
21 December 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Network Security Automation / Bringhenti, Daniele. - (2022 Dec 07), pp. 1-222.
Original

Network Security Automation

Publisher:

Published
DOI:

Terms of use:
Altro tipo di accesso

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973798 since: 2022-12-19T15:01:07Z

Politecnico di Torino

Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (35thcycle)

Network Security Automation
Abstract

By

Daniele Bringhenti

Supervisor(s):
Prof. Riccardo Sisto, Supervisor

Dr. Fulvio Valenza, Co-Supervisor

Politecnico di Torino

2022

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Daniele Bringhenti
2022

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Acknowledgements

I would like to thank my supervisors, Prof. Riccardo Sisto and Dr. Fulvio Valenza,
for their constructive guidance, for their continuous support during my research
work, for their availability in assisting me, for the opportunities they gave me, and
their constant help to improve my research and successfully finalize this dissertation.
I would also like to thank Prof. Guido Marchetto, who contributed to supervise my
research work and provided me with useful suggestions to improve it. Finally, I
would like to thank my mother for her daily support.

Abstract

In the latest years, softwarization paradigms such as Network Functions Virtualiza-
tion and Software-Defined Networking shook the traditional vision of networking.
The recent evolution of computer networks reflects the main driving force of these
paradigms, based on high flexibility and dynamism. Network sizes and complexity
are constantly increasing, because enriching a networked service with a new function
only requires the deployment of a virtualized or containerized software function. To
this regard, the advent of the Internet of Things paradigm led to a pervasive presence
of computer and network communications in everyday activities, thus also increas-
ing heterogeneity of applications that are connected to the network. Specifically
considering cyber security, the characteristics of modern virtualized networks are
no longer compliant with the traditional ways to enforce security. Traditionally,
network security management was performed manually by human operators, with
trial-and-error approaches where the security status was updated whenever a cyber
attack was able to overcome the defenses provided by the previous status. However,
such an approach can work only with small-sized and almost static networks, where
everything is under the direct control of a human user. Continuing with a manual
approach in modern virtualized networks would likely lead human operators to
introduce vulnerabilities, which could be exploited to breach into the network, and
sub-optimizations, which would reduce network efficiency.

A possible solution to limit this issue is to leverage automation in the approaches
pursued for network security management. First of all, automation can contribute to
minimizing the number of human interventions, as automatic approaches commonly
require only input specifications and human assistance during their independent work.
Moreover, automation favors the introduction of two important features, i.e., formal
verification and optimization. On the one hand, formal verification can provide
correctness assurance of the automatically computed management decisions, thus
increasing human confidence in automatic approaches, where many tasks are not

vi

under human control. On the other hand, optimization can improve the quality of
management decisions. For example, for the task of configuring a network security
function such as a firewall, if the configuration rule set is minimized, usually the
function requires less time to process packets.

Unfortunately, despite all such benefits that automation could bring over to
network security management, currently in the literature it has been successfully
applied only to solve networking issues, and rarely to manage security ones.

Therefore, this dissertation aims to fill this literature gap by proposing novel
approaches to improve the state of the art about network security automation. The
main contributions of this dissertation are related to two main research areas: auto-
matic security configuration and automatic security orchestration. For what concerns
automatic security configuration, this dissertation proposes the VEREFOO approach,
which solves the configuration problem of network security functions (e.g., firewalls
and VPN gateways), by combining automation, formal verification, and optimiza-
tion. VEREFOO follows the policy-based management paradigm: starting from a
user-provided network topology with related security policies, VEREFOO computes
the allocation of security functions in the network topology and their configuration
rules. This result is computed in a fully automated way, it is formally guaranteed to
satisfy all security policies, and it is optimized, including the minimum numbers of
allocated functions and configuration rules. This result is achieved by formulating
the configuration problem as a Maximum Satisfiability Modulo Theories problem,
which enables pursuing correctness by construction and optimization. An extensive
experimental evaluation shows not only that the proposed approach is feasible, but
also that it scales to networks of significant size and that it provides better optimiza-
tion than traditional configuration strategies. For what concerns automatic security
orchestration, this dissertation addresses some of the open problems that should be
solved in order to make this kind of orchestration reliable and efficient. First, an
automatic methodology to optimize distributed firewall reconfiguration transients is
proposed, in order to limit, as much as possible, the traversal of insecure transient
states when new firewall allocation and configuration rules have to be deployed.
Second, a novel approach is proposed for network security function selection in the
orchestration workflow, based on a novel security function abstraction, which enables
more optimized choices. Finally, the integration of the VEREFOO approach within
state-of-the-art network orchestrators is discussed, also showing concrete integration
examples. Experimental evaluation shows that these proposals can cooperate in close

vii

synergy with orchestrators oriented to solve networking problems, thus representing
an important step ahead towards full autonomy in network security.

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Dissertation structure . 3

Motivation and State of the Art 8

2 Motivation and Problem Statement 10

2.1 Limitations of manual network security management 10

2.2 Advantages of automatic network security management 15

2.3 Common workflow of automated network security management . . 19

3 State of the Art 23

3.1 Literature review method . 23

3.2 Automatic network security configuration 25

3.2.1 Automatic security service composition 25

3.2.2 Automatic security function configuration 31

3.3 Automatic network security orchestration 41

3.3.1 Orchestration of network security reconfiguration transients 41

Contents ix

3.3.2 NSF Abstraction for Security Orchestration 45

3.3.3 Integration of Security and Network Orchestrators 46

Automatic Network Security Configuration 49

4 The VEREFOO Approach 51

4.1 Inputs and Outputs of the VEREFOO Approach 53

4.1.1 Input: Service Graph and Allocation Graph 53

4.1.2 Input: Network Security Policies 56

4.1.3 Expected outcome . 59

4.2 MaxSMT problem formulation . 61

4.2.1 The SMT problem . 61

4.2.2 The MaxSMT problem . 62

4.2.3 Advantages of the partial weighted MaxSMT formulation . 63

5 Automatic Firewall Configuration 65

5.1 Network and Policy Models . 65

5.1.1 Service and Allocation Graph models 65

5.1.2 Traffic and Network Functions models 68

5.1.3 Traffic flows model . 71

5.1.4 Network Security Policy model 72

5.2 Maximal Flows Computation . 74

5.3 Firewall Allocation and Configuration 76

5.3.1 Firewall configuration model 77

5.3.2 Firewall allocation and configuration constraints 79

5.3.3 Summary of MaxSMT problem formulation 81

5.4 Implementation and Validation . 83

x Contents

5.4.1 Scalability evaluation . 85

5.4.2 Correctness and optimization verification 90

5.4.3 Comparison with state-of-the-art approaches 91

5.4.4 Optimization evaluation 92

6 Automatic VPN Configuration 95

6.1 Network Model . 95

6.1.1 Service and Allocation Graph models 95

6.1.2 Traffic flows model . 97

6.1.3 Network functions model 98

6.2 Communication Protection Model 99

6.2.1 Communication Protection Policies model 99

6.2.2 Communication Protection Systems model 100

6.3 MaxSMT Problem Formulation 102

6.3.1 Constraints on CPPs enforcement 102

6.3.2 Constraints on network functions behavior 104

6.3.3 Constraints on CPSs allocation and configuration 104

6.3.4 Constraints on the optimization profiles 106

6.3.5 Solution computation . 106

6.4 Implementation and Validation . 107

6.4.1 Correctness and optimization verification 107

6.4.2 Scalability evaluation . 108

Automatic Network Security Orchestration 112

7 Orchestration of Firewall Reconfiguration Transients 114

7.1 Problem Statement . 114

Contents xi

7.1.1 Characterization of a firewall reconfiguration transient . . . 114

7.1.2 Issues of a firewall reconfiguration transient 115

7.1.3 Motivating example . 117

7.1.4 Solutions to improve transient management 118

7.2 The Proposed Approach . 119

7.2.1 Inputs for FATO . 120

7.2.2 FATO Methodology . 121

7.3 Formal Models . 122

7.3.1 Security Service Graphs model 124

7.3.2 State Sequence model . 125

7.3.3 Traffic and Network Functions model 127

7.3.4 Network Security Policies model 128

7.4 Ranking Generation . 129

7.4.1 Dominance Matrix Computation 130

7.4.2 Ranking Generation Algorithm 132

7.5 MaxSMT Problem Formulation 134

7.5.1 Hard constraints on boundary states 134

7.5.2 Hard constraints on intermediate states 135

7.5.3 Hard constraints on the forwarding behavior 136

7.5.4 Hard constraints on the security policies 136

7.5.5 Soft constraints . 137

7.5.6 Solution Computation . 139

7.6 Implementation and validation . 139

7.6.1 Correctness and optimization verification 140

7.6.2 Scalability evaluation . 143

8 A Functionality Model for Security Orchestration 148

xii Contents

8.1 Problem Statement . 148

8.2 The Projection Abstraction . 150

8.2.1 VNF Model . 150

8.2.2 NSP Model . 153

8.2.3 Projection Model . 155

8.3 Projection IDentification (PID) . 156

8.3.1 Projection EXtraction (PEX) 158

8.3.2 Projection Chaining (PCH) 161

8.4 Implementation and validation . 164

8.4.1 Model generality validation 165

8.4.2 Correctness verification 166

8.4.3 Scalability evaluation . 167

9 VEREFOO Integration with Orchestrators and Applications 170

9.1 Integration with Docker Compose 170

9.2 Integration with Kubernetes . 172

9.2.1 Kubernetes . 172

9.2.2 ASTRID Security Orchestrator 173

9.2.3 Security Controller . 176

9.2.4 Use case scenario . 177

9.3 VEREFOO applications in IoT networks 180

9.4 Final considerations . 183

Final Discussion on Network Security Automation 186

10 Conclusions and Future Work 188

References 191

List of Figures

2.1 Percentage of misconfiguration errors in the miscellaneous error
category . 12

2.2 The impact of the human element in breaches (figure derived from
the 2022 Verizon Data Breach Investigations Report) 13

2.3 A workflow for automated network security management 20

4.1 The VEREFOO approach . 52

4.2 Input Service Graph example . 54

4.3 Allocation Graph with Allocation Places 55

4.4 Final Service Graph with allocated firewalls 60

5.1 Scalability for increasing number of Allocation Places 84

5.2 Scalability for increasing number of Network Security Policies . . . 84

5.3 Other tests related to the scalability validation 88

5.4 Optimization tests, in comparison with configuration strategies . . . 93

6.1 Allocation Graph of the use case 108

6.2 CPSs allocation scheme of the use case 108

6.3 Scalability for increasing number of Allocation Places 109

6.4 Scalability for increasing number of Communication Protection
Policies . 109

xiv List of Figures

7.1 Network topology example . 117

7.2 Workflow of the approach . 119

7.3 Security Service Graph with firewall allocation scheme 124

7.4 Generation of the union Security Service Graph 125

7.5 Matrix examples . 132

7.6 Topology of the three-layer data center network 141

7.7 Time scalability . 143

7.8 Time scalability versus number of rules in each firewall instance . . 144

7.9 Memory scalability . 146

8.1 Projection IDentification: the two stages 157

8.2 Projection EXtraction: a visual example 160

8.3 Projection CHaining: a visual example 163

8.4 Scalability versus number of Network Security Policies 167

8.5 Scalability versus number of Virtual Network Functions 168

8.6 Validation under two peculiar scenarios 169

9.1 Kubernetes architecture . 172

9.2 Overall workflow of the ASTRID framework 173

9.3 a) a logical service graph b) enriched service graph after the deploy-
ment . 178

9.4 The smart city use case. 181

9.5 The VEREFOO output for the smart city use case. 183

List of Tables

3.1 Features analyzed for state-of-the-art papers 26

3.2 Comparison among solutions for automatic network security service
composition . 26

3.3 Comparison among solutions for automatic network security func-
tion configuration . 32

4.1 IP addresses and function types . 54

4.2 Example set of connectivity policies 57

4.3 Examples of Communication Protection Policies 59

4.4 Filtering Policy rules for allocated firewalls 61

5.1 Notation . 66

5.2 Number of hard and soft constraints 87

5.6 Test results for GÉANT and Internet2 AGs 90

5.7 Comparison with most related approaches (features versus scalability) 91

6.1 Notation . 96

7.1 Notation . 123

7.2 Target Network Security Policies 129

7.3 Network Security Policies . 141

7.4 Computation times for the four network topologies 142

xvi List of Tables

8.1 Notation . 150

8.2 Symbol table . 161

9.1 Filtering Policy rules for allocated firewalls 184

Chapter 1

Introduction

Computer networks have been undergoing an incessant evolution since the beginning
of the last decade. Network softwarization, declined in technologies such as Software-
Defined Networking (SDN) [1] and Network Functions Virtualization (NFV) [2],
simplified the network management operations, by decoupling control and data
planes of the networked architecture, and by instantiating virtual functions instead
of the manual installation of physical middleboxes. Agility and dynamism soon
became the key terms of these revolutionary network management paradigms. As
a consequence, the size of modern computer networks is constantly increasing,
because of the tendency to virtualize every activity and give it access to a network.
Besides, the employed functions are becoming more heterogenous among them, and
they are usually more complex than the old corresponding physical middleboxes,
as the software that embeds their operations is often parallelized. All these trends
are confirmed by the characteristics of modern industrial networks, and also by the
success of the emerging Internet of Things (IoT) paradigm [3], based on the idea that
all the devices, despite their differences in terms of functionalities and objectives, can
and should be connected to the network. Another environment where these trends
are evident is the Time Sensitive SDN, where strict requirements in terms of latency
and bandwidth must be respected for the scheduling of end-to-end communications
[4].

Nevertheless, the introduction of new advantages is typically accompanied by the
presence of inevitable drawbacks. As computer networks are becoming bigger and
more complex, new opportunities have arisen for cyber attackers to intrude on them,

2 Introduction

and the number of breaches dramatically increased. Unfortunately, the aforemen-
tioned agility and dynamism could not directly benefit network security management.
The main reason is that security management is an activity that traditionally used
to be performed manually with a trial-and-error approach. Administrators used to
configure Network Security Functions (NSFs) such as firewalls or intrusion detection
systems according to their initial expectation of possible attacks. If later a cyber at-
tack had occurred, they would have simply modified the behavior of the function that
could not block it, so as to avoid a possible repetition. However, such an approach
could work only with small-sized networks, where everything was almost static and
under the direct control of a human user, and where all the network accesses could
be easily known. Instead, softwarized networks have opposite characteristics, i.e.,
big size, heterogeneity, dynamicity, and complexity [5].

For these reasons, automation has been proposed as a possible solution to this
urgent pending problem. The idea is that, if human users cannot cope with the
security management of the whole network by themselves, they can be assisted by
automated tools or frameworks, in charge of replacing the traditional manual security
operations. The methodologies that were proposed for the development of these
automated tools were often based on the Policy-Based Management (PBM) paradigm
[6]. According to the original definition proposed by D. Clark and D. Wilson, “a
security policy specifies the security goals that the system must meet and the threats
it must resist. For example, the high-level security goals most often specify that
the system should prevent unauthorized disclosure or theft of information, should
prevent unauthorized modification of information, and should prevent denial of
service” [7]. In a PBM-based approach, administrators should simply define the
security requirements by means of a set of business-level statements, the security
policies, which are commonly expressed in natural languages, so as to guarantee high
usability and user-friendliness. Then, the policies could be automatically transformed
into low-level security management operations (e.g., the decision of which NSFs
should be allocated in the network, and where, and the generation o their low-level
configuration) through an operation named policy refinement [8].

Even if automation brings over great opportunities for network security, the
state-of-the-art approaches that have been proposed in literature still have several
shortcomings. In particular, two features that could enhance security automation but
that are rarely included are formal verification and optimization. On the one hand,
providing formal assurance that the results computed by an automated tool are really

1.1 Dissertation structure 3

correct may be essential for the security of safety-critical systems. On the other hand,
optimizing those same results may improve network security efficiency (e.g., if a
firewall has only the minimum number of rules that are really required to enforce all
the security policies specified by the security manager, then its filtering operations
take less time because fewer comparisons between rule conditions and packet fields
need to be performed). Despite the relevance of these two features, several state-
of-the-art approaches do not exploit them, because their introduction is considered
too challenging. Most notably, the performance and scalability of automated tools
is severely reduced by a naive introduction of formal verification and optimization
mechanisms, making them impractical unless smart ways of introducing them are
found.

In light of these motivations, this dissertation faces the challenge of investigating
and formulating automated, fast, and provably correct techniques for the security
configuration and orchestration of NSFs, with the final aim of improving the de-
pendability and resilience of next-generation computer networks to cyber attacks.
In fact, a central objective of this dissertation is to propose the first security man-
agement approach in literature to combine full automation, formal verification and
optimization. In the definition of such an approach, a first challenge has been to
define formal models of modern virtualized networks, such that they capture all the
required information for automated security orchestration, without impacting on
performance excessively. Another challenge has been pursuing “security by con-
struction” by means of lightweight correctness-by-construction approaches, where
automated solvers can find a solution to the security orchestration problem that does
not require a traditional a-posteriori formal verification step, and, at the same time,
fulfilling optimality criteria (e.g., to improve the efficiency of the security operations
and to minimize resource consumption).

1.1 Dissertation structure

The reminder of this doctoral dissertation is divided into three main parts:

1. Motivation and State of the Art

The first part of this dissertation describes the motivation of this study and the
related state of the art, whose knowledge is required to understand how the

4 Introduction

proposed automation methodologies can solve existing problems for network
security management, and how they fill gaps that are still present in the network
security automation literature. This first part is divided into two chapters.

Chapter 2 describes the limitations of the traditional manual network security
management operations, explaining why they cannot be applied anymore to
modern virtualized computer networks. It also discusses the introduction of
automation for network security, and its consequent benefits.

Chapter 3 describes the state-of-the-art approaches for network security au-
tomation, with an emphasis on those that are applied to solve two common
security management tasks, i.e., security service composition and NSF config-
uration. In this discussion, the limitations of these approaches are underlined,
so as to motivate why further research work is required in the automation of
these security management tasks.

2. Automatic Network Security Configuration

The second part of this dissertation proposes an automated approach for the
allocation and configuration of NSFs. It shows that the proposed approach
is flexible enough to be applied to different types of NSFs. Moreover, the
proposed approach is compared to the state of the art approaches to show
it is the first approach in literature that combines the three features of full
automation, formal verification, and optimization. This second part is divided
into three chapters.

Chapter 4 describes the approach that has been followed for the definition of
the proposed methodology for NSF configuration automation, named VErified
REFinement and Optimized Orchestration (VEREFOO). This approach for-
mulates the auto-configuration problem as a Maximum Satisfiability Modulo
Theories (MaxSMT) problem through constraint programming, with the aim
to provide simultaneously formal correctness by construction and optimization.
This chapter also defines the inputs to be specified by human users, and the
expected outputs.

Chapter 5 discusses the application of the VEREFOO approach to the most
commonly used NSF for the enforcement of connectivity security policies, i.e.,
the packet filtering firewall. It also provides the complete formalization of the
network components (e.g., topology, network functions, and traffic flows) and

1.1 Dissertation structure 5

of the security policies, as they represent the basis for the formulation of the
constraints composing the MaxSMT problem.

Chapter 6 discusses the application of the VEREFOO approach to VPN
gateways, i.e., NSFs that are commonly used for enforcing security properties
such as authentication, integrity and confidentiality in some portions of the
network. It illustrates the main differences, in terms of formal models and
MaxSMT problem constraints, with respect to the problem formulation for
firewall configuration.

This second part of the dissertation is partly based on the content of the
following papers:

• Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Serena Spinoso,
Fulvio Valenza, and Jalolliddin Yusupov. Improving the formal verifica-
tion of reachability policies in virtualized networks. In: IEEE Transac-
tions on Network and Service Management, March 2021, vol. 213, issue
1, pp. 713-728. doi: 10.1109/ TNSM.2020.3045781 [9].

• Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza,
and Jalolliddin Yusupov. Automated optimal firewall orchestration and
configuration in virtualized networks. In: IEEE/IFIP Network Operations
and Management Symposium (NOMS) 2020, Budapest, Hungary, April
20-24, 2020, pp. 1-7. doi: 10.1109/NOMS47738.2020.9110402 [10].

• Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza,
and Jalolliddin Yusupov. Automated firewall configuration in virtual
networks. In: IEEE Transactions on Dependable and Secure Computing,
in press. doi: 10.1109/ TDSC.2022.3160293 [11].

• Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, and Fulvio Valenza.
Short Paper: Automatic Configuration for an Optimal Channel Protec-
tion in Virtualized Networks. In: Proc. of the 2nd Workshop on Cyber-
Security Arms Race, co-located with ACM CCS 2020, November 9,
2020, pp. 25-30. doi: https://doi.org/10.1145/3411505.3418439 [12].

3. Automatic Network Security Orchestration

The third part of this dissertation discusses automatic approaches for solving
problems related to network security orchestration. Differently from the
allocation and configuration problem, security orchestration is a more general

6 Introduction

problem that also encompasses tasks such as the selection of the NSFs that
must be used to enforce the required security policies, the interaction with a
network orchestrator to instantiate the virtual functions, or the management of
transients that occur when the security status of the network is updated after
the detection of an attack. This third part is divided into three chapters.

• Chapter 7 presents an automated methodology named FirewAll Tran-
sients Optimizer (FATO), which is in charge of establishing the optimal
scheduling of the reconfiguration changes for a distributed packet filter-
ing firewall that needs to be updated. This methodology applies formal
methods to solve this orchestration problem, so as to ensure that the
identified scheduling really minimizes the number of transient states
where the system is still vulnerable.

• Chapter 8 presents a novel NSF abstraction, named projection abstrac-
tion, which aims to represent the NSFs in a way that is independent from
the differences that are only related to the vendor-dependent implemen-
tation choices. Such abstraction can improve security orchestration, by
allowing NSF selection to be postponed and done jointly with the deploy-
ment operation, after the configuration of the virtual security service.

• Chapter 9 describes the integration of the VEREFOO approach with
state-of-the-art orchestrators for network virtualization, such as Docker
Compose and Kubernetes, and a demonstrator related to an IoT-aware
smart city network. This integration enables a full orchestration of a secu-
rity service, and it has been carried out in the context of projects funded
by the European Union, such as ASTRID1 and CyberSec4Europe2.

This third part of the dissertation is partly based on the content of the following
papers:

• Daniele Bringhenti and Fulvio Valenza. Optimizing distributed fire-
wall reconfiguration transients. In: Computer Networks, October 2022,
109183. doi: 10.1016/ j.comnet.2022.109183 [13].

• Daniele Bringhenti, Jalolliddin Yusupov, Alejandro Molina Zarca, Fulvio
Valenza, Riccardo Sisto, Jorge Bernal Bernabé, and Antonio F. Skarmeta.

1Link: https://www.astrid-project.eu/. Last accessed: October 18th, 2022.
2Link: https://cybersec4europe.eu/. Last accessed: October 18th, 2022.

1.1 Dissertation structure 7

Automatic, verifiable and optimized policy-based security enforcement
for SDN-aware IoT networks. In: Computer Networks, August 2022, vol.
213, pp. 109-123. doi: 10.1016/j.comnet.2022.109123 [14].

• Daniele Bringhenti, Fulvio Valenza, and Cataldo Basile. Toward Cy-
bersecurity Personalization in Smart Homes. In: IEEE Security & Pri-
vacy, January-February 2022, vol. 20, pp. 45-53. doi: 10.1109/M-
SEC.2021.3117471 [15].

• Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, and Fulvio Valenza.
A novel approach for security function graph configuration and deploy-
ment. In: IEEE 7th International Conference on Network Softwarization
(NetSoft) 2021, June 28 - July 2, 2021, pp. 457-463. doi: 10.1109/Net-
Soft51509.2021.9492654 [16].

• Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza,
and Jalolliddin Yusupov. Introducing programmability and automation
in the synthesis of virtual firewall ruleset. In: IEEE 6th International
Conference on Network Softwarization (NetSoft) 2020, June 29 - July 3,
2020, pp. 473-478. doi: 10.1109/NetSoft48620.2020.9165434 [17].

• Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza,
and Jalolliddin Yusupov. Towards a fully automated and optimized net-
work security functions orchestration. In: IEEE International Conference
on Computing Communication and Security (ICCCS 2019), October
10-12, 2020, doi: 10.1109/CCCS.2019.8888130 [18].

Finally, Chapter 10 concludes the dissertation, and it illustrates possible future
work for each research line that has been presented in this document.

Motivation and State of the Art

Chapter 2

Motivation and Problem Statement

Managing the security of a virtual computer network encompasses multiple opera-
tions. The two most common and well-known ones are security configuration and
orchestration. On the one hand, configuring the security involves synthesizing the
structure of the security service at the logical level, so as to be compliant with the
topology of the computer network, and establishing their behavior (e.g., determining
the filtering rules to be installed on a firewall, or the Security Associations of a VPN).
On the other hand, orchestrating the security involves operations such as the selection
of the NSFs that must be later configured, the interaction with a network orchestrator
(e.g., Open Source MANO) for their deployment, and the application of changes to
an already defined security service (e.g., during a reconfiguration transient). Section
2.1 describes the limitations of these operations, if they are performed manually by
a human user. Section 2.2 discusses the advantages that, instead, would be bought
over by introducing automation. Then, Section 2.3 presents the common workflow
that is followed to automate the security management of a computer network.

2.1 Limitations of manual network security manage-
ment

For most computer networks, the security manager is commonly the person in charge
of collecting the security requirements formulated by network users, and using them
to manually allocate and configure all the NSFs that are necessary to enforce them.

2.1 Limitations of manual network security management 11

For example, if there is the requirement to block all the traffic directed to a specific
website, the security manager must include the corresponding filtering rule in a
firewall. Nevertheless, such a manual operation has always been more complex than
the configuration of non-security-related network functions, also because any issue
occurring in this task may have serious consequences for the users of the networks,
who may be put under attack.

The consequence of a manual configuration that is not performed es expected is
the accidental generation of anomalies. In the literature, an anomaly is defined as an
incorrect specification that the security manager might introduce in the configuration
of an NSF. Anomalies can be classified into three different categories [19]: conflicts
(e.g., two filtering rules of a firewall have the same condition set, but they enforce
contradictory actions), errors (e.g., the Security Association of a VPN gateway is
configured so as to enforce a specific cryptographic algorithm for the encryption of
the packet payload, but the VPN gateway on which it is installed does not support
that algorithm among its cipher suites), or sub-optimizations (e.g., some rules of a
firewall are never triggered, if other rules with higher priority have a condition set
that includes theirs). The analysis of anomalies that can afflict security configuration
has been extensively discussed in the literature. For instances, the classification
proposed in [20, 21] for the anomalies related to filtering NSFs such as firewalls
envisions five intra-firewall anomaly types (shadowing, correlation, generalization,
redundancy, irrelevance) and four inter-firewall anomaly types (shadowing, spurious-
ness, redundancy, correlation). Similarly, for NSFs that are employed for enforcing
security properties as confidentiality and integrity, such as VPN gateways, a complex
taxonomy composed of five macro-categories (insecure communications, unfeasible
communications, potential errors, suboptimal implementations, suboptimal walks)
has been detailed in [22].

The exacerbation of the problem of anomalies in the configuration of NSFs has
been also highlighted by the Verizon company in its annual Data Breach Investiga-
tions Report. In particular, misconfiguration is included inside the miscellaneous
error macro-category for security breaches. Analyzing the Verizon reports from
2013 to 20221, inside that category, the percentage covered by misconfiguration
has constantly increased, till reaching 46%, as depicted in Fig. 2.1. This pattern
is particularly marked between the years 2016 and 2017 and the years 2018 and

1The reports are available at the following link: https://enterprise.verizon.com/resources/reports/dbir/.
In the chart, the data related to a specific year are extracted from the report dated the following year.

12 Motivation and Problem Statement

2013 2014 2015 2016 2017 2018 2019 2020 2021
0

20

40

Year

Pe
rc

en
ta

ge
(%

)

Misconfiguration

Fig. 2.1 Percentage of misconfiguration errors in the miscellaneous error category

2019, where the relative increments of breaches related to misconfiguration are
larger than 50%. In 2021, Verizon noted a decrease in the percentage covered by
misconfiguration, but it is not yet possible to make any assumption about a potential
decreasing trend, as at the moment the 2023 Data Breach Investigations Report is
not yet available. Anyhow, it is also possible to infer how heavy the misconfigura-
tion problem is from other two observations by Verizon. In the 2020 Report, they
state that misconfiguration has become the most critical cause of breaches for cyber
security attacks, overtaking two other widespread causes that had always been ahead
of it, i.e., misdelivery and publishing errors. Then, in the 2022 Report, they also
claim that the human element represents a central factor driving breaches, as 82%
of breaches involved the human element in 2021. Fig. 2.2 shows the impact of this
statement with a graphic representation, where each glyph represents 25 breaches.

Not only configuration, but also security orchestration is afflicted by problems
related to manual operations. For example, when a transient unfolds from a security
status of the network to another one, the changes should be applied to the network as
fast as possible, and they should be orchestrated in a way that minimizes the number
of intermediate states where security may be undermined. However, human users
cannot be as fast as necessary to manage a security transient, and they are likely to
make some mistakes, including oversights due to the time constraints under which
they must work. Similarly, if a user has to manually introduce the established security
configuration into a network orchestrator, some wrong settings may be inadvertently
introduced even if the configuration is theoretically correct.

Here is a detailed list of all the main reasons why manual security configuration
and orchestration has become unbearable in modern computer networks:

2.1 Limitations of manual network security management 13

Fig. 2.2 The impact of the human element in breaches (figure derived from the 2022 Verizon
Data Breach Investigations Report)

• Role separation and lack of communication. In most companies, network
administrator and security manager are separate roles, even if both of them
pertain to the same working area (i.e., the computer network where the former
must ensure the correct behavior of the communications, whereas the latter
must ensure the security of them). Consequently, it is not uncommon that
the two people who fulfill those roles do not often communicate with each
other. At that point, as each one of them does not have full knowledge about
the expertise area of the other one, some trivial mistakes, but with potentially
serious consequences for network security, may be made [23]. For instance, if
the security manager is not properly informed by the network administrator
about the current structure and setting of the network, the former may make
incorrect assumptions when starting to design the security architecture.

• Low frequency of updates for security managers. Security managers are
often not updated about new cyber security attacks or protection solutions.
This trend has started to change only in the last years: the percentage of
business companies that never update their managers has fallen from 26% to
17%, according to a study of the Ipsos MORI institute, in collaboration with
the University of Portsmouth [24]. However, this percentage value is not low
enough to state that the presence of non updated managers has no impact on
the happened breaches.

14 Motivation and Problem Statement

• Increasing network size. Following the IoT trend, the number of devices
and services that are interconnected to each other is constantly increasing.
Besides, also more traditional services such as e-mails, in-app communications,
video streaming or phone calls are nowadays more frequent than ever, as
more and more people are using the Internet. The size of modern computer
networks had to adapt to these numbers, and it is accordingly becoming bigger.
According to a study performed by Oracle Communications [25], 76% of the
interviewed companies state that the breadth of their network is expanding,
with the prevision that in the future this trend will not be reversed. However,
the presence of more communication channels brings a higher possibility of
vulnerabilities that an attacker can exploit.

• Increasing network complexity. According to the KISS2 rule, originally
introduced by the U.S. Navy in 1960, complexity is the worst enemy of
security. The application of this design principle in the context of network
security would be in fact fundamental, since it would ease network security
management by making it more intuitive. Currently, however, new kinds of
attacks are emerging, and the consequence is that the complexity of the security
functions is growing as a reaction. For example, firewalls are now often able
to filter packets at different levels of the ISO/OSI stack, while in the past they
mostly worked at levels 3 and 4. Moreover, elaborated artificial intelligence
algorithms are being introduced in several devices, as the original detection
algorithms are deemed not enough to face the current attacks. Guaranteeing
that the result of manual security management operations is correct is quite a
difficult objective to achieve under these circumstances. In fact, even if these
complex functions and algorithms solve some problems, their complexity
hides some new inevitable vulnerabilities that other attackers may exploit.

• Increasing network heterogeneity. In modern computer networks, functions
of the same type may be present with implementations made by different
vendors, by following the multi-vendor design principle. This heterogeneity
has been even more common after the advent of network softwarization, as
creating a new function implementation means writing the corresponding code
and instantiating it as a Virtual Machine or Docker, instead of designing and
producing the corresponding hardware middlebox. However, heterogeneous

2The acronym KISS stands for "Keep it simple, stupid".

2.2 Advantages of automatic network security management 15

networks are more prone to attacks, because each implementation may have
different vulnerabilities [26]. Besides, configuration errors are more common.
For example, if firewalls produced by different companies are installed in
a network, their configuration would require the human user to specify the
filtering rules with different languages according to their vendor-dependent
implementation.

• Trial-and-error configuration approaches. Manual security management is
typically based on a trial-and-error approach. Every time an attack is detected,
the configuration of some network security function is altered in order to block
it. If this approach lets security managers save time in the short term, in the
long term it leads to longer and longer (and more complex) configuration files,
also increasing the possibility of introducing errors.

• Economic impact of breaches. In addition to the technical problems that
have been presented, economic concerns must be taken into account when
evaluating the impact of a manual configuration of any network security service.
This aspect can be quantified by esteeming the cost of each single breach. In
this regard, the Ponemon Institute conducted a study [27], sponsored by IBM
Security, according to which the average total cost of a data breach is equal to
$3.92M, with a cost per lost record of $150 and the average time span needed
to identify and contain a breach equal to 279 days (more than half a year).
These numbers are clearly impressive and cannot be accepted by a company,
notwithstanding the consequent reputation damage, which could be even more
problematic in some sectors.

2.2 Advantages of automatic network security man-
agement

According to the definition proposed in [28], automation is a technique that “em-
phasizes efficiency, productivity, quality, and reliability, focusing on systems that
operate autonomously, often in structured environments over extended periods, and
on the explicit structuring of such environments”. A central objective of introducing
automation for the management of a system is to minimize the number of operations
manually performed by human users. A system whose behavior is automated would

16 Motivation and Problem Statement

just require the specifications of some external inputs from humans or from other
systems, and then it would be able to continue to work without other external assis-
tance. Automating systems requires careful planning during their design. However,
if this phase is carefully managed, then both the productivity and quality of the work
produced by the system can be drastically improved. On the one hand, human users
are not required anymore to spend most of their time to manually perform all the
operations, but they can delegate them to an automated system and just provide it
with assistance or maintenance. In this way, they can also manage multiple systems
at the same time. On the other hand, automated systems commonly complete their
work faster, ensuring better accuracy, as they are not affected by the common human
oversights.

Nowadays, automation has been successfully enforced in several engineering
fields. For example, robotic process automation is a central aspect of business
process automation and it is enriched by machine learning algorithms which allow
the machines to adapt to new emerging problems without requiring human help.

In the wake of this trend, automation has been starting to be introduced in
network security as well, so as to reduce the number of human operations related to
network security management, and consequently to reduce the vulnerabilities that
are exposed to attackers. The fact that automation has already been introduced or
planned in security management and that it helped in facing cyber attacks can be
derived from the analysis of some studies, based on interviews conducted among
security technicians.

• In the survey carried out by the Deloitte company [29], security orchestration
and automation is classified as the top-ranked cyber defense priority and
investment area, being chosen by 20% among total participants.

• Among the organizations interviewed by Marsh for a study sponsored by
Microsoft [30], 59% believe that automation is already used or it is planned in
the range of novel technologies which will be soon introduced. Additionally,
only 8% feel that the degree of risks that could be posed by the introduction of
automation is very high.

• According to the research insights report by Enterprise Strategy Group [31],
84% of the interviewed people agree that automation will help to minimize
security misconfigurations caused by manual inputs, such as security rule

2.2 Advantages of automatic network security management 17

contention. Moreover, 86% think that automation will enable the operations
team to do more with existing resources, a critical need since 51% of the
organizations report a problematic shortage of cyber security skills [32].

• Another Ponemon Institute’s research [33] shows that 72% of the respondents
state that automation, after being introduced in their organizations, improved
cyber resilience and the ability to prevent, detect, contain or respond to a cyber
attack. Moreover, their companies were less prone to cybersecurity incidents:
only 49% among the organizations that invested in automation had more than
one data breach.

From the analyses that have been reported beforehand, a clear indication is
that the network security field is shifting towards automation, after that it has been
successfully enforced in other areas. Even though automation is currently still
not exploited by all the companies (according to [27], only 52% of the analyzed
companies already have security automation partially or fully deployed), nevertheless
a consistent percentage is evaluating this feature for the immediate future.

In fact, automation can overcome most of the limitations which have been
dissected in Section 2.1.

First of all, a high level of expertise or experience in network security is not
required, if human users are assisted by automated tool for security configuration
and orchestration. Traditionally, many companies have a limited number of em-
ployees that have a deep security background, because of the high salaries that their
experience is worth of. As a consequence, they use these experts to supervise other
ones, who mostly have a networking background and who are delegated to manually
perform all operations, also the ones that are related to security management. In
such a context, miscommunication between these two groups or the lack of security
expertise of the networking experts commonly lead to errors. Instead, if security
management operations are automated, human users should just monitor the tools
that perform the automatic operations, and this task is evidently much less complex
than manually performing the operations themselves. Moreover, the monitoring
activity would be less error-prone and time expensive than the manual management
of all the security functions that are present in a computer network, so that work time
can be exploited more efficaciously.

18 Motivation and Problem Statement

Then, automation allows managing the big size and heterogeneity of modern
computer networks (e.g., virtual or IoT-based network) in a more efficient way
than what a human user may do manually. On the one hand, an automated tool for
security management can take decisions that are coherent for all the components of
a network, because it has a complete overview of the whole network architecture.
A potential problem may be the time which could be required in this case, but it
is always inferior to the time needed in a manual security management operation.
On the other hand, the heterogeneity of the different implementations of the same
security function can be abstracted, so that the automated tool initially considers
all of them as the same functionality, and only later it adapts the produced result
(e.g., their configuration) to the correct vendor-dependent commands to set up the
specific device. This final translation would hardly be performed manually because
the human user in charge of it should have a deep knowledge of the language of each
different function implementation. Instead, an automated process could be built with
all the required information, so as to perform this operation faster and with a higher
assurance of its correctness.

Furthermore, optimization can be more easily applied to security management, if
it is paired with automation. In the networking field, an optimization problem that
has been extensively investigated in literature is the minimization of the resource
consumption related to the deployment of virtual functions on the general-purpose
servers composing the physical network in an NFV architecture. However, opti-
mizing security could be essential as well. Maximizing the defense effect of the
protections which are set up against the potential cyber attacks would heavily de-
crease the number of breaches. Achieving this result manually would be extremely
difficult, since correctness itself is already a hard achievement in manual operations.

One may argue that, even if automation carries over several advantages to net-
work security management, it also brings some possible drawbacks. However, it
is reasonably possible to claim that most of these disadvantages are only apparent
and mostly depend on human prejudices. According to the information provided
in the survey carried out by EGS [31], 31% of the interviewed security managers
strongly think that automation will increase their organizational risk. Furthermore,
26% also think that automation will reduce the level of control over network security.
However, the main problem is not technical, but related to the psychological field.
When humans do not have full control over or knowledge of what they are using, they
start to fear it, as they think it may lead to even bigger problems. As a consequence,

2.3 Common workflow of automated network security management 19

automation has often been deemed as potentially dangerous in history. However,
this prejudice can be easily demystified. On the one hand, as beforehand stated,
automation can be paired with formal verification techniques, so as to provide cor-
rectness guarantee for the produced results. On the other hand, each automated tool
should have a complete documentation explaining how it should be used. Finally, if
there is a problem with automation, it is not the “over-automation”, but oversights or
mistakes made by humans in the design of the automated tools, or in the supervisor
of their work [34]. Also in this case, the problems that are introduced are indirectly
related to an activity carried out by people.

Summing up, all the motivations that have been discussed underline the impor-
tance of automating network security, and the reported studies also highlight how
this process has already started.

2.3 Common workflow of automated network security
management

Multiple alternatives exist to automate the security management of a virtual computer
network. However, a common solution is to follow the Policy-Based Management
(PBM) approach. In such approach, security managers are not required to manually
manage each function in the network service, but they can specify their requested be-
havior with policies, which are later automatically refined into the function concrete
configuration [8].

The process to cast this approach into the context of virtual network security
management can be organized in different ways. However, from an investigation of
the literature, which will be further discussed in Chapter 3, it is possible to identify
some common phases. A possible workflow that can be defined to include all these
phases is the one represented in Fig. 2.3. It is composed of multiple tasks, most of
which can be grouped into the two main security operations (i.e., network security
configuration and orchestration) and which will be described in the remainder of this
chapter.

Policy specification. A human user specifies the security requirements that must
be enforced in the computer network by means of policies, i..e, sentences expressed
with a user-friendly high-level language, that does not require high expertise to

20 Motivation and Problem Statement

Fig. 2.3 A workflow for automated network security management

be learned. These policies must convey all the information that is required by the
automated tool to establish the security of the network, such as the description of the
topology, the current configuration of the network functions, and the characteristics
of the traffic flows or communications that must be allowed, blocked or protected. In
the ideal case, this phase is the only one that requires a direct human intervention,
whereas simple assistance is enough for the other ones. During policy specification,
human users may employ tools that are specifically designed for policy analysis, i.e.,
to identify anomalies introduced in the policy set. Examples are [20] for firewalls,
and [22] for VPN gateways. Policy analysis may thus help to identify possible errors
or sub-optimizations in the definition of policies.

Automatic service composition and function configuration. The user-specified
policies are refined into the security configuration of the network. This process is
composed of two operations: automatic service composition and automatic function
configuration.

• Automatic service composition consists in designing the virtual service, which
must operate on the logical topology representing the interconnection of the
network functions (e.g., NATs, load balancers, switches) , commonly called
Service Function Graph (SFG), or more simply Service Graph (SG). This
operation is prone to manual errors or sub-optimizations, because a SG is
characterized by a high number of access points from which communications
can start, and these access points themselves can change over time. Besides,
each traffic flow can potentially follow multiple paths. By leveraging automa-
tion, these issues need not to be directly addressed by human users, and all
decisions can be taken automatically, so as to optimize security parameters.

2.3 Common workflow of automated network security management 21

• Automatic function configuration consists in generating the concrete config-
uration of each security function composing the security service built on the
top of the SG. Each rule composing their configuration must be established
by taking into account the policies specified by the human user, and also the
positioning of the other network functions in the SG (e.g., if it has been de-
cided that the firewall that blocks a certain traffic is located after a NAT which
modified that traffic, then this transformation must be considered). This policy
refinement task can be organized in multiple stages, e.g., initially the policies
are refined into configuration rules expressed with a medium-level language,
without any reference to a concrete function implementation, and then a final
translation (into the enforcement stage of the workflow) may generate the
low-level vendor-specific configuration. This task is also the most critical one
in the whole workflow, because most of the breaches are made possible by
NSFs configuration errors. It is the most complex operation as well, because it
requires careful optimization (e.g., minimizing the number of filtering rules of
a firewall may drastically improve its efficiency).

