert scan-enable and shift out the data through scan-out to check if the

combinatorial test passed.
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5. SUPERSCALAR MICROARCHITECTURE

Our work targets the reliability concern in superscalar processors due to acceler-

ated physical wearout of devices in process technologies with nanoscale transistors.

Such efforts need design and verification infrastructure at gate level (netlist) to in-

corporate new microarchitectural techniques which can mitigate the transistor aging

due to NBTI Stress. Hence for our research, we need a synthesizable RTL design

of superscalar processor core. We have used FabScalar[10], an open source toolset

useful for computer architecture research.

5.1 FabScalar

FabScalar is an open source project which provides synthesizable Verilog RTL

code and physical designs of superscalar processors with various microarchitectures

and is developed by Choudary et al[10]. The various processor cores differ in

three major dimensions of a superscalar design: size of internal structures for per-

forming aggressive Out-of-order execution, pipeline depth and superscalar width.

FabScalar automatically builds several superscalar configurations using Canonical

Pipeline Stage Library (CPSL) which consists of multiple designs of logical proces-

sor pipeline stages having various pipeline widths and depths. Each logical pipeline

stage corresponds to one of the canonical template stages: fetch, decode, rename,

dispatch, issue, execute, writeback, and retire as illustrated in figure 5.1.

A particular superscalar processor core is built by picking one canonical pipeline

stage design for each of the logical pipeline stages from the CPSL. These canonical

stages are then stitched together to form a fully synthesized superscalar pipeline.

Each pipeline stage can be sub-pipelined into multiple logical pipeline stages in order

to improve clock frequency. For example, Fetch stage is pipelined into Fetch-1 and
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Figure 5.1: FabScalar processor core with canonical template stages

Fetch-2 as it implements a complex logic corresponding to several structures such as

instruction cache, branch target buffer, branch predictor, next-PC etc.

5.2 Core microarchitecture

Using the above automated process of core generation, we obtained a synthesiz-

able RTL design of a core with the configuration listed in figure 5.2. FabScalar uses

PISA Instruction Set Architecture which is RISC based machine. PISA closely re-

sembles MIPS ISA excluding load and branch delay slots. Figure 5.3 depicts various

pipeline stages of a superscalar out-of-order processor. A brief description of the

several canonical pipelines stages is provided here:

5.2.1 Fetch

In a superscalar processor, fetch stage is capable of fetching more than one in-

struction from I-Cache for every clock cycle, which in our case fetches 4 instructions.

The primary responsibility of fetch stage is to feed the execution pipeline as many

instructions as possible every cycle by ensuring maximum instruction fetching band-

width. The performance of a superscalar core is limited by the fetch stage because

the throughput of all the other pipeline stages depends on the fetch stage and hence

the instruction completion bandwidth is bounded by fetch bandwidth. In every clock

cycle, the fetch stage accesses the Instruction Cache using the Program counter and
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Figure 5.2: Configuration of FabScalar processor core

fetches at most four instructions provided there is no misalignment in cache access.

The next PC address is computed based on the branch predictor.

5.2.2 Decode

Instruction decoding stage performs extraction of individual instructions from the

fetched group, identification of type of instruction, operands and dependencies among

the instructions fetched. In a fixed length ISA, the instructions are quite simpler to

be decoded and for dependence checks. The opcode field of each instruction gives

enough information about the type of instruction and the operands. In simpler

designs, decode stage is merged with register read stage. Since the existence of a

branch is only known after decoding the instruction group, decode stage provides

feedback to fetch stage in order to change the instruction flow in case of conditional

and unconditional branch instructions.
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Figure 5.3: Generic superscalar out-of-order pipeline stages

5.2.3 Rename

It is a crucial phase of out-of-order execution. It performs renaming of register

operands in order to avoid data hazards between instructions. Since the number of

architectural registers is small and constant, several instructions use these limited

number of registers without any necessary dependency between two instructions.

Renaming helps to replace the architectural register name with a new name from

Physical register file for each of the instruction being processed. This helps in elim-

inating the false dependencies (output dependence and anti dependence) between

instructions. This allows the processor to issue instructions in out of program order
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without loss of true dependence thereby keeping processor pipeline full even when

the older instructions are not yet completed.

5.2.4 Dispatch, issue

In a superscalar pipeline, more than one instruction is processed in any pipeline

stage. Considering a mix of heterogeneous functional units and different instruction

types, each decoded instruction must be dispatched to corresponding functional unit

for its execution. In an out-of-order processor, the dispatch/issue stage split the

pipeline into two: in-order frontend and out-of-order backend. In a diversified super-

scalar pipeline, each functional unit can operate independently and only depends on

the operands availability. Dispatch helps in efficient utilization of all functional units

by feeding instructions which have all their operands in a valid state. Since there are

inter-instruction dependences, instructions are buffered in reservation station before

they are ready to be issued. Two types of reservation stations are commonly designed

based on the placement of instruction buffers relative to instruction dispatching: cen-

tralized and distributed reservation stations. In several microarchitectures, dispatch

and issue stages are merged. In general, dispatch refers to association of instruction

types with the respective functional unit types. Issue refers to initiation of instruc-

tion execution in the functional unit. In a design with centralized reservation station,

the instructions are associated with the functional units at the same time as their

execution is initiated. Hence, dispatching and issuing are often used interchangeably.

