88 research outputs found

    Associations of Retinal Microvascular Diameters and Tortuosity With Blood Pressure and Arterial Stiffness: United Kingdom Biobank.

    Get PDF
    To examine the baseline associations of retinal vessel morphometry with blood pressure (BP) and arterial stiffness in United Kingdom Biobank. The United Kingdom Biobank included 68 550 participants aged 40 to 69 years who underwent nonmydriatic retinal imaging, BP, and arterial stiffness index assessment. A fully automated image analysis program (QUARTZ [Quantitative Analysis of Retinal Vessel Topology and Size]) provided measures of retinal vessel diameter and tortuosity. The associations between retinal vessel morphology and cardiovascular disease risk factors/outcomes were examined using multilevel linear regression to provide absolute differences in vessel diameter and percentage differences in tortuosity (allowing within person clustering), adjusted for age, sex, ethnicity, clinic, body mass index, smoking, and deprivation index. Greater arteriolar tortuosity was associated with higher systolic BP (relative increase, 1.2%; 95% CI, 0.9; 1.4% per 10 mmHg), higher mean arterial pressure, 1.3%; 0.9, 1.7% per 10 mmHg, and higher pulse pressure (PP, 1.8%; 1.4; 2.2% per 10 mmHg). Narrower arterioles were associated with higher systolic BP (-0.9 µm; -0.94, -0.87 µm per 10 mmHg), mean arterial pressure (-1.5 µm; -1.5, -1.5 µm per 10 mmHg), PP (-0.7 µm; -0.8, -0.7 µm per 10 mmHg), and arterial stiffness index (-0.12 µm; -0.14, -0.09 µm per ms/m2). Associations were in the same direction but marginally weaker for venular tortuosity and diameter. This study assessing the retinal microvasculature at scale has shown clear associations between retinal vessel morphometry, BP, and arterial stiffness index. These observations further our understanding of the preclinical disease processes and interplay between microvascular and macrovascular disease

    Retinal Vascular Tortuosity and Diameter Associations with Adiposity and Components of Body Composition.

    Get PDF
    OBJECTIVE: The aim of this study was to assess whether adiposity or body composition relates to microvascular characteristics of the retina, indicative of cardiometabolic function. METHODS: A fully automated QUARTZ software processed retinal images from 68,550 UK Biobank participants (aged 40-69 years). Differences in retinal vessel diameter and tortuosity with body composition measures from the Tanita analyzer were obtained by using multilevel regression analyses adjusted for age, sex, ethnicity, clinic, smoking, and Townsend deprivation index. RESULTS: Venular tortuosity and diameter increased by approximately 2% (P < 10-300 ) and 0.6 μm (P < 10-6 ), respectively, per SD increase in BMI, waist circumference index, waist-hip ratio, total body fat mass index, and fat-free mass index (FFMI). Venular associations with adiposity persisted after adjustment for FFMI, whereas associations with FFMI were weakened by FMI adjustment. Arteriolar diameter (not tortuosity) narrowing with FFMI was independent of adiposity (-0.6 μm; -0.7 to -0.4 μm per SD increment of FFMI), while adiposity associations with arteriolar diameter were largely nonsignificant after adjustment for FFMI. CONCLUSIONS: This demonstrates, on an unprecedented scale, that venular tortuosity and diameter are more strongly associated with adiposity, whereas arteriolar diameter relates more strongly to fat-free mass. Different attributes of the retinal microvasculature may reflect distinct roles of body composition and fatness on the cardiometabolic system

    Retinal Vascular Tortuosity and Diameter Associations with Adiposity and Components of Body Composition.

    Get PDF
    OBJECTIVE: The aim of this study was to assess whether adiposity or body composition relates to microvascular characteristics of the retina, indicative of cardiometabolic function. METHODS: A fully automated QUARTZ software processed retinal images from 68,550 UK Biobank participants (aged 40-69 years). Differences in retinal vessel diameter and tortuosity with body composition measures from the Tanita analyzer were obtained by using multilevel regression analyses adjusted for age, sex, ethnicity, clinic, smoking, and Townsend deprivation index. RESULTS: Venular tortuosity and diameter increased by approximately 2% (P < 10-300 ) and 0.6 μm (P < 10-6 ), respectively, per SD increase in BMI, waist circumference index, waist-hip ratio, total body fat mass index, and fat-free mass index (FFMI). Venular associations with adiposity persisted after adjustment for FFMI, whereas associations with FFMI were weakened by FMI adjustment. Arteriolar diameter (not tortuosity) narrowing with FFMI was independent of adiposity (-0.6 μm; -0.7 to -0.4 μm per SD increment of FFMI), while adiposity associations with arteriolar diameter were largely nonsignificant after adjustment for FFMI. CONCLUSIONS: This demonstrates, on an unprecedented scale, that venular tortuosity and diameter are more strongly associated with adiposity, whereas arteriolar diameter relates more strongly to fat-free mass. Different attributes of the retinal microvasculature may reflect distinct roles of body composition and fatness on the cardiometabolic system

    Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies.