These two steps may be executed sequentially, or simultaneously in a more optimized
way. The result is a virtual service, with the corresponding configuration for each
function that composes it.

Deployment, enforcement and scheduling. Next, the virtual service must be
embedded onto the physical network infrastructure, commonly composed of general-
purpose commodity servers. This problem is known as Virtual Network Embedding
(VNE), and it has been exhaustively researched in literature [35]. This operation is
usually performed jointly with other two tasks, i.e., enforcement and scheduling. On
the one hand, the configurations that have been generated at the previous stage of
the workflow are enforced onto the corresponding NSFs, with a simple change of
format, so as to make them adapted to the vendor-specific implementation. On the
other hand, the execution of the embedded virtual functions should be scheduled so
as to respect all dependencies. The three tasks composing this stage of the workflow
almost exclusively deal with network optimization (e.g., the minimization of resource
consumption), instead of security. An aspect that concerns security is related to
the interaction or integration of the tool in charge of automatic service composition
and function configuration with the orchestrator of the network embedding, as their
communication should convey all the information computed in the previous stage.

22 Motivation and Problem Statement

Detection. Even if the security service is already active after its embedding,
complete protection against all attacks is never possible. On the one hand, it may
occur that the user-specified policies were not complete enough, and that they did not
take into account some corner cases. On the other hand, new attacks are developed
every day, and they cannot be easily foreseen. Consequently, it is necessary to install
some intrusion detection systems in the network, so as to find out unstopped attacks.
The literature about intrusion detection is wide [36]. Some systems have a list of
attack signatures, which they use to identify malicious traffic, whereas other ones
adopt machine learning strategies, which offer a better response against unknown
attack types.

Mitigation and reconfiguration. However, identifying an ongoing attack is
not enough. It is also essential to stop it as soon as possible. The information
derived from the attack identification performed in the detection stage is used for the
formulation of new policies. At that point, the whole workflow must be repeated,
so as to reconfigure the security service. The way this task is carried out has a
deep impact on security. The configuration of multiple functions may be subject to
modifications, and the order in which these changes are orchestrated should minimize
the number of transitory states in which the network is still insecure. At the same
time, also identifying the minimum number of rules which should be changed in each
function may allow improving the performance of this operation, and thus enforcing
the required security faster. Unfortunately, orchestrating the reaction to an attack is
often more challenging than simply configuring the service from scratch.

In this workflow, it is possible to identify which tasks are covered by the two main
operations related to network security automation. On the one hand, network security
configuration automation encompasses the automatic security service composition
and function configuration. On the other hand, network security orchestration
automation encompasses tasks such as the interaction or integration between the
automatic configurator and the network orchestrator, the reconfiguration transient
management after an attack identification, and the selection of the virtual functions
that must be embedded to enforce the security configuration. All these tasks are
addressed in the remainder of this dissertation.

Chapter 3

State of the Art

This chapter presents how the problems of automatic network security configuration
and orchestration have been addressed so far in the literature. While discussing the
approaches that have already been proposed, the open challenges that should still
be faced in this research area are dissected. Section 3.1 discusses how the literature
review has been performed. Then, Section 3.2 presents the literature about automatic
network security configuration, whereas Section 3.3 provides an overview of the
literature related to some central tasks of automatic network security orchestration.

3.1 Literature review method

The search process of conference proceedings and journal papers was carried out
in the following databases: SCOPUS, Science@Direct, Wiley InterScience, IEEE
Digital Library, ACM Digital Library, SPRINGER, ISI Web of Knowledge.

Five search strings have been used in the search engine of the previously listed
databases, each one related to a specific problem to be investigated.

• The search string related to automatic security service composition is:

computer AND (network OR networking) AND security AND
(automation OR automatic OR automated OR programmability

OR programmable) AND (synthesis OR synthesize OR composition OR
compose)

24 State of the Art

• The search string related to automatic security function configuration is:

computer AND (network OR networking) AND security AND
(automation OR automatic OR automated OR programmability

OR programmable) AND (configuration OR configure)

• The search string related to the orchestration of network security reconfigura-
tion transients is:

computer AND (network OR networking) AND security AND
(automation OR automatic OR automated OR programmability
OR programmable) AND (reconfiguration OR reconfigure) AND

(transient OR transitory)

• The search string related to the NSF abstraction for security orchestration is:

computer AND (network OR networking) AND security AND
(automation OR automatic OR automated OR programmability

OR programmable) AND (orchestration OR orchestrate) AND abstraction
AND (implementation OR vendor)

• The search string related to the integration of security and network orchestra-
tors:

computer AND (network OR networking) AND security AND
(automation OR automatic OR automated OR programmability

OR programmable) AND (orchestration platform OR orchestrator)
AND (NFV OR SDN)

The results have been enriched with the snowballing technique, i.e., for each
study, its references and the papers citing it have been analyzed. Then, all enriched
search results have been merged by fulfilling the following criteria.

1. Impurity and duplicates removal: Duplicate results were removed.

2. Inclusion criteria: Papers were considered if they respected all the following
criteria: (1) Papers describing methodologies which can be used for network

3.2 Automatic network security configuration 25

security management automation; (2) Papers published between 1995 and
2022; (3) Papers subject to peer review (e.g., journal papers, papers published
as part of conference proceedings were considered, whereas white papers were
discarded); (4) Papers written in English and available in full-text.

3. Exclusion criteria: Papers were excluded if they fulfilled at least one of the
following criteria: (1) Papers describing methodologies only for network man-
agement automation, without any reference to network security; (2) Papers
limited to present a formal theory for networking, without any substantial pos-
sible application to computer networks; (3) Secondary studies (e.g., systematic
literature reviews, surveys); (4) Studies in the form of tutorial papers, poster
papers, editorials, because they do not provide enough information due to page
limitation.

4. Combination: If there are multiple papers related to the same study, a single
record is kept for all of them. This action is necessary for ensuring complete-
ness and traceability of results. For example: if a primary study is published in
more than one paper (a conference paper, then extended to a journal version),
only one instance is counted as a primary study. Generally, the journal version
is preferred, since more complete.

3.2 Automatic network security configuration

This section is divided into two subsections that discuss the state of the art related
to the two main tasks of automatic network security configuration, i.e., automatic
security service composition and automatic security function configuration.

3.2.1 Automatic security service composition

Most of the papers challenging the problem of service composition address network-
ing services, rather than security ones. Here, only the papers dealing with security
services are considered. A comprehensive list of such papers is reported in Table
3.2. This table also provides, in its columns, a fast overview of the main features of
the approaches presented in these papers. The meaning of such features is concisely
described in Table 3.1.

26 State of the Art

Reference: The reference to the paper where the automated methodology is illustrated in detail.
Target: The network type for which the methodology is designed and validated (i.e., traditional, virtual or both).
Fixing: True (✓) if the methodology can automatically fix a security service or NSF configuration, false (X) otherwise.
Scratch: True (✓) if the methodology can automatically create a service or an NSF configuration from scratch.
Correctness: True (✓) if the methodology uses formal verification techniques or a formal correctness-by-construction approach.
Optimality: True (✓) if the methodology can find the optimal solution according to some optimality criteria
Knowledge base: The origin of the input information exploited by the methodology to automatically compute the solution.
Technology: The adopted virtualization paradigm, i.e., SDN or NFV (only for papers about service composition).
Supported NSFs: The NSFs that are supported by the methodology (only for papers about NSFs configuration).
Scalability: A concise indication of the scalability achieved by the methodology (i.e., number of NSFs, requirements or rules).

Table 3.1 Features analyzed for state-of-the-art papers

Reference Target Fixing Scratch Correctness Optimality Knowledge base Technology Scalability

[37] Virtual X ✓ X X U SDN 4000 rules
[38] Virtual X ✓ X ✓(ILP) U SDN ⑦250 functions
[39] Virtual X ✓ X ✓(ILP) U SDN 250 switches
[40] Virtual X ✓ ✓ X U SDN No information
[41] Virtual X ✓ X X U SDN No information
[42] Virtual ✓ X X X U, S SDN No information
[43] Virtual ✓ X X X S SDN ⑦70000 rules
[44] Virtual X ✓ X X U NFV 5 functions
[45] Virtual X ✓ X X U NFV 16 functions
[46] Virtual X ✓ X X U NFV 15 functions
[47] Both ✓ ✓ X X U, S NFV 100 functions
[48] Virtual ✓ X X X U, S NFV No information
[49] Virtual X ✓ X ✓(heuristic) U NFV 79 nodes
[50] Virtual X ✓ X ✓(heuristic) U NFV 10 functions
[51] Virtual X ✓ X ✓(heuristic) U NFV 8 functions
[52] Virtual X ✓ X ✓(heuristic) U NFV No information
[53] Virtual X ✓ X ✓(ILP) U NFV 7 functions
[54] Virtual X ✓ X ✓(ILP) U NFV No information
[55] Virtual X ✓ X ✓(ILP) U NFV ⑦20 functions
[56] Virtual X ✓ X ✓(ILP) U NFV ⑦10 functions
[57] Both ✓ ✓ X ✓(heuristic) U, S NFV 60 firewalls
[58] Both X ✓ ✓ ✓(iterative SMT) U NFV 20 firewalls

U = User-specified policies, S = Security chain

Table 3.2 Comparison among solutions for automatic network security service composition

Analysis of the state of the art

In this research area, there is a first group of studies that deal with the investigation
of how a security service can be designed automatically in an SDN-based network.
In this context, the security functionalities that compose the designed service may
be executed by SDN switches, or by other virtual entities that can communicate
with a distributed architecture of switches. The objective is commonly to generate
a security service that satisfy a set of user-specified traffic steering policies. For
example, the policies may specify that certain destinations must not be reached by
certain traffic flows, or that some SDN switches must not be crossed by them.

3.2 Automatic network security configuration 27

A first milestone of this group was represented by the FRESCO approach [37],
which uses elements named modules as basic components for security service com-
position. Each module can enforce a specific security functionality (e.g., intrusion
detection, blacklist scan, filtering), so that they can be composed to create a com-
plete service. The high modularity of this approach enables the creation of multiple
flexible services, which may also use the same module instances. Besides, the
activation of these modules does not require an external human intervention, as it can
be triggered by events such as the identification of specific kinds of network traffic.
As a first milestone, however, FRESCO is less elaborated than the next studies, and
it does not yet integrate features such as optimization and formal verification.

Other approaches that are proposed in literature to face the automatic security
service composition problem for SDN-based networks are [41], [42] and [43]. On the
one hand, [41] proposes an intent-based multi-layer orchestrator, which establishes
how the interconnection among the functions must be defined so as to enforce
confidentiality requirements and to provide a solution against eavesdropping. On the
other hand, [42] illustrates an intent-refinement process that uses machine learning
and feedback from the user to translate user-specified intents (e.g., if the user requests
a new firewall with some rules, this process adds it to the security service by satisfying
constraints related to latency and bandwidth). Nevertheless, like [37], both these
studies overlook optimization and formal verification. Then, [43] proposes an
algorithm to simplify and merge security services into a single one, by employing
learning finite automata named Markov models, and while keeping an acceptable
level of detection accuracy. Such approach can only refactor existing services instead
of generating one from scratch, and it lacks the same features as the other discussed
techniques.

The optimization feature has been first proposed in [38] and [39], where the
service composition problem is formulated as an Integer Linear Programming (ILP)
problem. However, in both cases, the optimization objectives are still related to
networking, rather than to security. For example, they aim to balance the traffic load
among the switches of the network. Instead, the formal verification feature has been
introduced in [40]. Specifically, [40] proposes a rule-based system for the automatic
composition of security services structured as chains, and it formally checks if the
automatically synthesized service is compliant with the required security properties.

28 State of the Art

There is also a larger group of studies that consider the possibility, enabled by
the NFV technology, of instantiating softwarized functions instead of hardware
middleboxes. In this scenario, optimizing the design of a security service results
easier, thanks to the dynamism of the interconnections among functions and of the
creation of the paths that can be crossed by traffic flows. Despite this, some studies
[44–48] do not embed optimization objectives in the the problem formulation. Of
course, they focus on other features. The initial proposal of [44] is to automatically
generate a security service graph by selecting the functions whose capabilities match
with the fields of the user-specified intents. Then, the same authors expand this
idea in [45], where they propose to use the k-means clustering algorithm to select
the VNFs that are required to create the service, according to the level of security
they can provide. Instead, a function composition algorithm based on Trie tree is
discussed in [46]. The peculiarity of this strategy is that it can automatically manage
changes of the IP addresses of the virtual functions, so that it can be employed also
in cloud environments, where IP addresses often change over time. Besides, [47] and
[48] propose approaches that are only able to automatically fix an already deployed
security service, so as to make it compliant with new security policies.

Aside from these methodologies, a more consistent number of studies [49–
52, 54, 55, 53] aims to fulfill optimization objectives in the composition of a network
security design. They follow various different approaches to reach this goal. First,
some heuristic approaches are explored in [49–52]. Briefly, the heuristic algorithm
presented in [49] automatically generates a sequential ordering of functions that
satisfies all the specified policies, so that the same function instance may be present
in more flow paths, thus avoiding redundancy. [50] uses a greedy iterative approach,
which, at each step of the service design process, analyzes a possible function
combination and gives priority to security services where the composing functions
have the maximum total throughput. [51] employs a breadth-first search algorithm
operating in two steps: after the required functions are selected, they are composed by
constructing a breadth-first search tree. Then, [52] proposes partitioning heuristics,
according to which the security service is divided into partitions and the composition
problem is solved for each one independently. For all these approaches, the main
optimization objective is to minimize resource consumption, related to hardware
and power resource usage. This objective is coherent with the characteristics of
NFV networks, where the activation and work of each virtual function require some
physical resources.

3.2 Automatic network security configuration 29

Even if heuristic algorithms may be fast, they may not reach the optimal solution.
Therefore, some researchers explored the use of non-heuristic optimization, by formu-
lating the security service composition problem as an Integer Linear Programming
(ILP) problem [53–56]. In greater detail, [53] considers all possible solutions to the
problem, given a set of security policies, by generating an augmented graph, i.e., a
graph with the maximum number of interconnections between the selected functions.
Then, the automated resolution of the ILP problem built on the augmented graph
allows identifying and choosing the interconnections that minimize the number of
employed functions. [54] introduces additional security-oriented objective functions
in the ILP problem formulation, such as user rating, experts trustworthiness expecta-
tions, and security evaluation. Their approach is further extended in [55] with the
support of dynamic adaptation to network changes, so that the user-specified policies
are still enforced even when a function is subject to an attack and fails. Instead, [56]
abstracts the security policies by associating a numerical value to each one of them,
and then it aims to maximize the combined security level, while minimizing CPU
usage and utilization time.

The security service composition problem has also a variant, where a network
graph is already existing, but it is devoid of security controls and it should be enriched
with the allocation scheme of the NSFs. This problem may arise if the network
administrator does not want to apply changes to the structure of the network topology,
when the required security policies must be enforced on it. In this case, the NSFs
should be just allocated between a pair of existing network functions. Two studies
dealing with these problems are [57] and [58]. On the one hand, [57] proposes a
heuristic algorithm that establishes how firewalls should be allocated in a computer
network, while minimizing the cardinality of the rule sets that would be needed to
satisfy the user-specified policies. On the other hand, [58] addresses the problem
for a larger number of functions (firewalls, VPN gateways, and intrusion detection
systems), aims to minimize the number of allocated NSFs, and pursues a formal
approach by modeling the problem as an iterative Satisfiability Modulo Theories
(SMT) problem. At each iteration of the proposed algorithm, the definition of the
NSF allocation scheme is tuned until all the user-specified policies are correctly
enforced.

30 State of the Art

Final considerations and open issues

From the analysis of the studies related to automatic security service composition,
it is already possible to draw some considerations about limitations that should be
overcome.

First, the few studies that introduce formal verification in the automatic security
service composition, i.e., [40] and [58], have limitations that should still be overcome.
Specifically, the technique described in [40] can only generate security chains,
while modern computer networks commonly have ramified topologies. Besides,
it is specifically designed to work with security services for Android applications
connected to SDN.-based networks, and its possible applicability to other virtual
environments is not discussed. Instead, the approach proposed in [58] can allocate
security functions in a network composed of only end points and routers. Therefore,
it cannot manage the presence of more complex middleboxes, such as network
address translators and load balancers.

Second, even if optimization criteria related to networking are important in this
research area and they are embedded in some of the state-of-the-art approaches for
service composition, however they are rarely paired with security-oriented criteria.
For example, [38] optimizes the load balancing of the traffic load among the switches
of the network, [39, 50] aim to reach the optimum throughput of the traffic that
must be routed in an SDN-based network, [49, 51, 54, 55] optimize the efficiency of
resource consumption, and [53] achieves minimal bandwidth demand on its links.
Two studies that embed security-oriented optimization objectives are [52] and [56].
However, the effective optimization criteria that are enforced in these techniques
are not explicitly clear. [52] aims to achieve the maximum compliance with well-
known security related best practices and [56] the maximum security level of the
service, given by the sum of the security levels of each composing security function.
Both criteria (i.e., the well-known security practices and the security levels) are
not sufficiently detailed and put in relation with real security problems (e.g., the
optimization of the security operations of a firewall, so that it can takes decisions in
the least required time to block possible attacks).

Third, the variant problem addressed by [57] and [58], i.e., enriching an already
existing network topology with security services, is more complex than the standard
one, because the behavior of the middleboxes that are present in the already existing

3.2 Automatic network security configuration 31

network must be analyzed and considered in the automatic generation of the NSF
allocation scheme. It is also a considerably interesting problem, because introducing
security after an initial design that is only related to networking is quite common.
Nevertheless, at the moment, the literature about this problem is still limited to the
two aforementioned studies. Besides, these studies limit their proposed approaches
to just define the allocation scheme, without providing the user with the concrete
configuration of the allocated functions.

Fourth, most of the analyzed approaches, with the exception of [40, 54, 55],
do not address the automatic configuration problem of the NSFs composing the
automatically generated service of the allocation scheme, even though this problem
is strictly dependent on the decisions taken in the service composition task. After all,
these three studies do not solve the combined problem of security service composition
and configuration in an adequate way. All three of them can only address it for
service function chains, even though the topology of modern virtualized computer
network is commonly a ramified graph. Moreover, as previously mentioned, the
generality of the approach described in [40], specifically designed for Android
applications connected to SDN-based networks, is not validated. Instead, [54, 55]
propose optimization techniques that overlook security-oriented objectives, and that
do not provide formal correctness assurance for the computed solutions.

3.2.2 Automatic security function configuration

Automatic security function configuration has been investigated more extensively
than automatic security service composition, as it is a problem that was deemed
interesting already for traditional networks. Virtualization clearly determined a
strong comeback of this topic in the literature, and in the last years the state of the art
has been enriched with more approaches. A concise overview of the contributions to
this topic is shown in Table 3.3. For the description of the table legend, Table 3.1 is
again the reference. The contributions will be analyzed and discussed separately for
each kind of NSF, followed by a summary of the open issues.

Firewalls and access control devices

A first group of NSFs that have been object of investigation is composed of firewalls
and access control functions, as they provide protection enough for an end-to-end

32 State of the Art

Reference Target Fixing Scratch Correctness Optimality Knowledge base Supported NSFs Scalability

[59, 60] Traditional X ✓ X X U Firewall Single firewall
[61] Traditional X ✓ X X U Access control devices ⑦10 devices
[62] Traditional X ✓ X X U Firewall Distributed firewall
[63] Traditional X ✓ X X U Firewall No information
[64] Traditional X ✓ ✓ X U Firewall No information
[65] Traditional X ✓ ✓ X U Access control devices ⑦1000 nodes
[66] Traditional X ✓ ✓ X U Access control devices No information
[67] Traditional X ✓ ✓ X U Firewall Single firewall
[68] Virtual X ✓ ✓ X U Firewall Single firewall
[69] Both X ✓ ✓ X U Firewall ⑦5 firewalls
[70] Both X ✓ X X U Access control devices ⑦50 devices
[71] Both X ✓ X X U Access control devices ⑦200 devices
[72] Both X ✓ ✓ X U Firewall No information
[73] Both ✓ ✓ ✓ X U Access control devices ⑦10 devices
[74] Virtual X ✓ X X U Firewall ⑦1700 firewalls
[75] Both X ✓ X X U Access control devices ⑦1000 policies
[76] Both X ✓ X X U Access control devices ⑦60 policies
[77] Both X ✓ ✓ X U Firewall 3 firewalls
[78] Both X ✓ ✓ X U Access control devices ⑦100 devices
[79] Traditional ✓ X X X A Access control devices No information
[80] Traditional ✓ X X X F Firewall No information
[81] Traditional ✓ X X X F Firewall 60 rules
[82] Traditional ✓ X X X F Firewall No information
[83] Traditional ✓ X X X F Firewall No information
[84] Traditional ✓ X ✓ X F Firewall Single firewall
[85] Traditional ✓ X ✓ X F Firewall Single firewall
[86] Traditional ✓ X ✓ ✓(MaxSMT) A Access control devices ⑦400 devices
[87] Traditional ✓ X ✓ X A Access control devices ⑦5 devices

[88, 89] Virtual X ✓ X X U SDN switch ⑦10 switches
[90] Virtual ✓ ✓ X X U SDN switch No information
[91] Virtual X ✓ X X U SDN switch ⑦100 switches
[92] Virtual X ✓ X X U SDN switch ⑦15 switches
[93] Virtual ✓ X X ✓(ILP) U SDN switch ⑦35 switches
[94] Virtual X ✓ X X T SDN switch ⑦15 switches
[95] Virtual ✓ X X X U SDN switch ⑦10 switches

[96, 97] Traditional X ✓ X X U VPN gateway ⑦35 gateways
[98] Traditional X ✓ X X U VPN gateway ⑦85 requirements
[99] Traditional X ✓ X X U VPN gateway ⑦50 gateways

[100] Traditional X ✓ X X U VPN gateway 60 requirements
[101] Traditional ✓ X X X V VPN gateway ⑦1000 gateways
[102] Traditional ✓ X X X V VPN gateway 500 rules
[103] Virtual X ✓ X X U VPN gateway No information

[104–107] Traditional X ✓ X X U embedded systems No information
[108] Traditional X ✓ X X U embedded systems ⑦10 devices
[109] Both X ✓ ✓ X U embedded systems ⑦100000 devices
[110] Traditional X ✓ ✓ X U embedded systems ⑦20000 devices
[111] Both X ✓ ✓ X U embedded systems ⑦ 10 devices

[112, 113] Virtual X ✓ X X U embedded systems No information
[114] Virtual X ✓ ✓ X U embedded systems No information
[115] Virtual X ✓ X X U embedded systems ⑦50 devices
[116] Traditional ✓ X X X F, V Firewall and VPN gateway No information
[117] Traditional X ✓ ✓ ✓(logic programming) F, I Firewall, NIDS No information
[118] Traditional X ✓ X ✓(ILP) U Firewall, IDS, VPN No information
[54] Virtual X ✓ X ✓(ILP) U All NSFs No information
[55] Virtual X ✓ X ✓(ILP) U All NSFs ⑦20 functions

[119] Virtual X ✓ X X U All NSFs No information
[40] Virtual X ✓ ✓ X U All NSFs No information

U = User-specified policies, A = Access control configuration, F = Firewall configuration, V = VPN configuration, I = IDS configuration, N = Network addresses, T = Network traffic

Table 3.3 Comparison among solutions for automatic network security function configuration

service in a large number of situations without requiring a too complex configura-
tion. After an initial basic proposal by [61], which was based on a very high level
abstraction of the filters for the routers of a distributed access control system, the
real milestone is represented by Firmato [59], a management toolkit which allows
automatic generation of a firewall configuration expressed by means of an abstract,
vendor-independent language, close enough to real firewall configuration files. The
extension module described in [120] enables a query-and-answer session for the
communication between the toolkit and a human user. Throughout this session, users
easily identify which kinds of traffic are allowed or blocked in the networks, and
then they can use Firmato to address any identified vulnerability (e.g., to block a

3.2 Automatic network security configuration 33

traffic that is potentially malicious but still allowed in the network). Despite the rele-
vance of these studies, the non-applicability to a distributed architecture represents a
serious limitation. Next studies, i.e., [60, 62, 63], tried to overcome this limitation,
proposing approaches that can work on distributed filtering architectures, even if
only [62] effectively shows a real validation for a distributed system. Nonetheless,
all these studies overlook the two features of formal verification and optimization.
Formal techniques to provide assurance for the correctness of the automatically
generated configuration have been investigated in [64], [65], [66], and [67], which
respectively employ formal logic programming methods, a Boolean satisfiability
problem formulation, formal methods applied to abstract machine notation, formal
argumentation and preference reasoning. However, as it can also be inferred from
their publication date, all the studies discussed so far are designed and validated for
traditional networks, and do not take into account the complexity of virtual networks.

The advent of network softwarization increased the importance of this problem,
and a new group of approaches [68–74] addressed it. Most of these methodologies
can be applied to traditional networks as well, with the exception of [68, 74], as
[68] only works with Netfilter, while [74] with iptables. Just to mention the main
novelties introduced by these approaches, [69] proposes an abstraction named arbiter,
which represents the network box where each user-specified policy can be enforced
and which is based on algebraic requirements. [70] formulates the auto-configuration
problem as a Satisfiability Modulo Theories (SMT) problem, by running a stratified
Datalog program based on a declarative logic programming language. [71] improves
the previous study, by defining a domain-specific heuristics, such as partial eval-
uation, so as to reduce the solution space of the SMT problem. [72] attacks the
problem of automatic firewall configuration decompilation, by proposing another
language that is independent of the specific low-level settings of the firewalls. [73]
pursues a comprehensive approach for access control policy refinement and formal
verification, where it is possible to both refine user-specified policies and fix an
existing configuration.

As proof of the relevance of the auto-configuration problem for firewalls and
access control functions, a new group of studies ([75–78]) enriched the related
literature at the beginning of this new decade. On the one hand, [75, 76] try to
improve the scalability of the automatic configuration methodologies, by respectively
applying machine learning on the operator-provided feedback and priority-based
domain type enforcement. On the other hand, [77, 78] employ formal methods to

34 State of the Art

ensure the correctness of the firewall rules through preference-based argumentation
reasoning and metagraph algebra.

All the studies discussed so far can automatically compute firewall configurations
in a situation where the functions are already allocated in the network, but devoid
of filtering rules. Instead, another group of papers ([79–87]) propose approaches to
refactor and fix existing configurations that are not compliant with the user-specified
security policies. Computing the rules from scratch commonly requires more time,
but the reconfiguration of the NSFs should be as fast as possible to stop some
ongoing attacks. Besides, these methodologies can also be enforced for the scenario
where a human user wants to introduce a limited number of new rules in a firewall
configuration to directly enforce new policies.

SDN switches

For what concerns the automatic configuration of SDN switches, a first problem that
was addressed is the definition of user-friendly languages that can be used by humans
to specify the security policies in a way that is independent from the vendor-specific
implementations. This problem has been relevant since the first proposals related to
SDN networks, even before network security automation started to be investigated
for virtualized computer networks. The main studies related to this topic are Ethane
[121], Frenetic [122] and PolicyCop [123]. Ethane [121] is a language that allows
writing access control policies with a flow-based security language that can be easily
understood by human users. Frenetic [122] is instead specifically designed to be
compliant with OpenFlow switches and it provides the syntax for the specification of
events against which the configuration should be modified. Then, PolicyCop [123]
can be used for the specification of service-level agreements within Openflow. A
further discussion of high-level languages for SDN policy specification is out of
scope for this dissertation. A complete discussion about this topic can be found in
[124].

While the research focused on the definition of these policy specification lan-
guages, in the meantime OpenFlow became the most commonly used SDN protocol.
Therefore, in the literature, the milestone studies about the automatic configuration
of SDN switches used that protocol as a foundation [88, 90, 91]. Even if all these
three approaches can automatically refine policies expressed in natural language
into the concrete configuration of a distributed SDN switch architecture, each one

3.2 Automatic network security configuration 35

has some peculiarities and differs from the others. In particular, CloudWatcher [88]
is enhanced with the feature of identifying the shortest route for each traffic flow
to reach a detection point, so as to allow that all the traffic crossing the network is
inspected at least once. Procera [90] introduces the possibility of specifying reactive
policies that capture all the information needed to enforce security constraints after a
specific event occurs in the network. OpenSec [91] has a native reaction mechanism
and is characterized by higher user-friendliness of the language employed for policy
specification. On the trend initiated by these three approaches, other studies [92–
94, 89, 95] continued the investigation of the auto-configuration problem for SDN
switches, trying to overcome some of their limitations. From this point of view, the
approach discussed in [92] can also be applied to inter-domain environments, and its
extension presented in [94] introduces an enforcement mechanism directly embedded
in each switch, so as to enable their proactive prevention of attacks. Instead, [93]
aims to minimize the number of rounds through which traffic flows can reach a
specific waypoint towards their destination, [89] analyzes policies related to agility
specifications (i.e., security actions that must be executed in reaction to mutation
events), and [95] employs multi-attributed graphs for policy specification in order to
delete conflicts that are present among the SDN switch rules.

VPN gateways

The configuration of VPN gateways poses additional challenges with respect to
access control functions, firewalls and SDN switches. First of all, tunnels are often
created by encapsulating packets. Such an operation must be considered for the
definition of automated configuration methodologies, and correctly modeled if they
use formal verification techniques. Besides, many alternative technologies exist for
the creation of VPNs, from the protocols that can be used, to the operational modes
for the enforcement of security properties such as integrity and confidentiality.

In this research area, the milestone study is represented by [96]. In this paper,
the policies that a human user may specify for having a secure communication with
a VPN are classified into four main categories: 1) access control policies, which
are defined to restrict access to the network only for trusted traffic; 2) security
coverage policies, that are defined to specify which algorithms (e.g., for encryption)
should be applied to the traffic; 3) content access policies, that are defined to decide
which network elements can analyze plain traffic, without encryption; 4) security

36 State of the Art

association policies, that are defined to specify how Security Associations (SAs) can
share security attributes between the end points of the VPN. The presence of multiple
policy categories is another proof of the higher complexity of the auto-configuration
problem for VPN gateways. On the basis of these categories, the methodology
proposed in [96] is composed of three alternative approaches: 1) a direct approach,
where for each request a separate tunnel is created; 2) a bundle approach, where
the traffic flows interested by the policies are grouped and, for each set, a single
tunnel is generated, providing completeness at the expense of speed; 3) a combined
approach, as a trade-off of the previous two. As these three approaches always
lead to VPN rule sets that have a larger cardinality than the required one to enforce
all the user-specified policies, the same authors propose a fourth approach in [97],
called ordered-split approach. In this technique, the optimal solution is identified
so as to minimize the number of required VPN tunnels, through the application
of the traditional “task scheduling" algorithm. Nevertheless, these initial studies
do not solve the VPN auto-configuration problem for inter-domain environments.
Their extension presented in [98] aims to overcome this limitation, by proposing
a negotiation protocol through which gateways of different domains, commonly
known as Autonomous Systems, can negotiate the automatic generation of the VPN
tunnels.

Other relevant approaches have been presented in the next years by [99–102].
In greater detail, [99] aims to tune the user-specified policies so as to remove any
possible conflicts before refining them into the concrete VPN configuration, through
an iterative approach such that, at each step, the policies are ordered by decreasing
tunnel length and possible conflicts are removed starting from the longest tunnel.
[100] uses recessive binary trees as supporting data structure for the policy refinement
operation, with the advantage that these trees allow reusing already generated rules
for the satisfaction of other policies by simply changing some of their conditions or
selectors. [101] focuses on providing robustness regarding potential failures and high
scalability, as the proposed approach is meant to be applied to nested networks and
mobile environments. [102] proposes a tuning strategy to solve conflicts in existing
VPN configurations.

All the studies analyzed so far about the automatic configuration of VPN gate-
ways solve this problem only for traditional networks. The only approach that tries
to go beyond this limitation is the one described in [103], where an SDN-based

3.2 Automatic network security configuration 37

architecture is proposed to automatically configure VPN tunnels among network
devices belonging to different providers.

Embedded devices

The heterogeneity, pervasiveness and distributed nature of embedded devices make
their manual configuration much more error-prone than what it already is for tradi-
tional NSFs. For example, in IoT environments, not only access control policies, but
also privacy and data protection ones must be considered for an automatic configura-
tion process. The process itself should have a high degree of flexibility in compliance
with the adaptation and self-healing features of IoT infrastructures. Therefore, speci-
fying and refining policies to manage the security of distributed embedded systems
is a complex task.

Some early research efforts related to this research topic are [104–106]. On the
one hand, [104] proposes a security toolkit that, while communicating with multiple
distributed systems through the MQTT protocol, works as an MQTT broker and has
the capability of refining authorization and obligation policies. On the other hand,
[105] describes a security-aware policy enforcement framework that can provide
access control and service provisioning so as to be compliant with security and
quality constraints. This strategy is later adapted in [106] for networked embedded
systems of the smart health scenario, where additional requirements such as the
anonymity of personal information must be considered. Nevertheless, these first
attempts cannot provide formal assurance of the configuration correctness. This
problem has been then addressed by other studies [109–111]. Specifically, [109]
proposes a formal vendor-independent graph-based policy specification mechanism
to work in multi-administrative IoT environments. [110] formulates the configuration
problem as an SMT problem to refine security requirements, operational integrity
invariants, and robustness constraints related to smart meters.[111] pursues a tree
search-based algorithm for policy refinement, paired with a verification method to
check if all the threats specified in policies requested by the user are successfully
enforced in the generated configuration.

Among all the possible security policies related to embedded devices, the so-
called sticky policies, originally defined in [125], allow attaching security and privacy
requirements to owners’ data in order to drive access control decisions and policy
enforcement. In the literature, two studies [107, 108] propose automated approaches

38 State of the Art

to manage this type of policies. On the one hand, [107] allows each user to specify
their own policies on the data they own, as long as they satisfy constraints defined by
a trust authority. On the other hand, [108] enables IoT users to attach their personal
privacy preferences to smart objects as meta-data, also used in the policy enforcement
mechanism.

Given the relevance of researching new methods to automate IoT security con-
figuration, a recent EU H2020 research project, named ANASTACIA [112], had
the main objective to dynamically refine user-specified security preferences into
the configuration of cyber physical systems and IoT architectures. In the frame of
this project, multiple studies have been performed [113–115]. For example, [113]
investigates multiple abstraction levels for IoT policies, with the aim to of enabling a
technology-agnostic policy refinement mechanism. Instead, [114] exploits a logic
formalism based on rule reasoning and the Semantic Web technology, so as to infer
new knowledge from events occurring in the networks and to formally verify the
resulting automated configuration process. Finally, [115] investigates the automatic
configuration of honeynets composed of highly interactive honeypots, by refining
proactive security policies, specified by the users to configure monitoring agents.

Heterogeneous security services

All the approaches analyzed so far can be applied for the configuration of a single
type of NSF (firewall, access control function, SDN switch, VPN gateway, embedded
device). The assumption under which these approaches work is that all the other
NSFs that are possibly present in the network are already configured. Even if this
assumption is often acceptable, especially when policies of the same type are speci-
fied, there are circumstances where multiple NSFs must be automatically configured.
However, the literature about the automatic configuration of heterogeneous services
is limited, as the only studies that face this problem are [116–118, 54, 55, 119].

The first study that addressed the auto-configuration problem for a heterogeneous
security service is [116]. The approach proposed there uses formal methods to check
possible violations of user-specified policies and recommend which NSFs should be
reconfigured to eliminate the identified issues. However, it has a strong limitation:
it cannot automatically generate the NSF configuration from scratch, but it can
only be applied to tune an existing one. Next, [117] overcame this limitation by
proposing a refinement technique, based on the formulation of the auto-configuration

3.2 Automatic network security configuration 39

problem with a logic programming language, for both firewall and IDSs. It also pairs
automation with optimization, as the resulting solution of the automated process
aims to place each configuration rule on existing NSFs so as to minimize bandwidth
usage and packet drop rate. Nevertheless, firewalls and NIDSs are configured at
different stages of the process. Therefore, only locally optimal solutions are actually
computed by this proposal.

A simultaneous configuration of multiple types of NSFs has been achieved by
[118, 54, 55, 119]. First, MIRAGE [118] proposes a top-down refinement process
of global security policies into configurations of three different NSF types: firewalls,
VPN gateways, and IDSs. The problem is formulated as a linear programming
problem, whose objective function is to minimize the number of used function
instances for the placement of the rules, and it includes a bottom-up analysis of a
possibly already deployed network security configuration to guarantee its consistency
with the user-specified policies. Second, [54] and its extension [55] describe a two-
step policy refinement algorithm, where initially the NSFs rules are derived from
the policies and expressed with an abstract and vendor-independent representation,
and then a translator adapts these rules to the syntax required by the specific NSF
implementation. The NSFs that are supported by this algorithm are stateless packet
filtering firewalls, L7 filters, basic content inspection, but not VPN gateways, proxies
and IDSs. Third, [119] employs an automatic data model mapper to automate the
refinement of high-level user-specified policies, which are expressed as a tree graph
through a YANG data model. In this way, the minimum tree edit distance is used to
refine the user-specified policies into the low-level configuration of the NSFs.

Final considerations and open issues

On the basis of this extensive analysis, state-of-the-art studies about automatic NSF
configuration have several limitations that should still be addressed.

First, even if formal verification is paired with automation more often than for se-
curity service composition methodologies, optimization is instead usually neglected.
However, optimizing the configuration rule sets of NSFs may improve security effi-
ciency and network performance. For example, a firewall with a minimum number
of filtering rules takes less time to identify a malicious traffic to block. Even in the
studies that embed optimization, the objectives are commonly related to networking
issues. In particular, [86] computes the minimal number of fixes to be applied to an

40 State of the Art

existing security configuration, [93] minimizes the number of rounds through which
traffic flows can reach a specific waypoint towards their destination, [117] minimizes
bandwidth usage and packet drop rate, and [118, 54, 55] optimizes the efficiency of
resource consumption.

Second, most studies explicitly focus on a single NSF type, and they cannot be
applied to configure a heterogeneous security service. The studies which address the
automatic configuration problem for heterogeneous services, i.e., [116–118, 54, 55,
119], still have limitations that should be overcome. [116–118] propose automatic
approaches that are designed for traditional networks and do not consider all the
characteristics deriving from the complexity of virtual network functions. [54, 55]
present methodologies that can work only on simple service function chains, and lack
the formal verification feature. [119] focuses on performing a mapping operation of
the user-specified policies onto the low-level function configuration, but overlooking
the behavior of other network functions that may be already present and configured
in the same network.

Third, as it can be seen in the “Scalability” column of Table 3.3, when a validation
of the approach is proposed in the related paper, it shows that the methodology can
rarely scale to networks composed of a hundred of NSFs. So as to be able to manage
virtual networks of medium-big size, automatic approaches for security configuration
should be able to refine around 100 policies into the configuration of around 100
NSFs. Besides, this task should be expected to per performed in some minutes (e.g.,
five minutes), as that is a time that is compatible with the total time required to set
up a virtual service.

Fourth, with the exception of [40], [54] and its extension [55], no state-of-the-art
approach can also solve the security service composition problem, even though it is
strictly dependent on the decisions taken during the NSF configuration task. Besides,
as already mentioned, these three studies do not solve the combined problem of
security service composition and configuration in an adequate way. All three of
them can only address it for service function chains, even though the topology of
modern virtualized computer network is commonly a ramified graph. Moreover,
the generality of the approach described in [40], specifically designed for Android
applications connected to SDN-based networks, is not validated. Instead, [54] and
[55] proposes optimization techniques that overlook security-oriented objectives,
and that do not provide formal correctness assurance for the computed solutions.

3.3 Automatic network security orchestration 41

Finally, none of the three can address the problem of automatically computing the
NSF allocation scheme in an existing network, which is usually more complex than
the service generation from scratch.

3.3 Automatic network security orchestration

This dissertation focuses on three relevant problems related to automatic network
security orchestration, whose state of the art is discussed in this section: the or-
chestration of network security reconfiguration transients (Subsection 3.3.1), the
NSF abstraction for security orchestration (Subsection 3.3.2), and the integration of
security and network orchestrators (Subsection 3.3.3).

3.3.1 Orchestration of network security reconfiguration tran-
sients

State-of-the-art studies have broadly investigated the problem of guaranteeing that
some network security properties are still valid during a network reconfiguration,
as discussed in an exhaustive review about this topic [126]. In particular, during a
transient unfolding when a network configuration is modified, there are three types
of security properties that may be violated: 1) connectivity consistency, i.e., the
capability of the network to keep delivering packets to their respective destinations;
2) policy (or path) consistency, i.e., the capability of the network to keep delivering
packets through a specific path of middleboxes for the whole update; 3) capacity con-
sistency, i.e., the networks’ capability to manage availability and limits of resources
as bandwidth and latency.

In the literature, two main functions that have been object of study for the
orchestration of network security reconfiguration transients are packet filtering
firewalls and SDN switches.

Firewall reconfiguration transients

A security function for which guaranteeing security properties during a reconfigu-
ration transient is important is the firewall. Specifically, managing a firewall recon-

42 State of the Art

figuration transient is a problem that is related to the consistency of connectivity
policies during that transient. Connectivity policies can be divided into reachability
and isolation policies. The former aim at ensuring that some network nodes can
mutually reach each other, with the objective of avoiding service disruptions. The
latter aim at blocking specific kinds of traffic flows, with the objective of avoiding
access control violations and privilege escalation. e.g., after an undetected intrusion
[127]. However, the literature about firewall reconfiguration transient is limited from
many points of view.

First, the problem of optimizing reconfiguration transients for packet filtering
firewalls has been studied in literature only for intra-firewall reconfiguration. In
fact, the studies that address this problem [128–132] exclusively work on centralized
firewalls. Therefore, the transient problem is reduced to a simpler intra-firewall
policy deployment, where the firewall configuration is meant to be only its rule set.
The only objective is to identify a safe scheduling of the update operations for the
filtering rules of a single firewall. The operations that are considered by these studies
are rule appending or deleting for firewalls of Type I [128–130], and additionally
rule moving for firewalls of Type II [128, 131, 132]. This lack of studies represents
a gap that needs to be filled, because the complexity of transient management for
inter-firewall reconfiguration is much higher. Inter-firewall reconfiguration takes
longer, so the number of transient states is higher and passing through unsecure states
is more dangerous. This complexity derives from a larger number of reconfiguration
operations that must be considered (e.g., deployment of new instances, removal of
useless instances). Besides, the intra-firewall problem becomes even less important
in virtualized networks, as it is easier and faster to launch a new virtual firewall with
the new filtering rule set to replace the old one, instead of modifying single rules.

Second, these state-of-the-art approaches lack formal verification. They are sim-
ply based on greedy algorithms, which cannot provide correctness of the computed
scheduling, and their result might not be the most efficient by their admission [128].