5.2.5 Execute

It performs the actual instruction execution using several functional units. Spe-

cialized functional units are designed based on the instruction types to improve

the execution throughput and overall performance. These functional units can be

pipelined in order to improve the latencies of complex instructions such as floating
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point operations. Broadly two types of functional units are used: Integer units and

Floating point Units. Additionally branch and load/store units are used in the exe-

cute stage. Branch unit is used for updating Program Counter while Load/Store unit

is used to access Data Cache. The choice of number of functional units is dependent

on the application domain based on the observed instruction mix. Large numbers of

functional units lead to complicated design due to broadcast and bypass stages.

5.2.6 Complete, retire

At the end of the instruction execution, the destination (renamed physical) reg-

ister is updated and the instruction now resides in the completion buffer (Reorder

Buffer). Depending on the instruction sequence, the instruction leaves the completion

buffer and the results are updated to the architectural registers, thereby updating the

architectural state of the machine. In case of store instructions where the destination

is a memory location, the instruction is architecturally completed when the write is

performed to a local store buffer. This buffer helps in two ways: holds the store to

wait for the D-Cache write operation availability and helps to update the memory

in order when stores are completed out-of-order with respect to program sequence.

In the retire stage, the store operation completes the memory write and is said to

be architecturally retired, thus updating the memory state of the machine. Hence,

for non-store instructions, completion marks the retirement as well. The in-order

update of memory and architectural state of the machine is necessary to honour the

precise interrupts.
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6. PRITEXT: PROCESSOR RELIABILITY IMPROVEMENT THROUGH

EXERCISE TECHNIQUE

NBTI stress does not lead to hard failures but causes switching delay degradation

in the long term leading to timing violations and reduced lifetime of processors as

detailed in chapter 2. NBTI degradation is not uniform across all the paths in

the device because different paths have different timing delays and different duty

cycles along the transistors as pointed in the three observations from section 3.3.

In short, the workloads stress each path differently leading to highly skewed duty

cycles across some of the timing paths. Only the paths which do not have enough

slack to overcome the degraded switching delay are highly prone to timing failures

due to NBTI stress. All the paths having less than 10% slack are considered to be

NBTI critical[13][7][14][11]. Hence, our work only targets critical timing paths of a

superscalar processor design.

6.1 Timing critical paths in superscalar core

As mentioned in section 5.2, we have used a synthesisable Verilog RTL of a

superscalar core for our work. We have synthesized the processor core for a clock

frequency of 500MHz using Synopsys Design Compiler with 45nm TSMC standard

cell library. All the paths with less than 10% slack were considered critical and were

obtained using static timing analysis tool from Synopsys. We obtained 83 critical

paths which can be broadly classified into three groups based on the corresponding

pipeline stages as listed below:

• Group A consists of 70 paths. All these belong to Load Store Unit and are

responsible for memory disambiguation logic.
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• Group B consists of 8 paths. All these belong to Simple ALU unit which acts

as a carry ripple adder.

• Group C consists of 5 paths. All these belong to Decode unit. The internal

logic checks if each of the 4 instructions fetched in the current cycle are complex

instructions (such as LDW: Load Double Word) which need to be split into two

regular instructions (LW: Load Word).

It must be noted that the critical paths are highly sensitive to the design choices

and the underlying microarchitecture of the superscalar core. A design with a dif-

ferent size of OOO structures (such as ROB, LSQ, Wakeup select logic) can have a

completely different set of critical paths. However, our methodology is transparent

to the microarchitecture of the superscalar processor which will be shown in further

sections.

6.2 Workload characterization of critical paths

Since NBTI is highly sensitive to duty cycles of the transistors across the tim-

ing path, we have performed gate level simulations of the synthesized superscalar

processor using six workloads (bzip2, gap, gzip, mcf, vortex and parser) from the

SPEC CPU2000[1] benchmark suite to obtain the duty cycles. We have used the

co-simulation environment provided by FabScalar in which a C++ based functional

simulator runs concurrently with a cycle accurate RTL Verilog simulation of super-

scalar core[10]. The co-simulation environment helps in reducing the simulation time

of standard benchmarks using check-pointing and avoiding a full-system simulation.

Using the waveform dumps obtained from the gate level simulations of synthesized

superscalar Verilog netlist, we have calculated the average duty cycles of all the

internal nets along the critical timing paths listed in section 6.1.
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Figure 6.1: Duty cycle distribution of three critical path groups for bzip workload

Figures 6.1 through 6.6 illustrate the distribution of duty cycles of internal nets

across all the critical paths of the three groups for each of the workload. X-Axis

represents the duty cycle bin ranging from 0.0 to 0.9 while Y-Axis represents the

fraction of the total internal nets having their duty cycles in a particular bin. The

bin width is 0.1. For example, bin 0.5 represent all the duty cycles in the range [0.5,

0.6).

As illustrated in figures 6.1 through 6.6, the duty cycles of these critical paths are

highly skewed towards the boundaries. On an average, 40% of critical nets have duty

cycles in the range of [0.9, 1.0). This highlights the under utilization of several paths

in the processor since these paths represent the corner cases in a processor workload

and the probability of these cases is very small. This is analogous to the critical path

in the priority scheduler module discussed in section 3.3 where the probability of the
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Figure 6.2: Duty cycle distribution of three critical path groups for gap workload

path representing the D req is very small. A transistor with a duty cycle closer to 1.0

experiences maximum NBTI stress while a duty cycle closer to 0.0 leads experiences

minimum NBTI stress as evident from the equation 2.6.

As mentioned earlier, the first timing failure in the processor determines the

lifetime of the processor. Since the total delay degradation of each path is dependent

on the duty cycles of the internal nets along the critical path, we computed the

relative delay degradation dg for each of the 83 paths which are broadly classified

into three groups in section 6.1. We found that paths in group A degrade 100x

faster than the paths in Groups B and C because of the highly skewed duty cycles,

thereby making Group A paths to be NBTI critical and life determining. All these

paths correspond to the Load Store Unit. Figure 6.7 illustrates the reason behind

selecting Group A paths to be NBTI critical. The slope of the line represents the
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Figure 6.3: Duty cycle distribution of three critical path groups for gzip workload

delay degradation rate.