    Get PDF
    Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost

    Cohort profile: rationale and methods of UK Biobank repeat imaging study eye measures to study dementia

    Get PDF
    PURPOSE: The retina provides biomarkers of neuronal and vascular health that offer promising insights into cognitive ageing, mild cognitive impairment and dementia. This article described the rationale and methodology of eye and vision assessments with the aim of supporting the study of dementia in the UK Biobank Repeat Imaging study. PARTICIPANTS: UK Biobank is a large-scale, multicentre, prospective cohort containing in-depth genetic, lifestyle, environmental and health information from half a million participants aged 40-69 enrolled in 2006-2010 across the UK. A subset (up to 60 000 participants) of the cohort will be invited to the UK Biobank Repeat Imaging Study to collect repeated brain, cardiac and abdominal MRI scans, whole-body dual-energy X-ray absorptiometry, carotid ultrasound, as well as retinal optical coherence tomography (OCT) and colour fundus photographs. FINDINGS TO DATE: UK Biobank has helped make significant advances in understanding risk factors for many common diseases, including for dementia and cognitive decline. Ophthalmic genetic and epidemiology studies have also benefited from the unparalleled combination of very large numbers of participants, deep phenotyping and longitudinal follow-up of the cohort, with comprehensive health data linkage to disease outcomes. In addition, we have used UK Biobank data to describe the relationship between retinal structures, cognitive function and brain MRI-derived phenotypes. FUTURE PLANS: The collection of eye-related data (eg, OCT), as part of the UK Biobank Repeat Imaging study, will take place in 2022-2028. The depth and breadth and longitudinal nature of this dataset, coupled with its open-access policy, will create a major new resource for dementia diagnostic discovery and to better understand its association with comorbid diseases. In addition, the broad and diverse data available in this study will support research into ophthalmic diseases and various other health outcomes beyond dementia

    Cohort profile:rationale and methods of UK Biobank repeat imaging study eye measures to study dementia

    Get PDF
    Purpose: the retina provides biomarkers of neuronal and vascular health that offer promising insights into cognitive ageing, mild cognitive impairment and dementia. This article described the rationale and methodology of eye and vision assessments with the aim of supporting the study of dementia in the UK Biobank Repeat Imaging study.Participants: UK Biobank is a large-scale, multicentre, prospective cohort containing in-depth genetic, lifestyle, environmental and health information from half a million participants aged 40-69 enrolled in 2006-2010 across the UK. A subset (up to 60 000 participants) of the cohort will be invited to the UK Biobank Repeat Imaging Study to collect repeated brain, cardiac and abdominal MRI scans, whole-body dual-energy X-ray absorptiometry, carotid ultrasound, as well as retinal optical coherence tomography (OCT) and colour fundus photographs.Findings to date: UK Biobank has helped make significant advances in understanding risk factors for many common diseases, including for dementia and cognitive decline. Ophthalmic genetic and epidemiology studies have also benefited from the unparalleled combination of very large numbers of participants, deep phenotyping and longitudinal follow-up of the cohort, with comprehensive health data linkage to disease outcomes. In addition, we have used UK Biobank data to describe the relationship between retinal structures, cognitive function and brain MRI-derived phenotypes.Future plans: the collection of eye-related data (eg, OCT), as part of the UK Biobank Repeat Imaging study, will take place in 2022-2028. The depth and breadth and longitudinal nature of this dataset, coupled with its open-access policy, will create a major new resource for dementia diagnostic discovery and to better understand its association with comorbid diseases. In addition, the broad and diverse data available in this study will support research into ophthalmic diseases and various other health outcomes beyond dementia

    Cohort profile: design and methods in the eye and vision consortium of UK Biobank

    Get PDF
    PURPOSE: To describe the rationale, methods and research potential of eye and vision measures available in UK Biobank. PARTICIPANTS: UK Biobank is a large, multisite, prospective cohort study. Extensive lifestyle and health questionnaires, a range of physical measures and collection of biological specimens are collected. The scope of UK Biobank was extended midway through data collection to include assessments of other measures of health, including eyes and vision. The eye assessment at baseline included questionnaires detailing past ophthalmic and family history, measurement of visual acuity, refractive error and keratometry, intraocular pressure (IOP), corneal biomechanics, spectral domain optical coherence tomography (OCT) of the macula and a disc-macula fundus photograph. Since recruitment, UK Biobank has collected accelerometer data and begun multimodal imaging data (including brain, heart and abdominal MRI) in 100 000 participants. Dense genotypic data and a panel of 20 biochemistry measures are available, and linkage to medical health records for the full cohort has begun. FINDINGS TO DATE: A total of 502 665 people aged between 40 and 69 were recruited to participate in UK Biobank. Of these, 117 175 took part in baseline assessment of vision, IOP, refraction and keratometry. A subgroup of 67 321 underwent OCT and retinal photography. The introduction of eye and vision measures in UK Biobank was accompanied by intensive training, support and a data monitoring quality control process. FUTURE PLANS: UK Biobank is one of the largest prospective cohorts worldwide with extensive data on ophthalmic diseases and conditions. Data collection is an ongoing process and a repeat of the baseline assessment including the questionnaires, measurements and sample collection will be performed in subsets of 25 000 participants every 2-3 years. The depth and breadth of this dataset, coupled with its open-access policy, will create a powerful resource for all researchers to investigate the eye diseases in later life
    • …
    corecore