Third, as previously mentioned, the firewall reconfiguration transient is a problem
that should deal with guaranteeing the consistency of connectivity policies. However,
all state-of-the-art studies about firewall reconfiguration transients only guarantees an
internal coherence of firewall configuration states, i.e., any packet that is permitted (or
denied) by both the initial and target firewall configurations is always permitted (or
denied) in the intermediate configuration state of the reconfiguration transient. Such

3.3 Automatic network security orchestration 43

characterization of this problem has become less interesting in modern networks
composed of distributed functions, where multiple communications might happen
among the connected devices.

Fourth, these papers mainly targeted traditional firewalls. Situations deriving
from network softwarization, such as the usage of containers (e.g., Dockers) that
require the deployment of a new process if the configuration of the previous one
must be changed, are totally overlooked.

SDN switch reconfiguration transients

A security function for which guaranteeing security properties during a reconfigura-
tion transient is important is the SDN switch. In the literature, this problem has been
investigated also for distributed architectures composed of multiple SDN switches
[126]. The advent of SDN has revived interest in the transient management problem,
casting it into the context of programmable networks [133]. Automation has become
a critical factor in reducing operational times, so reconfiguration of network and
security functions can easily occur with a higher frequency than with hardware-based
middleboxes. This possibility has allowed reaching better scalability in network
management [134], and improving elasticity control of network functions [135].

However, the studies dealing with SDN switch reconfiguration transients are
limited only to two specific types of policy consistency. The most common type,
addressed by the majority of related papers ([136], [137], [138] [139], [140], [141],
[142]), is the Per-Packet Consistency (PPC) policy. In this case, only two paths
must be crossed by the packets: one related to the original configuration of the SDN
switches, the other one to the final configuration after the changes. Therefore, this
kind of policy requires that every packet travels either on its initial or final path, never
on intermediate ones. However, PPC might result too restrictive in some instances
(e.g., sometimes it is sufficient to guarantee that the traffic passes through a firewall,
independently of the other crossed functions). As such, in some papers ([143], [144])
a mitigation of PPC is represented by the Way-Point Enforcement (WPE) policy, for
which it is just required that the packets can always cross a set of specific waypoints
during the transient.

There also exist studies ([145], [146]) where policies are more complex (e.g., it
may be required that, in the network of a large Internet Service Provider, specific

44 State of the Art

traffic flows follow certain sub-paths). However, in all the mentioned cases, the
specification of connectivity policies is not addressed. This shortcoming translates
into a limitation for the proposed approaches, because connectivity policies represent
the most general type of security policies through which it is possible to check the
reachability or isolation of traffic flow (e.g., checking if a reachability policy is
satisfied in a transient state means to analyze all the possible paths where the traffic
might flow, and consider the behavior and configuration of all the possibly crossed
functions).

Final considerations and open issues

From the analysis of the state of the art about the orchestration of network security
reconfiguration transients, it emerges that the only distributed function for which
this problem has been studies is the SDN switch. However, such studies have several
limitations.

On the one hand, studies about SDN switches address security issues concerning
the violation of connectivity policies only partially, because the configuration of SDN
switches is mainly defined to address networking issues with respect to firewalls. On
the other hand, they overlook the analysis of the impact that the behavior of other
networks or security functions, which are present in the network, may cause to the
reconfiguration transient. Moreover, optimization criteria (e.g., maximization of
the secure transient states depending on the importance of each connectivity policy)
should be enforced as well. Instead, in most of the studies analyzed so far only
heuristics and greedy approaches are pursued, except for [143] and [144], where
exact algorithms based on a Mixed-Integer Program (MIP) formulation are defined
for computing an update scheme requiring the minimal number of intermediate
states.

Therefore, focusing exclusively on SDN switches is a limitation that should
be overcome by addressing the transient management problem for more general
distributed packet filtering firewalls. Integrating formal verification and optimization
would also enhance the automatic techniques that may be proposed to address this
problem.

3.3 Automatic network security orchestration 45

3.3.2 NSF Abstraction for Security Orchestration

Analysis of the state of the art

The advent of network virtualization led to the development of a high number of NSF
implementations as software program that can be executed on Virtual Machines or
containers. NSF implementation that are developed to perform the same operations
often differ only for vendor-dependent characteristics related to their specific con-
figuration language and set up. However, in those case, the security functionalities
that they perform (e.g., firewalling, encryption, detection) are the same. Therefore, a
possible idea would be to abstract NSF implementations from the vendor-dependent
characteristics, and to consider only their security functionalities in the orchestration
of network security management.

A main advantage of such an abstraction would be the possibility to reorganize
and simplify the security orchestration workflow. The NSF implementations are
commonly selected at the beginning of the approach that is usually pursued for
enforcing security in a virtual network [147], i.e., before the generation of their
configuration and of the deployment in the physical infrastructure. Nevertheless, this
ordering of the operations leads to overlook network information (e.g., the topology
of the virtual service, or the behavior of service functions like load balancers and
network address translators)in the selection of the NSF implementations. If instead
the vendor-independent abstractions of those implementations are selected and con-
figured at the beginning, then the effective selection of the required implementations
could be postponed to be performed jointly with their deployment, thus providing
higher optimization for the security orchestration..

However, models for NSF abstraction have barely been investigated in the litera-
ture. A series of IETF RFC drafts, of which [148] is the most recent one, proposes
the Capability Information Model (CapIM) to describe the security properties that
an NSF can enforce in a vendor-neutral manner. With such a description, it is not
required to refer to a specific technology or vendor-dependent function when defining
a security service. However, these ideas have not been completely formalized and
exploited for researching novel ways to perform security configuration and deploy-
ment. Among the research studies based on the ideas of these drafts, [149] uses a
capability model for abstracting NSFs, but that work is restricted to access control
and forwarding virtual functions. The work presented in [55] broadens the research

46 State of the Art

to other types of security functions. However, as in [149], the capability model is
not used to innovate the security configuration workflow, and the vNSF selection for
the security enforcement is performed before the allocation and configuration stage
as usual, losing all the benefits deriving from a possible postponement. Then, [150]
enhances the architecture based on these models to make it compliant with the SDN
technology. [151] uses a tailored version of the model for the dynamic management
of authentication, authorization, and accounting.

Final considerations and open issues

At the moment, CapIM, together with its extensions and customizations, represents
the first and last effort in the literature to provide a higher abstraction of security-
related operations that can be performed by VNFs. It also has several limitations
that should be overcome. First, the possible capabilities that can be associated with
NSF implementations are fixed and represent all the possible operations that the
NSF might do. Instead, a capability should be a flexible representation, because it
should express the security-related operation that an NSF should perform to enforce
a specific policy. Besides, CapIM is never used to innovate the security configuration
workflow. The study presented in [55] proposes a simple algorithm for the automatic
configuration of network security functions, with an intent-based technique that
refines user-specified policies identifying the required capabilities to enforce them.
However, in that work, NSF selection is carried out so that NSFs are employed
for the synthesis of the virtual security graph as usual, thus losing all the benefits
deriving from a possible postponement of that selection.

In conclusion, in order to improve the conventional ways for security orchestra-
tion, there is the need of an additional level of NSF abstraction, so as to answer the
high productivity of software development in network security.

3.3.3 Integration of Security and Network Orchestrators

Analysis of the state of the art

In virtualized environments, the orchestration of network security functions has
been often paired with controllers which follow an Event-Condition-Action (ECA)
paradigm for the configuration of the data plane [152]. In this context, security

3.3 Automatic network security orchestration 47

orchestration is delivered through a comprehensive platform that is expected to
deploy and manage the lifetime of multiple network services.

In a narrow sense, typical tasks of orchestration are life-cycle management,
balancing of traffic floods, and assurance for the availability of applications and
services [153]. Inside an orchestrating platform, the controller is the control plane
element which focuses on the configuration of data plane elements, reacting to and
processing events that might come from external users of the data plane itself. A
typical example is an SDN controller, which incorporates the logic that is needed to
decide, in a reactive manner, the filtering rules to be installed on each SDN switch,
possibly taking into account countermeasures to security attacks [154].

Instead, a full orchestration of a network security service requires two essential
contributions: a detection and mitigation strategy for the identification of cyber
attacks, and a reconfiguration mechanism for addressing the identified threats and
reinforce network security. However, in the literature, most of the efforts were
devoted to single areas, and the proposed strategies were seldom optimized for syn-
chronization and cooperation. On the one hand, detection and mitigation strategies
always represented a flourishing research area in literature, and the advent of network
softwarization simply gave them another boost. A consistent number of surveys have
already classified and described the most well-known algorithms that might be im-
plemented in intrusion detection and prevention systems for virtualized networks. In
particular, [155] surveys algorithms that can be employed in the cloud, [156] focuses
on SDN-based networks, [157] broadens the horizons of these surveys to include
NFV. Recently, machine learning and artificial intelligent have been extensively
used to improve the accuracy of attack detection, at the expense of more pressing
requirements of computational resources [158], [159]. On the other hand, research
on re-configuration mechanisms has been more limited in the past, until SDN and
NFV provided the reactivity and programmability that are essential ingredients for
these mechanisms.

In light of these considerations, only a limited number of orchestrating platforms
with ECA-based controllers have been proposed in the literature as possible integra-
tion of existing network orchestrators. There is a first group of them [160, 161, 94]
focusing on the orchestration of an SDN-based network. Deriving their prominent
features from past policy-based management frameworks which leveraged SDN for
network orchestration [123, 38, 91], these papers focus on ECA-based strategies for

48 State of the Art

the mitigation of cyber attacks. A second group of papers [149, 162] addresses the
problem for NFV-based networks. In more detail, [149] describes the design of a
policy-based NFV orchestrator, which can handle the life-cycle of virtual network
functions and dynamically instantiate business applications as service chains. The
behavior of this orchestrator is governed by user-defined ECA policies, which estab-
lish the management actions that are needed upon specific events. Instead, the other
paper [162] proposes an Intent-Based Cloud Services orchestrator, based on an ECA
policy model that is used to express the network intents.

Final considerations and open issues

State-of-the-art security orchestrators for virtual computer networks still have limita-
tions that should be addressed.

On the one hand, since these orchestrators belonging to the first analyzed group
[160, 161, 94] are designed to work exclusively on software-defined networks, the
ideas behind their mitigation strategies cannot be brought over to NFV environments.
In fact, the behavior of SDN switches is simply governed by the installed filtering
rules, while the heterogeneity of virtual network security functions translates into a
huge variety of different configurations to be managed during the mitigation of an
attack. On the other hand, the orchestrators belonging to the second analyzed group
[149, 162] mostly focus on automating the modular design of a service chain and
on interfacing the virtual functions for a correct and safe communication, instead of
integrating reconfiguration mechanisms within the orchestration workflow.

Therefore, the problem of integrating configuration and orchestration mecha-
nisms should still be investigated in literature. Besides, an interesting research path
is to investigate how security management can be automated with orchestrators
working with containers, such as Docker Compose and Kubernetes.

Automatic Network Security
Configuration

Chapter 4

The VEREFOO Approach

A main proposal of this dissertation is a novel methodology, named VErified RE-
Finement and Optimized Orchestration (VEREFOO), which is the first approach in
literature to combine automation, formal verification and optimization to simultane-
ously solve the allocation and configuration problems for NSFs in virtual computer
networks.

The VEREFOO approach works as illustrated in Fig. 4.1. By embedding the
Policy-Based Management paradigm, it requires the specification of network secu-
rity policies describing the expected security behavior of the virtual network (e.g.,
describing which traffic flows should be blocked because potentially malicious, and
which other ones should be encrypted to provide confidentiality of the communica-
tion). The user-specified policies are automatically refined into the NSF allocation
scheme and configuration. The former describes how the NSFs required for the pol-
icy enforcement should be positioned in the logical topology of the virtual networks.
Instead, the latter represents the rules that should be installed on the allocated NSFs
to establish their security behavior.

The VEREFOO approach is designed to be a general method, that can be applied
to any NSF type. However, in this dissertation, it has been fully developed only
for two NSF types, i.e., packet filtering firewalls and VPN gateways, which are
the most commonly used functions to enforce respectively connectivity policies
and communication protection policies. However, the behavior of the VEREFOO
approach can be easily adapted to work with other NSF types.

52 The VEREFOO Approach

Fig. 4.1 The VEREFOO approach

The VEREFOO approach is characterized by full automation: the human user
must only specify the initial inputs of the refinement and optimized orchestration
algorithm, which later works by itself without needing any other external interven-
tion. Formal correctness assurance of the NSF allocation scheme and configuration
produced by VEREFOO is provided by following a “correctness-by-construction”
approach. The adoption of this approach avoids the need of a-posteriori formal
verification techniques (e.g., model checking), which would increase the overall
computation time. Optimization is pursued by aiming to minimize the number of
NSFs that compose the automatically established allocation scheme in the logical
topology of the virtual network, and the cardinality of the configuration rule set
for each allocated NSF. Minimizing the number of NSFs implies minimizing re-
source consumption in the network where the NSFs must be later deployed. Instead,
minimizing rule set cardinality ensures a two-fold achievement. On the one hand,
the minimum amount of memory is used to store the rules. On the other hand, the
efficiency of the decisional operations is optimized, as fewer comparisons between
the rule conditions and the packet fields are required.

In the reminder of this chapter, Section 4.1 provides more detail about the input
specification and output generation, while Section 4.1.3 discusses the design choices
that have been taken to model the allocation and configuration problem so as to
combine automation, formal verification and optimization.

4.1 Inputs and Outputs of the VEREFOO Approach 53

4.1 Inputs and Outputs of the VEREFOO Approach

4.1.1 Input: Service Graph and Allocation Graph

A Service Graph (SG) is the logical topology of a virtual network, i.e., an intercon-
nection of service functions and network nodes providing a complete end-to-end
network service. It represents a generalization of a Service Function Chain because
the functions do not need to be positioned in a linear combination, but they can be
organized within a complex architecture where the traffic can flow through alternative
paths, not in a single route. An SG is defined by a network service designer, without
involving security considerations. The only purpose is to provide a networking
service to the users, whose points of access are represented by the end points of the
SG (e.g. clients, servers, subnetworks). The functions that the service designer can
exploit for the creation of an SG are Network Functions (NFs) implementing various
functionalities, such as web caching and load balancing. These functionalities are
characterized by different behaviors. Some of them can be neglected when solv-
ing the NSF allocation and configuration problem while others must be taken into
account:

• Functionalities such as traffic monitoring are able to update internal counters
and to send alerts according to the results of an inspection made on the
received packets. However, then, they send these packets to the out-ports
without modifying them. Therefore, the presence of a traffic monitor does not
influence the configuration of NSFs.

• Functionalities such as load balancing forward the traffic flow according to
some internal logic, e.g., a load balancer decides the server of the cluster which
must receive a packet according to parameters like the current server load.
However, in this case too, a load balancer does not influence how the NSF
rules are defined, because the rules deal with the end points of the network and
it is not possible to say a priori to which server a load balancer will forward a
packet. Consequently, it is as though the load balancer had to send a packet to
every server of the cluster to check the satisfaction of the security policies.

• Functionalities such as NAT are able to modify some header fields, like re-
placing private IP addresses with public ones. Because of these actions, the

54 The VEREFOO Approach

s9
e1

e2

e3

s10

e4 e5

s11

e6

s12
e8

e7

Fig. 4.2 Input Service Graph example

Identifier IP address Function type / role

e1 130.10.0.1 HTTP web server
e2 130.10.0.2 HTTP web server
e3 130.10.0.3 HTTP web server
e4 40.40.41.∗ IT office of Company A
e5 40.40.42.∗ Business office of Company A
e6 88.80.84.∗ Company B
e7 192.168.1.∗ IT office of Company C
e8 192.168.2.∗ Business office of Company C
s9 130.10.0.4 Load balancer
s10 33.33.33.2 Web cache
s11 33.33.33.3 Traffic monitor
s12 220.124.30.1 NAT

Table 4.1 IP addresses and function types

rules that should be configured in an NSF could depend on how NATs behave,
according to the position in the Service Graph where the NSF is allocated.

• Functionalities such as web caching decide if a packet must be forwarded to
some out-ports on the basis of fields that do not involve the IP quintuple, e.g.,
a web cache forwards a packet received from a web client to a web server
only if it does not have a cached copy associated with the requested URL.
Their presence may have an impact for the configuration of web-application
firewalls, but not for the most common NSFs, such as packet filtering firewalls
and VPN gateways.

Low-level functions such as switches and routers, which exclusively forward
the incoming packets to the out-ports selected by means of a forwarding or routing
table, are not included explicitly in the SG. This statement does not imply that these
functions are not present in the real network, but the SG provides a more abstract

4.1 Inputs and Outputs of the VEREFOO Approach 55

s9

a14e2

a13e1

a15e3

a16

s10

a19

a17

e4

a18

e5

s11

a20 e6

a21

s12

a22

a23

e7

e8

Fig. 4.3 Allocation Graph with Allocation Places

view of the possible paths that packets can follow. This abstraction focuses on
the more complex service functions, under the assumption that the low-level ones
correctly implement the SG connections [163].

An example of input SG that could be defined by the user of the VEREFOO
approach is represented in Fig. 4.2. Alongside with this description of the service
topology, the user should also provide more information about the configuration of
the functionalities included in the SG, such as their IP addresses. For the example
SG, this information is reported in Table 4.1.

The SG provided by the user is automatically processed to create an internal
representation called Allocation Graph (AG). Without further specifications from
the user, for each link between any pair of network nodes or functions, a placeholder
element, called Allocation Place (AP), is generated. In this position, the approach
can decide to put an NSF in order to reach the optimal allocation scheme. However,
a security skilled service designer can either force the allocation of an NSF in a
specific AP, without allowing it to be removed by the automatic allocation procedure,
or prohibit that specific APs are considered as valid NSF positions. This capability
enriches the flexibility of the proposed methodology, and at the same time it decreases
computation time, by reducing the solution space the algorithm must search to solve
the problem. Moreover, it is useful in mixed scenarios, where NSFs are implemented
not only by VNFs, but also by existing hardware NSFs, which can, in fact, be
modeled as NSFs that cannot be removed. Despite these benefits, on the other hand,
it is evident how this manual contribution to the configuration of an AG can lead
to the impossibility to find a solution or to an unoptimized solution, because some
acceptable – and potentially optimal – solutions can be pruned based on the user
input.

56 The VEREFOO Approach

An example of AG that is derived from the SG of Fig. 4.2 is represented in Fig.
4.3. The only difference is the presence of an AP in-between each pair of network
nodes.

4.1.2 Input: Network Security Policies

The Network Security Policies (NSPs) describe the security requirements that must be
enforced in the network. The user of the VEREFOO approach can specify them with
a medium-level language, which abstracts from the vendor-dependent characteristics
of the NSF implementations that must be used to enforce the NSPs. This language
does not require a high expertise from the user in terms of network security, so
that the VEREFOO approach can also be pursued by a network administrator with
limited security skills.

Multiple NSP types can be specified, depending on the security properties that
must be guaranteed in the network. As mentioned before, in this dissertation the
VEREFOO approach has been designed to work with two NSF types: packet fil-
tering firewalls and VPN gateways. The NSPs that these functions can enforce are
respectively connectivity policies and communication protection policies.

Connectivity Policies

Connectivity policies describe isolation and reachability properties for end-to-end
communications, i.e., they specify which traffic flows must be blocked by packet
filters before reaching their destination, and which ones must be able to reach it.

The VEREFOO approach supports four different profiles for the specification of
connectivity policies. Each one is characterized by a default behavior, describing
how the traffic flows for which no specific policies are formulated must be managed,
and a set of specific NSPs, exclusively referred to certain traffic types.

In the first profile (whitelisting), the default behavior is set to block traffic flows
and the user can only additionally specify reachability policies, so that all traffic
flows must be blocked except for those that the user explicitly allows. In the second
profile (blacklisting), vice versa, the default behavior is set to allow traffic flows and
the user can only additionally specify isolation policies; in this case, all traffic flows
must be allowed with the exception of those that the user specifically requests to deny.

4.1 Inputs and Outputs of the VEREFOO Approach 57

Action IPSrc IPDst pSrc pDst tProto

Allow 192.168.1.∗ 192.168.2.∗ ∗ ∗ ∗
Allow 192.168.2.∗ 192.168.1.∗ ∗ ∗ ∗
Allow 192.168.1.∗ 130.10.0.∗ ∗ 80 TCP
Deny 192.168.1.∗ 130.10.0.∗ ∗ ̸=80 TCP
Deny 192.168.1.∗ 130.10.0.∗ ∗ ∗ UDP
Deny 192.168.2.∗ 130.10.0.∗ ∗ ∗ ∗
Allow 130.10.0.∗ 192.168.1.∗ ∗ ∗ ∗
Allow 40.40.41.∗ 130.10.0.∗ ∗ 80 TCP
Deny 40.40.41.∗ 130.10.0.∗ ∗ ̸=80 TCP
Deny 40.40.41.∗ 130.10.0.∗ ∗ ∗ UDP
Deny 40.40.42.∗ 130.10.0.∗ ∗ ∗ ∗
Allow 130.10.0.∗ 40.40.41.∗ ∗ ∗ ∗
Allow 40.40.42.∗ 40.40.41.∗ ∗ ∗ ∗
Deny 40.40.41.∗ 40.40.42.∗ ∗ ∗ ∗
Allow 88.80.84.∗ 40.40.∗.∗ ∗ ∗ ∗
Deny 88.80.84.∗ 130.10.0.∗ ∗ ∗ ∗

Table 4.2 Example set of connectivity policies

The other two profiles, called rule-oriented specific and security-oriented specific,
let the user explicitly formulate both specific isolation and reachability policies, but
without manually setting a default behavior. The way the VEREFOO approach
manages all the other cases, which the user is not interested in, is automatically
decided, in order to achieve some other goals. In the rule-oriented specific approach,
the goal is only to minimize the number of rules. In the security-oriented specific
profile, the system allows only the communications that are strictly necessary in
order to satisfy all user requirements, according to the least-privilege principle.

In all the four profiles, the specific NSPs are characterized by an action (deny or
allow) and a set of conditions, expressed on the fields of the IP packet and identifying
the traffic flows on which the action requested in the NSP must be enforced. As we
are considering the allocation and configuring of packet filters, these conditions can
be expressed on the IP 5-tuple. An example set of specific connectivity policies,
which may be specified for a rule-oriented specific or security-oriented specific
profile, is shown in Table 4.2. The main difference related to which profile is
actually chosen concerns the outcome of the VEREFOO approach. If the rule-
oriented specific profile is selected for this set of connectivity policies, the rules of
the allocated firewalls are automatically computed so as to be as few as possible.
Instead, if the security-oriented specific profile is selected, the number of allowed
traffic flows is minimized in the following way: (i) if an allocated firewall has a

58 The VEREFOO Approach

whitelisting configuration, the allowing rules must allow only the required traffic
flows; (ii) if the firewall has a blacklisting configuration, the denying rules should
block the largest number of flows.

Communication Protection Policies

Communication protection policies describe which security properties related to the
generation of VPNs (i.e., confidentiality, integrity) must be enforced on the traffic
flows crossing a network.

The VEREFOO approach supports two profiles for the specification of commu-
nication protection policies. The min-allocation profile aims to allocate the least
number of VPN gateways. This achievement would be useful in both traditional and
virtualized networks. In the former, less middleboxes would be bought and manually
installed. In the latter, less resources of the general-purpose servers would be used
for deploying virtual functions. This objective can be achieved by promoting the
generation of end-to-end VPNs where end points make their communications secure
by themselves, instead of site-to-site VPNs. The counterbalance of this criterion
is that in end-to-end VPNs bandwidth consumption is higher, as the traffic flows
that are identified by the security policies are protected in their whole paths, even
when it is not strictly necessary. The min-bandwidth profile, instead, aims to improve
the performance of network communications in terms of bandwidth. This objective
consists in generating an allocation scheme where VPN gateways are preferred over
end points for covering the role of VPN gateway. This preference causes protection
to be enforced for as short as possible paths, therefore saving bandwidth. The coun-
terbalance of this criterion is that resource consumption may result higher, as it may
be necessary to install a number of middleboxes for VPN generation higher than
necessary.

For each profile, a set of specific communication protection policies must be
specified. In particular, each communication protection policy is characterized by
the following elements:

• the condition set, representing the packet features that enable the identification
of the traffic flows to protect;

4.1 Inputs and Outputs of the VEREFOO Approach 59

Policy conditions Algorithms for confidentiality Algorithms for integrity Enforcement modes Trustworthiness and Inspection

IPSrc = 192.174.1.∗, IPDst = 144.14.2.∗,
pSrc = ∗, pDst = 80, tProto = ∗ {AES-GCM-256, 3DES-CBC} ∗ (true, true, false) NU = {125.22.2.2}, NI = {128.28.8.5}

IPSrc = 122.33.33.3, IPDst = 12.67.84.2,
pSrc = 110, pDst = ∗, tProto = ∗ {NULL} {HMAC-SHA-512} (false, true, d.c.) LU = {link between 55.44.33.22

and 55.44.33.27}

Table 4.3 Examples of Communication Protection Policies

• the security properties to be applied on the matching flows (e.g., confidentiality,
integrity), together with the algorithms to be applied for their enforcement
(e.g., AES-128-CBC, HMAC-SHA-512);

• information about the VPN enforcement modes, i.e., whether confidentiality
must be enforced on the header and payload of the original packet (or only
payload if there is encapsulation), whether integrity must be enforced on
the header and payload of the original packet (or only payload if there is
encapsulation), and whether integrity must be enforced on the header of the
encapsulating packet (if there is encapsulation).

• information about the trustworthiness of the network, i.e., the set of untrusted
nodes and links, where no trust assumption can be made, and the set of
inspector nodes, where the crossing traffic is required to be plain, so that it can
be analyzed by them.

A pair of examples of communication protection policies are shown in Table 4.3.

4.1.3 Expected outcome

After receiving the AG and the NSPs, the security allocation and configuration
problem is automatically solved.

In case of positive outcome, the provided result is composed of (i) the allocation
scheme of the NSFs in the input SG; (ii) the configuration of each allocated NSF. The
NSF allocation scheme specifies the APs where each NSF has to be allocated. The
configuration of each allocated NSF specifies its configuration rules (e.g., the filtering
rules for a firewalls, or the communication protection rules for a VPN gateway).
The allocation scheme contains the minimum number of NSFs required to enforce
all NSPs, so minimizing resource consumption, while the configuration of each

60 The VEREFOO Approach

s9
e1

e2

e3

f1

s10

f2

e5e4

s11

e6

s12

e7

f3

e8

Fig. 4.4 Final Service Graph with allocated firewalls

allocated NSF contains the minimum number of configured rules, thus minimizing
the amount of memory needed to store them and maximizing the NSF performance.

The allocation scheme is only generated at the logical abstraction level repre-
sented by the SG. It must not be confused with the embedding scheme in the physical
network, which is defined at a later stage by solving a classical Virtual Network
Embedding (VNE) problem [35] (i.e., defining how the virtual functions are placed
in the physical hosts). Hence, the output solution can be deployed automatically into
the virtual network by means of existing technologies. After deployment, in case a
new security configuration becomes necessary, e.g., to react to an attack that has just
been detected, new NSPs have to be defined by the administrator and provided to the
tool, which will then automatically compute the new configuration to be deployed.

Instead, if no solution to the problem can be found, a non-enforceability report
is generated for the user, who can try to guess why it has not been possible to
enforce the NSPs. A possible reason for a negative outcome can be that the SG
defined by the service designer does not provide adequate APs for the NSFs because
of some user-defined constraints set about their generation. Hence, one possible
strategy to get a working solution is to run the procedure again, releasing some of
the user-defined constraints.

An example of outcome that is produced by the VEREFOO approach to enforce
the connectivity policies listed in Table 4.2 with a security-oriented specific profile in
the AG of Fig. 4.3 is shown in Fig. 4.4 (allocation) and in Table 4.4 (configuration).
Even in a network of this size, a manual approach is prone to both human errors and
sub-optimizations. For example, human beings may fail to understand that allocating
a firewall in a16 would avoid the need of having firewalls in several other APs (e.g.,
a13, a14, a15, and a21). They may also fail in setting up correct rules that take into

4.2 MaxSMT problem formulation 61

Firewall fw1

Action IPSrc IPDst pSrc pDst tProto

1 Allow 220.124.30.1 130.10.0.4 ∗ 80 TCP
2 Allow 40.40.41.∗ 130.10.0.4 ∗ 80 TCP
3 Allow 130.10.0.4 ∗.∗.∗.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Firewall fw2

Action IPSrc IPDst pSrc pDst tProto

1 Allow 40.40.42.∗ 40.40.41.∗ ∗ ∗ ∗
2 Allow 88.80.84.∗ 40.40.42.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Firewall fw3

Action IPSrc IPDst pSrc pDst tProto

1 Allow ∗.∗.∗.∗ 192.168.∗.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Table 4.4 Filtering Policy rules for allocated firewalls

account all the possible changes the NAT s12 or the load balancer s9 may apply to the
traffic. For example, let us assume the human administrator has decided to allocate
a firewall in AP a16 with default action deny. In order to satisfy the connectivity
policy that allows all TCP traffic from 192.168.1.∗ to 130.10.0.∗ port 80, it would be
wrong to install the rule (Allow, 192.168.1.∗, 130.10.0.∗, ∗ , 80, TCP) in this firewall,
because the NAT s12 changes the source address. The right solution, instead, is rule
1 for f w1, as shown in Table 4.4. These issues increase dramatically when the
network topology size and the number of policies increase.

4.2 MaxSMT problem formulation

The formally correct and optimal solution for the automatic NSF allocation and
configuration problem is obtained by formulating and solving a partial weighted
MaxSMT problem, which is a generalization of the traditional SMT problem.

4.2.1 The SMT problem

The SAT problem, also called propositional satisfiability problem, is a traditional
problem in computer science, whose goal is to determine, given a propositional

62 The VEREFOO Approach

formula containing a set of propositional boolean variables (i.e., variables that can
assume as possible values only true or false), if a combination of values for these
variables exists to satisfy the formula, i.e., to make it true. An SAT solver, for this
reason, needs just to find a single solution, among all the possible ones that may
exist, in order to state that the input formula is satisfiable.

The language which is exploited by SAT solvers is the traditional boolean logic. A
generalization is represented by the Satisfiability Modulo Theories (SMT) problem,
where the language is instead the first-order logic, which includes the boolean
operations as a specific case, but it can use several other theories, such as theories
of real numbers, integers, lists, arrays, bit vectors and many other data structures.
Basically, an SMT problem is composed of a set of predicates, where each predicate
is a binary function defined over non-binary variables. Consequently, the SMT
language is much richer than the SAT language, it allows to express more complex
models and it represents a formalized approach to constraint programming for
constraint satisfaction problems.

To solve SMT problems, it is possible to use efficient state-of-the-art solvers such
as Z3 [164], which integrate search pruning methods, and also heuristic combinations
of algorithmic proof methods called tactics. As such, they are characterized by
several parameters whose correct tuning allows achieving good performance.

4.2.2 The MaxSMT problem

The Maximum Satisfiability Modulo Theories (MaxSMT) problem is an extension
of the SMT problem in the optimization context, where given a set of clauses
(i.e., predicates) containing predicate variables, the goal is to find an assignment of
these variables that maximizes the number of satisfied clauses in the set. The main
difference with respect to an SMT problem is that it is not sufficient to find a solution
that satisfies the predicate clauses, but, among all the possible solutions, one that
maximizes the number of satisfied clauses must be found.

Like the SAT and SMT problems, the MaxSMT problem is NP-complete in terms
of worst-case computational complexity [165]. However, the NP-completeness
only implies exponential time for the worst case, but the actual time for solving a
MaxSMT instance is often less than the worst case time, also depending on which
theories are used in the formulas. In particular, many instances of this problem can be

4.2 MaxSMT problem formulation 63

solved in polynomial time with respect to the problem dimension [166]. Therefore,
modeling real problems such as the security configuration problem and automatically
solving them can be a viable path to face them.

The MaxSMT problem formulation can have different variants. The most com-
mon ones are:

• the weighted MaxSMT, where a different weight can be assigned to each clause,
and, consequently, the search for the best solution prioritizes the satisfiability
of the most valued clauses;

• the partial MaxSMT, where some constraints are not relaxable because they
must be satisfied, while other clauses do not require to be necessarily satisfied
for the achievement of a valid solution;

• the weighted partial MaxSMT, which means weighted and partial.

Considering a weighted partial MaxSMT problem characterized by a set S of
relaxable clauses si, also called soft constraints, and a set H of non-relaxable clauses
h j, called hard constraints, a formal definition of the problem can be given as:

max
s

∑
i=1

wi ∗ si

subject to h j,∀ j ∈ [1,H]

4.2.3 Advantages of the partial weighted MaxSMT formulation

The partial weighted MaxSMT formulation is key to achieve all the three main
objectives of the VEREFOO approach: full automation, optimization, and formal
correctness. Full automation is achieved because a MaxSMT problem can be solved
without human intervention, except for the input specification. Optimization can be
achieved by expressing the optimization objectives by means of soft constraints, and
formal correctness can be achieved by expressing the formal correctness requirements
as hard constraints. Adopting this formal correctness-by-construction approach
is beneficial not only because it improves the assurance and confidence that the
computed solution is correct, but also because it avoids performing a-posteriori
formal verification. Indeed, the solution can already be considered formally correct

64 The VEREFOO Approach

as far as all problem components are correctly modeled, being fundamental that
such models capture all the information that may influence the correctness of the
solution. Specifically, such models must capture both the security requirements and
the forwarding behavior of the network where they must be enforced. At the same
time, the number and complexity of constraints in the MaxSMT problem must be
kept limited, in order to make the approach scalable. For all the above reasons, the
modeling of the problem components, when formulating the MaxSMT problem,
represents a big challenge.

In light of these considerations, it is clear that the MaxSMT problem formulation
is intrinsically tied to the modeling of network components and security policies.
For this reason, the next chapters of the dissertation provide the full definition of the
MaxSMT problem starting from the definition of the models, respectively to solve
the auto-configuration problem for firewalls in Chapter 5 and for VPNs in Chapter 6.

Chapter 5

Automatic Firewall Configuration

This chapter describes the application of the VEREFOO approach to the automatic
allocation and configuration of packet filtering firewalls. TABLE 5.1 includes the
main formal notations (symbols, functions, predicates, operators) used in this chapter.

5.1 Network and Policy Models

This section defines the formal models of the main components of the auto-configuration
problem (i.e., SG with its network functions, NSPs, traffic flows). These models are
later used to formulate the hard and soft constraints of the MaxSMT problem.

5.1.1 Service and Allocation Graph models

An SG is modeled as a directed graph GS = (NS,LS) where NS is the set of vertices,
representing the network nodes of the SG, while LS is the set of edges, representing
directed connections between nodes. NS is the union of two disjoint sets, i.e.,
NS = ES ∪ SS, where ES is the set of the end points (i.e., single hosts or edge
subnetworks), while SS is the set of intermediate service functions.

Each element of NS is uniquely identified by a non-negative integer index k, and
nk denotes the element of NS identified by k, so that each element of LS is uniquely
identified by a pair of non-negative integers, i.e., li, j ∈ LS, with i ̸= j, is the edge
from ni to n j. The function index(nk) = k is then defined. Moreover, each nk ∈ NS

66 Automatic Firewall Configuration

Symbol/Function/Predicate/Operator Definition
B= {true, false} boolean set
GS = (NS,LS), GA = (NA,LA) directed Service Graph (SG) and Allocation Graph (AG)
ES,EA,SS,SA end points, middleboxes
nk ∈ NS the element of NS identified by k
ns,nd ∈ NA source/destination endpoint
li, j ∈ LS the edge from ni to n j
AA the set of the APs where FWs can be potentially placed
t, t0 a class of packets and empty set of packets
ti, j the traffic transmitted from ni to n j
I d

i , I a
i packets that are dropped/allowed in ni

Di, j traffic that is transformed by Ti, j
f ∈ F a flow, i.e., class of packets generated by ns
r ∈ Rs Network Security Requirement element
r = (C, a) C is a condition set , a is the action (i.e, Allow/Deny)
AT = {DENY,ALLOW} set indicating isolation/reachability requirements
Ph set of all the placeholder rules
Uh set of effectively configured rules
FM

r flows that are not subflows of any other flow in Fr
α: NS→ 2I maps n ∈ NS to its set of IP addresses
Ti: T → T maps an input traffic to the corresponding output traffic
Ti, j: T → T maps part of Di, j to the corresponding output traffic
π: F → (NA)

∗ maps a flow to the ordered list of
nodes that are crossed by that flow

τ: F×NA→ T maps a flow and a node to the ingress traffic
ν : NA×F → NA +{n0} maps a network node n and a traffic

flow f to the next node crossed by f after n
σ : AA→ Z model the sign of the weights
allocated: NA→ B true⇔ a FW is allocated in ah
forbidden: LS→ B true⇔ the creation of an AP on li, j prohibited
forced: LS→ B true⇔ allocation of a firewall on li, j is required
denyi: T→B true⇔ ni drops all the packets
wlst: AA→ B true⇔ the def. act. of FW allocated in the AP is DENY
enforces: AT ×R→ B true⇔ the FW def. act. enforces requirement r
configured: Ph→ B true⇔ the placeholder rules included in Uh
matchAll: Ph×Q→ B true⇔ the rule conditions completely match the 5-tuple
matchNone: Ph×Q→ B true⇔ the rule conditions do not match any 5-tuple fields
t1 ⊆ t2 ∈ T t1 is a sub-traffic of t2
∧, ∨, ¬ used for conjunction, disjunction, negation
. used to denote a specific tuple element (e.g., given a tuple

t = (a,b,c), t.a identifies element a of tuple t)

Table 5.1 Notation

5.1 Network and Policy Models 67

is characterized by a single IP address, an IP address range or, more generically, a
set of IP addresses. Let us denote I the set of all IP addresses and α : NS→ 2I the
function that maps each element n ∈ NS to its set of IP addresses.

An AG is modeled similarly to an SG, as a directed graph GA = (NA,LA), with
the same indexing scheme for vertices and edges already used for the SG. In this
case, however, NA is the union of 3 disjoint subsets: NA = EA∪SA∪AA, where EA

and SA represent, respectively, the end points and the middleboxes, while AA is the
set of the APs where the firewalls can be potentially placed.

When the AG is automatically generated from the SG, taking into account the
set of additional requirements about the allocation of firewall instances provided by
the service designer, end points and service functions are not modified, i.e., EA = ES

and SA = SS. Similarly, as the assignment of IP addresses does not change from SG
to AG, α is simply lifted to be a partial function on the NA domain.

Let B= {true, false} denote the Boolean set, and allocated: NA→ B be a predi-
cate that formalizes allocation decisions, by specifying if each network node is actu-
ally allocated in the AG. For each nk ∈ EA∪SA, allocated(nk) is true by definition,
whereas for each ah ∈ AA, the automatic procedure decides whether allocated(ah)

has to be true or not (i.e., whether a firewall has to be allocated in ah or not).

For each li, j ∈ LS, i ̸= j, the requirements about the possible allocation of fire-
walls coming from the service designer are formally represented by two predicates:
forbidden: LS→ B and forced: LS→ B. For each li, j ∈ LS, forbidden(li, j) is true if
and only if the creation of an AP on li, j has been prohibited, while forced(li, j) is true
if and only if the allocation of a firewall on li, j has been required. The constraint
(5.1) expresses that the two requirements cannot coexist for the same li, j.

∀ li, j ∈ LS.¬(forbidden(li, j)∧ forced(li, j)) (5.1)

According to the requirements expressed by the forbidden predicate, AA and LA

are computed as the smallest sets that satisfy the conditions (5.2) and (5.3).

∀ li, j ∈ LS. (¬forbidden(li, j) =⇒ ah ∈ AA∧ li,h ∈ LA∧ lh, j ∈ LA) (5.2)

∀ li, j ∈ LS. (forbidden(li, j) =⇒ li, j ∈ LA) (5.3)

According to (5.2), for each SG edge li, j, if the creation of an AP on it is not
prohibited, i.e., if forbidden(li, j) = false, an AP ah is added to the AG between nodes
ni and n j, i.e., it is included in AA, and it is connected by the edges li,h ∈ LA and

68 Automatic Firewall Configuration

lh, j ∈ LA, replacing edge li, j ∈ LS. Instead, according to (5.3), no AP is created on li, j
if it is prohibited, i.e., if forbidden(li, j) = true. In this case, li, j is simply included in
LA. Note that, if both forbidden(li, j) = true and forbidden(l j,i) = true, a single AP
ah is created for them .

Finally, (5.4) is used to force the allocation of a firewall in the AP ah created on
link li, j when the user requests it.

∀li, j ∈ LS. (forced(li, j) =⇒ allocated(ah)) (5.4)

5.1.2 Traffic and Network Functions models

A class of packets, also called traffic, t, is modeled as a predicate defined over
the values of the TCP/IP 5-tuple packet fields. More precisely, t is modeled as a
disjunction of predicates qt,1 ∨ qt,2 ∨ ...∨ qt,n, where each qt,i is defined over the
5-tuple fields. A packet belongs to class t if and only if its 5-tuple satisfies at least
one qt,i. In order to keep the model simple but at the same time fairly general, it is
assumed that each qt,i is the conjunction of five predicates, one for each field of the
5-tuple. For simplicity, each qt,i is written as

qt,i = (IPSrc, IPDst,pSrc,pDst, tPrt) (5.5)

where IPSrc, IPDst, pSrc, pDst and tPrt are the 5 predicates.

Considering IPv4 addresses, it is assumed that IPSrc and IPDst are conjunctions
of four predicates, one for each byte of the IP address. Each one of these four
predicates can identify either a single integer value or a range of values, not exceeding
the range 0 to 255. The predicates that make up IPSrc or IPDst are concisely
written by means of the dotted-decimal notation ip1.ip2.ip3.ip4, where ipi is a
single decimal number or a range of values, written [ipi,l, ipi,h]. The range [0, 255]
is concisely represented by the wildcard ∗. If ipi is a range, the predicates on
its right must be ∗. For example, IPSrc = 130.192.5.∗ stands for the predicate
x1 = 130∧ x2 = 192∧ x3 = 5, where xi is the variable representing the i-th byte of
the source IP address packet field, and this predicate identifies all the IP addresses
matching 130.192.5.0/24.

The predicates about source and destination ports sPort and dPort can identify
either a single integer number or a range of values, not exceeding the range 0 to
65535, and the same notation used for each byte of an IP address is also used for

5.1 Network and Policy Models 69

the port number, with the range [0, 65535] symbolized by the wildcard ∗. For
example, 80 stands for the predicate x = 80 and [80,100] stands for the predicate
x <= 100∧ x >= 80 where x is the variable that represents the port field.

The predicate about the transport-level protocol tPrt can identify a single value
or a subset of values among a finite set of possible values (e.g., a set including the
“TCP” and “UDP” values). The set of all the possible values in this set is concisely
symbolized by the wildcard ∗.

Finally, the special symbol t0 identifies the empty set of packets, i.e., t0 = false,
which means absence of traffic.