It is evident that

t A << t B < t C (6.1)

where t A is the time at which the first timing failure occurs in the processor having

only Group A paths, t B is the time at which the first timing failure occurs in the

processor having only Group B paths ,t C is the time at which the first timing failure

occurs in the processor having only Group C paths . Hence we need to reduce the

wearout rate of Group A paths such that the first timing failure is delayed long enough

to achieve the intended operational lifetime. Since the wearout rate of Group B and

C paths is much smaller, the lifetime of the device is not limited by the wearout

across these paths. Note that we use 10% of the cycle time T as the threshold for
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Figure 6.4: Duty cycle distribution of three critical path groups for mcf workload

timing failures. Using our PRITEXT method, we intend to balance the duty cycles

in order to mitigate NBTI stress and improve Processor lifetime.

6.3 Analysis of load store unit critical path

All the 70 paths of the Group A lie in the Load Store Unit which performs a

memory disambiguation check as illustrated in figure 6.8 .

Memory disambiguation is a key step in out-of-order superscalar processors [24].

In order to achieve high performance, Superscalar processors need to execute instruc-

tions in an order different from the program sequence. Load and Store instructions

which can exhibit true data dependence need to be speculatively executed out of

order in order to exploit the memory level parallelism. Consider the sequence of

instructions listed below:
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Figure 6.5: Duty cycle distribution of three critical path groups for parser workload

(1) ST R1, 5(R2)

(2) ST R5, 0(R6)

(3) LD R3, 10(R4)

(4) LD R7, 4(R8)

Consider the instruction 3 which performs a load operation. Since the memory

address is not known ahead, executing Load instruction after all the previous Store

instructions can lead to serious performance issues. It is difficult to predict if a load

instruction performs a memory access from the same address which is written by a

previous store until all the address are resolved. There are two approaches widely

practised in superscalar designs[24] as listed below:

• Store-Load Forwarding: In case a store instruction is not yet retired due to
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Figure 6.6: Duty cycle distribution of three critical path groups for vortex workload

Figure 6.7: Increase in delay degradation for three critical path groups with time. The time
at which the increase in delay exceeds the guardband (0.1T) is marked.
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Figure 6.8: Critical path in load store unit: Memory violation check for load-store bypass

lack of D-Cache availability, the load instruction can be forwarded the result

from the store buffer.

• Store-load Bypass: Speculatively execute the load instruction and place all the

completed load instructions in the load queue. When a store is retired (fin-

ished), the address of the store (from the store-queue) is checked with every

entry in the load-queue for a possible match. If a match is found, the specu-

lative load instruction was fed a wrong data and hence is marked as memory

dependence violation. If multiple entries in the load queue match with the

address of the current store instruction, then the oldest load instruction is

marked. Whenever the load instruction is about to be retired, the pipeline is

flushed and all the following instructions are re-executed.
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Since the address match performs an age-based priority search across the load

queue having 32 entries, the timing path has several gates leading to long switching

delays. Since the probability of a store instruction matching a load instruction at

the end of load-queue (i.e. 32nd entry) is very small, the probability of utilization

of the timing path, representing this corner scenario, is quite small leading to highly

skewed duty cycles for the internal nets along this path making this the most critical

path in our superscalar core.

6.4 PRITEXT

As mentioned in section 3.1, Input Vector Control can be used to exercise the

internal nets on the critical path to balance the duty cycles, thereby mitigating the

NBTI stress and improving the lifetime of the processor. Note that the exercise

mode is enabled only when the processor is quiescent (i.e. in standby mode). In

order to exercise all the critical nets, it is necessary to obtain the activation cone

of all the critical nets. Hence the combinational logic cone which lies in the fan-in

of the critical path is obtained using the synthesized netlist. Once the logic cone is

obtained, we use the algorithm described in section 4.3 to obtain a minimum set of

deterministic vectors to exercise all the critical nets. The resultant logic cone has

1426 inputs.

Figure 6.9 illustrates the PRITEXT microarchitecture. Along with the Load

Store Unit combinational logic, it has additional Multiplexers and On-Chip ROM

with the exercise vectors. The input vectors are fed to the extracted critical path

logic cone when the exercise mode signal is enabled such that all the critical nodes

are exercised with an aim to improve the average duty cycles. Since it is necessary

to keep the architectural state of the processor unchanged, the output flip-flops are

disabled during exercise mode.
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Figure 6.9: Proposed PRITEXT technique with On-Chip ROM , multiplexers and combi-
national logic cone of the critical path

In order to exercise all the critical nets, the input vectors are rotated after a

pre-defined period of time(ROTATION PERIOD). Since the input vectors lead to

additional internal switching, the rotation of the input exercise vectors is kept as

minimum as possible by rotating the vectors only after 1024 cycles. This is achieved

by using a hardware counter which switches the current vector to the next vector

in the On-Chip ROM after every 1024 cycles. The vector rotation period has no

impact on improving the duty cycles of the internal nodes because the duration of

each vector remains the same irrespective of the frequency of rotation. Our PRI-

TEXT microarchitecture has minimum hardware complexity since we perform vector

compaction as described in section 4.2.
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6.5 Exercise mode during processor standby

Modern processors are not used continuously throughout their lifetimes. Most of

the times, processor is quiescent waiting for an I/O access, Network access, TLB miss

or off-chip DRAM access. This provides us the opportunity to enable the exercise

mode whenever the processor is idle (Standby mode). In order to make sure all the

instructions in the superscalar pipeline are retired before enabling the exercise mode,

we delay the exercise mode signal by 100 clock cycles to finish the execution of all the

instructions in the processor pipeline. Unlike power gating which needs significant

idle time in the order of milliseconds ( Millions of clock cycles)[18], PRITEXT can

balance the duty cycle in a smallest window of opportunity when the processor is

idle for even a small window of time in the order of 100s of clock cycles.

