453 research outputs found

    Automated optimal firewall orchestration and configuration in virtualized networks

    Get PDF
    Emerging technologies such as Software-Defined Networking and Network Functions Virtualization are making the definition and configuration of network services more dynamic, thus making automatic approaches that can replace manual and error-prone tasks more feasible. In view of these considerations, this paper proposes a novel methodology to automatically compute the optimal allocation scheme and configuration of virtual firewalls within a user-defined network service graph subject to a corresponding set of security requirements. The presented framework adopts a formal approach based on the solution of a weighted partial MaxSMT problem, which also provides good confidence about the solution correctness. A prototype implementation of the proposed approach based on the z3 solver has been used for validation, showing the feasibility of the approach for problem instances requiring tens of virtual firewalls and similar numbers of security requirements

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    APMEC: An Automated Provisioning Framework for Multi-access Edge Computing

    Full text link
    Novel use cases and verticals such as connected cars and human-robot cooperation in the areas of 5G and Tactile Internet can significantly benefit from the flexibility and reduced latency provided by Network Function Virtualization (NFV) and Multi-Access Edge Computing (MEC). Existing frameworks managing and orchestrating MEC and NFV are either tightly coupled or completely separated. The former design is inflexible and increases the complexity of one framework. Whereas, the latter leads to inefficient use of computation resources because information are not shared. We introduce APMEC, a dedicated framework for MEC while enabling the collaboration with the management and orchestration (MANO) frameworks for NFV. The new design allows to reuse allocated network services, thus maximizing resource utilization. Measurement results have shown that APMEC can allocate up to 60% more number of network services. Being developed on top of OpenStack, APMEC is an open source project, available for collaboration and facilitating further research activities

    Network Security Automation

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Profile-based Resource Allocation for Virtualized Network Functions

    Get PDF
    Accepted in IEEE TNSM Journalhttps://ieeexplore.ieee.org/document/8848599International audienceThe virtualization of compute and network resources enables an unseen flexibility for deploying network services. A wide spectrum of emerging technologies allows an ever-growing range of orchestration possibilities in cloud-based environments. But in this context it remains challenging to rhyme dynamic cloud configurations with deterministic performance. The service operator must somehow map the performance specification in the Service Level Agreement (SLA) to an adequate resource allocation in the virtualized infrastructure. We propose the use of a VNF profile to alleviate this process. This is illustrated by profiling the performance of four example network functions (a virtual router, switch, firewall and cache server) under varying workloads and resource configurations. We then compare several methods to derive a model from the profiled datasets. We select the most accurate method to further train a model which predicts the services' performance, in function of incoming workload and allocated resources. Our presented method can offer the service operator a recommended resource allocation for the targeted service, in function of the targeted performance and maximum workload specified in the SLA. This helps to deploy the softwarized service with an optimal amount of resources to meet the SLA requirements, thereby avoiding unnecessary scaling steps

    Formal assurance of security policies in automated network orchestration (SDN/NFV)

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInoopenYusupov, Jalolliddi

    Short Paper: Automatic Configuration for an Optimal Channel Protection in Virtualized Networks

    Get PDF
    Data confidentiality, integrity and authentication are security properties which are often enforced with the generation of secure channels, such as Virtual Private Networks, over unreliable network infrastructures. Traditionally, the configuration of the systems responsible of encryption operations is performed manually. However, the advent of software-based paradigms, such as Software-Defined Networking and Network Functions Virtualization, has introduced new arms races. In particular, even though network management has become more flexible, the increased complexity of virtual networks is making manual operations unfeasible and leading to errors which open the path to a large number of cyber attacks. A possible solution consists in reaching a trade-off between flexibility and complexity, by automatizing the configuration of the channel protection systems through policy refinement. In view of these considerations, this paper proposes a preliminary study for an innovative methodology to automatically allocate and configure channel protection systems in virtualized networks. The proposed approach would be based on the formulation of a MaxSMT problem and it would be the first to combine automation, formal verification and optimality in a single technique
    • …
    corecore