Let us denote Q the set of all the predicates qt,i that can be specified with the
above notation, and T the set of all the disjunctions of such predicates, i.e., the set of
all packet classes t that can be represented by this model. It can be proved that T
is closed under conjunction, disjunction and negation. Given two traffic predicates
t1, t2 ∈ T , t1 is said to be a sub-traffic of t2, written t1 ⊆ t2, if t1 represents a subset of
the packets represented by t2, i.e., if t1⇒ t2.

Each VNF in the SG acts on its input traffic and generates a corresponding
output traffic. Its behavior, which depends on its code and configuration, is modeled
abstractly by means of two functions, capturing respectively the forwarding behavior
(i.e., which input packets are dropped by the VNF) and the transformation behavior
(i.e., which packets may be output by the VNF for each class of input packets).

The function that models the forwarding behavior of the VNF in node ni ∈ NA

is the predicate denyi: T→B which is true for ingress traffic t ∈ T , if and only if
ni drops all the packets represented by t. Moreover, for node ni, the traffic I d

i

specifies the packets that are dropped by the function, i.e., denyi(t) is true if and only
if t ⊆I d

i . Instead, the traffic I a
i is the complement of I d

i , since it specifies the
packets that are allowed (i.e., not dropped) by the function. Clearly, I d

i ∨I a
i = true

and I d
i ∧I a

i = false.

The transformation behavior of the VNF in node ni ∈ NA is instead modeled
by the function Ti: T → T , called transformer, which maps an input traffic to the
corresponding output traffic.

One may argue that function Ti alone would be enough, e.g., by setting Ti(t) = t0

for all t such that denyi(t) is true. However, keeping these two functions distinct
and independent brings some advantages to the proposed approach. Note that a

70 Automatic Firewall Configuration

transformer describes traffic transformations independently of whether packets are
dropped or not. For example, a firewall can be characterized simply as a VNF having
Ti(t) = t (i.e., Ti is the identity function, because the firewall does not modify the
forwarded traffic), and a denyi(t) predicate that is true if each packet represented
by t is dropped according to the firewall rules. With this separation of duties, it is
possible to first compute how traffic is transformed when crossing the network, and
then reason about firewall configurations by using the denyi predicates only.

For many VNFs, Ti is the identity function, and the following constraint is
applied to the deny predicate:

denyi(t) = false (5.6)

This simple model applies, for example, to all traffic monitoring functions, because
they just inspect packets and forward them without modification. However, the same
model also applies to load balancers, because they forward each packet without
modification to a destination decided each time based on some internal logic. As it
is impossible to know the outcome of this decision beforehand, and all decisions are
possible, a load balancer can be modeled as a function that can forward each packet
to each destination.

An example of a VNF with a non-identity transformer is a Network Address
Translator (NAT)1. A NAT performs one of two different transformations selected
according to the features of the input packet: if the source address belongs to the set
of shadowed addresses, while the destination address does not, the source address is
translated into one of the public addresses of the NAT (shadowing). If instead the
source address does not belong to the set of shadowed addresses and the destination
address is one of the public addresses of the NAT, the destination address is translated
into one of the shadowed addresses (reconversion). In all other cases, the packet is not
modified. When, as in this case, the function operates different transformations for
different packet classes, the transformer can be expressed as Ti(t) = ∨ j(Ti, j(Di, j∧
t)), where Ti, j : T → T is the transformer applied for the packet class defined by
predicate Di, j. In the case of NAT, we have Ti(t) = Ti,1(Di,1 ∧ t)∨Ti,2(Di,2 ∧
t)∨Ti,3(Di,3∧ t), where Ti,1 is the shadowing transformer, Ti,2 is the reconverting
transformer and Ti,3 is the identity transformer that is applied in all other cases.
Let us denote p1, ..., pm the predicates representing the shadowed IP addresses
and a1, ...,al the predicates representing the public IP addresses of the NAT. Then,

1In this example, a NAT which can perform only a simple address translation is considered,
without the feature of port translation.

5.1 Network and Policy Models 71

considering a generic traffic t = ∨h
k=1(qt,k), the predicates Di, j and the transformers

Ti, j can be defined as

Di,1 = ∨m
x=1(px,¬(∨m

z=1(pz)),∗,∗,∗) (5.7)

Ti,1(t) = ∨l
y=1∨h

k=1 (ay,qt,k.IPDst,qt,k.pSrc,qt,k.pDst,qt,k.tPrt) (5.8)

Di,2 = ∨l
y=1(¬(∨m

x=1(px)),ay,∗,∗,∗) (5.9)

Ti,2(t) = ∨m
x=1∨h

k=1 (qt,k.IPSrc, px,qt,k.pSrc,qt,k.pDst,qt,k.tPrt) (5.10)

Di,3 = ¬(Di,1)∧¬(Di,2) (5.11)

Ti,3(t) = t (5.12)

5.1.3 Traffic flows model

The transformation behavior of an entire AG is described by means of its set of
traffic flows F . Specifically, each flow f ∈ F represents a class of packets that are
generated by a source endpoint ns ∈ NA, directed to a destination endpoint nd ∈ NA,
and steered to pass through an ordered list of intermediate nodes na,nb, ... ∈ NA that
may forward them at each hop, possibly changing them (e.g., an intermediate NAT
can change packet addresses), or drop them. Accordingly, a flow is formally modeled
as a list [ns, ts,a,na, ta,b,nb, ...,nk, tk,d,nd], where ti, j represents the traffic (i.e., class
of packets) transmitted from ni to n j, and each ti, j is the result of the transformation
of the previous traffic in the flow by node ni, i.e., ∀ti, j ̸= ts,a. ti, j = Ti(tk,i), where
nk is the node that precedes ni in the flow. Moreover, each ti, j is homogeneous for
node n j. This means that all the packets it represents are handled in the same way by
n j, i.e., either all of them or none of them are dropped and, if n j applies different
transformations to different classes of packets (e.g., n j is a NAT), they belong all to
the same class.

Alongside with this definition, three auxiliary functions are introduced to charac-
terize the flows of an AG:

• π: F → (NA)
∗, which maps a flow to the ordered list of network nodes that are

crossed by that flow, including the destination, but not the source;

• τ : F ×NA→ T , which maps a flow and a node to the ingress traffic of that
node belonging to that flow. In case flow f does not cross node n, we have
τ(f ,n) = t0;

72 Automatic Firewall Configuration

• ν : NA×F → NA +{n0}, which maps a network node n and a traffic flow f to
the next node crossed by f after n. In case n is not in f or is the last node, this
function returns n0, a symbol representing no node (n0 ̸∈ NA).

In order to better clarify the traffic flow concept, let us use the example of Fig.
4.3. A flow from network e7, shadowed by NAT s12, to TCP port 80 of web server
e1, located behind load balancer s9, can be represented as f1 = [e7, t7,22, a22, t22,12,
s12, t12,21, a21, t21,11, s11, t11,19, a19, t19,10, s10, t10,16, a16, t16,9, s9, t9,13, a13, t13,1,
e1], and each traffic is characterized by a single 5-tuple:

t7,22 = t22,12 = (192.168.1.∗,130.10.0.4,∗,80,TCP)

t12,21 = t21,11 = t11,19 = t19,10 = t10,16 = t16,9 =

(220.124.30.1,130.10.0.4,∗,80,TCP)

t9,13 = t13,1 = (220.124.30.1,130.10.0.1,∗,80,TCP)

Note that the source IP address is modified after f1 crosses the NAT s12, while
the destination IP address is changed by the load balancer s9. For flow f1 we
have π(f1)=[a22, s12, a21, s11, a19, s10, a16, s9, a13, e1]. Moreover, we have, for
example, τ(f1,a19) = τ(f1,s9), τ(f1,a18) = t0, ν(a22, f1) = s12, ν(s11, f1) = a19,
and ν(a13, f1) = e1.

Given two flows f1, f2, f1 is said a subflow of f2, written f1⊆ f2, if f1 and f2 pass
through the same list of nodes and for each one of such nodes the ingress traffic of f1

is a subset of the ingress traffic of f2, i.e., π(f1) = π(f2) and ∀n ∈ π(f1).τ(f1,n)⊆
τ(f2,n).

5.1.4 Network Security Policy model

The NSPs relevant for firewall allocation and configuration are those expressing
isolation and reachability properties. Such policies are modeled by a default behavior
D, which is an element of the set {blacklisting, whitelisting, rule-oriented-specific,
security-oriented-specific}, and a set of specific Network Security Requirements
(NSRs), Rs. Each NSR r ∈ Rs is expressed in medium-level language as a pair
r = (C, a), where C is a condition and a is the action that must be performed on the
flows that satisfy C.

Before defining what are the flows that satisfy a condition, let us refine the
definition of C. Each condition C that occurs in a NSR is a predicate similar to the

5.1 Network and Policy Models 73

ones defined for modeling packet classes, i.e., C = (IPSrc, IPDst, pSrc, pDst, tPrt).
The predicates IPSrc and pSrc specify the traffic sources the NSR refers to. Instead,
the predicates IPDst, pDst, and tPrt specify the traffic destinations and the protocol
the NSR refers to.

A flow f = [es, ts,a, ..., tk,d,ed] satisfies C if the following three conditions are
satisfied:

1. its source and destination endpoints es, ed have IP addresses matching IPSrc
and IPDst respectively, i.e., α(es)⊆C.IPSrc and α(ed)⊆C.IPDst;

2. its source traffic satisfies IPSrc and pSrc, i.e., tsa ⊆ (C.IPSrc,∗,C.pSrc,∗,∗);

3. its destination traffic satisfies IPDst, pDst, and tPrt, i.e.,

tkd ⊆ (∗,C.IPDst,∗,C.pDst,C.tPrt).

Let then Fr ⊆ F denote the set of flows that satisfy r.C. From these definitions, it
follows that all the subflows of a flow that is in Fr are in Fr too.

Each action a is one of the two elements of the set AT = {DENY,ALLOW}. If
r.a = DENY, r is an isolation requirement, meaning that all flows that satisfy r.C
must be blocked, i.e., their destination must be reached by no packet of the flow,
otherwise r is a reachability requirement, meaning that at least one flow that satisfies
r.C is blocked (i.e., at least one class of its packets is allowed to reach its destination).

Formally, an isolation requirement r can be translated into the following logical
formula:

∀ f ∈ Fr.∃i. (ni ∈ π(f)∧allocated(ni)∧denyi(τ(f ,ni))) (5.13)

while a reachability requirement r can be translated into

∃ f ∈ Fr.∀i. (ni ∈ π(f)∧allocated(ni) =⇒ ¬denyi(τ(f ,ni))) (5.14)

It is evident that the truth of the above formulas implies the corresponding
requirements are satisfied.

Rs is assumed to be conflict-free. This is not a restriction because conflicts can
be eliminated by means of well-known anomaly analysis techniques (e.g., [20, 22]).

Let us define RD as a set of requirements that represent, in an explicit way, the
default behavior when D is blacklisting or whitelisting. RD is made of requirements

74 Automatic Firewall Configuration

taking the same form as those in RS. More precisely, for each valid combination of
5-tuple elements for which there is no requirement in Rs whose condition matches
it, there is an element of RD, r, such that r.C matches it, and r.a = ALLOW if
D= blacklisting and r.a=DENY if D=whitelisting. By construction, each element
of RD does not conflict with any NSR in Rs. If D is rule-oriented-specific or security-
oriented-specific, instead, we define RD = /0.

Finally, we also define R = Rs∪RD.

5.2 Maximal Flows Computation

The conditions expressed by (5.13) and (5.14), associated with a NSR r, depend
on the set of flows Fr. However, in order to improve the efficiency of the proposed
methodology, it is possible to consider only a subset of Fr, which is smaller than Fr

but equally representative: the set of maximal flows that satisfy r.C. This set, denoted
FM

r , is defined as the subset of Fr that contains only the flows that are not subflows
of any other flow in Fr, i.e. FM

r = { f M
r ∈ Fr| ̸ ∃ f ∈ Fr.(f ̸= f M

r ∧ f M
r ⊆ f)}. From

the definition of flow, it descends that the predicates ni ∈ π(f) and denyi(τ(f ,ni))

are true for a flow f if and only if they are true for all the subflows of f . Therefore,
the following formulas are equivalent to (5.13) and (5.14) respectively:

∀ f ∈ FM
r .∃i. (ni ∈ π(f)∧allocated(ni)∧denyi(τ(f ,ni))) (5.15)

∃ f ∈ FM
r .∀i. (ni ∈ π(f)∧allocated(ni) =⇒ ¬denyi(τ(f ,ni))) (5.16)

In fact, all the flows of Fr that are not in FM
r are subflows of flows that are in FM

r .

Through this definition, multiple flows that behave in the same way (i.e., that
cross the same node sequence and are subject to the same changes) are grouped
into a single maximal flow, becoming their subflows. Computing the maximal flows
reduces the number of different cases to be considered and, hence, also the number
of constraints composing the models, to the minimum one. In fact, the number of
flows to be considered is minimized. Another advantage of maximal flows is that
their generation occurs before the formulation of the MaxSMT problem, so that the
variables composing the flow model are not free when included in the MaxSMT
problem formulation, but they are already assigned specific values. In this way, the
number of free variables is kept low, limiting the solution space to be searched in the
MaxSMT problem, and improving performance.

5.2 Maximal Flows Computation 75

Algorithm 1 computation of FM
r

Input: a requirement r, and an AG GA, Output: FM
r

1: FM
r = /0

2: for each p = [n0,n1, ...,nm+1] ∈ paths(r,GA) do
3: F ←{[n0, tr

0,1,n1, true,n2, ..., true,nm+1]}
4: for i = 1,2, ...,m do
5: F ←{l +[bi∧b′i,ni]+ l′ | l +[bi,ni]+ l′ ∈ F,

b′i ∈ {I a
i ,I

d
i }}

6: F ←{l +[bi∧b′i,ni]+ l′ | l +[bi,ni]+ l′ ∈ F,
b′i ∈ {Di j}}

7: F ←{l +[bi,ni,bi+1∧Ti(bi),ni+1]+ l′ |
l +[bi,ni,bi+1,ni+1]+ l′ ∈ F}

8: end for
9: F ′←{l +[tr

m,m+1∧bm+1,nm+1] | l +[bm+1,nm+1] ∈ F}
10: for i = m,m−1, ...,1 do
11: F ′←{l +[bi∧T −1

i (bi+1),ni,bi+1]+ l′ |
l +[bi,ni,bi+1]+ l′ ∈ F ′}

12: end for
13: if F ̸= F ′ then
14: F ← F ′

15: goto line 4
16: end if
17: FM

r ← FM
r ∪F

18: end for
19: return FM

r

For each NSR r, FM
r can be computed on the basis of the transformation behavior

of NFs, by means of Algorithm 1.

Initially, the set paths(r,GA) containing the paths of GA that satisfy r.C is
computed. These are all the paths of GA with end points es, ed ∈ EA such that
α(es)∧ r.C.IPSrc ̸= false and α(ed)∧ r.C.IPDst ̸= false. Each path is represented
by a list of nodes p =[n0, · · · ,nm+1], where n0 = es and nm+1 = ed .

For each path p, the elements f ∈ FM
r such that π(f) = p are computed and

added to the result set. This computation is performed iteratively. At each iteration,
two sets of lists F and F ′ of alternating nodes and packet classes are computed. The
first set F initially contains only the list [n0, tr

0,1,n1, true,n2, ..., true,nm+1] (line 3). In
this list, tr

0,1= (α(n0) ∧ r.C.IPSrc, ∗, r.C.pSrc, ∗, ∗) is the largest traffic that satisfies
the source components of r.C, while the other packet classes are set to true (i.e., the
class of all packets). Then, at each iteration, a forward traversal and a backward
traversal of the path p are performed. In the forward traversal (lines 4-8), each list in

76 Automatic Firewall Configuration

F is progressively updated to take into account the way the traffic is transformed by
each NF, and it is split into sub-lists that satisfy the homogeneity property of flows:
for each node ni of the path, the predicate bi, which represents the ingress traffic of ni

in the current list, is split into the largest homogeneous subclasses of packets for node
ni by intersecting it with the classes of packets I a

i , I d
i , and Di j, i.e., the classes that

can be distinguished by the denyi predicate and by the Ti transformer respectively
(lines 5-6). In these formulas, the operator + means list concatenation. Note that, for
the packet filters in the APs, I a

i and I d
i are unknown, because their configuration

is not yet decided. For these nodes, I a
i and I d

i are set respectively to true and
false, i.e., no splitting occurs. The lists resulting from this split are then restricted
through the conjunction of the predicate bi+1, which represents the egress traffic of
ni, and Ti(bi), i.e., the result of the transformation of node ni on the traffic bi (line
7). Then, the flows computed in the forward traversal have to be restricted in order
to select only those that satisfy the destination components of r.C. This is done by
the backward traversal, which computes a new set of lists, F ′, starting from the set F
computed in the forward traversal. F ′ is initialized to contain each element of F , with
its last traffic restricted to the largest traffic that satisfies the destination components
of r.C (line 9). Here, tr

m,m+1=(∗, α(nm+1) ∧ r.C.IPDst, ∗, r.C.pDst, r.C.tProto). In
the backward traversal (lines 10-12), the predicates representing the ingress traffic
of each node are restricted by propagating the restricted versions backwards. The
procedure stops when, after the last iteration, the flows in F and in F ′ are the same.
If not, a new iteration starts with F initially containing the flows present in F ′ at the
end of the previous iteration.

5.3 Firewall Allocation and Configuration

This section defines the abstract model that is proposed for the packet filtering
firewall behavior. Then, it discusses the hard and soft constraints that are defined
to express the allocation and configuration decisions, and it summarizes how the
MaxSMT problem is formulated by including the clauses related to all the problem
components.

5.3 Firewall Allocation and Configuration 77

5.3.1 Firewall configuration model

The Filtering Configuration (FC) for each possibly allocated firewall makes up
its behavior, and it is modeled within a user-friendly abstract language, which is
independent of specific firewall configuration languages, but fairly general.

In greater detail, the FC of a firewall that may be placed in ah ∈ AA is charac-
terized by a default action dh and a set of specific rules Uh. The default action dh

has less priority than the rules in Uh, because it is applied only if there is not any
rule in Uh that matches the packet fields. Besides, the action of each rule is the
opposite of the default action. The rules u ∈Uh are the typical packet filtering rules,
internally represented as u = (C,a), where u.C = (IPSrc, IPDst, pSrc, pDst, tProto)
and u.a ∈ AT = {DENY, ALLOW}. Although this representation is similar to the
NSRs formalization, this does not mean that for each NSR a single corresponding
firewall rule is needed or is enough in each firewall. A single firewall rule can be
sufficient to enforce multiple NSRs, while multiple rules in different firewalls could
be needed to enforce a single NSR, depending on the AG.

Besides, for the VEREFOO approach, given the potentially high number of
FC rules that can be configured for each firewall instance, limiting their number is
crucial for achieving good performance of the method. This limitation demands for
a trade-off between accuracy and scalability.

For this reason, each default action dh is determined before solving the MaxSMT
problem, choosing the value that would minimize the number of rules needed to
satisfy all the NSRs. In order to determine this value for dh, the only NSRs r that are
relevant are those for which the set of maximal flows FM

r contains at least a traffic
flow that passes through the AP ah (i.e., such that (5.17) holds).

∃ f ∈ FM
r . ah ∈ π(f) (5.17)

Let zr be the total number of 5-tuples composing the packet classes τ(f ,ah) such
that f ∈ FM

r and r is a reachability requirement for which (5.17) holds. Let instead
zi

r be the number of 5-tuples composing the packet classes τ(f ,ah) such that f ∈ FM
r

and r is an isolation requirement for which (5.17) holds. If zr > zi
r, then dh is set to

ALLOW, otherwise to DENY. This decision is consistent with the aim of reaching
an optimal solution. If the default action of each firewall is determined in this way,
specific policy rules are not needed for the NSRs with the same action and the
cardinality of the possible rule set is consequently minimized. The result of this

78 Automatic Firewall Configuration

decision is modeled by the wlst: AA→ B predicate, which is true for an AP ah if the
default action of the firewall allocated on ah is DENY. Another predicate related
to the default action is enforces: AT ×R→ B. enforces(dh,r) is true if the firewall
default action dh enforces requirement r, i.e., if dh = r.a.

Then, given for granted this first criterion, it is necessary to determine, for each
ah ∈ AA, the set of all the rules that potentially can be useful for a firewall that may
be allocated in ah, i.e., the candidates for being included in Uh. These rules are called
placeholder rules. Ph is the set of all the placeholder rules which are defined for a
firewall in ah, and each pi ∈ Ph is represented as pi = (C,a), as for the elements of
Uh. After having determined these rules, a soft clause is introduced for each one of
them, which is true if the rule is not included in Uh, thus getting the minimization of
the cardinality of Uh.

Placeholder rules are determined by selecting each NSR r that can influence a
specific ah ∈ AA, and by considering the possible ingress traffics of ah in the flows
that belong to FM

r . In particular, for each ah ∈ AA, let us define Qh as the set of
5-tuples for which a rule might be needed in a firewall placed in ah. For each
requirement r ∈ R, and each flow f ∈ f M

r , the 5-tuples composing the packet class
τ(f ,ah) are in Qh if the following two conditions are satisfied: 1) the flow f passes
through ah, i.e., ah ∈ π(f); 2) the default action dh assigned to the firewall allocated
in ah would not enforce r, i.e., enforces(dh,r) is false. The set Qh is thus computed
as the smallest set of the 5-tuples, such that (5.18) holds.

∀r ∈ R.∀ f ∈ FM
r . (ah ∈ π(f)∧¬ enforces(dh,r)

=⇒ (∀q ∈ τ(f ,ah). q ∈ Qh))
(5.18)

For each q∈Qh, a placeholder rule is defined in Ph. Consequently, the cardinality
of Ph is the same as the cardinality of Qh. The action of each placeholder rule
pi ∈ Ph is the opposite of the default action dh (i.e., pi.a = ALLOW if wlst(ah) is
true, pi.a = DENY otherwise). Instead, the conditions of each pi are defined over
free variables. The values of these variables are not predetermined, but they are
automatically computed by the solver. The computation of their values is bounded
to the hard constraints that are introduced in the MaxSMT problem.

This abstract model is inspired by the one proposed in the Firmato methodology
[59], which pursued a similar approach to provide a firewall configuration that is
independent from the specific different implementations. Besides, this model has
been also mapped to multiple real firewalls (i.e., iptables, ipfirewall, eBPF-based

5.3 Firewall Allocation and Configuration 79

firewall, Open vSwitch), as the generation of their settings simply involves a syntax
change with respect to the abstract model. The feasibility of this mapping also
proves that the proposed model is general enough to support multiple types of packet
filtering firewalls.

5.3.2 Firewall allocation and configuration constraints

Soft constraints are used to find the optimal firewall allocation and configuration
choices, which in turn are limited by the presence of hard constraints. Besides, the
soft constraints include free variables representing the choices that the solver can
make.

Soft clauses are defined so as to reach the two main optimization goals: 1) to
minimize the number of allocated firewalls; 2) to minimize the number of rules for
each allocated firewall. As free variables are shared among all clauses, the optimal
result is reached for both goals at the same time. However, weigths are assigned so
as to give priority to goal 1).

For goal 1), as a firewall can be allocated in any ah ∈ AA, a set of soft clauses is
introduced to state that it is preferable that in each ah ∈ AA no firewall is allocated.
This is expressed by (5.19), where Soft(f ,c) stands for a soft clause with formula f
and weight c.

∀ah ∈ AA. Soft(allocated(ah) = false, ch) (5.19)

An indication about the value assigned to ch will be provided later on, after the other
soft constraints have been presented.

For goal 2), each placeholder rule is actually included in Uh only if the optimizer
engine establishes that it is really necessary in order to reach the optimal solution.
The configured: Ph→ B predicate is introduced to represent this decision. It is true
for the placeholder rules that are included in Uh. To achieve the optimization goal,
the soft constraint (5.20) is thus exploited to represent the ideal condition in which
no firewall rule needs to be configured.

∀pi ∈ Ph.Soft(¬configured(pi), ch,i) (5.20)

If at least a rule belonging to Ph is configured, then a firewall instance must be
allocated in ah, because this rule is needed to satisfy a security requirement. This

80 Automatic Firewall Configuration

condition is expressed by the following hard constraint:

(∃pi ∈ Ph. configured(pi)) =⇒ allocated(ah) (5.21)

If the consequent of this hard constraint is true, the soft clause defined by (5.19)
cannot be satisfied for that packet filter, which needs to be allocated in the topology.

Since the priority of goal 2) is less than the priority of goal 1), the weight of
(5.19) must be higher than the sum of the weights of the soft clauses (5.20) related
to all the firewall placeholder rules:

∑
i:pi∈Ph

(ch,i)< ch (5.22)

An additional set of soft constraints must be introduced, in case of a security-
oriented specific approach, to minimize the number of allowed traffic flows. This
objective is modeled in the following way: (i) if the firewall has a whitelisting
configuration, the fields of the ALLOW rules should not be configured with the
wildcards feature, allowing only the required traffic flows; (ii) if the firewall has a
blacklisting configuration, the fields of the DENY rules should exploit the wildcards
feature, so as to block the largest number of flows. This objective is represented by
soft clause (5.23) for the source IP address, and similar clauses are defined for the
other 5-tuple fields. In these clauses, the σ : AA→ Z function, defined in (5.24), is
exploited to model the sign of the weights.

∀pi ∈ Ph.∀ j ∈ {1,2,3,4} .Soft(pi.IPSrc j = ∗, σ(ah) · ch,i, j) (5.23)

σ(ah) =

−1 if wlst(ah)

+1 if ¬wlst(ah)
(5.24)

As this is not one of the two main optimization goals, its priority is lower than the
one for goals 1) and 2). Consequently, the sum of the weights ch,i, j of all these clauses
must be less than the weight ch,i assigned to clause (5.20) for rule minimization.

In addition to the clauses presented so far, some other hard clauses are necessary,
in order to finalize the configuration of the FC of each firewall consistently with
the allocation and configuration choices. To achieve this purpose, it is necessary
to consider, for each AP ah, the set of possible input traffics Th = {τ(f ,ah) | f ∈
FM

r for some r ∈ R}. For each traffic t ∈ Th, two hard constraints are needed: one, to
define how the policy of the firewall in ah must be configured in case the firewall
must drop t, and another one to define how the same policy must be configured in
case the firewall must not drop t .

5.3 Firewall Allocation and Configuration 81

In order to formulate these clauses, the matchAll: Ph×Q→ B and matchNone:
Ph×Q→ B predicates are introduced. Given a placeholder rule pi ∈ Ph and a 5-tuple
q ∈ Q, the matchAll predicate is true if the rule conditions completely include the
values of the 5-tuple fields, as expressed by (5.25). Instead the matchNone predicate
is true if the packet classes expressed by the rule conditions and by the 5-tuple fields
are disjunct, as expressed by (5.26).

matchAll(pi,q)⇔ q⊆ pi.C (5.25)

matchNone(pi,q)⇔¬(q∧ pi.C) (5.26)

Having defined matchAll and matchNone, for each t ∈ Th, the two hard clauses in
(5.27) and (5.28) are introduced to finalize the configuration of the FC for the firewall
in ah. The allocated predicate in the antecedent of both the implications is motivated
by the fact that, if the firewall is not effectively allocated, then the configuration of
its policy is meaningless.

allocated(ah)∧denyh(t) =⇒ (a)∨ (b)

(a) = wlst(ah)∧∀q ∈ t.(∀pi ∈ Ph.(¬configured(pi)∨matchNone(pi,q)))

(b) = ¬wlst(ah)∧∀q ∈ t.(∃pi ∈ Ph.(configured(pi)∧matchAll(pi,q)))

(5.27)

allocated(ah)∧¬denyh(t) =⇒ (a)∨ (b)

(a) = wlst(ah)∧∀q ∈ t.(∃pi ∈ Ph.(configured(pi)∧matchAll(pi,q)))

(b) = ¬wlst(ah)∧∀q ∈ t.(∀pi ∈ Ph.(¬configured(pi)∨matchNone(pi,q)))

(5.28)

The truth of the antecedents directly depends on the consequences of the implica-
tions represented by (5.15) and (5.16). If the firewall is the function identified by
(5.15) to block a specific traffic flow, then it must be in whitelisting without any rule
that allows the 5-tuples of that traffic, or in blacklisting with specific rules that block
them. Instead, if the firewall should allow a traffic because of (5.16), then it should
be in whitelisting with a specific allowing rule that blocks each 5-tuple of the traffic,
or in blacklisting with no rule that would block them.

5.3.3 Summary of MaxSMT problem formulation

Here a summary is presented to describe how the problem modeling constraints
described in this chapter are used in the formulation of the MaxSMT problem.

For what concerns hard constraints, on one side, for each requirement r, hard
constraint (5.15) (for isolation) or (5.16) (for reachability) is introduced to state that

82 Automatic Firewall Configuration

r must be satisfied in the AG enriched with the allocated and configured firewalls.
On the other side, for each network function in the AG, a set of hard constraints is
introduced to constrain how it can forward flows. Different function types require
different constraints, as it has been discussed in Subsection 5.1.2. For example, for
each function in node ni that cannot drop flows, (5.6) is introduced, while for each
allocation place ah where a firewall can be allocated, (5.27) and (5.28) are introduced
to define the forwarding behavior of this firewall.

For what concerns soft constraints, for each allocation place ah, (5.19) is used
to minimize the number of allocated firewalls, while constraints (5.20) are used to
minimize the number of rules in each allocated firewall, and constraints (5.23) to
prefer aggregate rules. The weights of soft constraints are decided so as to satisfy
constraints (5.22) and (5.24). For each allocation place ah, the additional hard
constraint (5.21) is introduced in order to require that a firewall is allocated in ah

only if the solution includes at least one configured rule in it, along with the hard
constraint (5.4), which forces the allocation of firewalls in the positions where the
administrator necessarily requests the presence of a firewall.

For all the hard and soft constraints that have quantifiers in their definition, the
quantifiers are removed by using appropriate semantics-preserving transformations,
so as to make the solution of the MaxSMT problem more efficient.

The MaxSMT solver is fed with all these hard and soft constraints, and it com-
putes the optimal solution if a correct one that satisfies all the hard constraints can
be found. In particular, the values of the allocated and configured predicates respec-
tively provide information about the APs where firewalls have been allocated and
the rules that have been configured in their rule sets. Additionally, the values that
the solver has assigned to the free variables composing the configured rules indicate
how the 5-tuple-based conditions and the actions of the rules must be set up in each
allocated firewall.

The optimality of the problem solution can be proved under the assumption that
the MaxSMT solver is correct:

Theorem 5.3.1. If a solution s of the MaxSMT problem exists, and s allocates n
firewalls, then, the problem does not admit another solution s′ that allocates n′ > n
firewalls.

5.4 Implementation and Validation 83

Proof. By contradiction, let us assume that s′ exists. The sum of weights of s’s
true soft constraints is ch(|AA| − n) + δ , where ch(|AA| − n) is the contribution
from soft clauses (5.19) and δ < ∑i:pi∈Ph

(ch,i) the one from soft clauses (5.20).
Similarly, the same sum for s′ is ch(|AA| − n′)+ δ ′, with δ ′ < ∑i:pi∈Ph

(ch,i). As
both s and s′ are solutions of the problem, their sum of weights of satisfied soft
clauses must be the same, i.e., ch(|AA|−n)+δ = ch(|AA|−n′)+δ ′ which implies
ch(n′− n) = δ ′− δ . From δ < ∑i:pi∈Ph

(ch,i) and δ ′ < ∑i:pi∈Ph
(ch,i), we have also

(δ −δ ′)< ∑i:pi∈Ph
(ch,i). Then, ch(n′−n)< ∑i:pi∈Ph

(ch,i) and, since n′ > n, we have
ch ≤ ch(n′−n)< ∑i:pi∈Ph

(ch,i), which contradicts (5.22). ■

A similar theorem can be proved for the minimization of the number of rules.

From what concerns correctness, only the intuition of the formal proof is pre-
sented, as the proof would be too complex. The solver correctness assumption
implies that, if a solution is found, it is formally guaranteed to satisfy all the hard
constraints of the problem. Of course, it is possible to prove that the solution is
correct, as long as it is possible to prove or assume that the hard constraints of
the problem presented in this chapter, which are first order logic formulas, imply
correctness. Specifically, this holds provided that the hard constraints modeling the
possible forwarding behavior of network functions and the possible traffic flows
are a correct representation of reality. About this point, it is worth mentioning that
in literature there are approaches, such as [167], that can extract a formal model
of the forwarding behavior of a virtual function automatically from a behavioral
representation expressed in a high-level programming language like Java. Using
these approaches, it is possible to get high confidence about adherence of the models
to the real function behavior.

5.4 Implementation and Validation

The application of the VEREFOO approach to firewall configuration has been imple-
mented by means of a Java framework, which exploits the APIs offered by the z3
solver [164] to formulate and solve the MaxSMT problem. The code is publicly avail-
able at the following link: https://github.com/netgroup-polito/verefoo/tree/Budapest.
The framework is accessible through its REST APIs, so that it can be exploited by

84 Automatic Firewall Configuration

10 20 30 40 50 60 70 80 90 100

8

10

12

14

16

18

20

Number of Allocation Places

M
em

or
y

us
ag

e
(M

B
)

20 NSPs
40 NSPs
60 NSPs
80 NSPs
100 NSPs

(a) Memory usage chart

10 20 30 40 50 60 70 80 90 100
0

50

100

150

Number of Allocation Places

C
om

pu
ta

tio
n

tim
e

(s
)

20 NSPs
40 NSPs
60 NSPs
80 NSPs
100 NSPs

(b) Computation time chart

10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

Number of Allocation Places

C
om

pu
ta

tio
n

tim
e

(s
)

(c) Whisker plot

Fig. 5.1 Scalability for increasing number of Allocation Places

10 20 30 40 50 60 70 80 90 100

8

10

12

14

16

18

20

Number of Network Security Policies

M
em

or
y

us
ag

e
(M

B
)

20 APs
40 APs
60 APs
80 APs
100 APs

(a) Memory usage chart

10 20 30 40 50 60 70 80 90 100

0

50

100

150

Number of Network Security Policies

C
om

pu
ta

tio
n

tim
e

(s
)

20 APs
40 APs
60 APs
80 APs
100 APs

(b) Computation time chart

10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

Number of Network Security Policies

C
om

pu
ta

tio
n

tim
e

(s
)

(c) Whisker plot

Fig. 5.2 Scalability for increasing number of Network Security Policies

external tools as a component of a more complex architecture, or through its GUI for
human users.

The framework has been validated in different ways: on synthetically generated
networks, to prove the scalability of the approach (Subsection 5.4.1), and on topolo-
gies inspired by production networks, to verify the correctness and optimization
properties in realistic and complex environments (Subsection 5.4.2). It has also
been compared to the state-of-the-art approaches (Subsection 5.4.3). Finally, the
optimization provided by this approach has been evaluated (Subsection 5.4.4). All
the MaxSMT instances have been solved on a machine with an Intel i7-6700 CPU
at 3.40 GHz, 32GB of RAM, and z3 version 4.8.5. The z3 solver offers a parallel
execution mode for selected theories, but this mode has not been employed because
it is still experimental and not available for all the theories.

The decision of using this machine with medium computing power for these
tests and all the other ones that are discussed in this dissertation is motivated by
the intention of evaluating the performance level of the proposed approaches when
executed on medium-level, cheap hardware. If a more powerful machine was used,
some improvement could be expected, even if probably not so significant.

5.4 Implementation and Validation 85

5.4.1 Scalability evaluation

The scalability of the approach has been evaluated varying the follwing factors: the
number of APs where firewall instances can be allocated, the number of NSRs that
must be fulfilled, and the enforceability of the MaxSMT problem. The results have
been analyzed also in relation to the number of constraints of the MaxSMT problem
and the number of maximal flows to be computed.

Scalability versus number of APs and NSRs

The charts in Fig. 5.1 and Fig. 5.2 present the results of a series of tests performed to
evaluate scalability versus number of APs and NSRs. For each test case with a given
number of APs and NSRs, 100 runs have been executed. For the same test case, runs
are differentiated only by the IP addresses that are assigned to the network nodes,
while all the other parameters (e.g., topology of the AG, types of NSRs) are kept the
same. This choice is motivated by the way z3 manages the integer theory; the results
are, in fact, different in terms of computation time, according to the integer numbers
that are introduced in the clauses of the MaxSMT problem.

The AGs that have been exploited for scalability validation have been syntheti-
cally generated as extensions of the AG illustrated in Fig. 4.3. The number of end
points and middleboxes is properly adapted to the number of APs and NSRs that
characterize each test case. However, the middleboxes are functions that do not
modify the received packets, so that the focus of the validation is kept only on the
efficiency of the z3 formulas related to allocation and automatic configuration of
firewalls on one side, and on security requirements, on the other side. Moreover,
the NSRs considered for the tests are defined using the security-oriented specific
approach, which is the worst case because it introduces the biggest number of soft
constraints in the MaxSMT problem. For each test scenario, half of the requirements
are isolation properties, and half are reachability properties. All tests refer to cases
for which all NSRs can be enforced. This choice is motivated by the consideration,
confirmed by experiments (see section 5.4.1), that this is the worst case.

Fig. 5.1a and Fig. 5.2a show the peak memory usage that is required to build
the variables and constraints of the MaxSMT problem by using the z3 Java APIs.
This may be a critical parameter for the solver, which is highly memory-demanding.
However, even in the worst case considered, the amount of memory that is required

86 Automatic Firewall Configuration

is inferior to 19 MB. Consequently, this result shows that the framework can work
without any worrisome limitation due to memory.

Fig. 5.1b and Fig. 5.2b show the average computation time of each test case.
From these two charts, the most important result is that, even though the MaxSMT
problem belongs to the NP-complete class in terms of computational complexity,
the computation time does not increase exponentially. This achievement is valid
for the scalability both versus the number of APs and versus the number of NSRs.
According to such results, the framework can manage AGs with up to 100 APs
and 100 NSRs in less than 200 seconds (for each test case, the total number of
nodes is two times the number of the APs, but higher nodes to APs ratios do not
require significantly greater resources). This result can be motivated by three reasons.
First, and most importantly, NP-completeness only implies exponential time for
the worst case, but the actual time for solving a MaxSMT instance is often less
than the worst case time, also depending on which theories are used in the formulas
[166]. Second, formal models have been defined so as to capture all the required
aspects, but avoiding excessive complexity in the actual SMT problem to be solved
(e.g., avoiding redundancy in variables and constraints, avoiding quantifiers, and
solving maximal flow computations separately). Leveraging this trade-off between
expressiveness and complexity was a key factor that enabled the achievement of such
scalability results. Third, state-of-the-art solvers like Z3 employ internal strategies
that are quite efficient in exploring the solution space [164].

Fig. 5.1c and Fig. 5.2c show the value distribution of the computation time
measures by means of whisker plots; the number of NSRs is fixed to 100 in Fig.
5.1c, and the number of APs is fixed to 100 in 5.2c. Analyzing the whisker plots,
it is possible to state that the distribution of the values is mostly gathered between
the first and the third quartiles. The number of values that are outside this interval is
really low. Another consideration is that the average value is almost identical to the
median value: this also proves that the number of outliers, which would make the
average much bigger than the median, is almost null.

In Fig. 5.1b, 5.2b, 5.1c, and 5.2c, a baseline (red dotted horizontal line) is
introduced, in order to have a reference: it is the Deployment Process Delay (DPD)
introduced by a well known orchestrator (Open Source MANO) for deployment.
DPD is the time the orchestrator takes to deploy and instantiate a VNF within an
already booted VM and setup an operational network service. According to [168],

5.4 Implementation and Validation 87

APs 20 40 60 80 100 20 40 60 80 100
NSRs 20 20 20 20 20 100 100 100 100 100
Hard 240 376 494 621 748 673 734 795 923 1037
Soft 117 164 229 285 341 315 434 562 634 720
Total 357 540 723 906 1089 988 1168 1357 1557 1757

Table 5.2 Number of hard and soft constraints

this time is 134ms. The figures of these experiments show that the time taken by the
framework to automatically allocate and configure firewalls in SGs with up to 100
APs and with up to 80 NSRs does not exceed the DPD, so being acceptable even in
highly dynamic situations.

Scalability versus enforceability

All the MaxSMT problems that were employed for the previous scalability validation
could be solved, i.e., there always existed a solution that could satisfy all their hard
constraints. Here some cases of non-enforceability have been analyzed, i.e., when
some NSRs cannot be successfully refined into the firewall allocation scheme and
configuration. For example, there may not be enough APs in the logical topology
represented by the AG. New tests have been run to assess how memory usage and
computation time change for these cases. These tests were carried out under the
same conditions that have been previously explained for the tests related to Fig. 5.1,
with the difference that the topology is built so that no solution can be found by
the MaxSMT solver. The memory usage is the same as the one shown in Fig. 5.1a,
because it is determined by the set of variables and clauses, depending on the graph
size, which is the same. Instead, the computation time required to manage non-
enforceability cases is way less, as shown in Fig. 5.3a. More precisely, managing
non-enforceability cases requires a computation time that is two magnitude orders
less than the other cases, under the same network size and the same NSRs set. This
outcome was expected, as state-of-the-art MaxSMT solvers like z3 usually can
efficiently find out if no solution exists to satisfy the constraints of a certain problem
[164]. This feature is beneficial to the VEREFOO approach, as the user of the
framework can know in really fast times if a solution of the problem can be found,
or if the specified NSRs cannot be refined into a correct firewall configuration.

88 Automatic Firewall Configuration

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

Number of Allocation Places

C
om

pu
ta

tio
n

tim
e

(s
)

20 NSRs
40 NSRs
60 NSRs
80 NSRs
100 NSRs

(a) Non-enforceability cases

20 40 60 80 100
0

50

100

150

200

357 540 723
906

1089

988 1168

1357

1557

1757

Number of Allocation Places

C
om

pu
ta

tio
n

tim
e

(s
)

20 NSRs
100 NSRs

(b) Impact of constraints

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

37
54

75
89 114

257
332

356 387
419

Number of Allocation Places

C
om

pu
ta

tio
n

tim
e

(s
)

20 NSRs
100 NSRs

(c) Impact of maximal flows

Fig. 5.3 Other tests related to the scalability validation

Scalability versus number of MaxSMT constraints

A central factor in assessing the scalability of the approach is the number of con-
straints composing the MaxSMT problem. Their number is strictly dependent not
only on the numbers of APs and NSRs, but also on the way the formal models are
used for the definition of the MaxSMT problem. Therefore, validating the approach
with respect to this factor contributes to validating the impact of formalization on
performance. After all, defining formal models with a trade-off between expressive-
ness and performance has been a main motivation behind the formulation proposed
for the VEREFOO approach.

The results of the scalability tests related to the number of constraints are pre-
sented in Fig. 5.3b. This chart shows the average computation time, on 100 iterations,
for ten different combinations of numbers of APs and NSRs. The number of con-
straints composing the MaxSMT problem corresponding to each combination is
reported on top of each symbol in the plot lines. The information about the number
of constraints is enriched by TABLE 5.2, where the exact division between hard and
soft constraints is included.