Based on the real-time statistics collected for processors in several server clusters,

we observe that processors experience much higher idle time when compared to active

time. Figure 6.10 provides a snapshot of the processor usage statistics in one of the

departmental servers used for academic purposes. The processor is idle for 98% of

the time while it is in active execution (USER) mode for only 2% of the time. The

ratio of Active to Standby time is termed as RAS. Based on above statistics, RAS

is equal to 2:98 = 1:49. However, in the evaluation of the proposed technique, we

have considered a conservative value of 1:1 and 3:1 for RAS ratio. A higher standby

time gives a better opportunity to balance the duty cycles as illustrated through a

working example here.

The average duty cycle of a critical net which depends on various factors as given

by the following equation:

AverageDutycycle =

(
a ∗RAS
RAS + 1

)
(6.2)
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Figure 6.10: Real-time statistics of processor utilization in a server

where a is the duty cycle of the internal net in active mode, RAS is the time

ratio of the active to standby mode and e is the duty cycle of the internal net

in Standby(i.e. exercise) mode. For example, lets assume the following values in

calculation of average duty cycle: a = 0.99, e= 0.1, RAS = 1

AverageDutycycle =

(
0.99 ∗ 1 + 0.5

1 + 1

)
= 0.745 (6.3)

The ratio of active to standby mode has a significant impact on the average duty

cycle and hence on the lifetime of the device. Considering a RAS of 1:3, the average

duty cycle is equal to

AverageDutycycle =

(
0.99 ∗ 0.333 + 0.5

0.333 + 1

)
= 0.622 (6.4)

As stated in section 3.2, even a small improvement in beta (duty cycle) can lead

to a significant improvement in lifetime of device.

6.6 PRITEXT enhanced ASIC design flow

Figure 6.11 shows the enhanced ASIC design flow using the proposed PRITEXT

technique. All the steps in the flow are automated using scripts which helps the

designers to integrate our methodology into the processor design flow without the

necessity of any additional efforts.
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Figure 6.11: Automated ASIC design flow enabled with PRITEXT lifetime improvement
technique
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7. EVALUATION

In this chapter we discuss the experimental setup used in evaluating the benefits

of PRITEXT technique. We then outline the lifetime improvement achieved in var-

ious scenarios and give an estimation of Power and Area overheads of the proposed

technique.

7.1 Experimental setup

As mentioned in section 5.2 and 6.2, we have used a Synthesizable Verilog RTL

code of a superscalar core obtained from the FabScalar project for our evaluation.

We have synthesized the processor core for a clock frequency of 500MHz using Syn-

opsys Design Compiler with 45nm TSMC standard cell library. All the paths with

less than 10% slack were considered NBTI critical and were obtained using static

timing analysis tool from Synopsys. We have performed gate level simulations of

the synthesized superscalar processor using six real-time workloads(bzip2, gap, gzip,

mcf, vortex and parser) from the SPEC CPU2000 benchmark suite to obtain the

duty cycles. We have used the co-simulation environment provided by FabScalar in

which a C++ based functional simulator runs concurrently with a cycle accurate

RTL Verilog simulation of superscalar core. Using the waveform dumps obtained

from the gate level simulations of synthesized superscalar Verilog netlist, we have

calculated the average duty cycles of all the internal nets along the critical timing

path listed in section 6.2.
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Figure 7.1: PRITEXT hardware with appropriate ROM vectors and multiplexers after
vector compaction

7.2 Results

7.2.1 Vector generation results using deterministic algorithm

We have used the algorithm discussed in section 4.3 to obtain a minimum set of

deterministic vectors with an aim of balancing the duty cycles of the critical nets.

As mentioned in section 6.2, only the critical path in the Load Store Unit was found

to be the lifetime deciding path. Hence our vectors used in the PRITEXT technique

balance only the nets along the load store unit critical path. Figure 7.1 illustrates

the PRITEXT microarchitecture containing the Multiplexers and On-chip ROM with

exercise vectors. The extracted combinational logic cone of Load Store unit critical

path consists of 1426 primary inputs, 15,194 internal nodes and 63 unique internal

nets on the critical path.

Using the algorithm outlined in section 4.3, we have obtained nine exercise vectors
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Figure 7.2: Accessibility of internal nets with each input vector.

which can exercise these 63 critical nets during the exercise mode. In order to

minimize the hardware overhead of PRITEXT technique, we have performed test

vector compaction to minimize the Multiplexer and On-Chip ROM overhead. Note

that the width of each exercise vector is equal to the number of primary inputs of

the extracted combinational logic. From 1426 primary inputs, each of which can

possibly contribute to a MUX and On-Chip ROM entry, 1053 have dont care values

which do not contribute to the MUX and On-Chip ROM complexity. 140 inputs can

be set of constant logic value of 1 and 185 can be set of constant logic value of 0

while the rest of 48 inputs have unique values for each of the nine vectors. Therefore,

the On-Chip ROM ( complexity = 9 x 48) contains nine vectors each with 48 bits.

A total of 373 (= 140 + 185 + 48) Multiplexers with 140 MUXes having a constant

value of 1 and 185 having a constant value of 0 are needed as shown in figure 7.1.