From the results depicted in Fig. 5.3b, it can be observed that the number of soft
and hard clauses required for generating the use case with 20 NSRs and 100 APS
can be solved by z3 in around 50 seconds. Instead, it requires almost 200 seconds
to obtain the result for the use case with 100 APs and NSRs. The former case is
characterized by 748 hard and 341 soft constraints, while the latter by 1037 hard
and 720 soft constraints. From the relative increases of the two clause categories,
it derives that soft constraints have a bigger impact then hard constraints on the
performance of the methodology. This result was expected, because soft constraints

5.4 Implementation and Validation 89

are relaxable and therefore the MaxSMT solver has the faculty of deciding whether
to satisfy each one of them, thus increasing the size of the overall solution space.
These clauses are also the ones that involve the highest number of free variables.
Instead, all hard constraints must be satisfied, so the solver is simply in charge of
checking if the variable assignments are compatible with those clauses.

Impact of maximal flows computation time

All the tests that have been carried out so far envision both the application of
the maximal flows algorithm, discussed in Section 5.2, and the resolution of the
MaxSMT problem to output the firewall allocation scheme and configuration. How-
ever, interesting considerations can be taken by evaluating the performance of the
former separately from the latter, so as to understand the scalability of the code that
implements the flow algorithm.

The results of the scalability tests related to the maximum flows algorithm are
presented in Fig. 5.3c. This chart shows the computation time, averaged on 100
iterations, for ten different combinations of numbers of APs and NSRs. The number
of maximal flows corresponding to each combination is reported on top of each
symbol in the plot lines. From these results, it is clear how the time required for the
computation of the maximal flows is negligible with respect to the time needed for
solving the MaxSMT problem. For example, when the network is composed of 100
APs and 100 NSRs must be enforced, the total time required by the framework is
166s, but the computation of the maximal flows only takes a minimum fraction of
that time, i.e., 0.338s. Therefore, the impact of this algorithm on performance is
minimum. At the same time, it allows bringing over all the advantages showed in
Section 5.2.

The maximal flow algorithm may be parallelized, as the flows can be computed
separately for each user-specified NSR. However, as this algorithm has a negligible
impact on performance, the parallelization has not been implemented.

90 Automatic Firewall Configuration

GÉANT AG Internet2 AG

Number of vertices 49 53
Number of end points 19 18

Number of APs 11 17
Number of directed links 86 80

Number of NSRs 50 50
Number of flows 106 201

Average path length (vertices) 22 31
Average computation time (s) 32.77 144.27

Table 5.6 Test results for GÉANT and Internet2 AGs

5.4.2 Correctness and optimization verification

The correctness and optimization verification has been performed in two AGs in-
spired by the production networks GÉANT and Internet2 2. In comparison with the
synthetic topology exploited in the scalability tests, the two graphs representing these
topologies have a much more complex and ramified structure. This characteristic has
some critical consequences: not only the number of middleboxes that each traffic
flow has to cross to reach the destination is higher, but also the number of traffic
flows that satisfy the conditions of the same NSR is higher.

With the aim to verify that the NSRs are correctly enforced by the computed
solution, we have used the Mininet emulator to instantiate the two use cases in a
controlled environment. The tests made on the Mininet emulation confirmed that
all NSRs are satisfied, as expected. Therefore, these tests also allowed checking
the correctness of the proposed approach. Then, with regards to optimization, the
solution computed by the framework has been checked to be the one that minimizes
the number of allocated firewalls and configured rules, by comparing it with all the
possible solutions to the same problem instances.

TABLE 5.6 reports the main characteristics of the two AGs and the average time
which is required, out of 100 runs, to compute the firewall allocation scheme and
configuration, when the number of NSRs is set to 50 (this is a reasonable number
with respect to the size of the end point set). The number of APs is low with respect
to the total number of vertices and links. A first reason for it is that these topologies
have been built directly as AGs, with the APs placed only in specific positions

2Links: https://geant3plus.archive.geant.net/, https://www.internet2.edu/. Last accessed: October
18th, 2022.

5.4 Implementation and Validation 91

Approach Network Allocation Configuration Formal Optimization Scalability
[59] Traditional X ✓ ✓(with [120]) X No Info
[63] Traditional X ✓ X X No Info
[61] Traditional X ✓ X X 10 devices - No info

[58] Both ✓(SG) X ✓
✓(allocation: minimize deployment cost,

and maximize security and usability) 20FW - 80s

[55] Virtual ✓(SFC) ✓ X X 20 devices - 4s
[64] Traditional X ✓ ✓ X No Info
[69] Both X ✓ ✓ X 5FW - 50s
[40] Both ✓(SFC) ✓ ✓ X No Info
[57] Both ✓(SG) X X ✓(allocation: minimize rule set cardinality) 60FW - No Info

VEREFOO Both ✓(SG) ✓ ✓
✓(allocation & configuration: minimize

number of FWs and of rules)
100FW - 90s

Table 5.7 Comparison with most related approaches (features versus scalability)

inspired from the GÉANT and Internet2 features. A second reason is that in these
AGs links are bidirectional, so each bidirectional link counts as two directed links.

The computation time required for the Internet2 AG is higher than that taken for
the GÉANT AG, because in the former case the number of possible paths between
any pair of end points and, consequently, also the number of traffic flows, is higher.
However, in both cases, the achieved result is satisfactory, considering that it is much
less than what we could expect for a manual configuration and that the automated
approach reduces the possibility of human errors.

5.4.3 Comparison with state-of-the-art approaches

TABLE 5.7 shows a comparison of the VEREFOO approach with the most related
state-of-the-art approaches available in the literature. The table compares the fol-
lowing main features of each approach: “Network” specifies if the approach can
work only on traditional physical networks, only on virtual networks, or on both
types; “Allocation” specifies if the approach has the capability of computing the
firewall allocation scheme (on a SG or on a SFC); “Configuration” specifies if the
approach has the capability of computing the firewall configuration rules; 4) “Formal”
specifies if the approach is formal; 5) “Optimization” specifies if the approach finds
an optimized solution and with which criteria; 6) “Scalability” reports the maximum
size of the problem (in terms of number of firewalls) the approach has been tested
on, and the computation time required by it for computing a solution in a network of
that size, if they are provided by the related paper.

The table confirms that no other existing approach jointly computes the fire-
wall allocation scheme and the configuration starting from a provided SG, as the
VEREFOO approach does. Also, no prior work achieves all the three features of full

92 Automatic Firewall Configuration

automation, optimization, and formal correctness, with the exception of [58], which,
however, supports only the automatic generation of the firewall allocation scheme,
without computing the configuration of each allocated instance, and it pursues dif-
ferent optimization goals. Finally, even no combination of existing approaches can
be used to obtain automatically the same results that the VEREFOO approach can
obtain.

Nevertheless, it may be interesting to make a rough comparison between the
scalability data reported by the other approaches and the data retrieved by the
validation of the VEREFOO approach (the “Scalability” column of TABLE 5.7).
The VEREFOO framework proves to be competitive with respect to the other relevant
works in terms of scalability, especially considering the added value of the results
achieved. Many existing approaches, such as [59], [63], and [64], do not provide any
information about the size of the networks on which the approach has been tested
or the computation time. Other approaches, such as [61], [58], [55], and [69], can
scale up to small sized networks (between 5 and 20 firewalls). An approach that has
been tested on bigger networks is [57]. However, even though it was tested on a
distributed firewall having up to 105 rules, the authors do not report the time taken,
so that the actual scalability remains unknown. In addition, the huge number of
rules reported in the paper may be due to the fact that this approach does not support
wildcards (∗) in rules. The VEREFOO approach, instead, using wildcards, defines
more powerful rules, each one capable of representing many wildcard-free rules.
Finally, it is important to recall that the approach in [57] solves a problem that is
much simpler than the proposed one, because it cannot start from a given SG, but it
generates, from scratch, a network of firewalls that interconnect the given end points
and it assumes a simple pre-defined strategy to populate firewalls with rules.

5.4.4 Optimization evaluation

The optimization that the proposed methodology can achieve in terms of number
of allocated firewalls and number of rules has been evaluated varying the size of
the problem. Because, as already discussed, there are no other existing automated
approaches that can obtain the same results, as a reference some traditional configu-
ration strategies are considered: (a) the worst-cost strategy that allocates a firewall in
each AP, with allow default action, and installs one deny rule for each isolation NSR;
(b) a more optimized strategy that, for each isolation NSR, allocates a firewall with

5.4 Implementation and Validation 93

(10,20) (20,40) (30,60) (40,80) (50,100)
0

10

20

30

40

50

(Number of APs, Number of NSRs)

N
um

be
ro

fa
llo

ca
te

d
fir

ew
al

ls VEREFOO
Strategy (a)
Strategy (b)

(a) Optimization re-
lated to allocated fire-
walls

(10,20) (20,40) (30,60) (40,80) (50,100)

101

102

(Number of APs, Number of NSRs)

A
ve

ra
ge

nu
m

be
ro

fr
ul

es
fo

rfi
re

w
al

l

VEREFOO
Strategy (a)
Strategy (b)

(b) Optimization re-
lated to average num-
ber of firewall rules

(10,20) (20,40) (30,60) (40,80) (50,100)
101

102

103

(Number of APs, Number of NSRs)

To
ta

ln
um

be
ro

fr
ul

es

VEREFOO
Strategy (a)
Strategy (b)

(c) Optimization re-
lated to total number
of firewall rules

(80,20) (60,40) (50,50) (40,60) (20,80)
0

10

20

30

40

50

(% Reach NSRs, % Isol NSRs)

N
um

be
ro

fa
llo

ca
te

d
fir

ew
al

ls VEREFOO
Strategy (a)
Strategy (b)

(d) Optimization re-
lated to allocated fire-
walls

Fig. 5.4 Optimization tests, in comparison with configuration strategies

allow default action in each AP that is closest to the source specified by the NSR,
with a rule that enforces the NSR. .

Fig. 5.4a, Fig. 5.4b and Fig. 5.4c report, respectively, the total number of
allocated firewalls, the average number of generated rules for each allocated firewall,
and the total number of generated rules for varying numbers of NSRs and APs,
considering a number of NSRs that is twice as big as the number of APs. In
this evaluation, all approaches, including VEREFOO, adopt a blacklisting target.
Fig. 5.4a shows that the VEREFOO approach achieves a relevant gain in terms of
allocated firewalls, which increases progressively with bigger topologies (and higher
numbers of NSRs), not only with respect to the worst-case strategy (a), but also with
respect to strategy (b). Looking at Fig. 5.4b and Fig. 5.4c, the VEREFOO approach
achieves a good gain in terms of total number of rules, while the average number of
rules per allocated firewall is lower for strategy (b). This is easily explained by the
fact that strategy (b) allocates many more firewalls. Note that, because of the big
difference between the results of strategy (a) and the other ones, the y-axis in Fig.
5.4b and Fig. 5.4c is in logarithmic scale, to make this difference observable.

For each case analyzed for the tests whose results are depicted in the previous
figures, 50% of the NSRs are isolation NSRs, the other ones are reachability NSRs.
Additional tests have been carried out to evaluate the impact of the NSR types on
optimization. Fig. 5.4d reports the optimization in terms of total number of allocated
firewalls, while considering the worst case of the previous tests, i.e., keeping the num-
bers of APs and NSRs respectively fixed to 50 and 100, but varying the percentages of
isolation versus reachability NSRs. In these tests, the VEREFOO approach worked
with the security-oriented profile, which is more complex than the blacklisting one.
Instead, the other reference strategies remain as previously described, as they cannot
support the security-oriented mode. Therefore, the number of reachability NSRs

94 Automatic Firewall Configuration

does not influence their results. From Fig. 5.4d, it is evident how both strategy (b)
and the VEREFOO method generate bigger allocation schemes and rule sets when
the number of isolation NSRs is higher, but the increase for VEREFOO is much
more mitigated than the one for approach (b). Finally, the behavior of the proposed
method, when used in the more complex security-oriented specific approach, has
been proved to be similar to the one characterizing the blacklisting approach. This
result was expected, because the minimization of the firewall allocation scheme
is always the primary optimization objective in VEREFOO, whatever approach is
employed.

Chapter 6

Automatic VPN Configuration

This chapter describes the application of the VEREFOO approach to the automatic
allocation and configuration of Communication Protection Systems (CPSs) such as
VPN gateways. TABLE 6.1 includes the main formal notations (symbols, functions,
predicates, operators) used in this chapter.

6.1 Network Model

This section defines the formal models of the main components of the network where
the auto-configuration problem must be solved (i.e., SG with its network functions,
traffic flows). These models are later used to formulate the hard and soft constraints
of the MaxSMT problem.

6.1.1 Service and Allocation Graph models

Similarly as for the application of the VEREFOO approach for the automatic firewall
allocation and configuration, an SG is modeled as a directed graph GS = (NS,LS),
whereas the corresponding AG is modeled as another directed graph GA = (NA,LA).
The only difference consists in how the NA set is defined. In particular, it is the
union of four subsets: NA = NE ∪NV ∪NA∪NF . NE is the subset of all the network
end points (clients, servers, subnetworks), NV is the subset of the CPSs, such as
VPN gateways, that have been already allocated in the network (i.e., they were
present also in the input SG), NA is the subset of the APs where other CPSs could

96 Automatic VPN Configuration

Symbol/Function/Predicate/Operator Definition
B= {true, false} boolean set
GS = (NS,LS), GA = (NA,LA) directed Service Graph (SG) and Allocation Graph (AG)
NA = NE ∪NV ∪NA∪NF nodes of the AG
NE end points
NV Communication Protection Systems
NA Allocation Places
NF other middleboxes
nk ∈ NA the element of NA identified by k
ns,nd ∈ NA source/destination endpoint
li, j ∈ LA the edge from ni to n j
t = (hi,ha) ∈ T a class of packets
hi ∈ H original header
ha ∈ H additional header
ti, j the traffic transmitted from ni to n j
f ∈ F a flow, i.e., class of packets generated by ns
p = (C,Ac,Ai,S,W) ∈ P Communication Protection Policy
C condition set of p
Ac,Ai sets of cipher algorithms of p
S communication protection properties of p
W = (NU ,NI,LU) trustworthiness or inspection information of p
NU untrustworthy nodes
NI inspector nodes
LU untrustworthy links
FP ⊆ F flows that satisfy the conditions of at least one p ∈ P
r ∈ Rn placeholder rule for n ∈ NA
η : T → H maps a traffic t to its most external header h
ν : NA×F → NA +{n0} maps a network node n and a traffic

flow f to the next node crossed by f after n
π: F → (NA)

∗ maps a flow to the ordered list of
nodes that are crossed by that flow

ρ: FP→ P maps a traffic flow f to the policy p for which it has been computed
τ: F×NA→ T maps a flow and a node to the ingress traffic
φ : P→P(FP) maps a policy p to the set of traffic flows computed for p
Ti: T → T maps an input traffic to the corresponding output traffic
allocated: NA→ B true⇔ a CPS is allocated in ah
configured: Rn→ B true⇔ the placeholder rule is actually used
delimiters : NA×NA×F → B true⇔ two nodes ni and n j delimit a VPN for a flow f
denyi: T→B true⇔ ni drops all the packets
protectc : NA×F → B true⇔ the CPS on n adds confidentiality to flow f
protecti : NA×F → B true⇔ the CPS on n adds integrity to flow f
supported : NA×Ac×Ai→ B true⇔ the two cypher algorithms are supported by n ∈ NA
tunneled: T → B true⇔ a traffic t has an external header
unprotectc : NA×F → B true⇔ the CPS on n removes confidentiality from flow f
unprotecti : NA×F → B true⇔ the CPS on n removes integrity from flow f
ni ⊆ n j ∈ NA ni precedes n j in the node list of a flow
t1 ⊆ t2 ∈ T t1 is a sub-traffic of t2
∧, ∨, ¬ used for conjunction, disjunction, negation
. used to denote a specific tuple element (e.g., given a tuple

t = (a,b,c), t.a identifies element a of tuple t)

Table 6.1 Notation

6.1 Network Model 97

be allocated, and NF is the subset of the other network functions that do not have
security capabilities for communication protection.

On the elements of the NA set, two functions and a predicate can be applied:

• the indexN
A : NA→N0 function maps each node to a unique non-negative integer

number;

• the address: NA→ 2I function maps each node to its IP addresses.

• the allocated: NA→B predicate maps a node n to true if n has a CPS capability
(therefore, for each n ∈ NV , allocated(n) = true).

6.1.2 Traffic flows model

A traffic t represents a packet class. The model of t captures the information that
is required to express possible tunneling of packets for enforcing communication
protection properties. As such, it is defined as a tuple t = (hi,ha). In this definition,
hi models the original header of the packet that must be protected, whereas ha models
the additional header that may be added by a VPN to that original packet. Each
hx, with x = {i,a}, is a conjunction of five predicates, one for each field of the IP
5-tuple, i.e., hx = (IPSrc, IPDst,pSrc,pDst, tProto). The definition of each one of
these five predicates is the same as for the ones defined in Section 5.1 for firewall
auto-configuration. Then, the set of all the possible traffics is denoted as T , while
the set of all the possible headers as H.

Given a traffic t, it is not necessarily characterized by two headers. Even if
communication protection properties are enforced, encapsulation is not always
required (e.g., when the Authentication Header is used in IPSec). This possibility
is modeled with the η : T → H function, which maps a traffic t to its most external
header h, among the headers that exist in its definition. This function maps t to t.hi

if the external header does not exist, to t.ha otherwise.

η(t) =

t.ha if tunneled(t) = true

t.hi otherwise
(6.1)

In this definition, the tunneled: T → B predicate maps a traffic t to true if t has an
external header.

98 Automatic VPN Configuration

The traffic flow model is defined on the top of the traffic model, in the same way
as defined in Section 5.1. Briefly, given the set of all flows F , f ∈ F represents how
a specific packet class would be transformed when crossing a list of nodes and it is
formally represented as a list f = [ns, tsa,na, tab,nb, ...,n j, t jk,nk, ...,np, tpd,nd], with
alternating node and traffic elements. Three utility functions can be defined over F :

• π: F → (N)∗ maps a flow f to the ordered list of nodes that are crossed by f .

π([ns, tsa,na, tab, ...,nk, tkd ,nd]) = [ns,na, ...,nk,nd] (6.2)

For two nodes ni and n j belonging to the same node list, ni ≺ n j means that ni

precedes n j in that list. Similarly, ni ⪯ n j means that ni precedes n j, or it is n j

itself.

• τ: F×NA→ T maps a flow f and a node n to the traffic that precedes n in the
definition of f .

τ([ns, tsa,na, tab,nb, ...,nk, tkd ,nd],vb) = tab (6.3)

• ν: F×NA→ NA maps a flow f and a node n to the node that follows n in π(f).
If no node that follows n exists, then ν(f ,n) = n0.

ν([ns, tsa,na, tab,nb, ...,nk, tkd ,nd],na) = nb (6.4)

6.1.3 Network functions model

The network functions models is directly mutated from the one illustrated in Section
5.1. Again, the behavior of a network functions, which depends on its code and con-
figuration, is modeled abstractly by means of two functions, capturing respectively
the forwarding behavior (i.e., which input packets are dropped by the VNF) and the
transformation behavior (i.e., which packets may be output by the VNF for each
class of input packets).

The function that models the forwarding behavior of the VNF in node ni ∈ NA

is the predicate denyi: T→B which is true for ingress traffic t ∈ T , if and only if
ni drops all the packets represented by t. Instead, the transformation behavior of
the VNF in node ni ∈ NA is instead modeled by the function Ti : T → T , called
transformer, which maps an input traffic to the corresponding output traffic.

6.2 Communication Protection Model 99

6.2 Communication Protection Model

This section defines the formal models of the main components necessary for the
channel protection auto-configuration problem (i.e., the security policies and the
behavior of the CPSs). These models are later used to formulate the hard and soft
constraints of the MaxSMT problem.

6.2.1 Communication Protection Policies model

Let P be the set of the CPPs that must be enforced in the network. Each p ∈ P is
formally modeled as a tuple p = (C,Ac,Ai,S,W).

C is the condition set, identifying the traffic portion the CPP must be applied to.
C has the same formalization that has been introduced for modeling traffic headers,
i.e., C = (IPSrc, IPDst,pSrc,pDst, tProto). Specifically, the predicates C.IPSrc and
C.pSrc refer to the traffic generated by the traffic sources, whereas C.IPDst, C.pDst
and C.tProto refer to the traffic received by the destinations.

Ac and Ai are the sets of cipher algorithms that must be used to enforce, respec-
tively, confidentiality and integrity (with authentication) on the traffic, while Ac and
Ai are the sets of all the possible algorithms for confidentiality and integrity (i.e.,
Ac ⊆ Ac and Ai ⊆ Ac).

S conveys the information about how the communication protection properties
must be applied on the traffic. S is modeled as a tuple S = (sci,sii,sia), where each
component can be a ternary value: true, false, or d.c. (which stands for “don’t care”).
Given a traffic t, sci is true if confidentiality must be enforced on the original header
t.hi, sii is true if integrity must be enforced on t.hi and sia is trues if integrity must be
enforced on the additional header t.ha (if any).

W conveys the information about the trustworthiness or inspection status of
network nodes and links. W is a tuple W = (NU ,NI,LU), where NU ⊆ NA is the un-
trustworthy nodes set, NI ⊆NA is the inspector nodes set, LU ⊆ L is the untrustworthy
links set.

From the sets of the CPPs P and the set of all traffic flows F , it is possible to
identify the subset FP ⊆ F of the flows that satisfy the conditions of at least one

100 Automatic VPN Configuration

p ∈ P, i.e., a flow f = [ns, tsa,na, tab, ...,nk, tkd,nd] belongs to FP if ∃p ∈ P such that
the following two conditions are both true:

• tsa satisfies predicates p.C.IPSrc and p.C.pSrc, i.e.,

η(tsa) =⇒ (p.C.IPSrc,∗, p.C.pSrc,∗,∗) (6.5)

• tkd satisfies predicates p.C.IPDst, p.C.pDst and p.C.tProto, i.e.,

η(tkd) =⇒ (∗, p.C.IPDst,∗, p.C.pDst, p.C.tProto) (6.6)

As the definition of FP is analogous to the one of the FM
r set introduced for the auto-

configuration of firewalls, the subset FP ⊆ F can be computed with the maximal flow
algorithm, which has been already discussed and illustrated in Section 5.2. After the
computation of these flows, two utility functions can be employed to relate policies
and flows:

• φ : P→P(FP) maps a policy p to the set of traffic flows computed for p;

• ρ: FP→ P maps a traffic flow f to the policy p for which it has been computed.

6.2.2 Communication Protection Systems model

The behavior of each CPS that is or may be allocated in the network depends on
a set of rules, which report the actions that must be performed and the conditions
identifying the traffic elements subject to those actions. This behavior must be
modeled with free variables, as the solver that will be employed for solving the
MaxSMT problem can have the freedom to choose correct and optimal values to
establish the CPS behavior. In light of these considerations, for each n ∈ NA where
a CPS may be allocated, a set of free variables is created and is composed of rules
named “placeholder rules” because, at the moment of their creation, it is not yet
known whether these rules will get concrete values or not in the final solution.

For a node n ∈ NA, the placeholder rules set is denoted as Rn. Each rule r ∈ Rn is
modeled as a tuple r = (C, ac, ai, S, m, act), where:

• C = (IPSrc, IPDst, pSrc, pDst, tProto) identifies the traffic portion on which
the rule actions must be enforced;

6.2 Communication Protection Model 101

• ac is the algorithm that is applied on the traffic to enforce confidentiality (it
can be NULL);

• ai is the algorithm that is applied on the traffic to enforce integrity (it can be
NULL);

• S expresses the enforcement modes, and it is modeled with a tuple of three
Boolean elements, similarly as the S element of a p ∈ P;

• m is a Boolean value, which is true if the traffic must be encapsulated through
a tunnel-based VPN, false otherwise;

• act specifies if the security properties must be applied to t (i.e., when act =
protect), or must be removed from it (i.e., when act = unprotect).

Each Rn contains one placeholder rule rp, f for each policy p ∈ P and flow f ∈ FP

such that n is crossed by f , as expressed in (6.7).

∀p ∈ P.∀ f ∈ FP. (n ∈ π(f) =⇒ rp, f ∈ Rn) (6.7)

Four main predicates, named protectc, protecti, unprotectc and unprotecti, are
introduced for expressing the security properties enforced by a CPS, where:

• protectx : NA×F → B, with x ∈ {c, i}, maps a node n and a flow f to true if a
CPS allocated on n adds the corresponding security property (confidentiality
when x = c, integrity when x = i) to τ(f ,n), to false if it does not add it;

• unprotectx : NA×F → B, with x ∈ {c, i}, maps a node n and a flow f to true
if a CPS allocated on n removes the corresponding security property from
τ(f ,n), to false if it does not remove it.

The values taken by such predicates are left free as well in the MaxSMT problem
formulation.

Additionally, the predicate supported : NA×Ac×Ai → B maps a node in NA

and a pair of algorithms in Ac and Ai to true if the pair composed of those cipher
algorithms is supported by that node, i.e., it has the capabilities required to apply
them to network packets. For example, if an end point n ∈ NE or a network function
n ∈ NO can create an IPSec channel and enforce the communication protection

102 Automatic VPN Configuration

properties with a cipher suite composed of AES-128-CBC and HMAC-SHA-256,
then supported(n,AES-128-CBC, HMAC-SHA-256) = true.

Finally, the delimiters : NA×NA×F → B predicate is defined to express when
two nodes ni and n j delimit a VPN for a flow f in order to enforce policy ρ(f). As
shown in (6.8), ni and n j delimit a VPN for a flow f and policy ρ(f) if they belong
to the path π(f) crossed by f , ni precedes n j, ni enforces the protection required by
ρ(f) while n j removes it, and in-between them there exists no any other node that
enforces or removes protection on f for satisfying ρ(f).

delimiters(ni,n j, f) = ni ∈ π(f)∧n j ∈ π(f)∧ni ≺ n j∧

protectx(ni, f)∧unprotectx(n j, f)∧ (∀nk ∈ π(f)|ni ≺ nk ≺ n j.

¬(protectx(nk, f)∨unprotectx(nk, f)))

(6.8)

As for the model of the packet filtering firewall behavior, also the abstract model
proposed for CPSs is vendor-independent, but at the same time representative of the
characteristics of real systems. The generation of settings for different implemen-
tations simply involves a syntax change with respect to the abstract model. To this
end, the proposed model has been also mapped to an open-source VPN gateway,(i.e.,
strongSwan), to prove that a translation operation is enough to establish the low-level
configuration of a CPS from the abstract model.

6.3 MaxSMT Problem Formulation

This section presents the hard and soft constraints defined for the formulation of the
MaxSMT problem.

6.3.1 Constraints on CPPs enforcement

The enforcement of the CPPs is expressed with hard constraints, all of which must
be satisfied to achieve a correct solution.

First, three classes of hard constraints express the trustworthiness information
specified by each CPP p ∈ P.

• If a node ni crossed by a flow f satisfying p.C is defined as untrustworthy, at
least a node n j preceding ni in π(f) must enforce the required protection on

6.3 MaxSMT Problem Formulation 103

τ(f ,n j), and this protection must not be removed by any node nk in-between
n j and ni.

∀ f ∈ φ(p). ∀ni ∈ π(f)| ni ∈ p.W.NU .

∃n j ∈ π(f)| n j ≺ ni.(protectx(n j, f) ∧

(∀nk ∈ π(f)| n j ≺ nk ≺ ni.¬unprotectx(nk, f)))

(6.9)

• If a link lab such that nodes na and nb are crossed by a flow f satisfying p.C is
defined as untrustworthy, at least a node n j preceding nb in π(f) must enforce
the required protection on τ(f ,n j), and this protection must not be removed
by any node nk in-between n j and nb.

∀ f ∈ φ(p). ∀lab ∈ p.W.LU | na,nb ∈ π(f).

∃n j ∈ π(f)| n j ≺ nb.(protectx(n j, f) ∧

(∀nk ∈ π(f)| n j ≺ nk ≺ nb.¬unprotectx(nk, f)))

(6.10)

• If a node ni crossed by a flow f satisfying p.C is defined as inspector, f must
not be enriched with the confidentiality property when crossing ni. If a node
n j preceding ni in π(f) enforces confidentiality on τ(f ,n j), this protection
must be removed by a node nk in-between n j and ni.

∀ f ∈ φ(p). ∀ni ∈ π(f)| ni ∈ p.W.NI .

∀n j ∈ π(f)| n j ≺ ni. (protectc(n j, f) =⇒

(∃nk ∈ π(f)| n j ≺ nk ≺ ni. unprotectc(nk, f)))

(6.11)

Then, two classes of hard constraints express the guarantee that the protected
traffic can reach its destination, and that it is plain when it actually reaches the
destination.

• If a node ni adds protection to a flow f , this protection must be removed by a
node n j following ni in π(f), where node n j can also be the destination node.

∀ f ∈ φ(p). (∃ni ∈ π(f). protectx(ni, f)) =⇒

(∃n j ∈ π(f)|ni ≺ n j. unprotectx(n j, f))
(6.12)

• A flow f satisfying p.C can reach its destination if no node in π(f) blocks it.

∀ f ∈ φ(p). ∀ni ∈ π(f). ¬deny(ni,τ(f ,n)) (6.13)

Finally, two classes of hard constraints express the conditions under which a
traffic is tunneled by a CPS.

104 Automatic VPN Configuration

• If the two nodes ni and n j delimiting a VPN for a flow f are end points, the
traffic is not tunneled.

delimiters(ni,n j, f)∧ni ∈ NE ∧n j ∈ NE =⇒

∀nk ∈ π(f)|ni ≺ nk ⪯ n j.¬tunneled(τ(f ,nk))
(6.14)

• If at least one of the two nodes ni and n j delimiting a VPN for a flow f is not
an end point, the traffic is tunneled.

delimiters(ni,n j, f)∧¬(ni ∈ NE ∧n j ∈ NE) =⇒

(∀nk ∈ π(f)|ni ≺ nk ⪯ n j. tunneled(τ(f ,nk)))∧

τ(f ,ν(f ,ni)).ha.IPSrc = address(ni)∧ τ(f ,n j).ha.IPDst = address(n j)

(6.15)

The presence of all these classes of hard constraints may constrain some values
of the protect, unprotect and deny predicates to be assigned with specific values,
depending on the decisions taken by the solver of the MaxSMT problem.

6.3.2 Constraints on network functions behavior

The hard constraint defined in (6.13) imposes that the protected traffic finally reaches
its destination. In order to provide formal guarantee of this event, it is also necessary
to build some hard constraints upon the denyi predicate, for each node crossed by
the flow the protected traffic belongs to. These hard constraints strictly depend on
the service function type and on its configuration settings.

The definition of these hard constraints is the same as for the firewall-auto config-
uration problem. Specifically, Section 5.1 reports two examples (traffic monitoring
functions and network address translating functions) which are still valid for the
VPN auto-configuration problem.

6.3.3 Constraints on CPSs allocation and configuration

Other hard constraints are also necessary to express the CPSs allocation and configu-
ration decisions for each node n ∈ NA.

The allocation decision for node n is modeled by the allocated(n) predicate,
which is left free in the problem formulation. The only exception is represented by
nodes of the NV set, because they already have a CPS capability. This is expressed

6.3 MaxSMT Problem Formulation 105

by the hard constraints shown in (6.16).

∀n ∈ NV . allocated(n) (6.16)

The configuration decision is modeled by the configured : Rn → B predicate
which takes value true for a placeholder rule r ∈ Rn if r is actually used, false
otherwise. If configured(r) = true, the actual configuration rule is determined by
the values assigned to the free variables modeling r, which are constrained by
the enforcement of the CPPs. Those constraints are defined over the protect and
unprotect predicates. However, these same predicates are bound to the parameters of
the placeholder rules by the additional hard constraints shown in (6.17) and (6.18).

protectx(n, f) =⇒ ∃r ∈ Rn.(configured(r) ∧ τ(f ,n)⊆ r.Cr∧

r.act = protect ∧ r.k ∈ ρ(f).K ∧ r.ax ∈ ρ(f).Ax∧ r.S = ρ(f).S ∧

r.m = tunneled(τ(f ,ν(f ,n)))∧ supported(n,r.ac,r.ai))

(6.17)

unprotectx(n, f) =⇒ ∃r ∈ Rn.(configured(r) ∧ τ(f ,n)⊆ r.Cr∧

r.act = unprotect ∧ r.k ∈ ρ(f).K∧ r.ax ∈ ρ(f).Ax∧ r.S = ρ(f).S ∧

r.m = tunneled(τ(f ,n)))∧ supported(n,r.aC,r.aI))

(6.18)

In particular, (6.17) requires that if a CPS n must enforce a communication protection
property x (with x = c for confidentiality, x = i for integrity) on flow f due to the
CPP ρ(f), then it must have a configured communication protection rule with a
“protect” action, that can enforce the specified protection on τ(f ,n), and it must also
support the configured technology and algorithm. Similarly, (6.18) requires that
if a CPS n must remove a communication protection property x on the traffic flow
f due to the request of CPP ρ(f), then it must have a configured communication
protection rule with an “unprotect” action, that can remove the specified protection
from τ(f ,n), and it must also support the configured technology and algorithm, as
shown in (6.18).

Finally, if a node has at least a communication protection rule configured (i.e.,
it applies communication protection properties to a packet class), this implies that
in that node a CPS has to be allocated, which is expressed by the additional hard
constraint (6.19).

(∃r ∈ Rn. configured(r)) =⇒ allocated(n) (6.19)

106 Automatic VPN Configuration

6.3.4 Constraints on the optimization profiles

The optimization objectives represented by the input optimization profile are trans-
lated into soft constraints.

The min-allocation profile requires that the allocation of CPS on end points is
preferred over other network nodes. Two classes of soft constraints (6.20) and (6.21)
are required to enforce this optimization objective. Each soft constraint of the first
class is satisfied if no CPS is allocated in the corresponding end point. Each soft
constraint of the second class is satisfied if no CPS is allocated in the corresponding
intermediate node. Then, (6.22) sets the weight for (6.21) greater than the sum of
the weights for (6.20), so that it expresses the preference to allocate CPSs on the end
points.

∀e ∈ NE . Soft(¬allocated(e),we) (6.20)

∀n ∈ NA\NE . Soft(¬allocated(n),wn) (6.21)

∀n ∈ NA\NE .

∑

e∈NE

we

!
< wn (6.22)

Instead, the min-bandwidth profile prefers allocating CPS functionalities in
intermediate nodes rather than in end points. In this case, (6.23) imposes a different
relationship between the weights of soft constraints (6.20) and (6.21), so as that it is
preferable to allocated CPS functionalities in all intermediate nodes rather than in a
single end point.

∀e ∈ NE .

 ∑
n∈NA\NE

wn

< we (6.23)

6.3.5 Solution computation

All these hard and soft constraints are grouped to compose a MaxSMT problem,
representing the allocation and configuration problem for CPSs. Then, a MaxSMT
solver is employed to search for the optimal solution that satisfies all hard constraints.
If a solution is found, then it is expressed by the values the solver assigns to the
free variables and predicates. In particular, the two outputs, i.e., allocation scheme
and protection rules for the CPSs, can be easily retrieved by those values. For each
n ∈ NA, allocated(n) states if a CPS has been allocated by the solver in that network
position or not. Therefore, the allocation scheme is defined by all the output values
computed for this predicate. Instead, for each n ∈ NA such that allocated(n) = true,

6.4 Implementation and Validation 107

the configuration of the allocated CPS is made up of the rules r ∈ Rn such that
configured(r) = true. The solver also assigns, for each one of these rules r, a specific
value for each free variable that models it, e.g., the rule conditions are specified by
r.C, and the information about the algorithms to be applied by r.ac and r.ai.

6.4 Implementation and Validation

As for firewalls, also the application of the VEREFOO approach to VPN configura-
tion has been implemented by means of a Java framework, which exploits the APIs
offered by the z3 solver [164] to formulate and solve the MaxSMT problem. The
framework has been validated in different ways: on specific use cases to prove the
optimization and correctness of the approach (Subsection 6.4.1), and on synthetically
generated networks, to prove the scalability of the approach (Subsection 6.4.2). All
the MaxSMT instances have been solved on a machine with an Intel i7-6700 CPU at
3.40 GHz, 32GB of RAM, and z3 version 4.8.5.

6.4.1 Correctness and optimization verification

The correctness and optimization of the VEREFOO approach for CPS configuration
has been checked on a specific use case. The AG of this use case is illustrated in
Fig. 6.1. In this scenario, the human administrator specifies multiple CPPs. For
example, the traffic between each subnetwork (i.e., e4, e5, e6, e7 and e8) and the
servers (i.e., e1, e2, e3), must be encrypted. Each subnetwork also requires a different
encryption algorithm (e.g., AES-GCM-128 for e4, 3DES-CBC for e5). Besides, the
traffic between each pair of subnetworks must be protected by ensuring its integrity,
with the exception of the pair of subnetworks e7 and e8. For all these CPPs, f10 and
f11 are untrustworthy nodes, because the users of these devices are not sufficiently
trusted, so the traffic should be encrypted when crossing them. Instead, f12 is an
inspector node, because it is an intrusion detection system that must check all the
traffic.

The developed framework has been run on these inputs and has produced the
solution shown in Fig. 6.2, for which both optimization and correctness have been
checked.

108 Automatic VPN Configuration

f9

p15e2

p14e1

p16e3

p17

f10

p19

p18

e4

f13

e5

f11

p20e6

p20

f12

p21

p22

e7

e8

Fig. 6.1 Allocation Graph of the use case

f9

e2

e1

e3

p17 f10

p18

e4

f13

e5

f11
e6

p20

f12

e7

e8

Fig. 6.2 CPSs allocation scheme of the use case

With regards to optimization, the solution computed by the framework has been
checked to be the one that minimizes the number of allocated CPSs and configured
rules, by comparing it with all the possible solutions to the same problem instance.
For example, a single CPS is installed in p17 on the right of load balancer f9, instead
of having three separate CPSs on its left. Similarly, a CPS is allocated in p20, so
that it can manage traffic flows involving three subnetworks (e5, e7, e8) instead of a
single one.

With regards to correctness, the result has been checked with Mininet, an emulator
which can be used to test virtualized networks. Each allocated CPS is emulated as a
Strongswan VPN gateway, and its configuration is derived from the rules computed
by the tool, after having translated them into the Strongswan VPN configuration
file language. This translation step consists in a simple syntax translation. After
configuring each element of the network simulated in Mininet, it has been verified
that each traffic has the requested communication protection properties by analyzing
the traffic on the different nodes. Similar experiments have been done with variations
of this use case.

6.4.2 Scalability evaluation

The scalability, in terms of computation time and memory usage, of the approach
has been tested for two main parameters, i.e., the number of APs and the number

6.4 Implementation and Validation 109

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Number of Allocation Places

M
em

or
y

us
ag

e
(M

B
)

20 CPPs
40 CPPs
60 CPPs
80 CPPs
100 CPPs

(a) Memory usage chart

10 20 30 40 50 60 70 80 90 100
0

200

400

600

Number of Allocation Places

C
om

pu
ta

tio
n

tim
e

(s
)

20 CPPs
40 CPPs
60 CPPs
80 CPPs
100 CPPs

(b) Computation time chart

10 20 30 40 50 60 70 80 90 100
0

200

400

600

Number of Allocation Places

C
om

pu
ta

tio
n

tim
e

(s
)

(c) Whisker plot

Fig. 6.3 Scalability for increasing number of Allocation Places

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Number of Communication Protection Policies

M
em

or
y

us
ag

e
(M

B
)

20 APs
40 APs
60 APs
80 APs
100 APs

(a) Memory usage chart

10 20 30 40 50 60 70 80 90 100
0

200

400

600

Number of Communication Protection Policies

C
om

pu
ta

tio
n

tim
e

(s
)

20 APs
40 APs
60 APs
80 APs
100 APs

(b) Computation time chart

10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

Number of Communication Protection Policies

C
om

pu
ta

tio
n

tim
e

(s
)

(c) Whisker plot

Fig. 6.4 Scalability for increasing number of Communication Protection Policies

of CPPs that must be enforced in the networks. The network topologies of the AGs
where the tests have been carried out are artificially synthesized as extensions of the
network illustrated in Fig. 6.1. Fig. 6.3 and Fig. 6.4 report all the results that have
been obtained for the scalability validation of the framework.

Fig. 6.3a and Fig. 6.4a show the peak memory usage of the framework, for
increasing values of the two analyzed parameters. As it can be seen from the two
plots, the memory requirements for the usage of the tool are in line with similar
software programs. In fact, even in the worst case that has been analyzed (i.e., a
scenario composed of 100 APs and 100 CPPs), the peak memory usage that has been
measured is only 81.4 MB.

Fig. 6.3b and Fig. 6.4b show the computation time of the framework. In these
plots, each value is the average computed over 50 runs of the framework on the same
problem instance, i.e., with the same topology and the same CPPs, but with different
IP addresses. As it was already explained in Section 5.4, when a programming
constraint problem is built upon the integer theory, the performance of the Z3 solver
can significantly vary depending on the actual integer numbers that are used. As
each IP address is modeled as the conjunction of four predicates defined over integer

110 Automatic VPN Configuration

variables, their values have a non-negligible impact to the overall performance of
the framework. This consideration is further confirmed by the value distribution the
whisker plots depicted in Fig. 6.3c and Fig. 6.4c, for which the number of policies
is fixed to 60 in Fig. 6.3c, and the number of APs is fixed to 60 in Fig. 6.4c. The
parameter that most impacts the performance of the framework is the number of APs,
with respect to the number of CPPs. The reason is that that for each possible CPS a
certain number of placeholder rules must be defined, depending on the number of
traffic flows that cross it. Each rule is composed of free variables, and for each one
of them the solver must decide the optimal value. Therefore, the number of possible
solutions becomes quite high. Nevertheless, considering a topology composed of
100 nodes, the combined allocation and configuration problem of the CPSs would be
an impractical task if performed manually, it would take hours and probably would
end up with errors or sub-optimizations.

Additionally, as already discussed in Chapter 3, in the literature there are no other
approaches that jointly solve the allocation and configuration problem for CPSs, and
that combine the three features of automation, optimization, and formal correctness
into a single methodology. Besides, the papers describing related methodologies do
not provide an explicit validation for them. The only exceptions are the approaches
described in [96], [55] and [58]. On the one hand, the methodologies proposed in
[96] and [55] can only automatically compute the communication protection rules
for CPSs in fixed positions in a network chain. The scalability of these techniques is
also quite limited. On the other hand, the approach in [58] only establishes the CPS
allocation scheme without computing their protection rules. For a small network with
around 20 positions where CPSs may be allocated, the required computation time
is in the same magnitude order as the VEREFOO approach (i.e., tens of seconds).
In summary, despite the related work addresses simpler or partial problems, the
performance of our methodology, which provides superior results, is still in line with
the previous state of the art.

Finally, as also done in Section 5.4, in Fig. 6.3b, 6.4b, 6.3c, and 6.4c, a baseline
(red dotted horizontal line) is introduced, in order to have a reference. It is again the
Deployment Process Delay (DPD) introduced by a well-known orchestrator (Open
Source MANO) for deployment. DPD is the time the orchestrator takes to deploy and
instantiate a VNF within an already booted VM and set up an operational network
service. According to [168], this time is 134ms, which is in the same magnitude

6.4 Implementation and Validation 111

order as the computation time of the VEREFOO approach to solve the automatic
allocation and configuration problem for CPSs.

Automatic Network Security
Orchestration

Chapter 7

Orchestration of Firewall
Reconfiguration Transients

This chapter presents the FirewAll Transients Optimizer (FATO) approach, which has
been designed to automatically compute the optimal scheduling of the reconfiguration
changes for a distributed firewall, so as to minimize the number of intermediate
transient states where the network security policies are violated.

7.1 Problem Statement

This section firstly characterizes the transient problem for a distributed firewall
reconfiguration. Then, it explains the issues that may derive from an incorrect or
unoptimized transient management under real-world constraints. A motivating exam-
ple, based on a realistic network, is used to underline further the problems occurring
when connectivity policies are not adequately respected during a reconfiguration
transient. Finally, a solution based on automation, formal methods and optimization
strategies is proposed to overcome the issues.

7.1.1 Characterization of a firewall reconfiguration transient

As already discussed in Chapter 5, the configuration of a distributed packet filtering
firewall involves two management aspects at the same time: the establishment of the

7.1 Problem Statement 115

allocation scheme and the definition of the filtering rules. Therefore, it is clearly a
complex task, which requires a high level of expertise if manually managed by a
human being. Nevertheless, multiple approaches have been presented in the literature,
where this task is performed automatically without the need of manual interventions
([69], [10] [11]). These contributions have eased the work of security managers
and, at the same time, have strengthened the security guaranteed by such a kind
of network functions. In light of this, nowadays it is easier and more common to
establish a new firewall configuration, when the original configuration is not valid
anymore. Specifically, the invalidity of the original configuration may be due to
network topology changes (e.g., when a server is scaled in such a way to have
new multiple instances, then all the connectivity policies concerning that server
should be enforced for each new instance as well), or due to indications provided
by the security manager (e.g., an intrusion detection system might have informed
the security manager about an incoming attack and therefore there is the need that a
network host must be isolated from the others).

When a new firewall configuration is computed, it differs from the initial config-
uration for at least one of the two management aspects: the allocation scheme might
have been changed (e.g., a new firewall instance has been introduced, or an existing
one has been removed), or the firewall rules might have been adjusted to be compli-
ant with new connectivity policies. Therefore, the security service must be updated
accordingly, by applying a series of operations of different types: deployment of a
new virtual firewall, removal of an existing firewall, update of the filtering rules of a
firewall, deviation of a traffic flow so that it can reach a new firewall that was not part
of the initial distributed firewall. The firewall reconfiguration transient consists of a
specific ordering of these operations, so that the global configuration is changed from
the initial state to the target one. The number of intermediate states corresponding to
this transient is thus equal to the number of changes that are applied to the firewall
configuration, i.e., the number of newly deployed instances, the number of removed
instances, the number of modified filtering rule sets.

7.1.2 Issues of a firewall reconfiguration transient

Under real-world constraints, the security preservation of the connectivity policies
during reconfiguration transients becomes an important matter when the time length
of these transients is not negligible. If a transient lasts only a few seconds, the

116 Orchestration of Firewall Reconfiguration Transients

problem is less felt because, in such a short span of time, an attacker could not easily
perform access control violations, privilege escalations, or other attack types that
undermine the connectivity policies. However, this is not the typical case of virtual
networks.

From the analysis of the studies discussed in Section 3.3, the typical transients
that have been evaluated are composed of a few tens of states. Each state transition
consists of the deployment/removal of a virtual function (e.g., a softwarized SDN
switch, a Virtual Machine) or the update of the rules of a function (e.g., all the rules
of a virtual firewall). The time required for these operations may not be negligible.
On the one hand, Openstack requires more than 5 seconds to deploy a single machine
[169], and it has an update rate of 250 rules per second [170], if all the rules pertain
to the same machine. On the other hand, a well-known NFV orchestrator, i.e., Open
Source MANO, requires a Deployment Process Delay (DPD) of 134s [168], where
DPD is the time the orchestrator takes to deploy and instantiate a VNF within an
already booted VM and setup an operational network service. Therefore, supposing
that a transient is composed of 20 states and each of them consists of the deployment
of a virtual machine, the transient may require around 100 seconds in an environment
based on Openstack, more than 10 minutes with Open Source MANO. Parallelization
may improve these worst-case times, but not drastically. Transients requiring some
minutes are common in big virtual networks, and these long times are perfect chances
for intruders to exploit intermediate states where services are not protected.

A reconfiguration transient is triggered to update a firewall configuration so as to
comply with a different set of connectivity policies (i.e., reachability and isolation
policies), which must be enforced at least in the final reconfiguration transient
state. In this dissertation, these policies will be referred to as target connectivity
policies. As anticipated, they might be satisfied in each intermediate state, even
though preserving their satisfaction as much as possible would be required to ensure
a high security level during configuration. In particular, two well-known issues that
may occur due to this problem are discussed below.

The first issue is service disruption. For example, let us suppose that a service
is linked to clients external to its subnetwork through two paths, each guarded by a
firewall, but only one of them has a rule allowing communication between the server
and the clients. If the firewall reconfiguration establishes that the allowing rule must
be removed from the original firewall node and added to the other one, if the latter

7.1 Problem Statement 117

f7

e1

e2

f10 f8 f9

f12 e5

e6

e3

f11e4

Fig. 7.1 Network topology example

operation is executed some seconds or minutes after the former, the service becomes
unaccessible for the clients during the transient.

The second issue is the possible opening to cyber attacks related to undetected
intrusions. For example, let us suppose that a firewall must be removed, another one
must be set up in a different position of the graph, and the first operation happens
before the second one. In that case, there might exist a period (i.e., some intermediate
states of the transient) where some kinds of traffic, which were previously blocked
by the removed firewall and would be later blocked by the firewall to be deployed,
can pass through those positions, thus violating some isolation policies.

7.1.3 Motivating example

These problems can also be explained with the aid of a motivating example. Fig.
7.1 represents a snapshot of the configuration of a distributed firewall, with three
instances, in a network whose topology is a simplified version of a real one, i.e., the
network of our university department. At a certain time, a cyber-attacker manages
to take over node e2, hosting a mysql service. This event demands to block any
communication towards e2, and at the same time to make the mysql service hosted
by node e5 available for any other network component, as it is a mirror of that in e2.
The security manager is thus required to perform multiple changes to the firewall
configuration: (i) a new instance must be deployed between e2 and f7 to make the
former inaccessible; (ii) f12 must be removed, as e5 must become the replacement of
e2; (iii) the rule sets of f10 and f11 must be updated, so as to allow traffic respectively
between e1 and e4 on one side, and the mysql service listening to port 3306 on the
other side.

Deciding the ordering of these operations is not trivial and it can impact network
security or service availability during the transient. If the new firewall instance

118 Orchestration of Firewall Reconfiguration Transients

blocking e2 is deployed before removing f12 or updating f10 and f11, any secondary
effect of the cyber-attack is immediately stopped, but the mysql service remains
unavailable for a longer time. Alternatively, if first f12 is removed, that service can
be accessed by some network nodes (but not all of them, until f10 and f11 are not
updated). However, the attacker that has taken control over of e2 would still have
some time to propagate the attack to other parts of the company. Therefore, the
decision depends on the priority that is assigned to the connectivity policies.

Additionally, this decision should be taken in quite strict times, as demanded by
ever-changing virtual environments. Due to these circumstances, human beings are
under more pressure and more prone to make mistakes. So, not only the scheduling
of configuration changes may be sub-optimal (i.e., the connectivity policies are not
enforced in as many states as possible), but it may even be incorrect (e.g., a policy
that must not be violated in any transient state is violated in at least one of them).

7.1.4 Solutions to improve transient management

In light of all these considerations, when a reconfiguration transient is triggered, its
management may be optimized if the reconfiguration changes for the distributed
firewall are ordered so as to maximize security for the intermediate states of the
transient. This optimization objective translates into maximizing the number of
target connectivity policies that are already satisfied in each transient state. Besides,
in almost all the cases in which this objective is fulfilled, the security policies are
also satisfied as early as possible, because the enunciate objective aims at their
enforcement since the first states of the transient. For example, when the position
of a firewall must be changed to block a specific traffic flow, the reconfiguration
transient involves two operations as it is common practice in virtual networks, i.e.,
removing the current instance and deploying the new one in the required position.
Only performing the latter operation before the former satisfies the optimization
objective previously expressed, because in this way the isolation policy related to
that traffic flows is already satisfied, even before removing the old instance.

However, establishing an optimal scheduling of a distributed firewall reconfigu-
ration changes, compliant with the definition of this objective, becomes manually
unmanageable as the complexity of the distributed firewall and the number and
complexity of policies increase. Therefore, this task should be automated so that the

7.2 The Proposed Approach 119

initial Security
Service Graph

target Security
Service Graph

user

optimization
profile

target Network
Security Policies Ranking Generator

MaxSMT Problem

ranking of the
security policies

solution
found?

yes

no

scheduling of firewall
configuration changes

non-enforceability
report

FATO

Fig. 7.2 Workflow of the approach

scheduling is automatically computed based on information related to the network
topology and the connectivity policies. Additionally, by automatizing this task, it
is possible to enrich the process with two other important factors, i.e., optimization
and formal verification. On one side, commonly some policies are more important
than others. This aspect should thus be considered when computing the scheduling
of the operation changes, but at the same time represents another factor that makes a
manual operation impractical or deeply unoptimized. On the other side, providing
higher assurance that the computed scheduling is correct would be an important
feature for environments where safety-critical or mission-critical systems are present.

To summarize, automation, paired with formal methods and optimization, comes
in handy for overcoming these limitations, and reaching quickly a solution character-
ized by high confidence in its correctness.

7.2 The Proposed Approach

This section describes the approach pursued in the definition of the FirewAll
Transients Optimizer (FATO) methodology, which aims to solve the stated problem
automatically. Fig. 7.2 depicts the full workflow of the proposed approach, showing
the inputs specified by the user (Subsection 7.2.1) and the interaction among the
different components of the FATO methodology (Subsection 7.2.2).

120 Orchestration of Firewall Reconfiguration Transients

7.2.1 Inputs for FATO

FATO requires the following inputs:

• the initial virtual network topology, together with the initial configuration of
the distributed firewall (i.e., the start state of the reconfiguration transient);

• the target virtual network topology, together with the target configuration of
the distributed firewall (i.e., the final state of the reconfiguration transient);

• a set of target connectivity policies that must be satisfied by the target config-
uration. Optionally, a subset of these policies may be specified as a special
class, called persistent policies: when a policy belongs to this class, it must be
satisfied throughout the whole transient, not only in the final state;

• an optimization profile, providing FATO with useful information to establish
the relative priority of the connectivity policies. Some optimization profiles
additionally require the specification of a partial or total order relationship for
the policies.

The first inputs, i.e., the initial and target network topologies, enriched with the
initial and target firewall configurations, are referred to as initial Security Service
Graph (GI) and target Security Service Graph (GT). For each one of them, the
firewall configuration is composed of the allocation scheme of the firewall instances
and the filtering rules of each instance. The allocation scheme represents how the
firewalls have been positioned in the network topology, which may also be composed
of other types of network and security functions. Instead, the filtering rules for each
instance of the packet filtering firewall are composed of a set of well-known IP
5-tuple-based rules and a default action applied whenever no rule matches a received
packet. Specifically, each firewall rule defines the conditions to be matched by the
values of the five elements of the IP 5-tuple (i.e., source and destination IP addresses,
source and destination ports, transport-level protocol) and the corresponding action
to be enforced when the conditions are satisfied. The firewall rules belonging to the
initial and target configuration are respectively called initial Firewall Rules (RI) and
target Firewall Rules (RT).

The third input, i.e., the connectivity policies that must be satisfied by the target
configuration, are called target Network Security Policies (PT). Connectivity policies

7.2 The Proposed Approach 121

specify which packet flows, identified by the values of the IP 5-tuple fields, must
reach their destination, and which ones must instead be blocked. Therefore, they can
be respectively divided into reachability and isolation policies. The PT set includes
both persistent and non-persistent policies.

The fourth input, i.e., an optimization profile, is a compact indication for FATO
about the relative priority of the connectivity policies. The following profiles have
been defined, but more can be defined:

• security-max: the objective is that the isolation policies must have higher
priority than the reachability policies;

• service-max: the objective is that the reachability policies must have higher
priority than the isolation policies;

• policy-max: the objective is to maximize the number of policies that are
satisfied in each intermediate state;

• state-max: the objective is to maximize the number of intermediate states
where each policy is satisfied depending on an order relationship specified by
the user.

The first two profiles (i.e., security-max and service-max) allow the user to
additionally specify a partial order relationship for each group of policies (i.e., for
the group of isolation policies and the group of reachability policies). For each group,
the user can define some policies with higher priority and other policies with lower
priority. The policy-max profile does not allow the user to specify any relationship
between policies. Instead, the state-max profile always requires a partial or total
order relationship defined by the user for the policies. Note that relationships cannot
be defined for persistent policies, because they must be enforced in any intermediate
transient state a-priori.

7.2.2 FATO Methodology

The FATO methodology works as follows.

Firstly, from the specification of the optimization profile and, optionally, the
partial or total order relationship for the policies, FATO defines a ranking for the input

122 Orchestration of Firewall Reconfiguration Transients

policies (with the exclusion of the persistent policies, because they must be enforced
in any intermediate state), as it comes handy for the definition of the optimization
problem. The same rank can be assigned to multiple policies, if they have the same
relative priority. The user could have personally defined this ranking. Still, such an
operation would not have been suitable to be manually performed by a human being.
Possible reasons may be that the number of policies may be high, or the person in
charge of this task may want to specify only a partial order relationship between the
policies instead of a complete ranking. Additional information about the ranking
generation is provided in Section 7.4.

Then, the initial and target security graphs with the firewall configurations, the
target policies and their ranking are used by FATO to formulate a MaxSMT problem.
Throughout this formulation, the aim of the methodology is to maximize the number
of intermediate states in the transient from GI to GT where the policies of the PT set
are enforced. After solving this optimization problem, FATO identifies the optimal
order of configuration changes, in such a way that the optimization fulfills the criteria
derived from the ranking (i.e., from the optimization profile and the order relationship
for the policies, specified by the user). This scheduling can be followed by a human
who manages the virtual network, or a state-of-the-art orchestrator can exploit it to
perform the required actions. Besides, according to the correctness-by-construction
principle enabled by MaxSMT, the computed solution is correct, as long as the
formal models defined for the problem (i.e., the set of first-order logic formulas that
express them) correctly model the real problem. A more detailed discussion about
the conditions under which the solution correctness is guaranteed has been already
presented in Section 5.3, and it applies also to this application of the MaxSMT
formulation.

7.3 Formal Models

In order to implement the approach outlined above, a formalization of the network
components and of the security policies is required. This section deals with the
illustration of such formal models. TABLE 7.1 includes the main formal notations
(symbols, functions, predicates, operators) used in this chapter.

7.3 Formal Models 123

Symbol/Function/Predicate/Operator Definition
B= {true, false} Boolean set
GI = (NI,LI), GT = (NT ,LT) initial and target Security Service Graphs
GU = GI ∪GT = (NU ,LU) union Security Service Graph
nk ∈ NU the element of NS identified by k
c1 = |NU\NI| number of times when a firewall becomes active
c2 = |NU\NT | number of times when a firewall is removed
c = c1 + c2 number of transient states
S = [s0,s1, ..,sc−1,sc] state sequence
T set of all the packet classes
t = (IPSrc, IPDst,pSrc,pDst, tProto) single traffic
t, t0 a class of packets and empty set of packets
F set of all traffic flows
f = [ns, tsa,na, tab,nb, ...,nk, tkd,nd] traffic flow
dn default action of firewall n
Rn filtering rules of firewall n
r = (cr,ar) single rule of firewall n
cr = (IPSrc, IPDst,pSrc,pDst, tProto) rule condition of firewall n
ar rule action of firewall n
PT = PP

T ∪PN
T set of Network Security Policies

PP
T persistent Network Security Policies

PN
T non-persistent Network Security Policies

p = (C,a) single Network Security Policy
p.C = (IPSrc, IPDst,pSrc,pDst, tProto) policy condition
p.a policy action
MD dominance matrix
π: F → (NU)

∗ maps a flow to the ordered list of
τ: F×NU → T maps a flow and a node to the ingress traffic
transform: NU ×T→T maps a node and a traffic to the transformed traffic
bti: B×{0,1}→T maps a Boolean value to the corresponding integer
active: NU ×S→ B true⇔ the node is active in the state s
configUpdate: NU ×NU → B true⇔ the two nodes share the same AP
deny: NU ×T→B true⇔ n drops all the packets of traffic t
match: Rn×T → B true⇔ the rule conditions match the traffic
satisfied: PT ×S→B true⇔ the policy is satisfied in the state s
t1 ⊆ t2 ∈ T t1 is a sub-traffic of t2
p≻ p′ ∈ PN

T p dominates p′

p ∥ p′ ∈ PN
T p and p′ are independent

∧, ∨, ¬ used for conjunction, disjunction, negation
. used to denote a specific tuple element (e.g., given a tuple

t = (a,b,c), t.a identifies element a of tuple t)

Table 7.1 Notation

124 Orchestration of Firewall Reconfiguration Transients

f7p10

e1

p11

e2

f12 f8

p15

f9

f16

p17

e5

e6

p13

p14

e3

e4

Fig. 7.3 Security Service Graph with firewall allocation scheme

7.3.1 Security Service Graphs model

The initial and target Security Service Graph are modeled as directed graphs, i.e.,
respectively GI = (NI,LI) and GT = (NT ,LT), by reusing the same notation that
was applied for the Allocation Graph model (i.e., GA) of the VEREFOO approach
in Section 5.1 and Section 6.1. As for GA, also the vertex sets of these two graph
models include Allocation Places (APs), i.e., the the logical positions where a
firewall instance may be positioned. For example, supposing that Fig. 7.3 depicts
an initial Security Service Graph, in this example two of the APs are effectively
filled with firewalls (i.e., f12 and f16). The others are empty, but some instances may
be deployed there in a Security Service Graph representing a different state of the
transient (e.g., the final one). Each element of NI and NT is uniquely identified by a
non-negative integer index k, i.e., index(nk) = k. Analogously, each element of LI

is uniquely identified by a pair of non-negative integers, i.e., li j ∈ LS, with i ̸= j, is
the edge from ni to n j. It is possible that an element of NT has the same index as an
element of NI , and it is possible that an element of LT is denoted by the same pair of
non-negative integers as an element of LI . This simply means that the elements are
the same for both the graphs.

Then, the concept of union Security Service Graph (GU) is derived from these two
graph models. It is a directed graph modeled as GU = (NU ,LU), where NU = NI∪NT

and LU = LI ∪LT . It basically represents the union of the initial and target graphs,
where a single instance of the nodes with the same index which appear in both is
kept, and the same is applied to the links. It is evident that, in this graph, nodes which
are not active at the same time might be present (e.g., a firewall which was present
in GI , but has been removed in GT). Nevertheless, this representation is useful to
consider all the possible paths in any situation, independently of the moment when a
node might be active.

7.3 Formal Models 125

f7p10

e1

p11

e2

f19 f8

p15

f9

f21

p17

e5

e6

p13 f20

e3 e4

f7p10

e1

f18e2

f19 f8

p15

f9 p16

p17

e5

e6

p13 f22

e3 e4

U
f7p10

e1

p11

e2

f18

f19 f8

p15

f9
p16

f21

p17

e5

e6

p13

f20

f22

e3 e4

Fig. 7.4 Generation of the union Security Service Graph

A clarifying example of how GU is computed from the input GI and GT is
represented in Fig. 7.4. In their models, the APs that have not been filled with
firewall instances are still present, but they have the simple role of forwarders, i.e., it
is as if they forward each received packet to the next hop. Their presence eases the
formalization of the state models and the hard constraints of the MaxSMT problem.
In the automatically derived GU , it is possible that two firewalls, with different
indexes, refer to the same logical position (as for nodes f20 and f22). This means
that, even though they share the same position in the allocation scheme, they have
different rules, so they are distinct entities in the model.

To this regard, in some types of virtualized networks (e.g., where firewalls are
implemented as Virtual Machines, and not as containers), the configuration of a
single instance is allowed, without the need to instantiate a new process replacing
it. This possibility is modeled with the configUpdate : NU ×NU → B predicate,
which is true if the two input nodes of NU share the same AP and they represent
two different configurations of the same virtual firewall instance. Referring to the
previous example of Fig. 7.4, if GU derives from the representation of an NFV-based
network, and f20 and f22 represent two different configurations for the same instance,
then configUpdate(f20, f22) = true.

7.3.2 State Sequence model

In the transformation of GI into GT , four elementary configuration changes have been
considered: (1) deployment of a new firewall instance, (2) removal of an existing

126 Orchestration of Firewall Reconfiguration Transients

firewall instance, (3) update of the filtering rules for a firewall instance, (4) deviation
of the traffic that was sent to a removed firewall instance to another instance that has
been deployed. In modeling the sequence of states characterizing the transient due to
the distributed firewall reconfiguration, however, it is enough to consider the number
of changes of type (1) and (2), i.e., deployment and removal of single instances.
The reasons why the other change types are not explicitly represented for the state
sequence models are explained below.
Regarding the update of the filtering rules for a firewall instance, this event cannot
be always performed instantaneously. If a firewall implemented as a virtual machine
in an NFV-based network could be updated very quickly, the same does not apply to
a container, where there is instead the necessity to launch a new firewalling process,
with the newly required rule set. Therefore, the rule update can be represented as a
combination of firewall deployment and removal operations, and for the NFV-based
example it is enough to introduce a specific hard constraint in the MaxSMT problem
so that during the rule update other configuration changes are not performed (more
details are presented later, in Subsection 7.5.2).
Regarding the deviation of a traffic flow so that it can reach a different firewall
located in the same AP where a removed one was previously present, this operation
can be represented as well through a hard constraint. This constraint can impose that
the new instance becomes active (i.e., it can receive and forward packets) only after
the previous one has been deactivated (i.e., it cannot receive traffic anymore).

Combinations of these elemental operations are also enough to represent more
complex types of configuration changes. For example, a firewall policy migration
can be modeled as the removal of the node of the NU set representing the old
configuration, and the introduction of the node representing the new one, also in
a different position of the topology. Instead, a firewall policy combination can be
modeled as the removal of two nodes of NU , and the introduction of a new one.

In light of these considerations, the total number of states for the reconfiguration
transient is computed as c = c1 + c2. Specifically, c1 = |NU\NI| and c2 = |NU\NT |,
where, given two sets of nodes Nx and Ny, Nx\Ny represents the set of nodes which
are present in Nx, but not in Ny. In this definition, c1 represents the number of times
a firewall that was not present in the service is deployed and becomes active, while
c2 represents the number of times a firewall that was previously active is removed.

7.3 Formal Models 127

Once computed c, a state sequence S is created, defined as a list S = [s0,s1, ...,

sc−1,sc]. Each s ∈ S is a state of the transient, and in-between two consecutive states
a single action (i.e., firewall deployment or removal) is performed. Given two states
si and s j in the same list, si ≺ s j means that si precedes s j in that sequence, si ⪯ s j

means that si precedes s j or it is s j itself, si ≻ s j means that si follows s j, and si ⪰ s j

means that si follows s j or it is s j itself.

Having thus formalized the concept of state sequence, the active : NU ×S→ B
predicate can be now introduced. This predicate is applied to a node n ∈ NU and a
state s ∈ S, and it returns true if the node is active (i.e., already deployed and capable
of receiving traffic) at the transient state identified by s. The presence of this predicate
in the proposed formal model for the state sequence allows capturing the changes
in the firewall configuration over the time for the optimization problem. Even if
GU includes all the firewall instances and rule sets that were present in both GI and
GT , the active predicate can discriminate if in a state s a certain firewall instance
or rule set is in use or not. For example, if active(n,s) = false for each s≺ sc, and
active(n,s′)= true for each s′⪰ sc, this means that firewall n instance was not present
in the time interval before the state s′, then it gets deployed in s′ and from then it filters
the packet it received according to its rule set. Consequently, several hard constraints
of the MaxSMT problem will be imposed upon this predicate, as it represents the
key element for the computation of the scheduling of the reconfiguration changes.

7.3.3 Traffic and Network Functions model

The class of packets (or traffic) model, the traffic flow model and the network
functions model are the same as those presented for the application of the VEREFOO
approach to packet filtering firewalls, already illustrated in Section 5.1.

A traffic t ∈ T , where T is the set of all the possible packet classes, is again
modeled as a conjunction of five predicates that are defined over the IP 5-tuple
packet fields, i.e., t = (IPSrc, IPDst,pSrc,pDst, tProto). Instead, given the set of
all the possible traffic flows F , a flow f ∈ F represents a class of packets that are
generated by a source endpoint ns ∈ NU , directed to a destination endpoint nd ∈ NU ,
and steered to pass through an ordered list of intermediate nodes na,nb, ... ∈ NA,
i.e., f = [ns, tsa,na, tab,nb, ...,nk, tkd,nd]. Two auxiliary functions based on the traffic
flows models and required for the definition of some hard constraints in the MaxSMT

128 Orchestration of Firewall Reconfiguration Transients

problem are the π: F → (NU)
∗ and τ: F×NU → T , that again were already defined

in Section 5.1.

The network functions model covers two main aspects: their configuration and
their behavior. The configuration model varies on the basis of the different kinds of
network function. As an example, the configuration of a firewall instance n ∈ NU is
modeled as a pair (dn, Rn), as it has been already done in Section 5.3. The network
functions behavior is then modeled by means of two functions, which correspond to
the forwarding behavior and the transformation behavior. The former is related to
establishing which types of traffic are allowed or dropped by the network function,
the latter expresses how the packets might be modified by the function. The function
that models the forwarding behavior of the VNF in node n ∈ NU is the predicate
deny: NU×T→B which is true for node n ∈ NU and ingress traffic t ∈ T , if and only
if n drops all the packets represented by t. Instead, the transformation behavior of
the VNF in node n ∈ NU is modeled by the function transform: NU ×T → T , which
maps an input traffic to the corresponding output traffic.

7.3.4 Network Security Policies model

Also the NSP model is similar to the one described in Section 5.1 for the VERE-
FOO approach. In FATO, each policy p of the PT set (i.e., the set of all the tar-
get Network Security Policies) is formally defined as a pair p = (C, a), where
C =(IPSrc, IPDst, pSrc, pDst, tProto) represents the policy condition, whereas a
is the action that is applied on all the traffic flows satisfying the condition and is
one of the two elements of the set A = {allow,deny}. When p.a = allow, then p
is defined a reachability policy: a policy of this type is satisfied in an intermediate
state of the transient if, in that state, there exists at least a flow satisfying the policy
condition that reaches its destination. Instead, when p.a = deny, p is defined an
isolation policy: in this case, the policy is satisfied in a state if all the flows satisfying
its conditions cannot reach their destination.

An example PT set is shown in Table 7.2.

The PT set is split into two subsets, i.e., PT = PP
T ∪PN

T . The elements of PP
T are

the persistent policies, for which the MaxSMT problem requires the formulation
of hard constraints, because these policies must be satisfied in all the intermediate
states of the reconfiguration transient. Instead, the element of PN

T are all the other

7.4 Ranking Generation 129

Action IPSrc IPDst pSrc pDst tProto

allow 192.168.1.∗ 192.168.2.∗ ∗ ∗ ∗
allow 192.168.2.∗ 192.168.1.∗ ∗ ∗ ∗
allow 192.168.1.∗ 130.10.0.∗ ∗ 80 TCP
deny 192.168.1.∗ 130.10.0.∗ ∗ ≠80 TCP
deny 192.168.1.∗ 130.10.0.∗ ∗ ∗ UDP
deny 192.168.2.∗ 130.10.0.∗ ∗ ∗ ∗
allow 130.10.0.∗ 192.168.1.∗ ∗ ∗ ∗
allow 40.40.41.∗ 130.10.0.∗ ∗ 110 TCP
deny 40.40.41.∗ 130.10.0.∗ ∗ ̸=110 TCP
deny 40.40.41.∗ 130.10.0.∗ ∗ ∗ UDP

Table 7.2 Target Network Security Policies

non-persistent policies. They must be organized in a ranking and their satisfaction is
not strictly required for any intermediate state; therefore, their presence is reflected
to a set of soft constraints.

Finally, the satisfied : PT ×S→ B predicate is introduced. This predicate returns
true if the input policy is satisfied in the input state of the transient. In the MaxSMT
problem, some constraints will be imposed upon the active and satisfied predicates,
to enforce or require that they assume specific values in some conditions, while in
other cases their values will be established by the solver as output.

7.4 Ranking Generation

The FATO methodology requires that a ranking is defined for all the policies of the
PN

T set, before the formulation of the optimization problem. The generation of this
ranking is performed by FATO as long as the user provides the methodology with an
optimization profile, i.e., a working mode for the ranking computation.

The computation of the ranking is then performed on the basis of this information
provided by the user throughout two steps: 1) computation of a matrix, called
dominance matrix, which captures the information about the relationships between
policies in PN

T (Subsection 7.4.1); 2) generation of the ranking on the basis of the
dominance matrix previously computed (Subsection 7.4.2). Alternatively, the ranking
might be directly defined by the user, if she has the required skills (e.g., she has total
control on the network, and a high level of security expertise). In this particular case,

130 Orchestration of Firewall Reconfiguration Transients

the usage profile and the relationship set for the policies are not required by FATO,
which directly receives the ranking from the user.

7.4.1 Dominance Matrix Computation

The relationship between two policies p, p′ ∈ PN
T can be of two different types:

• a dominance relationship, written p≻ p′, if p dominates p′ (complimentary,
p′ ≺ p and p′ is dominated by p), i.e., if p has priority higher than p′ for
satisfaction in the transient ;

• an independence relationship, written p ∥ p′, if p and p′ are independent, i.e.,
there is not a strict imposition that one policy dominates the other.

The dominance operators ≻ and ≺ are characterized by the transitivity property.
This property does not characterize, instead, the ∥ operator.

The relationships among the elements of PN
T are established depending on the

working profile selected by the user for the Ranking Generation algorithm. As
explained in Subsection 7.2.2, there are four available profiles: security-max, service-
max, policy-max and state-max.

Security-max profile. This profile determines two types of constraints. On the
one hand, each isolation policy dominates any reachability policy. This constraints
is represented in (7.1), according to which, given a policy p whose action p.a is
deny and a policy p′ whose action p′.a is allow, the former must have higher priority
than the latter. On the other hand, two policies of the same type are independent,
unless the user specifically forces a dominance relationship between them, as it is in
their faculty. This constraints is represented in (7.2), according to which, given two
policies p whose actions p.a and p′.a are the same (both are deny or allow), neither
of them has necessarily higher priority than the other.

∀p ∈ PN
T | p.a = deny. ∀p′ ∈ PN

T | p.a = allow. (r ≻ r′) (7.1)

∀p, p′ ∈ PN
T | p.a = p′.a. (p ∥ p′) (7.2)

Service-max profile. This profile determines two types of constraints. On the
one hand, each reachability policy dominates any isolation policy. This constraint
is represented in (7.3), according to which, given a policy p whose action p.a is

7.4 Ranking Generation 131

allow and a policy p′ whose action p′.a is deny, the former must have higher priority
than the latter. On the other hand, two policies of the same type are independent,
unless the user specifically forces a dominance relationship between them, as it is in
their faculty. This constraints is represented in (7.4), according to which, given two
policies p whose actions p.a and p′.a are the same (both are deny or allow), neither
of them has necessarily higher priority than the other.

∀p ∈ PN
T | p.a = allow. ∀p′ ∈ PN

T | p.a = deny. (p≻ p′) (7.3)

∀p, p′ ∈ PN
T | p.a = p′.a. (p ∥ p′) (7.4)

Policy-max profile. The user has the faculty to specify some dominance relation-
ships between pairs of policies. The policies in each pair for which a dominance
relationship is not enforced are independent.

State-max profile. Each pair of policies, independently of their types, is char-
acterized by an independence relationship. This constraints is represented in (7.5),
according to which, given two policies p whose actions p.a and p′.a are the same
(both are deny or allow), neither of them has necessarily higher priority than the other.
This guarantees that, when trying to enforce their satisfiability in each transient state,
no policy has a higher priority than another. Therefore, the global objective of the
FATO methodology, i.e., maximizing the number of states where each policy is satis-
fied, translates into maximizing the number of policies satisfied in each intermediate
state.

∀p, p′ ∈ PN
T . (p ∥ p′) (7.5)

These profiles have been identified after an analysis of the current needs in the
management of reconfiguration transients. However, if in the future new needs will
arise, FATO is flexible enough to be extended to support other profiles representing
these new requirements. It would be enough to establish how the dominance and
independence relationships are specified for the policies in PN

T for each new profile, in
a similar way as it has been explained for the four ones that are currently supported.

Then, the computation of a matrix MD, called dominance matrix is performed.
If the number of policies in PN

T is n, and defining N = {0,1}, then MD ∈ Nn×n

summarizes the information about all the relationships between elements of PN
T in

a compact way. In particular, for each pair p, p′ ∈ PN
T , MD[p, p′] expresses their

relationship, and this value is computed following two simple rules:

• if p≻ p′, then MD[p, p′] = 1;

132 Orchestration of Firewall Reconfiguration Transients

MD p1 p2 p3 p4 p5 p6 p7 p8

p1 0 0 0 0 1 1 1 1
p2 0 0 0 0 1 1 1 1
p3 0 0 0 0 1 1 1 1
p4 0 0 0 0 1 1 1 1
p5 0 0 0 0 0 0 0 0
p6 0 0 0 0 0 0 0 0
p7 0 0 0 0 0 0 0 0
p8 0 0 0 0 0 0 0 0

(a) First matrix example

MD p1 p2 p3 p4 p5 p6 p7 p8

p1 0 1 1 1 1 1 1 1
p2 0 0 0 0 1 1 1 1
p3 0 0 0 0 1 1 1 1
p4 0 0 0 0 1 1 1 1
p5 0 0 0 0 0 0 0 0
p6 0 0 0 0 1 0 0 0
p7 0 0 0 0 1 0 0 0
p8 0 0 0 0 1 0 0 0

(b) Second matrix example

MD p1 p2 p3 p4 p5 p6 p7 p8

p1 0 0 0 0 0 0 0 0
p2 0 0 0 0 0 0 0 0
p3 0 0 0 0 0 0 0 0
p4 0 0 0 0 0 0 0 0
p5 0 0 0 0 0 0 0 0
p6 0 0 0 0 0 0 0 0
p7 0 0 0 0 0 0 0 0
p8 0 0 0 0 0 0 0 0

(c) Third matrix example

Fig. 7.5 Matrix examples

• in all the other cases, MD[p, p′] = 0.

A few examples of dominance matrices are now illustrated to clarify the compu-
tation mechanism. To this end, let us consider the set of policies PN

T = {p1, p2, p3,

p4, p5, p6, p7, p8}, where p1, p2, p3, p4, are isolation policies, while the others are
reachability policies. Three different scenarios are analyzed:

• the user decides to adopt a security-oriented profile, without specifying any
dominance relationship for policies of the same type (i.e., isolation or reacha-
bility). The resulting dominance matrix is shown in Fig. 7.5a;

• the user decides to adopt a security-oriented profile, and specifies that p1

dominates all the other isolation policies, while p5 is dominated by all the
other reachability policies. The resulting dominance matrix is shown in Fig.
7.5b;

• the user decides to adopt a complete profile. The resulting dominance matrix
is shown in Fig. 7.5c.

7.4.2 Ranking Generation Algorithm

Supposing that the cardinality of PN
T is n, the associative array rank, composed of

n elements, associates a policy p ∈ PN
T to the corresponding rank. The value of

each element rank[p] is computed on the basis of the dominance matrix MD through
Algorithm 2.

Initially (line 2), all the elements of the associative array dominated, whose
indexes are the n policies of PN

T , are initialized to 0. The value of each dominated[p]
element identifies the number of policies that p dominates. This value is computed
by summing all the elements of the MD row corresponding to p (line 4).

7.4 Ranking Generation 133

Algorithm 2 computation of the ranking
Input: the set of n policies PN

T , and the relationship matrix MD

Output: the value of rank[p] for each p ∈ PN
T

1: for each p ∈ PN
T do

2: dominated[p]← 0
3: for each p′ ∈ PN

T do
4: dominated[p]← dominated[p] + MD[p, p′]
5: end for
6: end for
7: lP← descendingOrder(PN

T , numPrevious)
8: rankCounter← 1
9: for each i = 1, 2, ..., n do

10: if i ̸= n ∧ dominated[lP[i]] > dominated[lP[i+1]] ∧
11: lP[i] ≻ lP[i+1] then
12: rankCounter← rankCounter + 1
13: end if
14: rank[p]← rankCounter
15: end for
16: return rank

Next (line 7), the policies are sorted in descending order of the number of policies
each one dominates. As such, the descendingOrder function works on the PN

T set and
the dominated array, so as to compute another array, identified by lP. If two or more
policies dominates the same number of policies, their relative ordering is indifferent.
This array can be accessed by means of integer indexes from 1 to n, and in particular
lP[i] returns the policy in i-th position in the computed descending ordering.

The final operation is the computation of the value of rank[p] for each p∈ PN
T . To

this end, after initializing the auxiliary variable rankCounter to 1 (line 8), the policies
are analyzed one by one, according to the previously computed ordering. At the i-th
iteration step, the rankCounter variable is incremented by one unit, if the following
conditions are satisfied (lines 10-11): (1) the policy returned by dominated[lP[i]]
dominates a larger number of policies than the policy dominated[lP[i+1]] (because
they might have the same value of dominated policies, and in that case the i+th
policy antecedes the (i+1)-th one in this ordering is casual); and (2) the i-th policy
dominates the (i+1)-th one (because it might happen that they are independent, so
there is not relative priority between them).

134 Orchestration of Firewall Reconfiguration Transients

After the decision on increasing the rankCounter variable, its updated value is
assigned to rank[p] (line 14). After this operation is repeated for all the policies, the
value of rank[p] for each p ∈ PN

T has been computed. These values will come in
handy for the formalization of the soft constraints of the MaxSMT problem.

7.5 MaxSMT Problem Formulation

The reconfiguration transient problem is formulated as a MaxSMT problem. In
this section, the derivation of the hard and soft constraints of this formulation are
illustrated.

7.5.1 Hard constraints on boundary states

The presence of a node in the NI or NT sets (i.e., respectively in the GI or in the GT

graphs) determines some boundary conditions on the initial and final states of the
reconfiguration transient. These conditions are formalized as three classes of hard
constraints, represented by equations (7.6), (7.7) and (7.8). In these formulas, the
outcome of the active predicate is constrained when applied to the initial state s0

and the final state sc, because the conditions of each node in those states are already
known from the inputs of the approach. In light of these considerations, the three
classes of hard constraints are formulated as:

• A node n ∈ NU that is present in NI but not in NT is active in s0, while not
active in sc.

∀n ∈ NU\NT . (active(n,s0)∧¬active(n,sc)) (7.6)

• A node n ∈ NU that is present in NT but not in NI is not active in s0, while
active in sc.

∀n ∈ NU\NI . (¬active(n,s0)∧active(n,sc)) (7.7)

• A node n ∈ NU that is present in both NI and NT is active in both s0 and sc.

∀n ∈ NI ∩NT . (active(n,s0)∧active(n,sc)) (7.8)

7.5 MaxSMT Problem Formulation 135

7.5.2 Hard constraints on intermediate states

For the majority of the pairs composed of a node n ∈ NU and a state s ∈ S, the
outcome of the active predicate is established by the MaxSMT solver when the
solution is computed. However, there are some cases where this outcome can be
determined in advance, and they can be represented as hard constraints. For their
formulation the introduction of the bti : B→{0,1} (“bti” stands for “bool_to_int”)
function is required. This function returns 0 if the Boolean input is false, 1 otherwise.

In greater detail, three classes of hard clauses are defined for the conditions on
the intermediate states of the transient, and they are represented by equations (7.9),
(7.10) and (7.11).

• For each node n that is active in both s0 and sc, no change of state is required
in the transient. Therefore, for each state s that composes the transient, the
outcome of the active predicate is forced to be true when it is applied to node
n and state s.

∀n ∈ NU . ((active(n,s0)∧active(n,sc)) =⇒

(∀s ∈ S. (active(n,s))))
(7.9)

• For each node such that its initial and final states are different, then only one
change of state is required in the transient. Therefore, the active predicate,
when applied to that node n, changes value from a state si to the following
state si+1 only once. This constraint is enforced by imposing that the module
of the difference between active(n,si+1) and active(n,si) is equal to 1 only
once, i.e., that the sum of all the differences for each pair of consecutive states
is still equal to 1.

∀n ∈ NU . ((active(n,s0) ̸= active(n,sc)) =⇒
∑

si∈(S\sc)

(|bti(active(n,si+1))−bti(active(n,si))|) = 1)

!
(7.10)

• For each intermediate state, only for one node the state is different from
the previous one, because a single operation is performed in-between two
consecutive states. Therefore, it is imposed that, given two consecutive states
si and si+1, it occurs only for a node n that the outcome of active(n,si) id
different from the one of active(n,si+1.

∀ si,si+1 ∈ S.∃!n ∈ NU . (active(n,si) ̸= active(n,si+1)) (7.11)

136 Orchestration of Firewall Reconfiguration Transients

Additionally, the case where two nodes n,n′ ∈ NU share the same AP and their
update is allowed without the need of instantiating a new software process (i.e., as
explained in Subsection 7.3.1, configUpdate(n,n′) = true) is formulated with hard
constraints as well. This translates into the hard constraint shown in (7.12), stating
that, when the node n is not active anymore in a state si, then in the next state si+1,
the node that has become active must be n′. Thus, even though in the modelization,
the nodes are distinct, the result is the same as if they were a single one, and only the
configuration was changed.

∀n,n′ ∈ NU . (configUpdate(n,n′)∧active(n,s0)∧

¬active(n′,s0) =⇒ (∃i. ¬active(n,si) =⇒ active(n′,si+1)))
(7.12)

7.5.3 Hard constraints on the forwarding behavior

The forwarding behavior of the network functions (i.e., the decision if a middlebox
must drop the input traffic or forward it) is formalized with some hard constraints
impacting on the outcome of the deny predicate. The truth or falseness of this
predicate, in turn, impacts the satisfiability of the hard constraints related to the
security policies, as it will be described in Subsection 7.5.4. Each network function
type is characterized by different hard constraints, in accordance with the approach
that has been already described for modeling the network functions in Section 5.1.
Examples of hard constraints expressing the forwarding behavior of two function
types (i.e., simple functions such as normal forwarders, and packet filtering firewalls)
have been already reported in that section, and they are also valid for the formulation
of the MaxSMT problem in the FATO approach.