As mentioned in section 3.1, each vector can only activate/exercise a small number

of critical nets which is the reason why the algorithm generates multiple vectors.
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Figure 7.3: Coverage achieved by a set of input vectors. X-axis represents the number of
vectors; Y-Axis represents the number of critical nets activated. Example: two of the nine
vectors can activate 8 critical nets individually.

Figure 7.2 illustrates the coverage achieved by each vector in balancing the duty

cycle of 63 critical nets in the Load Store unit path. Vector V1 exercises 35 critical

nets and so does Vector V2 ( Aggregate Histogram). However, Vector V2 exercises

only 12 new critical nets (Unique histogram) that were not exercised by V1, which

leads to 23 (=35 -12) of the critical nets to be exercised by both V1 and V2.

Figure 7.3 illustrates an interesting plot obtained from the above distribution and

gives an intuitive explanation of the activation ability of the critical nets. 17 out of

63 critical nets were only accessible by one out of the nine vectors, while 8 critical

nets were accessible by two vectors(need not be the same two vectors). Similarly 6

out of 63 nets were accessible by all the nine vectors. In an ideal case, we wish to

develop a vector which can access/activate all the 63 critical nets. Since each vector

is enabled for a constant pre-determined amount of time in exercise mode ( 1024

cycles) , 17 of the 63 critical nets are at logic 1 for a fraction of 1/9th of exercise
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Figure 7.4: Duty cycle distribution of load store unit critical path of reference system.

mode duration, 8 of the critical nets are at logic 1 for a fraction of 2/9th and so

on. The average duty cycle (fraction of time at logic 0) of the all the critical nets is

calculated as below:

β = 1−
( 1

63

)
∗
[(

17 ∗ 1

9

)
+
(
8 ∗ 2

9

)
+
(
8 ∗ 2

9

)
+
(
3 ∗ 3

9

)
+
(
4 ∗ 4

9

)
+
(
4 ∗ 5

9

)
+
(
7 ∗ 6

9

)
+
(
3 ∗ 7

9

)
+
(
11 ∗ 8

9

)
+
(
6 ∗ 9

9

)]
β = 1− (31.44/63) = 0.51 (7.1)

7.2.2 Balanced duty cycles using deterministic exercise vectors

Figure 7.4 illustrates the duty cycle distribution of critical nets in the Load Store

unit across six real-time workloads for a reference system with no lifetime improve-

ment technique.

It can be inferred that approximately 40% of the critical nets have their duty
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Figure 7.5: Duty cycle distribution of load store unit critical path with RAS = 3:1 in a
system enabled with PRITEXT.

cycles in the range of [0.9, 1.0) which leads to accelerated NBTI degradation. Our

aim is to reduce the average duty cycle of the critical nets using the exercise vectors.

As mentioned in section 6.5, RAS has a significant impact on the average duty cycle.

Figure 7.5 illustrates the duty cycle distribution of critical nets in the Load Store

unit across six real-time workloads for a device enabled with PRITEXT technique

having a RAS of 3:1. It is quite evident from the figure 7.5 that fraction of critical

nets having skewed duty cycles i.e. in the bin 0.9 has reduced from 40% to 23% on

average. A value of 3:1 for RAS is very conservative allowing the device to be in

standby mode only for 25% of its lifetime.

Figure 7.6 illustrates the duty cycle distribution of critical nets for a device en-

abled with PRITEXT technique having a RAS of 1:1. It can be observed from figure

7.6 that the fraction of critical nets having skewed duty cycles i.e. in the bin 0.9 has

reduced from 40% to 13% on average when compared to reference system with no

lifetime extending support.
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Figure 7.6: Duty cycle distribution of load store unit critical path with RAS = 1:1 in a
system enabled with PRITEXT.

7.2.3 Lifetime acceleration with RAS = 3:1

Figure 7.7 depicts the lifetime improvement in superscalar core using PRITEXT

technique for various real-time workloads with ratio of active to standby mode (RAS)

equal to 3:1. Lifetime improvement is quantized using Acceleration Factor described

in section 2.4. Our lifetime improvement technique achieved an average of 3.8x

lifetime improvement over a reference system using deterministic vectors in exercise

mode.

7.2.4 Lifetime acceleration with RAS = 1:1

Figure 7.8 depicts the lifetime improvement in superscalar core using PRITEXT

technique with ratio of active to standby mode (RAS) equal to 1:1. The device is in

standby mode for 50% of its operational time. Our lifetime improvement technique

achieved an average of 4.5x lifetime improvement over a reference system using deter-

ministic vectors in exercise mode. The maximum improvement of 12.7x is observed
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Figure 7.7: Lifetime improvement with RAS = 3:1.

Figure 7.8: Lifetime improvement with RAS = 1:1.

for mcf workload.
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Figure 7.9: Lifetime improvement with unequal rotation periods

7.2.5 Lifetime acceleration with unequal vector rotation periods

As discussed in 6.4, each vector is rotated after a pre-defined number of cycles

equal to ROTATION PERIOD. Based on figure 7.2, it is evident that certain vectors

can activate more number of unique nets on the critical path when compared to other

input vectors. Based on this observation, we explored the option of unequal ROTA-

TION PERIOD giving more priority to Vector V1 and V2. Figure 7.9 illustrates the

lifetime improvement for various benchmarks.

Our lifetime improvement technique achieved an average of 4.9x lifetime im-

provement over a reference system using deterministic vectors with unequal rotation

periods in exercise mode.

The mcf workload constantly led to high lifetime improvement because of its mem-

ory intensive characteristic. It exhibits highly skewed duty cycle among the critical

nets when compared to other benchmarks, thereby giving a better opportunity to

balance the duty cycle and achieve a significant improvement in lifetime of the super-
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scalar processor. The most skewed critical net had a duty cycle of 0.999999942 under

mcf workload while the most skewed critical net had a duty cycle of 0.99994787 for

all other workloads. Hence, based on equation 2.2, the worst case relative threshold

voltage degradation under mcf workload compared to other workloads is proportional

to

((
0.999999942

1−0.999999942

)(
0.99994787

1−0.99994787

) )n

= 898.8n (7.2)

where n is the time exponent. A small improvement in the duty cycle of the critical

nets for mcf workload can improve the threshold voltage degradation significantly

when compared to other workloads because of the sensitivity of the NBTI stress to

duty cycle.

7.3 Power and area overheads of PRITEXT

7.3.1 Area overheard

PRITEXT uses additional Multiplexers and On-Chip ROM which contribute to

area overhead of the superscalar processor as discussed in section 6.4. However

we have used vector compaction technique as described in section 7.2.1 which helps

minimizing the hardware complexity. We used Synopsys Design Compiler to estimate

the additional area overhead and found it to be less than 0.5% of total die area.

This is because the majority of the die area is occupied by other microarchitectural

components such as Caches, Decoder, Rename, Physical Register File, Instruction

window, ROB and other buffers described in section 5.2.

7.3.2 Power analysis

The additional hardware complexity due to Multiplexers and On-Chip ROM to-

gether with the switching of internal nets through exercise vectors in standby mode
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leads to additional static and dynamic power consumption. We have performed

power analysis of the superscalar core in active and standby modes using Synopsys

PrimeTime tool. The additional power consumption was less than 1% as the ma-

jority of the power consumption was from complex microarchitectural components

of the superscalar core and moreover the internal switching of the critical nets was

kept to minimum by rotating the vectors infrequently (every 1024 clock cycles).
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8. RELATED WORK

Broadly, there are three categories of work related to NBTI degradation: Mod-

elling, Analysis and Mitigation of NBTI stress. Bhardwaj et al. [6] have proposed a

comprehensive model for NBTI stress on PMOS transistor and predicted the thresh-

old voltage degradation for short term and long term circuit operating conditions.

The dependence of NBTI degradation on process and device parameters was ac-

curately modeled and evaluated with respect to HSPICE simulations using 90-nm

technology.

Wang et al. [28] proposed a unified reliability model of Hot Carrier Injection and

Negative Bias Temperature Instability for FinFETs using reaction-diffusion theory.

The authors also investigated the performance degradation in circuits due to HCI

and NBTI in order to monitor the aging of Integrated Circuits. Lu et al. [19] have

presented a statistical framework for characterizing the reliability of ICs fabricated

using current CMOS process technologies by simultaneously accounting for aging due

to operational NBTI stress and foundry process variations. Their work also provides

a statistical analysis method for estimating the impact of individual circuit node on

the overall reliability of the circuit functionality.

Ubar et al. [25] have proposed an approach to identify NBTI critical paths in

nano-scale logic by analyzing three important parameters : delay-critical paths, gate

input signal probability and the gate fan-out degree along the timing paths based on

the observation that delay-critical paths are highly prone to timing failures. Ebrahimi

et al. [11] have proposed a two step process to select Representative Critical paths

to estimate the aging induced degradation in FPGA circuits. In the first step, all

the paths , all the paths having delay greater than critical timing specification are
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selected and are referred as Pseudo Critical Paths . In the second step, a subset

of these paths are selected based on several factors such as fan-out, path delay,

temperature, duty cycle, switching activity and physical location of the paths in the

FPGA block. The authors also present a sensor insertion algorithm to monitor the

aging of the critical paths.

Several authors have proposed techniques to mitigate NBTI degradation for im-

proving the lifetime of processors. Abella et al.[5] proposed NBTI aware processor

called Penelope which implements several generic strategies to reduce NBTI stress in

storage and combinational blocks. They observed that many combinational blocks

are idle for a significant fraction of operational time and proposed to use special

inputs during idle periods alternatively. This ensures that the alternating special

inputs tend to degrade different PMOS transistors such that the maximum degrada-

tion of a single PMOS transistor is well below the acceptable guardband. In order

to mitigate PMOS degradation in Memory-like blocks such as bit cells, the authors

proposed to write special values in empty entries such that the logic 0 and logic 1

are stored each for 50% of the time in the bit cells, thereby ensuring all the PMOS

transistors in the inverters of the bit cells have similar degradation.

Gunadi et al.[14] have proposed Colt duty cycle equalizer which equalizes the

usage frequency of devices in order to balance the utilization of internal components

in a processor. It balances the duty cycle and the activity factor of circuits internal

nodes in order to recover the NBTI stress across the aged transistors. The authors

employ multiple techniques to mitigate the effects of aging stress. First, in Comple-

ment Mode Execution, true and complement forms of execution are employed in the

storage structures, data path and control path for alternating coarse grained epochs

which helps in balancing the duty cycles of the internal PMOS transistors in the

circuit. Second, in Cache Set Rotation technique, LFSR Hashing is used to change
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the cache index function with an aim of distributing the usage frequencies of cache

entries. This helps in achieving uniform cache utilization for all memory accesses.

Third, in Operand Identifier Swapping technique, the utilization of left and right

operands on the data paths are equalized.

Several authors have exploited Input Vector Control mechanism discussed in sec-

tion 3.1 to mitigate NBTI stress. Since the problem of finding the best input vectors

is NP-Complete, the authors have taken several approaches to achieve approximate

solutions such as Binary Integer Linear Programming, Mixed Integer Linear Pro-

gramming, random simulations, heuristics based optimizations etc[27][13][7][12][29].