7.5.4 Hard constraints on the security policies

A first consideration related to the satisfaction of the security policies is that all the
policies in the PT set must be satisfied in the final state of the transient (i.e., in sc).
Therefore, this statement translates in hard constraints that impose the truth of the
satisfied predicate, when applied for each policy on state sc.

∀ p ∈ PT . (satisfied(p,sc)) (7.13)

For all the intermediate states of the transient, a set of hard constraints must be
introduced to map the outcome of the satisfied predicate to the forwarding behavior

7.5 MaxSMT Problem Formulation 137

of the functions that are present in the paths crossed by the flows satisfying the
conditions of each policy. The hard constraints are different depending on the policy
type (i.e., reachability or isolation). The formalization of the hard constraints for a
reachability policy p ∈ PT is shown in (7.14). In a state s the policy p is satisfied
if there exists at least a flow f satisfying p.C such that all the nodes of the paths
crossed by f are active in that state and do not block the incoming traffic of f .

∀s ∈ S.(satisfied(p,s) ⇐⇒ (∃ f ∈ Fp.

(∀n ∈ π(f).(active(n,s)∧¬deny(n,τ(f ,n))))))
(7.14)

Instead, the formalization of the hard constraints for an isolation policy p ∈ PT is
shown in (7.15). In a state s the policy p is satisfied if for each flow f satisfying
p.C there exists at least a node of the path of f that is not active in that state (i.e., it
cannot receive traffic), or it is active and blocks the incoming traffic of f .

∀S ∈ S.(satisfied(p,s) ⇐⇒ (∀ f ∈ Fp.

(∃n ∈ π(f).(¬active(n,s)∨ (active(n,s)∧deny(n,τ(f ,n)))))))
(7.15)

Finally, if p ∈ PP
T , i.e., it is a persistent policy, then it must be satisfied in each

intermediate state. Therefore, the class of constraints shown in (7.16) imposes that
the satisfied predicate must be true when applied to a persistent policy p and to any
state, because that policy must be satisfied in any intermediate state of the transient.

∀ p ∈ PP
T . (∀s ∈ S.(satisfied(p,s))) (7.16)

7.5.5 Soft constraints

The optimization objective of the MaxSMT problem is to maximize the number
of transient states where each policy p ∈ PN

T is satisfied, while considering their
relative priority expressed throughout the ranking computed as illustrated in Section
7.4. The persistent policies are excluded from this objective, because they are
already managed as shown in (7.16). The achievement of this objective requires the
formalization of some weighted soft constraints, so that the MaxSMT solver gives
priority in the satisfaction of the clauses with the highest weight, trying to maximize
the sum of the weights assigned to the satisfied soft clauses.

Each soft constraint is related to the application of the satisfied predicate to a
pair composed of a policy p and a state s. Therefore, if the number of states is
c (excluding the final state), the total number of soft constraints is c · |PN

T |. The

138 Orchestration of Firewall Reconfiguration Transients

Algorithm 3 computation of the weights for the soft constraints of the MaxSMT
problem
Input: the set of policies PN

T , the associative array rank, the number of ranks m, and the
number of transient states c
Output: the value of weight[p] for each p ∈ PN

T

1: weightSum← 0, weightValue← 1
2: for each i = m, m−1, ..., 2, 1 do
3: for each p ∈ PN

T do
4: if rank[p] = i then
5: weight[p]← weightValue
6: weightSum← weightSum + (weightValue · c)
7: end if
8: end for
9: weightValue← weightSum + 1

10: end for
11: return weight

computation of their weights is described in Algorithm 3, and these weights are
returned by means of the associative array weight, indexed by the elements of PN

T .
Supposing that the number of different ranks is m, the algorithm starts to assign
the weights to policies having the lowest rank, i.e., the m-th rank (line 2). The
weight that is assigned to all the policies within the same rank must be the same
as well. Initially, the weight assigned to the policies, identified by the auxiliary
variable weightValue, is set to a conventional number, which is 1 for simplicity (line
1). Whenever an element of the weight array is assigned with the proper value (line
5), a counter (weightSum) is incremented by the product of the current weight value
(weightValue) and the number of states c (line 6). The reason is that this same weight
will be used for that policy for c soft constraints, for each transient state. Then, when
the algorithms iterates to a higher rank, the value of the variable of weightValue is
incremented by the sum of all the previous weights (weightSum) plus 1 (line 9), so
that the soft constraints will be characterized by a weight that is higher than the sum
of all the weights assigned to soft clauses for policies of lower rank.

The formulation of the soft constraints is represented in (7.17). In this repre-
sentation, the Soft(c, w) notation identifies a soft clause, expressing the constraint c
and having weight w. Each soft constraint simply assigns weight[p], computed as
previously explained, to the satisfied predicate, applied to the specific policy p and

7.6 Implementation and validation 139

to any transient state s.

∀p ∈ PN
T . ∀s ∈ S\{sc}. (Soft(satisfied(p,s),weight[p])) (7.17)

7.5.6 Solution Computation

After the MaxSMT problem is built by combining the hard and soft constraints
illustrated beforehand, a MaxSMT solver is employed to compute the optimal and
correct solution. In case the problem is not satisfiable (e.g., a persistent policy cannot
be satisfied in all the intermediate states of the transient), the solver cannot reach any
correct solution for the problem. Instead, it assigns the most appropriate Boolean
values for the active and satisfied predicates so as to achieve most of the optimization
objectives. From the results of the active predicate, in particular, it is possible to
identify the order in which the nodes are introduced or removed in GT with respect
to GI , i.e., the optimal scheduling of the operations. In fact, when a node becomes
active in a state after not being active in the previous state, it means that in-between
these two states the traffic flows have been redirected to this node, which has been
successfully deployed in the virtual network.

7.6 Implementation and validation

The FATO methodology has been implemented as a Java-based framework, employ-
ing a state-of-the-art theorem prover called z3 for the formulation and resolution
of the MaxSMT problem. This framework offers REST APIs for the interaction
with other tools, e.g., a tool for the automatic computation of firewall configurations
in virtualized networks [10]. Through this RESTful interface, the framework can
also interact with NFV MANO (Management and orchestration) tools, such as Open
Source MANO. More specifically, the framework can retrieve information about
the virtual network from the MANO. Then, after running the FATO methodology,
it provides the MANO with information about the order the different operations
composing the distributed firewall reconfiguration must be executed in the network.

The framework has been validated in different ways: i) the correctness and
optimization of the approach have been proved with some realistic use cases, based on
computer networks having varying topologies (Subsection 7.6.1); ii) the computation

140 Orchestration of Firewall Reconfiguration Transients

time and memory usage of the approach has been evaluated with an extensive series
of scalability tests (Subsection 7.6.2). All the tests have been carried out on an 8-core
Intel Core i7-10700E CPU @ 2.90GHz workstation with 32 GB RAM. For these
tests, the adopted z3 version is 4.8.5.

7.6.1 Correctness and optimization verification

The correctness and optimization of the approach have been checked with some
use cases, based on different networks having topological structures that vary from
simple to complex. Four networks topologies have been considered: i) the network
of our university department; ii) a three-tier data center network; iii) the GÉANT1

topology; iv) the Internet22 topology.

About optimization, all the possible solutions in solving the transient reconfigu-
ration problem have been enumerated for the networks. Then, the framework has
been run and it has been checked that the output produced by the MaxSMT solver
corresponds to the optimal solution, i.e., it minimizes the number of intermediate
transient states where policies are violated. About correctness, the intermediate
states of the transient derived from the solution computed by the framework have
been simulated by using GNS3, a software that allows real-time network simulation
for pre-deployment testing without the need for network hardware3. Under those
conditions, some communications have been established in the network to check if
the specified security policies were violated or not in the transient states.

Here the way the effectiveness validation has been performed is described for a
fairly complex network topology, i.e., the three-tier data center network depicted in
Fig. 7.6. It is possible to suppose that the human user, i.e., a network administrator,
has specified four security policies and has assigned them with the rank shown in
Table 7.3. The table also reports the firewall configuration changes required for the
full enforcement of the corresponding policy.

The FATO methodology establishes that the following order of the configuration
changes must be scheduled: f19→ f33, f21→ f34, f26→ f36, f30→ f37, and f24→
f35. In the following, an explanation is provided about how the intermediate states

1https://geant3plus.archive.geant.net/
2https://www.internet2.edu/
3https://www.gns3.com/

7.6 Implementation and validation 141

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f19 f33 f20 f21 f34 f22 f23 f24 f35

f25 f26 f36 f27 f28

f29 f30 f37

r31

e32

Fig. 7.6 Topology of the three-layer data center network

Action Source Destination Required changes

1 Deny e32 e1 f19→ f33
2 Deny e4,5,6 e4,5,6 f21→ f34
3 Allow e1 e10 f19→ f33, f26→ f36, f30→ f37
4 Allow e16 e18 f24→ f35

Table 7.3 Network Security Policies

of the transient of the computed solution still maintaining security and service
availability according to the requirements deriving from specified ranking.

State after f19→ f33: the network administrator required that e1 and e32 must be
isolated as soon as possible, with a higher priority than the isolation policy among
hosts of the subnetworks e4, e5 and e6. An example reason may be that an external
attacker, represented by e32, has found out a breach in e1 and is currently exploiting
it for privilege escalation. The consequences would be dramatic for the whole data
center. So f19 is immediately replaced by f33, which can block packets coming from
e32. Unfortunately, the policy inquiring isolation among e4, e5 and e6 is not satisfied
yet. The required security is not fully maintained in this transient state, but it shows
how the most important security policy is prioritized.

State after f21→ f34: the network administrator required that hosts of the sub-
networks e4, e5 and e6 must be isolated one from each other, e.g., because Dockers
belonging to different companies have been launched and they cannot interact due
to privacy. As the security level is thought inferior than the previous policy, f21 is
replaced by f34 after the f19→ f33 configuration change. At this point, the inter-
mediate state fully maintains the desired level of security, as all traffic flows that
must be blocked cannot reach their destinations. However, service availability is not

142 Orchestration of Firewall Reconfiguration Transients

Topology # vertices # directed links # firewalls Time (10 states) Time (20 states)

University department 14 28 6 0.64 s 7.73 s
Three-tier data center 37 140 17 1.47 s 12.88 s

GÉANT 49 86 35 3.83 s 15.10 s
Internet2 53 80 40 6.61 s 23.91 s

Table 7.4 Computation times for the four network topologies

complete, because both the reachability policies (between e1 and e10, between e16

and e18) are not satisfied.

State after f26→ f36: the reachability policy between between e1 and e10 must
be prioritized than the policy between e16 and e18. Consequently, more transient
states will occur before the result is achieved, as multiple configuration changes must
be scheduled. The f19→ f33 was already scheduled at the beginning of the solution.
Now f26→ f36 is scheduled, but is still not sufficient. Therefore, this transient state
does not change anything with respect to the previous, in terms of policy satisfaction.

State after f30 → f37: the reachability policy between between e1 and e10 is
fulfilled only after f30 is replaced by f37. In this intermediate state, service availability
improves, and the transient is almost concluded. Unfortunately, the reachability
policy between e16 and e18 is not satisfied yet, even though it only requires a single
change. The reason is that its rank was the lowest, so minimum priority was assigned
to it.

State after f24→ f35: this last configuration change concludes the transient, and
the final state achieves both maximum security and service availability.

Even though only 5 configuration changes had to be scheduled in this exemplify-
ing use case, 120 different solutions could be produced. The scheduling computed
by FATO is optimal, as the transient states maintain security and service availabil-
ity compatibly with the ranking. For example, might have been scheduled before
f26 → f36 and f30 → f37 to satisfy the fourth policy immediately. However, the
enforcement of the third policy would have been postponed, and this was not an
optimal solution as it had a higher priority.

Table 7.4 reports the time that was required for computing the optimal scheduling
for the four different topologies: 1) the topology of our university department
network, illustrated in Fig. 7.1; 2) the topology of the three-tier data center network,
illustrated in Fig. 7.6; 3) a network topology inspired by the production network

7.6 Implementation and validation 143

5 10 15 20 25
0.01

0.1

1

10

100

Number of transient states

C
om

pu
ta

tio
n

tim
e

(s
)

(a) Time scalability versus num-
ber of transient states

20 40 60 80 100

1

10

100

Number of nodes in GU

C
om

pu
ta

tio
n

tim
e

(s
)

(b) Time scalability versus num-
ber of network nodes

20 40 60 80 100

1

10

100

Number of network security policies

C
om

pu
ta

tio
n

tim
e

(s
)

(c) Time scalability versus num-
ber of security policies

Fig. 7.7 Time scalability

GÉANT4; 4) a network topology inspired by the production network Internet25. This
table also reports information about the size of these networks, in terms of number
of vertices, number of directed links and number of firewalls. The experiments were
carried out under two different transient lengths, respectively 10 and 20 states. In
both cases, the FATO methodology succeeded in computing the solution in much
less time than the typical length of a reconfiguration transient, as already discussed
in Section 7.1. Additionally, Additionally, FATO is executed before starting the
transient, in order not to lengthen its duration. Besides, FATO can be used each time
a reconfiguration transient has to be started (e.g., after the identification of an attack,
or after a policy is modified by the human user). This consideration also holds for
more complex and varied topologies (e.g., GÉANT and Internet2), where the number
of filtering functions is much higher and the structure of their allocation scheme is
not trivial.

7.6.2 Scalability evaluation

Scalability has been evaluated in terms of computation time and memory usage
by means of a series of tests, with the aim to show the feasibility of the approach
considering the requirements of virtualized networks. The four metrics that have
been considered for scalability evaluation are: i) the number of transient states; ii)
the number of nodes composing the network topology; iii) the number of network
security policies that determined the reconfiguration transient; iv) the number of
filtering rules in each instance of the distributed firewall.

4Link: https://geant3plus.archive.geant.net/. Last accessed: October 18th, 2022.
5Link: https://www.internet2.edu/. Last accessed: October 18th, 2022.

144 Orchestration of Firewall Reconfiguration Transients

20 40 60 80 100

10

100

Number of nodes in the union Security Service Graph

C
om

pu
ta

tio
n

tim
e

(s
)

25 rules
50 rules
75 rules

100 rules

Fig. 7.8 Time scalability versus number of rules in each firewall instance

Fig. 7.7 and Fig. 7.8 report the results of time scalability tests. First, Fig.
7.7a analyzes the performance of the implementation when the number of transient
states (i.e., the number of changes that occurred in the transient from GI to GT ,
as formalized in Subsection 7.3.2) progressively increases. For those tests, each
scenario characterized by a certain number of transient states is based on a topology
of corresponding size (e.g., when the number of states is 20, in the resulting GU

the number of firewalls subject to configuration changes is 20). The enforcement
of a congruent number of network security policies is requested as well. Second,
Fig. 7.7b analyzes how the framework behaves for increasing sizes of the network
on which it is applied (i.e., the GU), while keeping the number of transient states
fixed to 20 and the number of policies fixed to 50. Third, Fig. 7.7c evaluates
scalability versus the number of network security policies that should be enforced in
the reconfiguration transient, while keeping the number of transient states fixed to
20 and the network size fixed to 50 nodes. Fourth, Fig. 7.8 depicts the experimental
results for the scalability tests related to the number of filtering rules (from 25 to
100) in each firewall instance. The percentage of firewall instances is 2/3 for testing
the scalability versus firewall rules, so that the framework is evaluated in situations
that might be stressful for its application. The number of intermediate states of the
transients is again fixed to 20.

For all these time scalability tests, the topology is an extension synthetically
derived from the network represented in Fig. 7.4, whereas the policies are similar
to the examples shown in Table 7.2. Besides, for each scenario, the corresponding
whisker plot shows minimum, 5th percentile, median, 95th percentile and maximum
values, computed over the results of 500 iterations. Many iterations have been

7.6 Implementation and validation 145

performed because the computation time of z3 for the resolution of optimization
problems involving the integer theory may differ depending on the effective integers
employed in the definition of the IP addresses, as already discussed in Section 5.4.
The previously mentioned figures are semi-logarithmic plots, with a logarithmic
scale for the Y-axis (“Computation time”) and a linear scale for the X-axis. Through
this representation, whisker plots depicted for low numbers of transient states can be
better visualized, while they would be otherwise stretched to the bottom part of the
plot.

As it has been discussed in the problem statement, the number of transient
states is equal to the number of the distributed firewall configuration changes. In
virtualized networks, the best practice is to deploy a new instance with the required
configuration instead of the previous one. Therefore, the number of states is also
directly proportional to the number of firewall instances that are subject to the
reconfiguration. In light of these considerations, the numbers of transient states
and security function instances characterizing the scenarios under which the FATO
approach has been tested are in line with the experimental tests carried out for the
validation of related approaches ([143][144][171]). In those studies, the maximum
number of nodes composing the distributed function architecture of SDN is 20-30.
Considering that not all of the instances are usually subject to changes during a
reconfiguration, then this shows that the transient length considered as reference is
also the most recurrent one.

From the results shown in Fig. 7.7a, the computation time of the MaxSMT solver
progressively increases with a quadratic behavior when the number of states of the
transients gets bigger. On the one hand, the scalability is worse when the number
of states is bigger than 20. On the other hand, the framework is particularly fast for
transients composed of at most 20 states: all the MaxSMT instances representing the
evaluated scenario are successfully solved in less than 10 seconds. Considering that
related approaches work on a similar number of transient states as mentioned before,
this is a significant result for validating the methodology illustrated in this chapter. It
can also be noted that in [143] some problem instances with more than 20 functions
could not be solved in 600 seconds, while in [144] the time required to find a first
feasible solution for the optimization problem is in the same magnitude order as the
results of these validation tests.

146 Orchestration of Firewall Reconfiguration Transients

5 10 15 20 25
4

6

8

10

12

14

Number of transient states

M
em

or
y

us
ag

e
(M

B
)

(a) Memory scalability versus
number of transient states

20 40 60 80 100

10

15

20

Number of nodes in GU

M
em

or
y

us
ag

e
(M

B
)

(b) Memory scalability versus
number of network nodes

20 30 40 50 60 70 80 90 100

10

15

20

25

Number of network security policies

M
em

or
y

us
ag

e
(M

B
)

(c) Memory scalability versus
number of security policies

Fig. 7.9 Memory scalability

Similar considerations apply to the scalability versus the number of nodes in GU

and the number of network security policies. The results plotted in Fig. 7.7b and Fig.
7.7c respectively show that the proposed approach can successfully manage fairly big
networks while checking the satisfaction of a large set of policies. Scalability with
respect to network size and policy set cardinality is even better than scalability with
respect to the number of transient states. This is due to the fact that the increment of
soft constraints in the formulation of the MaxSMT problem is lower. Additionally,
Fig. 7.8 shows that, even if the number of rules in each firewall instance increases,
the difference among the resulting computation times is not significantly large. As
such, the methodology is also suitable for managing firewalls with a high number of
rules.

Time scalability is also in line with the times that state-of-the-art approaches
require for the security management of virtualized networks. The common workflow
to enforce security in a virtualized networks is composed of multiple steps [147]: i)
establishing the configuration of the security functions; ii) determining the embed-
ding scheme of their virtual implementations in the physical infrastructure; iii) the
instantiation of the virtual security service; iv) the effective deployment of the virtual
functions. The same process should be also followed in case of a reconfiguration, as
such the one that determines the transients studied in this chapter. By looking at the
related literature, the computation times that are commonly needed to perform those
tasks are bigger than the ones that the FATO approach can reach for the management
of the reconfiguration transient. [11] reports that configuring a security service with
a distributed firewall composed of 100 instances requires around 3 minutes. [172] un-
derlines that establishing the embedding scheme of 10 virtual functions on a physical
network composed of 50 nodes varies according to the adopted methodology, from

7.6 Implementation and validation 147

1400s for the resolution of the exact problem to around 100ms when the heuristic
that is proposed there ix executed. [173] experimentally checked that the instantation
time of a network security service takes more than 100 seconds, when the service is
composed of around 30 virtual functions, for the Virtual Infrastructure Managers of
two-well known orchestrators: Open Source MANO and Openstack. [168] states
that DPD time related to the deployment of a single virtual function is 134s. If these
numbers are combined, it is clear that the time introduced by the FATO framework
does not represent a delay, as the scheduling of the reconfiguration changes may be
easily computed by FATO while another step, such as the service instantation, is
performed. This is even more evident when the DPD time is compared to the time
scalability of the FATO approach. In transients composed of 20 states, more than
a single virtual function must be deployed and instantiated, but just deploying one
takes more time than running the FATO methodology. Therefore, the value of the
DPD time has been represented for reference as a red dotted horizontal line in Fig.
7.7 and Fig. 7.8. These comparisons with state-of-the-art approaches for the security
management of virtualized networks may not seem fair, as they were made with
older approaches. Nevertheless, they are the only comparisons that could be done,
as there are not newer approaches in literature with the same characteristics as the
FATO methodology.

Finally, peak memory scalability has been evaluated by running the framework
under the same conditions of Fig. 7.7. This analysis was required, because memory
may be a critical parameter for the solver, which is highly memory-demanding. The
results are reported in Fig. 7.9, where whisker plots are not used because memory
usage is not influenced by the different IP addresses used in the MaxSMT formulation,
differently from the computation time. Two considerations can be derived from these
plots. On the one hand, memory usage increases linearly with respect to all the
analyzed metrics. On the one hand, even the worst case that was identified (i.e., when
100 network security policies are formalized in the MaxSMT problem) is inferior
to 26 MB. Therefore, all these results shows that the implementation of the FATO
methodology can work without any worrisome limitation due to memory.

Chapter 8

A Functionality Model for Security
Orchestration

This chapter proposes a new abstraction of virtual network security functions, i.e.,
the projection abstraction, which can be used to optimize the workflow of network
orchestration. This abstraction captures only the security functionalities that security
functions can execute, but represented independently from the differences that are
only related to the vendor-dependent implementation choices.

8.1 Problem Statement

The introduction of softwarization paradigms in networking determined high flex-
ibility for choosing the security functions that should be employed to enforce the
requested security protection in a computer network. For the enforcement of the
user-specified Network Security Policies (NSPs), security providers have access
to a large pool of alternative Virtual Network Functions (VNFs), programs which
can run on general Virtual Machines or Dockers without requiring special-purpose
embedding hardware, and which may offer multiple functionalities (e.g., firewalling,
VPN generation).

However, this freedom of choice has a drawback. In the approach that is com-
monly pursued for enforcing security in a virtual network [147], security providers
select the VNFs required to enforce the NSPs before the two next stages of security

8.1 Problem Statement 149

orchestration, i.e., the security enforcement in the virtual service, through the defini-
tion of allocation scheme and configuration of the selected vNSFs in the topology
(this step can be automatically managed by VEREFOO, as explained in Chapter
4), and their deployment in the physical infrastructure of the network. Due to this
ordering of the operations, network information (e.g., the virtual service topology,
and the presence, in this topology, of network functions like load balancers and
network address translators) is overlooked in the selection of the VNFs. Neglecting
this information may result into sub-optimizations impacting the stages that follow
VNF selection, as discussed below.

Two main sub-optimizations that may derive from selecting VNFs without taking
network information into due account are those concerning deployment costs and
energy efficiency. For example, if there is a requirement to block two different types
of traffic (e.g., the web traffic to some domain and the mail traffic to some other
domain), the administrator may end up with choosing a distinct VNF to satisfy each
requirement (e.g., a web application firewall for the first type and a packet filter
for the second one). However, it is possible that the network topology is such that
a single firewall, capable of performing both web application filtering and packet
filtering, is enough to block both traffic flows, because there is an allocation place
that is on the paths of both flows. If this is the case, deploying distinct VNFs for
the two security functionalities means deploying more virtual functions than strictly
required, which entails consuming more server resources (e.g., memory and CPU)
and more energy for their operation. Even though virtualized networks have higher
flexibility and higher operational efficiency than physical networks, deployment and
energy optimizations are still open problems [174].

In light of these considerations, the idea developed in this thesis to address this
problem is to postpone the VNF selection phase, making the selection when the net-
work service topology has been completely defined, and more network information
can be exploited to perform the optimum selection. In order to make this possible, a
new abstraction level for the VNFs, named projection abstraction, is proposed. In
each VNF that could be potentially selected, a set of functionalities (i.e., function
features that can enforce corresponding security properties) is selected, by projecting
all the VNF functionalities onto the NSPs that must be enforced in the network.
Thanks to this projection concept, the actual VNF selection may be postponed to be
performed jointly with VNF deployment, after the security configuration step, which
can be performed by allocating and configuring projections instead of real VNFs.

150 A Functionality Model for Security Orchestration

Symbol Definition
B= {true, false} Boolean set
v VNF
Mv = (Fv,Av) manifest of the VNF v
Fv = (F+

v ,F∗v) configuration features and fields of the VNF manifest
F+

v features for which the VNF can take a decision and which it can configure
F∗v) features for which a VNF can take a decision, but without configuring them
Av actions of the VNF manifest
n = (Cn,Sn) NSP
Cn = {c1,c2, ...,cm} condition set of the NSP n
Sn = {s1,s2, ...,sl} action set of the NSP n
Sn = [s1,s2, ...,sl] action list of the NSP n
s = (as,Bs) single action of the NSP n
as operations of the action s
Bs enforcement modes of the action s
p = (Cp,Sp) projection
Cp conditions of the projection p
Sp actions of the projection p

Table 8.1 Notation

Only later, depending on the allocated projections and their computed configuration,
the actual VNFs are selected and deployed, in a final single and optimized step. In the
vision of this proposal, this approach is fully automated, so that all the stages of the
process (i.e., projection allocation and configuration, VNF selection and placement)
work on inputs provided by service providers but without requiring additional human
intervention.

8.2 The Projection Abstraction

This section presents the formal models of the VNFs that can be deployed in the
network, the NSPs that have been requested to enforce security protection, and the
projection abstraction. TABLE 8.1 includes the main formal notations used for the
definition of these models.

8.2.1 VNF Model

Each VNF is characterized by the information related to its security behavior, which
is represented by the actions and the configuration fields identifying the traffic on
which the actions are applied. Examples of configuration fields are the conditions

8.2 The Projection Abstraction 151

expressing the layer of the ISO/OSI stack where the VNF can work (e.g., conditions
on the source and destination IP addresses, or on the web domains), and the algo-
rithms it can execute (e.g., AES-256-CBC for encryption). In the proposed model,
this information is grouped in a single representation, named VNF manifest.

For a VNF v, the corresponding manifest Mv is composed of two sets, i.e.,
Mv = (Fv,Av):

• Fv is the set of all the configuration features and fields that can be used by a
VNF to take a decision or to enforce an action. This set includes packet fields
(e.g., the five fields of the IP 5-tuple, web-application fields as domain or url)
and other configuration elements that determine the VNF behavior (e.g., the
encrypting algorithm and the key length for VPN gateways);

• Av is the set of all the actions that can be applied by the VNF.

In greater detail, the field set Fv is composed of two subsets, i.e., Fv = (F+
v ,F∗v).

This distinction allows discriminating the fields which a VNF can configure on itself
from those for which it can only take decisions:

• F+
v is the set of all the features for which the VNF can take a decision and

which it can configure (e.g., for a packet filtering firewall such as iptables, all
the fields of the IP 5-tuple);

• F∗v is the set of all the features for which a VNF can take a decision, but
without configuring them, i.e., by configuring other fields which may allow
reaching the same security property (e.g., if a specific web domain must be
blocked, iptables might be used, however it cannot configure a “domain” field,
but only a corresponding IP address).

The following four VNF manifests may help to explain this modelization. In
these manifests, for the sake of conciseness, only a subset of all the fields that may
be present present in the F+

v and F∗v sets are shown.

VNF v1: iptables

F+
v1

= {IPSrc, IPDst,pSrc,pDst, tProto}

F∗v1
= {domain,url,mailAddress,payload, ...}

Av1 = {allow,deny}

(8.1)

152 A Functionality Model for Security Orchestration

VNF v2: Squid

F+
v2

= {IPSrc, IPDst,pSrc,pDst, tProto,domain,url, ...}

F∗v2
= {mailAddress,payload, ...}

Av2 = {allow,deny, log}

(8.2)

VNF v3: MyLogger

F+
v3

= {domain,url}

F∗v3
= {mailAddress,payload, ...}

Av3 = {allow, log,alert}

(8.3)

VNF v34: strongSwan

F+
v1

= {IPSrc, IPDst,pSrc,pDst, tProto,

encrytion_algorithms = {AES-CBC,AES-GCM, ...},

encrytion_key_length = {256 bits for AES,512 bits for AES, ...}}

F∗v4
= {mailAddress,payload, ...}

Av4 = {allow,encrypt,decrypt,compute a MAC, ...}

(8.4)

The first example, shown in (8.1), is the manifest of a packet filtering VNF such
as iptables, ipfirewall or equivalent firewall implementations. Such VNF can only
work at layers 3 and 4 of the ISO/OSI stack, not at higher layers (e.g., the application
layer). Therefore, it can decide if a received packet is allowed to be forwarded to the
next hop or not depending on the values of the five fields composing the IP 5-tuple.
However, a packet filtering firewall can make decisions for packets having fields
such as web domain and url. For example, it may block packets directed to a certain
web domain, filtering them according to their destination IP address and port.

The second example, shown in (8.2), is the manifest of a web application fire-
walling VNF such as Squid. With respect to a packet filter, this type of firewall
can also configure rules based on web domains, urls, HTTP methods (e.g., POST,
GET), etc. The F∗v2

set includes all the other fields which were present in F∗v1
, since

Squid is still a firewall, just working at higher layers of the ISO/OSI stack. For the
same reason, also such VNF does not have any parameter related to encryption (e.g.,
encryption algorithm, encryption key length) in its manifest. Besides, Squid also
supports the operation of logging the received traffic.

The third example, shown in (8.3), is the manifest of a logging VNF. The
advent of virtualization in networking allows software developers to write their own

8.2 The Projection Abstraction 153

implementation of security functionalities, and run them through Virtual Machines
or containers. The proposed concept and model of VPN manifests is general and
flexible enough to support any kind of VNF, not only the most common ones. In the
case of this particular logging VNF, which the developer has named ‘MyLogger”,
the VNF cannot filter any packet, but it can only log the reception of specific kinds of
packets and notify the human network administrator about that event. Additionally,
it has been developed in such a way that the only fields that are present in the
configuration rules are web domain and url. Therefore, the fields of the IP 5-tuple
itself are absent from the F+

v3 set. They are not in the F∗v3 set either, because domain
and url are related to ISO/OSI layers higher than 3 and 4.

The fourth example, shown in (8.4), is the manifest of a VPN gateway such as
strongSwan. With respect to the previous examples, this manifest also provides
information about the encryption algorithms, with the relative key lengths, that are
supported by the VNF to provide confidentiality. Similar features for the ingenuity
and authentication properties are included in the manifest of such VNF, but they are
here omitted for sake of conciseness. All these features belong to the F+

v4 , because
they are related to configuration parameters that can be set up for the VNF, e.g., it is
possible to specify which algorithm the VNF should use to encrypt specific kinds of
traffic.

8.2.2 NSP Model

An NSP n is modeled as n = (Cn,Sn):

• Cn expresses the conditions identifying the traffic on which the policy actions
must be applied;

• Sn expresses the actions that must be applied to the traffic identified by the
policy conditions, and the ways these actions must be performed (e.g., the
algorithms to be employed).

Cn is a set, modeled as Cn = {c1,c2, ...,cm}. Each c ∈Cn is defined over a field
f , which is represented by the c. f notation. The condition can specify a single value
for the field (e.g., IPSrc = 10.0.0.1), a range of values (e.g., pSrc = [80-100]) or the
special symbol ∗, meaning that each possible value that can be assigned to that field
is valid.

154 A Functionality Model for Security Orchestration

Sn can be a set {s1,s2, ...,sl} or a list without repetitions [s1,s2, ...,sl]. The set
notation is used when the order of actions is not important, while the list notation
when the order is relevant. Each s ∈ Sn is modeled as (as,Bs), where:

• as is the action that must be applied (e.g., deny, decrypt);

• Bs is a set of bindings “field – (optional) value”, specifying additional infor-
mation about the enforcement mode of the action (e.g., the binding “IPSrc =
20.1.2.4” may specify how the source IP address must be changed by a network
address translator, whereas “algorithm = AES-128-CBC” might specify the
encryption algorithm a VPN gateway must use). If no binding is specified
(e.g., when the action is applied on the whole packet satisfying the conditions),
Bs = /0.

The actions in Sn can be optionally grouped into multiple subsets K1, K2, ...,
Kr, ..., Kp, where each subset must contain at least two actions. If two or more
actions belong to the same Kr, it means they must be enforced by the same VNF.
This formalization is introduced to support the cases where the actions cannot be
managed by different VNFs. For example, a network administrator may require that
all the packets satisfying certain conditions are logged and blocked by the same VNF,
because they are dangerous and must be discarded as soon as possible, avoiding any
further hop.

A first example of NSP is shown in (8.5). This policy requires that, for each
packet satisfying all the conditions, firstly its source and destination IP addresses are
logged, and then the whole packet is blocked so that it cannot reach the destination.
In this case, for the as = log action, the two corresponding Bs elements are bindings
characterized only by the fields (i.e., IPSec and IPDst), without any value. The
reason is that they do not have to be modified during the logging operation.

NSP n1

Cn1 = {IPSrc = 125.10.2.0/24, IPSrc = 20.20.20.1,pSrc = ∗,

pDst = 80, tProto = TCP,domain = dangerousSite.com}

Sn1 = [(log,{IPSrc, IPDst}),(deny, /0)]

(8.5)

A second example of NSP is shown in (8.6). This policy requires that, for each
packet satisfying all the conditions, the source and destination IP addresses must
be changed to the value specified in the two bindings associated to the as = modify

8.2 The Projection Abstraction 155

action.

NSP n2

Cn2 = {IPSrc = 125.10.2.0/24, IPSrc = 20.20.20.1,pSrc = ∗,

pDst = 80, tProto = TCP}

Sn2 = {(modify,{IPSrc=145.10.6.2, IPDst=80.2.5.24})}

(8.6)

A third example of NSP is shown in (8.7). The difference with respect to (8.6) is
that, if the NSP in(8.6) simply requires that the log and deny actions are performed
sequentially, instead the NSP in(8.6) requires that they are executed by the same
VNF, as they are grouped in the same K subset of the S3 set.

NSP n3

Cn3 = {IPSrc = 125.10.2.0/24, IPSrc = 20.20.20.1,pSrc = ∗,

pDst = 80, tProto = TCP,domain = dangerousSite.com}

Sn3 = {K = {(log,{IPSrc, IPDst}),(deny, /0)}}

(8.7)

8.2.3 Projection Model

A projection p represents the security operations that a VNF v should perform to
enforce an NSP n in the network. A projection p is obtained by mapping the elements
composing an NSP n (i.e., the policy conditions and actions) onto what a VNF v
can offer to enforce the NSP (i.e., the VNF configuration settings). In this mapping
operation, all the implementation-dependent and vendor-dependent characteristics of
each VNF against which the NSP is projected are neglected. Therefore, if the same
NSP is projected against different VNFs that fulfill the same security objectives, the
resulting projections are the same.

As a projection directly derives from an NSP, it is modeled similarly, i.e., p =

(Cp,Sp) where:

• Cp expresses the conditions that determine the traffic on which the correspond-
ing actions must be applied;

• Sp expresses the actions that the VNF against which the NSP is projected can
enforce to fulfill it.

For example,considering the manifests of the three VNFs v1, v2 and v3 pre-
sented in (8.1), (8.2) and (8.3), the projections deriving from mapping the policy n1

156 A Functionality Model for Security Orchestration

presented in (8.5) onto these manifests are:

Projection p1, derived by mapping the NSP n1 onto the VNF v1

Cp1 = {IPSrc = 125.10.2.0/24, IPSrc = 20.20.20.1,pSrc = ∗,

pDst = 80, tProto = TCP}

Sp1 = [(deny, /0)]

(8.8)

Projection p2, derived by mapping the NSP n1 onto the VNF v2

Cp2 = {IPSrc = 125.10.2.0/24, IPSrc = 20.20.20.1,pSrc = ∗,

pDst = 80, tProto = TCP,domain = dangerousSite.com}

Sp2 = [(log,{IPSrc, IPDst}),(deny, /0)]

(8.9)

Projection p3, derived by mapping the NSP n1 onto the VNF v3

Cp3 = {domain = dangerousSite.com}

Sp3 = [(log,{IPSrc, IPDst})]

(8.10)

In order to enforce an NSP, it is necessary that all the actions required by the
NSP are supported by a single projection or by a combination of projections. In this
example, the projection p2 supports both the actions of logging and packet blocking.
Therefore it might be sufficient to enforce the NSP. Instead, p1 and p3 are not enough
by themselves, because the former can only block packets, while the latter can only
perform logging operations. As such, a combination of p3 followed by p1 would be
needed.

8.3 Projection IDentification (PID)

Projection IDentification (PID) is a two-step algorithm that is proposed for the
computation of the projections of the NSPs onto the VNF manifests. Fig. 8.1 shows
the high-level structure of this algorithm.

The first step, named Projection EXtraction (PEX), requires the specification
of two inputs: the NSPs that must be enforced in the network, and the VNFs that
are available to the network administrator to be possibly deployed in the physical
infrastructure. The PEX step maps each input NSP onto the manifest of each input
VNF. The process is optimized so as to avoid redundancy in the produced result. In
particular, if multiple projections are identical (e.g., it may occur that multiple VNFs

8.3 Projection IDentification (PID) 157

PEX PCH

VNFs

NSPs

Non-Enforceability Report

Projection
Chains

PID

Fig. 8.1 Projection IDentification: the two stages

are implementations of the same security functionalities), a single instance is kept
in the result. Instead, if no NSP projection can be derived from mapping that NSP
onto a specific VNF manifest, that VNF is excluded from the rest of the algorithm,
as it would be useless. This step, called Projection EXtraction (PEX), is detailed in
Subsection 8.3.1.

The second step, named Projection CHaining (PCH), concatenates the projec-
tions computed in the PID stage, so as to create chains that can enforce all the actions
requested by the input NSPs. As previously mentioned, not always a single projec-
tion can fulfill this objective, as there are cases where each projection conveys partial
information about the fulfillment of an NSP. The chains that are so generated can
be used later by other orchestrator tools to establish the security configuration (e.g.,
they can be used by the VEREFOO framework). This step is detailed in Subsection
8.3.2.

In both steps, the algorithm may halt due to some error conditions.

In case no valid chain is identified for an NSP, the global process immediately
halts, and an early non-enforceability report is produced, notifying the network
administrator why the projection identification failed. Otherwise, the valid combina-
tions are passed on to the next stage of the process, for the synthesis of the virtual
security graph. In this way, the security configuration will be performed in a way
that is agnostic to the VNF implementation.

158 A Functionality Model for Security Orchestration

8.3.1 Projection EXtraction (PEX)

The Projection EXtraction (PEX) step projects each NSP against the manifest of
each VNF. It is represented in Algorithm 4.

First, given a policy n and the manifest mv of a VNF v, the condition set Cp of
the corresponding projection pv,n is computed (lines 1-13). For each policy condition
c ∈Cn based on a field f , the manifest of the VNF should include that field in the
F+

V set or in the F∗V . In the former case, the condition c simply becomes a condition
of the projection as well (line 5), as the VNF can configure that field with specific
values. In the latter, a new condition f = ∗ is created and included in the condition
set of the projection, because the VNF can only take decisions regarding that field,
but it cannot configure it (line 7). If the NSF manifest does not support any condition
field of the policy, the resulting condition set of the projection remains empty. In
this case, the algorithm immediately halts, and an early non-enforceability report is
produced to inform the user about this issue (line 13).

Second, the action set of the projection is computed (lines 14-38). Differently
from the condition case, it is not enough that a policy action s ∈ Sn is included in
the action set Av of the VNF manifest (line 16). It is possible that the action s must
be enforced on some fields and parameters (e.g., the packet source address must be
modified). All the fields on which the action s is applied must belong to the F+

V set
of the VNF, because the function must be able to directly operate on those fields
(line 19). If one of them is not supported, then the action cannot be part of the output
projection.

The creation of the action set requires an additional check with respect to the
condition set. In the policy specification, the user may have requested that two
or more actions must be necessarily applied by the same function (e.g., a packet
satisfying certain conditions must be logged and then discarded avoiding any other
hop in the network). Therefore, either all those actions are included in the action
set of the projection, or none of them. After generating the Av set, if the algorithm
notices that only a subset of actions that should be applied by the same function is
present in it, they are removed (lines 28-35). At that point, if the produced action
set is empty, that would again trigger the generation of an early non-enforceability
report to the user (lines 35-36). Otherwise, the projection is finally produced with
the computed condition and action sets (line 39).

8.3 Projection IDentification (PID) 159

Algorithm 4 computation of pvn

Input: a policy n, a VNF manifest mv
Output: pv,n

1: Cp← /0 ▷ Creation of the condition set
2: for each c ∈Cn do
3: if ∃ f ∈ Fv | f = c. f then
4: if f ∈ F+

v then
5: Cp←Cp +{c}
6: else
7: Cp←Cp +{ f = ∗}
8: end if
9: end if

10: end for
11: if Cp = /0 then
12: exit(no field is supported)
13: end if
14: Sp← /0 ▷ Creation of the action set
15: for each s ∈ Sn do
16: if s.as ∈ Av then
17: supported(s.as)← true
18: for each b ∈ s.Bs do
19: if b. f ̸∈ F+

v then
20: supported(s.as)← false
21: end if
22: end for
23: if supported(s.as) = true then
24: Sp← Sp +{s}
25: end if
26: end if
27: end for
28: for each s ∈ Sp do
29: for each s′ ∈ Sn do
30: if s ̸= s′∧ s′ ̸∈ Sp∧ (∃Kl |s,s′ ∈ Kl) then
31: Sp← Sp \{s}
32: break
33: end if
34: end for
35: end for
36: if Sp = /0 then
37: exit(no action is supported)
38: end if
39: return (Cp,Sp)

The worst-case time complexity of Algorithm 1 can be estimated as the sum
of the time complexities of three sequential code blocks. Lines 1-13 have O(|Cp|)
complexity, because O(1) operations are performed on each element of Cp. Lines
14-24 have O(|Sn| ·maxs∈Sn(s.Bs)) complexity because they represent a nested loop.