Yu Wang et al. [27] proposed a co-simulation flow for static leakage power and NBTI

induced degradation by considering the ratio of active to standby time (RAS). They

evaluated the transistor level NBTI modelling and path-based NBTI aware timing

analysis in their simulations. They came up with efficient input vectors in order to

achieve two objectives: mitigate NBTI induced circuit degradation and reduce the

leakage power. Using exhaustive random vectors and probability based algorithms,

the authors generated an ideal set of input vectors to meet the design objectives.

Firouzi et al.[13] proposed an efficient input vector generation technique using

Linear Programming (LP) for reducing the NBTI stress in standby phase. The

primary objective is to minimize the post-aging critical path delay. The authors

represent the logic network obtained from the synthesized netlist and the NBTI-

induced gate delay increase relations by Linear Programming constraints. All the

path delays are represented as constraints in a linear function with the input vectors

as the variables. The Objective Function (OF) is to minimize the aggregate increase

in the circuit switching delay due to accelerated aging. The authors proposed three

possible LP approaches: Binary Integer LP, Relaxed LP and Mixed LP. Binary

Integer LP provides an optimal solution but has the drawback of huge runtimes for
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large circuits. Relaxed LP converges in smaller runtime with reasonable accuracy in

the results. Mixed Integer LP provides a trade off between the runtimes and accuracy

of the input vector results.

In their next work, the authors [18] have proposed to use NOP (No Operation)

Instruction to minimize NBTI effect since the processor spends a significant amount

of time executing NOP instructions. They have observed that the source operands of

the NOP instruction have a significant impact on the NBTI aging. Hence the authors

have proposed to replace the original NOP with modified NOP instruction that has no

impact on the program execution. Similar to their earlier work done by authors in [6],

Linear Programming approach was used to find the best Maximum Aging Reduction

(MAR) NOP instruction with appropriate opcode and source operand values. The

authors have investigated two unique approaches to use the modified NOP in the

program execution. In the software based approach, the compiler directives are

modified to generate the binary code with modified NOP and the necessary operands

are initialized using a set of additional instructions. In the hardware based approach,

the pipelines stages are modified to include additional multiplexers which directly

feed the optimized MAR NOP operands to the pipeline stages (such as ALU).

Bild et al.[7] have combined Input vector Control with Input Node Control tech-

niques to mitigate NBTI stress in digital circuits. Input Node Control refers to the

technique of inserting control nodes at the output of individual gates in order to drive

the gate to a specific logic level. The outputs can be forced to logic 1 in order to

reduce the stress on PMOS transistor. The problem of finding the optimum location

for node control is proved to be NP-Complete by the authors. Hence the authors

formulated the problem of finding the optimal set of internal nodes for insertion as a

mixed integer linear problem. The task is formulated as finding the insertion points

to minimize the critical path delay when the transistor is under NBTI degradation.

61



Each Boolean gate is modeled as a set of constraints that influence the output delay

based on the input values (vectors).

All the prior approaches share the idea of using Input Vector Control in mitigating

NBTI stress which is also the central idea of our work as described earlier. However

the runtimes of these approaches could become intractable for large circuits. Our

work uses existing ATPG algorithms in generating the input exercise vectors which

are known to be accurate and fast. Further advancements in ATPG algorithms will

help to improve the capability and runtimes of PRITEXT technique.
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9. CONCLUSION AND FUTURE WORK

Negative Bias Temperature Instability (NBTI) is a prominent wearout mecha-

nism in deep submicron process technologies which degrades the reliability of cur-

rent semiconductor devices. Improving reliability of superscalar processors is neces-

sary for ensuring long operational lifetime which obviates the necessity of mitigating

these physical wearout mechanisms. Exercising the dormant critical components in

the processor to balance the duty cycles of the internal nets has been proven to

reduce the NBTI stress. We use a novel ATPG justification algorithm to generate

a minimal set of deterministic input vectors. We then propose and evaluate a new

microarchitectural technique PRITEXT, which uses these input vectors in exercise

mode to effectively reduce the NBTI induced aging and improve the operational

lifetime of superscalar processors. PRITEXT, which exploits Input Vector Control

mechanism, leads to a 4.5x lifetime improvement of superscalar processor on average

with a maximum lifetime improvement of 12.7x. Our work is transparent to the

microarchitecture of the device and can be embedded as a part of ASIC design flow.

All the steps in our proposed technique can be automated using scripts with minimal

intervention of designers.

The efficiency of PRITEXT in balancing the duty cycles depends on the determin-

istic vectors. In future work, we wish to develop optimized algorithm using advanced

ATPG techniques to generate a much smaller number of vectors with larger number

of unspecified bits. This will result in reduction of On-Chip ROM size and number

of multiplexers, thus leading to reduced power and area overheads.

63



REFERENCES

[1] SPEC CPU200 Benchmark suit : Standard Performance Evaluation Corpora-

tion. https://www.spec.org/cpu/.

[2] Process integration, devices, and structures (pids),. http://www.itrs.

net/itrs%2019992014%20mtgs,%20presentations%20&%20links/2009itrs/

2009chapters2009tables/2009pids.pdf, 2009.

[3] Failure mechanisms and models for semiconductor devices, jep122g,. http:

//www.jedec.org/sites/default/_les/docs/JEP122G.pdf, 2011.

[4] A. Abdollahi, F. Fallah, and M. Pedram. Leakage current reduction in cmos

vlsi circuits by input vector control. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 12(2):140–154, Feb 2004.

[5] J. Abella, X. Vera, and A. Gonzalez. Penelope: The nbti-aware processor. In

40th Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO 2007), pages 85–96, Dec 2007.

[6] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula. Predictive

modeling of the nbti effect for reliable design. In IEEE Custom Integrated Cir-

cuits Conference 2006, pages 189–192, Sept 2006.

[7] D. R. Bild, G. E. Bok, and R. P. Dick. Minimization of nbti performance

degradation using internal node control. In 2009 Design, Automation Test in

Europe Conference Exhibition, pages 148–153, April 2009.

[8] M. A. Breuer, M. Abramovici, and A. D. Friedman. Digital systems testing and

testable design. Wiley-IEEE Press, New Jersey, USA, 1st edition, 1990.

64



[9] M. Bushnell and V. D. Agrawal. Essentials of electronic testing for digital, mem-

ory and mixed-signal VLSI circuits, volume 17. Springer Science and Business

Media, New York, USA, 1st edition, 2000.

[10] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi, B. H.

Dwie, S. Navada, H. H. Najaf-abadi, and E. Rotenberg. Fabscalar: Compos-

ing synthesizable rtl designs of arbitrary cores within a canonical superscalar

template. SIGARCH Comput. Archit. News, 39(3):11–22, June 2011.

[11] M. Ebrahimi, Z. Ghaderi, E. Bozorgzadeh, and Z. Navabi. Path selection and

sensor insertion flow for age monitoring in fpgas. In 2016 Design, Automation

Test in Europe Conference Exhibition (DATE), pages 792–797, March 2016.

[12] F. Firouzi, S. Kiamehr, and M. B. Tahoori. Nbti mitigation by optimized nop as-

signment and insertion. In 2012 Design, Automation Test in Europe Conference

Exhibition (DATE), pages 218–223, March 2012.

[13] F. Firouzi, S. Kiamehr, and M. B. Tahoori. Power-aware minimum nbti vec-

tor selection using a linear programming approach. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 32(1):100–110, Jan

2013.

[14] E. Gunadi, A. A. Sinkar, N. S. Kim, and M. H. Lipasti. Combating aging with

the colt duty cycle equalizer. In 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, pages 103–114, Dec 2010.

[15] W. M. Johnson. Super-scalar processor design. Technical Report No. CSL-TR-

89-383, Stanford University, USA, 1990.

[16] H. Kim, S. B. K. Boga, A. Vitkovskiy, S. Hadjitheophanous, P. V. Gratz,

V. Soteriou, and M. K. Michael. Use it or lose it: Proactive, deterministic

65



longevity in future chip multiprocessors. ACM Trans. Des. Autom. Electron.

Syst., 20(4):65:1–65:26, September 2015.

[17] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. Nbti-aware synthesis of digital

circuits. In 2007 44th ACM/IEEE Design Automation Conference, pages 370–

375, June 2007.

[18] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis. Power

management of datacenter workloads using per-core power gating. IEEE Com-

puter Architecture Letters, 8(2):48–51, Feb 2009.

[19] Y. Lu, L. Shang, H. Zhou, H. Zhu, F. Yang, and X. Zeng. Statistical reliabil-

ity analysis under process variation and aging effects. In Design Automation

Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 514–519, July 2009.

[20] S. Nassif, K. Bernstein, D. J. Frank, A. Gattiker, W. Haensch, B. L. Ji,

E. Nowak, D. Pearson, and N. J. Rohrer. High performance cmos variability

in the 65nm regime and beyond. In 2007 IEEE International Electron Devices

Meeting, pages 569–571, Dec 2007.

[21] S. N. Neophytou and M. K. Michael. Test set generation with a large number

of unspecified bits using static and dynamic techniques. IEEE Transactions on

Computers, 59(3):301–316, March 2010.

[22] T. Sakurai and A. R. Newton. Alpha-power law mosfet model and its applica-

tions to cmos inverter delay and other formulas. IEEE Journal of Solid-State

Circuits, 25(2):584–594, Apr 1990.

[23] D. K. Schroder and J. A. Babcock. Negative bias temperature instability: Road

to cross in deep submicron silicon semiconductor manufacturing. Journal of

Applied Physics, 94(1), 2003.

66



[24] J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of Su-

perscalar Processors, volume 17. Waveland Press Inc., Illinois, USA, 1st edition,

1999.

[25] R. Ubar, F. Vargas, M. Jenihhin, J. Raik, S. Kostin, and L. B. Poehls. Iden-

tifying nbti-critical paths in nanoscale logic. In Digital System Design (DSD),

2013 Euromicro Conference on, pages 136–141, Sept 2013.

[26] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao. The impact of

nbti effect on combinational circuit: Modeling, simulation, and analysis. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 18(2):173–183,

Feb 2010.

[27] Y. Wang, X. Chen, W. Wang, V. Balakrishnan, Y. Cao, Y. Xie, and H. Yang. On

the efficacy of input vector control to mitigate nbti effects and leakage power. In

2009 10th International Symposium on Quality Electronic Design, pages 19–26,

March 2009.

[28] Y. Wang, S. Cotofana, and L. Fang. A unified aging model of nbti and hci degra-

dation towards lifetime reliability management for nanoscale mosfet circuits. In

2011 IEEE/ACM International Symposium on Nanoscale Architectures, pages

175–180, June 2011.

[29] Y. Wang, H. Luo, K. He, R. Luo, H. Yang, and Y. Xie. Temperature-aware

nbti modeling and the impact of standby leakage reduction techniques on cir-

cuit performance degradation. IEEE Transactions on Dependable and Secure

Computing, 8(5):756–769, Sept 2011.

67