160 A Functionality Model for Security Orchestration

VNFs PEX

p1 p2 p3 p4 p5

({IPSrc = 10.0.0.0/24,IPDst = 20.20.20.1,
pDst = 110, tProto = TCP}, [(deny, ∅)])

({days = {Saturday, Sunday},
timeInt = 8-14}, [(log, {IPSrc, IPDst})])

({pDst = 110, tProto = TCP},
[(log, {IPSrc, IPDst}]))

({domain = ′youtube′, tProto = TCP},
[(log, {IPSrc, IPDst}), (deny, ∅)])

n = ({IPSrc = 10.0.0.0/24, IPDst = 20.20.20.1, pDst = 110, tProto = TCP, domain =
'youtube.com', days = {Sat, Sun}, timeInt = 8-14}, [(log, {IPSrc, IPDst}), (deny, ∅)])

({IPSrc = 10.0.0.0/24, IPDst = 20.20.20.1, pDst = 110, tProto = TCP, days = {Saturday,
Sunday}, timeInt = 8-14, domain = ′youtube.com′}, [(log, {IPSrc, IPDst}), (deny, ∅)])

Fig. 8.2 Projection EXtraction: a visual example

The external one iterates on each element of Sn, whereas the internal one requires a
number of iterations that in the worst case is equal to the cardinality of the largest
s.Bs set, with s ∈ Sn Then, lines 28-39 have O(|Sn|2) complexity, because both the
external and internal loops in those lines iterate on the Sn set. Summing up, the overall
worst-case time complexity is O(|Cp|+ |Sn| ·maxs∈Sn(s.Bs)+ |Sn|2). However, by
considering the NSPs that are commonly defined in studies related to security policy
refinement [8][55], the condition set size is commonly higher than the action set size
(e.g., just by imposing conditions on the IP 5-tuple, five conditions are included in
the Cp set). Therefore, the dominant term in the asymptotic complexity formula is
|Cp|.

A visual example is shown in Fig. 8.2. Each projection denoted by the p symbol
derives from mapping policy n against a different vNSF manifest. For instance, p1

derives from a simple packet filter that cannot manage fields related to domain or
time interval, p3 derives from a VNF that may fully enforce the NSP, and p4 from a
VNF that can only log the IP 5-tuple of the received traffic.

Given an NSP, the algorithm is repeated for each VNF that is available. The
resulting projections may not contain all the information of the original NSP, e.g.,
they may support a partial set of all the actions requested by the NSP. Therefore, the
PEX stage is not sufficient, but a projection chaining operation is still required.

8.3 Projection IDentification (PID) 161

Symbol Explanation

n network security policy that must be enforced
Sn action set of n
si i-th action in Sn, with i = 1, ..., |Sn|

Kl
h-th subset of actions of Sn, including the same function
should be in charge of, with l = 1, ...,m

asi operation of i-th action
Bsi enforcement mode set of i-th action
bih h-th enforcement mode of i-th action, with h = 1, ..., |Bsh |
Pv projection set
p j j-th projection of Pv, with j = 1,2, ..., |Pv|

xi j

binary variable, whose value is set to 1 by the solver if
the j-th projection is chosen as responsible for the i-th action
of p, otherwise it is set to 0

yi j

binary variable, whose value is set to 1 before launching the
solver if the j-th projection supports the i-th action,
otherwise it is set to 0

zi jh

binary variable, whose value is set to 1 before launching the
solver if the j-th projection supports the i-th
action with h-th enforcement mode of p, otherwise it is set to 0

Table 8.2 Symbol table

8.3.2 Projection Chaining (PCH)

The Projection CHaining (PCH) operation aims to compute all the possible chains
of the projections output by the PEX operation. As the PID stage is topology-
independent and it works on each policy independently from the other ones, it cannot
decide if a chain is more suitable than the others.

The problem of finding the projection chains has been formulated as an Enu-
meration Problem (EP) over a set of Constraint Satisfaction Problem (CSP)-like
formulas. A chain is a solution for the EP if it contains a projection responsible for
each action of the original NSP. Among all the projections that support a certain
NSP action, the solver chooses a single one as responsible with the aim of avoiding
redundancy. Equations (8.11)-(8.14) represent the problem constraints, and TABLE
8.2 describes the symbols used for their formulation. Among them, the output binary
variable appearing in the formulas, xi j, expresses if a certain projection p j is chosen
as responsible for action si (when xi j = 1) or this task is assigned to another projec-
tion (when xi j = 0). If Sn is a set, the assignment of index i to each policy action is
random. Instead, if Sn is a list, the assignment naturally follows the ordering of the
actions in it, so that index 1 is assigned to the first action, and index |Sn| is assigned

162 A Functionality Model for Security Orchestration

to the last one.

|Pv|

∑
j=1

xi j = 1,∀i = 1, ..., |Sn| (8.11)

xi j ≤ yi j,∀i = 1, ..., |Sn|,∀ j = 1, ..., |Pv| (8.12)

|Bsi| · xi j ≤
|Bsi |

∑
h=1

zi jh,∀i = 1, ..., |Sn|,∀ j = 1, ..., |Pv| (8.13)

|Kl| · xi j ≥ ∑
i′|si′ j∈Kl

xi′ j,∀i = 1, .., |Sn|,∀ j = 1, .., |Pv| (8.14)

The four quantified CSP-like formulas can be explained as follows:

1. According to formula (8.11), one and only one projection p j is responsible
for action si. Even though multiple projections may fulfill this task, in each
enumerated solution only one is chosen.

2. According to formula (8.12), a projection p j can be chosen as responsible
for action si only if it supports the operation asi , i.e., if ∃sk ∈ Sp such that
ask = asi . This constraint is required as the PEX operation may have extracted a
projection that only partially supports the actions required by the corresponding
NSP.

3. According to formula (8.13), a projection p j can be chosen as responsible for
action si only if it supports all the enforcement modes defined in Bsi . This
constraint is included in the formulation of the EP problem only if Bsi ̸= /0,
otherwise constraint (8.12) is enough as condition of choice.

4. According to formula (8.14), if a projection p j is chosen as responsible for
action si and if si belongs to a set Kl of actions that must be applied by the
same projection, then p j must be responsible also for all the other actions in
Kl as well. This constraint is included in the formulation of the EP problem
only if there is the specification of at least a Kl set.

Each assignment for the xi j variables represents a possible projection chain, as
xi j = 1 implies that the i-th action requires an instance of the j-th projection for its
enforcement. However, the solution set computed by solving this EP problem may

8.3 Projection IDentification (PID) 163

PCH

p1
p2 p3 p4 p5

p3

p2 p5 p1

p5p2
Chain 3

Chain 1

Chain 2

Fig. 8.3 Projection CHaining: a visual example

not be complete, and two post-processing operations may be required under specific
circumstances.

First, if Sn is an (unordered) set, the assignment of index i to each policy action
does not follow any strict ordering guideline. Therefore, only a possible permutation
of the actions out of the |Sn| possible ones is established. This deficiency is easily
overcome, by computing all the other permutations.

Second, it may happen that two variables having consecutive values for the i
index have the same j index, i.e., the actions require the same projections to be
enforced. On the one hand, if the two actions are not part of a Kl set, then either a
single instance or a pair of instances of the j-th projection may be used to enforce
those actions. Therefore, both solutions must be derived from the single assignment
computed by solving the EP problem. On the other hand, if the two actions are part
of a Kl set, then the only possible solution is the one where a single projection is
used.

A visual example of the PCH operation is shown in Fig. 8.3. The projections
that are input to the EP characterizing this operation are the same ones that were
presented in Fig. 8.2. They are combined in three different chains, which can enforce
all the actions of the requested NSP n. As it can be seen, Chain 1 is composed of
a single projection, p3, because it can perform both the requested operations, i.e.,
logging the source and destination IP addresses of the packets identified by the policy
conditions, and then block those packets from reaching their destination. Instead,

164 A Functionality Model for Security Orchestration

the other chains require more projections, because each one of them is not enough to
enforce all the actions.

After the completion of the post-processing operations, these projection chains
can be used for the security configuration of a virtual network service. In particular,
the VEREFOO approach, already discussed in Chapter 4, may be used to allocate
the projections composing these chains in an AG, ths enforcing the NSPs themselves
from which the projections have been computed. This additional refinement operation
(i.e., from the output of the PID algorithm to the allocation scheme and configuration
of these projections that the VEREFOO approach can compute) is motivated by
two reasons. First, not always a one-to-one relationship exists between a projection
computed by the PID algorithm for a specific chain, and the number of instances of
that same projection that must be allocated in a network. For example, if a projection
requires to block all the traffic flows coming from 154.66.0.2 to any IP address:
“({IPSrc = 154.66.0.2}, and if these flows do not have any intersection in their paths,
then multiple projection instances must be allocated, i.e., one for each path. Second,
the refinement operation performed by the VEREFOO approach is aware of the
network topology and configuration, differently from the PID algorithm. Therefore,
it can adapt the configuration of the projections to the characteristics of the network
where they are allocated. For example, if all the packets from the source port 88
of 123.4.5.6 to 44.5.6.7 must be logged, and if the projection p derived from this
NSP can only be allocated in a position that is after a NAT which changes the source
IP address of those packets, then the Cp set must be modified so as the source IP
address is associated to the value updated by the NAT.

8.4 Implementation and validation

The PID algorithm has been implemented as a Java framework. Human users can
interact with this framework through a set of REST APIs, which can be used to
specify the input VNF manifests and the NSPs in XML or JSON format. The same
format is used for the representation of the output, i.e., the automatically computed
projection chains. The code of the developed software is parallelized, and it allows
the user to specify the number of execution threads. This design decision was
possible, as both the PEX and PCH stages can work on each NSP independently

8.4 Implementation and validation 165

from the other. If the user does not specify the thread number, then eight threads are
used by default.

In the framework implementation, the enumeration problem of the PCH stage
is internally formulated and solved by employing the mathematical programming
solver Gurobi1. This solver can work on different types of problems, e.g., linear
programming, mixed-integer linear programming, quadratic programming. Gurobi
offers simple APIs in multiple high-level programming languages, including Java,
which is used for the framework implementation.

The experimental validation of the framework has been performed with multiple
types of tests, with the aim to check: i) the generality of the models defined for the
VNF manifests (Subsection 8.4.1); ii) the correctness of the algorithms employed for
projection extraction and chaining (Subsection 8.4.2); iii) the scalability of the PID
algorithm and its superiority with respect to the state of the art solutions (Subsection
8.4.3).

All tests have been performed on a machine with an Intel i7-6700 CPU running
at 3.40 GHz and 32GB of RAM, by exploiting the version 8.1.1 of Gurobi.

8.4.1 Model generality validation

18 open-source VNFs that are currently available for enforcing security requirements
have been analyzed, and their manifests have been modeled. Among the analyzed
VNFs, there are packet filtering firewalls (iptables, ipfirewalls, nftables, PfSense),
web-application firewalls (ModSecurity, IronBee, NAXSI, WebKnight), anti-spam fil-
ters (SpamAssassin, MailCleaner, Rspamd), VPN gateways (Strongswan, Openswan,
SoftEther, OpenConnect), intrusion detection systems (Suricata, Snort, Zeek). The
configuration guides and official examples have been carefully analyzed to determine
the actions (i.e., the A set) and configuration fields to compose their manifests (i.e.,
the A set), as well as the fields for which the VNFs may take decision but they cannot
be configured (i.e., the F∗ set). This last modeling step required reasoning about
what security properties each VNF can enforce, also by referring to the classical
ISO/OSI protocol stack. For example, all the fields related to web applications (e.g.,
URL, domain) belong to the F∗ set for each analyzed packet filtering VNF. The
investigation of these open-source functions shows that our model is general enough

1Link: https://www.gurobi.com/. Last accessed: October 26th, 2021.

166 A Functionality Model for Security Orchestration

to support their representation as manifests. Besides, it can be extended for future
VNFs by introducing new actions and fields in the A, F+ and F∗ sets.

8.4.2 Correctness verification

The correctness of the framework has been validated by applying it on several
simple use cases. For each use case, a different set of VNF manifests and NSPs
has been created, the framework has been fed with these inputs to compute the
output projection chains, and the results have been checked manually against the
expected ones. Variations of the use cases have been obtained by changing the set of
available VNF manifests. Some peculiar use cases have also been created, to test
specific features of the PID algorithm. For example, the following use cases have
been investigated:

• VNFs with the same manifest are used to enforce an NSP, to check that the
framework creates the same projection for them and uses it once in creating
the projection chains;

• an inadequate number of VNFs is used to enforce an NSP, to check that the
framework produces a non-enforceability report stating that a feasible solution
for the security configuration problem does not exist;

• NSPs with unordered actions have been written, to check that the framework
can also consider the more complex case where all the chains derived from the
solution of the enumeration problem are subject to a post-processing step to
consider all the possible permutations of the projections;

• NSPs with actions that must be applied on packet fields have been written, to
check that the framework uses only the VNF manifests having all those fields
in the F+ for creating a projection.

Then, the VEREFOO approach has been fed with the output of the PID algorithm,
to automatically configure network security for the use cases related to packet filtering
and communication protection. As it has been done to check the correctness of the
VEREFOO approach in other validation tests, the compliance of the obtained output
with the user-specified NSPs has been checked by using the Mininet emulator.

8.4 Implementation and validation 167

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0

20

40

60

Number of NSPs

C
om

pu
ta

tio
n

tim
e

(s
)

3 Threads
5 Threads
8 Threads
10 Threads

(a) Thread number

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0

50

100

150

Number of NSPs

C
om

pu
ta

tio
n

tim
e

(s
)

Ordered Actions
Unordered Actions

(b) Action ordering

Fig. 8.4 Scalability versus number of Network Security Policies

8.4.3 Scalability evaluation

The scalability of the framework has been validated against two dimensions, which
are the number of NSPs and the number of VNFs the projections must be derived
from.

Fig. 8.4 shows the results for the scalability tests related to the number of
NSPs. Each dotted plot in the charts represents the average value computed over
100 iterations on a use case, where the number of VNFs is fixed to 100, whereas
the number of NSPs is progressively increased from 1000 to 10000. On the one
hand, 8.4a plots the results related to the investigation of scalability against NSPs
with ordered actions, while varying the number of threads used for the execution
of the PID algorithm. For the machine that has been employed for the execution of
the tests, the least computation time is almost always achieved when eight threads
are used. If a higher number of threads is employed, the performance gets worse,
because of the thread creation overhead. This experimental result is also the reason
why in the PID algorithm eight threads are used by default, in the absence of a user
specification. On the other hand, Fig. 8.5b shows the impact of ordering the actions
of the user-specified NSPs. The performance of the framework gets worse if the
actions characterizing each NSP are unordered. The computation time for the worst
use case that has been considered for creating this chart ranges from less than one
minute if the actions are ordered, to almost three minutes if the actions are unordered.
This difference is explained by the fact that, in the PCH algorithm, all the possible
permutations of the actions must be considered, when the NSPs have unordered
actions. Anyhow, it is also important to remark that the case where all 10000 NSPs
require unordered actions has been artificially created to put the framework under

168 A Functionality Model for Security Orchestration

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0

2

4

6

Number of VNFs

C
om

pu
ta

tio
n

tim
e

(s
)

3 Threads
5 Threads
8 Threads
10 Threads

(a) Thread number

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0

5

10

15

Number of VNFs

C
om

pu
ta

tio
n

tim
e

(s
)

Ordered Actions
Unordered Actions

(b) Action ordering

Fig. 8.5 Scalability versus number of Virtual Network Functions

great stress, as a worst-case. However, in reality, it can be expected that the NSPs that
must be enforced in a network have a mixed nature, i.e., some require ordered actions
while others do not. Besides, the result achieved for the worst case is significant
by itself, especially if compared with the time that can be expected to do the same
tasks manually. Indeed, it can be expected that manual approaches would struggle in
dealing with so large numbers of NSPs, probably leading to mistatkes, and taking a
time much higher than the three minutes taken in the worst case by the framework.

Fig. 8.5 shows the results for the scalability tests related to the number of
VNFs. Each dotted plot in the charts represents the average value computed over
100 iterations on a use case, where the number of NSPs is fixed to 100, whereas the
number of VNFs is progressively increased from 1000 to 10000. Considerations
related to these results are similar to the ones concerning the results of Fig. 8.4. On
the one hand, Fig. 8.5a again shows that the optimal number of threads to execute
the algorithm in the employed machine is eight. On the other hand, Fig. 8.5b shows
that the cases where NSP actions are unordered require a higher computation time
than those where actions are ordered. In addition, it can be noted that scalability
against VNFs is better than scalability against NSPs. This result can be explained
because for each NSP the whole PID algorithm must be executed, whereas each
additional VNF simply represents an additional decision variable, and the number of
times the PID algorithm is executed remains the same.

Fig. 8.6 shows the results for the scalability tests related to two peculiar scenarios.
Agains, each dotted plot in the charts represents the average value computed over
100 iterations on the two use cases. On the one hand, Fig. 8.6a shows the behavior
of the framework when the numbers of VNFs and NSPs are equally increasing till
10000. Even though the computation time is higher than the ones shown in Fig.

8.4 Implementation and validation 169

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0

50

100

150

200

250

Number of NSPs and VNFs

C
om

pu
ta

tio
n

tim
e

(s
)

Ordered Actions
Unordered Actions

(a) Equal increasing number of
NSPs and VNFs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0

200

400

600

Number of NSPs

C
om

pu
ta

tio
n

tim
e

(s
)

500 VNFs

(b) Very high scalability versus
number of NSPs

Fig. 8.6 Validation under two peculiar scenarios

5.1b and Fig. 5.2b, the trend of the plot is not exponential, but it follows the same
growth of the previous charts, also when NSPs have unordered actions. On the
other hand, Fig. 5.3a shows the behavior of the framework when run on a stressing
scenario, consisting of 500 available VNFs, and a number of NSPs to be enforced
in the network progressively increasing from 10000 to 100000 NSPs. Even though
such high numbers may be extreme, the fast growth of modern virtual networks may
create circumstances where they are not so uncommon. The developed framework
is able to manage even this case, as the time required for computing the projection
chains is much less than the time a manual approach would require, and again the
trend of the plot is not exponential.

Chapter 9

VEREFOO Integration with
Orchestrators and Applications

This chapter discusses how the VEREFOO approach, proposed in Chapter 4, Chapter
5 and 6 to solve the automatic configuration problem for different types of NSFs, can
be integrated with state-of-the-art network orchestrators and applications. Specifi-
cally, VEREFOO has been integrated with two orchestrators, i.e., Docker Compose
(Section 9.1) and Kubernetes (Section 9.2), and its application in the context of IoT
networks has been demonstrated (Section 9.3).

9.1 Integration with Docker Compose

According to the official Docker documentation1, Docker Compose is a container
orchestration technology that can be used to run multiple containers on a single
host machine. In fact, it is a tool for defining and running multi-container Docker
applications. Docker Compose allows the specification of a YAML file to configure
each service of an application. Then, with a single command, it is possible to create
and start all the services from the configuration specified in the YAML file, as Docker
Compose supports an automated deployment of the service. It is also flexible, as the
environment can be deployed or removed in a few seconds. Common use cases of
Docker Compose are development environments, automated testing environments,
and single host deployments.

1Link: https://docs.docker.com/compose/. Last accessed: October 18th, 2022.

9.1 Integration with Docker Compose 171

Docker Compose has been chosen as a network orchestrator for the integration
of the VEREFOO approach, because it is suitable for testing purposes, it supports a
declarative approach for creating network topologies, and it eases the extension of
an already created network to a more ramified topology. Specifically, the VEREFOO
application that has been integrated and tested with Docker Compose is the one
related to packet filtering firewalls (Chapter 5).

Considering the output of the VEREFOO framework, i.e., the network topology
enriched with the firewall allocation scheme and configuration, the following imple-
mentation choices have been made for the integration with Docker Compose, so as
to maximize efficiency, minimize resource consumption for the deployment of the
functions, and keep only the minimal network functionalities that are really required:

• Each end point of the network topology output by the VEREFOO approach
is implemented as a container with an Alpine Linux image, which is a very
stripped down OS, with a dimension of only 6 MB. The Alpine Linux image
contains most of the functionalities needed for end points, without overloading
the virtual environment with useless complex features.

• Each router of the network topology is implemented as a container with an
Alpine Linux image as well, as it is enough to perform routing.

• For more complex functions such as network address translators and load
balancers, the Alpine Linux image is enriched with the installation of the
iptables-firewall function, so as to fulfill their behavior.

• For firewalls, three different types of functions have been integrated: 1)
iptables-firewall is the easiest to deploy, since it just requires an Alpine Linux
image with iptables installed on it. This makes the iptables virtual network
environment the most lightweight in terms of resource consumption; 2) bpf-
firewall requires a larger image and consumes more resources, due to the
several required dependencies; 3) openvswitch is derived from the Docker
bridge, with some changes at the host OS level to adapt its normal behavior.

By means of a translator that has been implemented, the network topology output
by the VEREFOO framework is automatically translated into a set of containers as
described above, and the routes are defined so as to guarantee connection, as required
by the directed links of the graph.

172 VEREFOO Integration with Orchestrators and Applications

Internet

Firewall

Node 1

Node 2

Node N

POD
POD
Pod

Container

Kubelet Proxy

Storage

Management

AP
I

FW

FW

FW

Fig. 9.1 Kubernetes architecture

This integration has been tested with the hping3 command, so as to check if
the user-specified NSPs have been correctly enforced in the virtual environment
managed by Docker Compose.

9.2 Integration with Kubernetes

A limitation of Docker Compose is that it is designed for deployment testing pur-
poses, instead of production. Therefore, the VEREFOO approach has also been
integrated with another state-of-the-art orchestrator, Kubernetes, which provides
higher flexibility and additional features.

9.2.1 Kubernetes

Kubernetes2, also known as K8s, is an open-source system for automating deploy-
ment, scaling, and management of containerized applications. It groups containers
that make up an application into logical units for easy management and discovery.

As shown in Fig. 9.1, a Kubernetes cluster is composed of multiple nodes,
which can be virtual or physical. A Pod is a minimal management unit which can

2Link: https://kubernetes.io/. Last accessed: October 18th, 2022.

9.2 Integration with Kubernetes 173

Virtual	functions

Software	
Developer

Service
description

Service
Developer

Security
enhancements

Orchestration

Analytics
Initialization	&

Reaction

Dashboard

Security
Provider

Service	
Provider

Security	
Provider

Fig. 9.2 Overall workflow of the ASTRID framework

accommodate one or more containers. Each Pod is protected by a packet filter (i.e.,
FW in Fig 9.1). Pods are assigned with network addresses and are allocated to nodes.
Containers inside a Pod share resources, such as volumes where they can write and
read data. Clients contact the cluster through another firewall, which distributes
requests to nodes according to load-balancing rules. The proxy receives requests
from this firewall and forwards them to Pods. Each node has a proxy installed. If a
Pod is replicated, the proxy distributes the load among the replicas. A kubelet is a
component that manages Pods, containers, images and other elements in the node. A
kubelet forwards data on the monitoring of containers to the main node, which acts
when necessary.

9.2.2 ASTRID Security Orchestrator

Kubernetes is an orchestrator that is mainly designed to address networking issues in
cloud environments. However, network security is a major concern in such a context.
For example, if the underlying infrastructure of the cloud is unreliable (or configured
in a vulnerable manner), there is no way to guarantee the security of a Kubernetes
cluster built on this foundation.

174 VEREFOO Integration with Orchestrators and Applications

A project funded by the European Union, AddreSsing ThReats for virtualIseD
services (ASTRID)3, aimed to address these technological security gaps in the scope
of cloud infrastructures. The project proposed a novel cyber security framework,
named ASTRID Security Orchestrator, to provide situational awareness for cloud
applications and NFV services. The overall workflow of the framework is presented
in Fig. 9.2. According to the workflow, the ASTRID framework allows software and
service developers to provide a description of the service request, which is enriched
with security policies by the security provider entity. The code is publicly available
at the following link: https://github.com/astrid-project.

The ASTRID Security Orchestrator is responsible for the support of the dynamic
adaptation of the behaviour of the network security functions and of the dynamic
implementation of reaction and mitigation actions on the deployed security service.
The Security Orchestrator has been designed as a stand-alone component, which does
not require any modification to the main Service Orchestrator (i.e., Kubernetes), but
only requires the availability of an API for remote invocation of orchestration actions.
The Security Orchestrator must fulfill two main goals, related to supporting human
operations in the dynamic configuration of virtual security services and reacting to
possible cyber-attacks. The two tasks it must fulfill are the following:

1. The Security Orchestrator should change the configuration/behavior of local
security agents, according to the evolving context. The fulfillment of this
task requires dynamism and readiness, especially when the network security
functions must be updated to avoid that they are compromised by a detected
cyber attack. The configuration/behavior update involves many low-level
operations as well (e.g., provide requested data to a newly started security
service, enable a new feature that is required to identify a new form of attacks),
for which the different components of the ASTRID architecture should be
properly interfaced.

2. The Security Orchestrator is conceived as an orchestrator-agnostic framework
so that any software service orchestration tool available from commercial solu-
tions or open-source projects can be easily integrated for the management of
service orchestration operations (e.g., life-cycle management and deployment
for virtual functions).

3Link: https://www.astrid-project.eu/. Last accessed: October 18th, 2022.

9.2 Integration with Kubernetes 175

In order to achieve these main objectives, the architecture of the Security Orchestrator
has been designed to include three main building blocks: Context Broker, AAA and
Security Controller.

• The Context Broker provides the interfaces between the ASTRID framework
and the network security functions deployed in the service graph by the Service
Orchestrator. In order to cope with the heterogeneity of the network security
functions (in terms of functionality and configurability), this component of the
architecture uses suitable abstraction models, e.g., a generic context model,
which defines the type, position, and capabilities of the security functions
deployed in the service graph.

• The AAA module includes identity provisioning as well as the core capabilities
to authenticate, authorize and audit authorization, authentication and access
operations. It also verifies operations between the different components/ser-
vices/microservices of the ASTRID framework.

• The Security Controller automates the response to security events; it is con-
ceived as a policy-based framework (which is able to load a set of rules and
evaluates them at run-time) that elaborates notifications and alerts provided
by the security services and automatically undertakes control/management
actions (e.g. for remediation, mitigation, investigation).

The Security Orchestrator and, more specifically, the Security Controller must
communicate with other components of the ASTRID architecture in order to properly
fulfill their tasks:

• The ASTRID dashboard is used as GUI for interaction between the ASTRID
framework and the network and security administrator. For instance, the
ASTRID dashboard can load a Kubernetes template and start the deployment,
edit and select the set of security policies, show and change the configuration
of ASTRID security agents.

• The ASTRID algorithms enable ASTRID stakeholders to assess the security
properties of their services, to detect, to manage, and to react to vulnerabilities,
threats, attacks and anomalies.

176 VEREFOO Integration with Orchestrators and Applications

9.2.3 Security Controller

The ASTRID Controller is the core element of the ASTRID architecture. The imple-
mentation of the Security Controller is based on the Event-Condition-Action (ECA)
paradigm. Any algorithm based on the ECA paradigm is characterized by a set
of rules, where each rule is made by three main components: Event which may
trigger the rule, Condition to be satisfied so that the rule is effectively applied in
reaction to the triggering Event, and the Action to be performed. In the ASTRID
framework, an Event may be triggered by the data plane, the management plane (i.e.,
manual indications from the dashboard, notifications from the service orchestrator),
or the control plane (i.e., an algorithm or a security service). A Condition typically
considers context information as graph topology, security configurations, data source,
date/time, user, past events, etc. Finally, an Action might not be limited to simple
commands, but can implement complex logics, also including some form of pro-
cessing on the run-time context (e.g., to derive firewall configuration for the running
instance), to respond, mitigate, or prevent attacks. Based on the ECA paradigm,
the range of possible operations performed by the Security Controller is very broad.
Most of the ECA rules of the Security Controller, are not pre-computed a priori,
but they are automatically generated by a set of requirements, defined or chosen by
security administrator through the dashboard.

Among all the possible operations that can be performed by the Security Con-
troller, there is the application of the VEREFOO framework to incorporate pro-
grammability and automation in the synthesis of virtual firewall rules from user-
specified connectivity policies. For its applications, the Security Controller needs to
work in close coordination along with the Service Orchestrator, which is in charge
of providing a description of the service graph as well as the infrastructure informa-
tion. The infrastructure information includes the actual number of launched virtual
network functions and parameters assigned after the enforcement process such as IP
and port addresses.

The interaction of the Security Controller with the VEREFOO framework and
the Service Orchestrator (i.e., Kubernetes) occurs as explained below.

1. After a set of connectivity policies is pushed by the user to the Security
Controller, they are delivered to the VEREFOO framework together with

9.2 Integration with Kubernetes 177

the run-time configuration of the network (i.e., IP addresses) retrieved from
Kubernetes.

2. The VEREFOO framework computes the optimal configuration parameters of
each firewall instance so as to enforce the user-specified connectivity policies.

3. The low-level configuration parameters of each firewall are delivered to the
Security Controller, after they are derived with a translation step from the
medium-level language used by the VEREFOO framework.

4. The Security Controller receives the firewall configuration via REST API and
delivers them to the Service Orchestrator, that finally performs the enforcement
of the rules on the allocated firewalls.

Next, the Security Controller listens for alerts that may trigger the need of a new
firewall reconfiguration, e.g., the notification about a new instance of the virtual
function that is added or removed in the network, or the notification about the
suspicious misbehaving of function in the network. At that point, the interaction
with the other modules continues as explained below.

5. The Security Controller updates the original use-specified connectivity policies,
so as to take into account the received alert.

6. The Security Controller sends the modified connectivity policies to the VERE-
FOO framework, together with the new run-time network configuration.

7. The previous 2), 3) and 4) steps are repeated.

9.2.4 Use case scenario

Here, a practical use case is described to show how the Security Controller works,
and how it interacts with other components of the ASTRID frameworks by means
of a REST API interface. Specifically, the Security Controller exposes a number
of resource endpoints to the Service Orchestrator, which will use them to deliver
the service graph and infrastructure information and to retrieve the automatically
generated firewall rules.

In the analyzed scenario, an administrator predefines the logical service graph
presented in Fig. 9.3a and feeds it to the dashboard of the ASTRID framework. This

178 VEREFOO Integration with Orchestrators and Applications

mysqlnodejs

apache

3306
170.20.1.14

8080
170.20.1.13

8080
170.20.1.11

8080
170.20.1.12

8080
170.20.1.10

1

Fig. 9.3 a) a logical service graph b) enriched service graph after the deployment

service graph represents a realistic scenario where the nginx web server is made
public to the Internet and functions as a reverse proxy to fetch dynamic data from
multiple instances of nodejs and apache servers. In this case, both servers can acquire
data from a mysql database. As it can be seen from the figure, reachability policies
required by the use case are rather obvious (i.e., highlighted with arrows). Instead,
the isolation property required by the service graph is not evident. For instance,
all the communications not highlighted with arrows must be isolated. Considering
the fact that each service in the graph is associated with a firewall, firewalls are
preconfigured with deny-all rules, in order to satisfy this policy. This ensures that all
other interactions within the service graph are isolated, except the ones predefined
by the user (i.e., arrows).

The Service Orchestrator of the ASTRID framework is in charge of deploying
the service graph onto the infrastructure and generating the enriched service graph
shown in Fig. 9.3b. During this enforcement phase, all the services are assigned
corresponding IP addresses and ports where these services can be reached. The
multiple instances of the services are deployed in separate Pods and each will have
its own IP addresses. In this scenario, the user specified to have two instances of
the nodejs server to handle the load. To illustrate the complexity introduced by
this simple use case, all the links connecting each service in the infrastructure are
included in Fig. 9.3b. Taking into account the deny-all rules of each firewall of the
service, there is no reachability between the Pods in this phase. Instead, the user
policy that needs to be satisfied is illustrated by means of the arrows in the figure.
As an example, apache server needs to be configured to allow traffic from itself to

9.2 Integration with Kubernetes 179

a mysql database and allow communication from nodejs. However, it needs to be
isolated from each instance of the nodejs servers.

To obtain the low-level configuration of each firewall component, the Security
Controller accepts as an input the infrastructure information and logical service
graph. Infrastructure information contains the IP and port addresses of each service
that is shown in Fig. 9.3b. This information is required to define the firewall rules,
which allow blocking specific packet flows involving specific Pods. In the next
step, the Security Controller automatically generates an output with a low-level
configuration of each firewall component. As an example, the partial output format
and the actual configuration parameters generated by the Security Controller are
presented in Listing 9.1.

Listing 9.1 Automatic Configuration Output for mysql
1 <node name=" 1 7 2 . 2 0 . 1 . 3 4 " f u n c t i o n a l _ t y p e ="FIREWALL">
2 < n e i g h b o u r name=" 1 7 2 . 2 0 . 1 . 1 4 " / >
3 < n e i g h b o u r name=" 1 7 2 . 2 0 . 1 . 3 0 " / >
4 < n e i g h b o u r name=" 1 7 2 . 2 0 . 1 . 3 1 " / >
5 < n e i g h b o u r name=" 1 7 2 . 2 0 . 1 . 3 2 " / >
6 < n e i g h b o u r name=" 1 7 2 . 2 0 . 1 . 3 3 " / >
7 < c o n f i g u r a t i o n name=" mysql " d e s c r i p t i o n =" 1 7 2 . 2 0 . 1 . 1 4 ">
8 < f i r e w a l l d e f a u l t A c t i o n ="DENY">
9 < e l e m e n t s >

10 < a c t i o n >ALLOW< / a c t i o n >
11 < s o u r c e > 1 7 2 . 2 0 . 1 . 1 3 < / s o u r c e >
12 < d e s t i n a t i o n > 1 7 2 . 2 0 . 1 . 1 4 < / d e s t i n a t i o n >
13 < p r o t o c o l >ANY< / p r o t o c o l >
14 < s r c _ p o r t >*< / s r c _ p o r t >
15 < d s t _ p o r t >*< / d s t _ p o r t >
16 < / e l e m e n t s >
17 < e l e m e n t s >
18 < a c t i o n >ALLOW< / a c t i o n >
19 < s o u r c e > 1 7 2 . 2 0 . 1 . 1 1 < / s o u r c e >
20 < d e s t i n a t i o n > 1 7 2 . 2 0 . 1 . 1 4 < / d e s t i n a t i o n >
21 < p r o t o c o l >ANY< / p r o t o c o l >
22 < s r c _ p o r t >*< / s r c _ p o r t >
23 < d s t _ p o r t >*< / d s t _ p o r t >
24 < / e l e m e n t s >
25 < e l e m e n t s >
26 < a c t i o n >ALLOW< / a c t i o n >
27 < s o u r c e > 1 7 2 . 2 0 . 1 . 1 2 < / s o u r c e >
28 < d e s t i n a t i o n > 1 7 2 . 2 0 . 1 . 1 4 < / d e s t i n a t i o n >
29 < p r o t o c o l >ANY< / p r o t o c o l >
30 < s r c _ p o r t >*< / s r c _ p o r t >
31 < d s t _ p o r t >*< / d s t _ p o r t >
32 < / e l e m e n t s >
33 < / f i r e w a l l >
34 < / c o n f i g u r a t i o n >

180 VEREFOO Integration with Orchestrators and Applications

35 < / node>

Listing 9.1 shows the configuration parameters generated for the firewall component
of the mysql service. It includes all the neighbors of the firewall in the infrastructure
network and firewall rule entries. According to the output, the firewall needs to be
configured with three rules.

The first rule states that the packets arriving from the Pod with an IP address
172.20.1.13 need to be allowed. The rest of the rules are associated with the two
instances of the nodejs server of the service graph. Due to the default action set by
the firewall in line 8, Listing 9.1, all the other packets arriving from the network is
dropped. For instance, intruders from the Internet are not able to access the mysql
database in accordance with these rules. This, in fact, ensures the satisfiability of the
initial service graph policy defined by the user.

An important feature of the Security Controller is the possibility of firewalls
without any configuration as in the use case or with partial configuration, giving the
tool itself the task of providing the missing configurations as an output. The tool
generates the configuration with the objective of satisfying all the requested policies
while minimizing the number of generated rules in order to achieve it. In the case
of partial configuration, a firewall may include static rule entries that will not be
changed in the output. This is useful when the service graph is updated according
to an event when a Pod is terminated or a new Pod has been created to handle the
overhead to the service. In this scenario, in order not to recompute the configuration
parameters of all the other services, their rules can be provided in a static manner,
meaning that they can be left unchanged. This process not only generates a set of
configuration parameters but also provides an optimal set of rules to satisfy the user
policy. Optimality is achieved by minimizing the number of rules inside each firewall
to improve the performance of the virtual network functions.

9.3 VEREFOO applications in IoT networks

In the context of the EU project CyberSec4Europe4, the VEREFOO approach has
been selected as one of the assets promoted by the project and employed in a
demonstration related to a specific smart city security use case.

4Link: https://cybersec4europe.eu/. Last accessed: October 18th, 2022.

9.3 VEREFOO applications in IoT networks 181

Fig. 9.4 The smart city use case.

The smart city scenario is characterized by a high level of complexity, as it
involves IoT aspects. Moreover, such scenario envisions complex interactions
between human users and different types of heterogeneous services that rely on
the security of lower level technologies, including the communication network.
Therefore, the security of a smart city is strictly dependent to a correct definition
and enforcement of the security policies that must be applied to the network. The
use case that has been built to show this complexity of smart city security is based
on the network illustrated in Fig. 9.4. This scenario represents a platform for the
urban mobility management in a smart city. The communication network is provided
by the smart city which, through its administrators, has complete control over it,
and thus can configure it. The service components, instead, can be provided by
third-party service providers and thus they are not fully controlled by the smart city
management.

In this use case, multiple services are provided to the citizens by the municipality,
such as the “public transit” (PT) service, the “traffic light” (TL) service, the “traffic
flow” (TF) service. The PT service provides information to citizens about timetables
of public transportation means. It relies on several sensors (PTS) distributed in the
city. The TL service provides information to the city management personnel about
the traffic lights of the city. The TF service monitors the congestion status of the
city streets and provides data to the city management. Both TL and TF rely on

182 VEREFOO Integration with Orchestrators and Applications

corresponding sensors (TFS) distributed in the city. These three services are also
connected to the “Smart City Platform” (SCP), which collects data and provides
information to citizens and other applications.

In this use case, there are also three additional third-party services: the “bike-
sharing” (BS) service, the “car-sharing” (CS) service, and the “e-scooters sharing”
(ES) service. These services collect data from several sensors distributed in the city,
respectively called BSS, CSS, and ESS. These three services interact with the “Smart
Multi-modal Mobility” (SMM), which is in charge of managing the mobility in the
city, combining use of public transportation and private sharing companies.

Users in the smart city can access all these services from different access points,
e.g., physical multimedia totems distributed in the city, specific locations with
information point nodes, their smartphones.

The connectivity security policies that must be enforced in this network are the
following ones:

• all access points can communicate with high level services (SCP and SMM);

• SCP can communicate with the 3 municipality services (PT, TL, TF);

• PT, TL, TF can communicate with their respective sensors (PTS, TLS, TFS);

• SMM can communicate with third-party services (BS,CS,ES);

• BS, CS, ES can communicate with their sensors (BSS,CSS,ESS);

• the smartphone network can communicate with third-party services (BS,CS,ES);

• the BS, CS, ES services can communicate one with each other;

• the BSS, CSS, ESS sensors can communicate one with each other.

The VEREFOO approach has been employed to automatically refine these con-
nectivity policies into the security configuration of the smart city communication
networks. Given a description of the network as a graph, including the typical
network functions such as switches, firewalls, NATs, load balancers, etc, and the
aforementioned set of policies about reachability and isolation in the network, VERE-
FOO established the firewall allocation scheme in the network graph and found their
optimal configuration that guarantees that all policies are satisfied.

9.4 Final considerations 183

Fig. 9.5 The VEREFOO output for the smart city use case.

In particular, when VEREFOO is applied to this use case, it generates the
allocation scheme of the firewalls shown in Fig. 9.5, and their configuration described
in Table 9.1. This output is produced according to the objectives of minimizing the
number of allocated firewalls and configured rules that were already enunciated in
Chapter 5.

Outside the context of the CyberSec4Europe project, the VEREFOO approach
has been also integrated with a state-of-the-art SDN orchestrator, ONOS, to solve the
security allocation and configuration problems for other types of IoT-aware networks,
as documented in [14].

9.4 Final considerations

As discussed in Section 3.3.3, state-of-the-art orchestrating platforms used to address
mostly network-oriented problems (e.g., balancing of traffic floods, and assurance
for the availability of applications and services). The few security orchestrators that
are present in literature mainly embed on ECA-based strategies for the mitigation of
cyber attacks, without focusing on how the security service is reorganized after an
event triggering their ECA-cased rule engine.

Therefore, the integration of the VEREFOO approach within Docker Compose,
Kubernetes, ONOS and a smart city application represents a step forward in the

184 VEREFOO Integration with Orchestrators and Applications

Firewall F1
Action IPSrc IPDst pSrc pDst tProto

1 Allow 40.4.4.2 30.1.1.3 ∗ ∗ ∗
2 Allow 30.1.1.1 40.4.4.3 ∗ ∗ ∗
3 Allow 40.4.4.1 30.1.1.2 ∗ ∗ ∗
4 Allow 30.1.1.3 40.4.4.2 ∗ ∗ ∗
5 Allow 40.4.4.3 30.1.1.1 ∗ ∗ ∗
6 Allow 30.1.1.2 40.4.4.1 ∗ ∗ ∗
7 Allow 20.∗.∗.∗ 60.6.6.1 ∗ ∗ ∗
8 Allow 60.6.6.1 20.∗.∗.∗ ∗ ∗ ∗
9 Allow 30.1.∗.∗ 30.1.∗.∗ ∗ ∗ ∗
8 Allow 80.∗.∗.∗ 50.5.5.2 ∗ ∗ ∗
8 Allow 50.5.5.2 80.∗.∗.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Firewall F2
Action IPSrc IPDst pSrc pDst tProto

1 Allow 80.1.1.2 50.5.5.1 ∗ ∗ ∗
2 Allow 50.5.5.3 80.1.1.3 ∗ ∗ ∗
3 Allow 50.5.5.1 80.1.1.2 ∗ ∗ ∗
4 Allow 80.1.1.3 50.5.5.3 ∗ ∗ ∗
5 Allow 20.∗.∗.∗ 60.6.6.1 ∗ ∗ ∗
6 Allow 60.6.6.1 ∗.∗.∗.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Firewall F3
Action IPSrc IPDst pSrc pDst tProto

1 Allow 60.6.6.2 40.∗.∗.∗ ∗ ∗ ∗
2 Allow 70.∗.∗.∗ 60.6.6.1 ∗ ∗ ∗
3 Allow 60.6.6.1 20.∗.∗.∗ ∗ ∗ ∗
4 Allow 50.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗
5 Allow 40.4.4.∗ 60.6.6.2 ∗ ∗ ∗
6 Allow ∗.∗.∗.∗ 50.5.∗.∗ ∗ ∗ ∗
7 Allow 20.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗
8 Allow 60.6.6.1 70.7.7.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Firewall F4
Action IPSrc IPDst pSrc pDst tProto

1 Allow 70.7.7.∗ 40.∗.∗.∗ ∗ ∗ ∗
2 Allow 40.4.∗.∗ 70.7.7.∗ ∗ ∗ ∗
3 Allow 50.5.∗.∗ 80.1.∗.∗ ∗ ∗ ∗
4 Allow 60.6.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗
5 Allow ∗.∗.∗.∗ ∗ 60.6.6.1 ∗ ∗
6 Allow 80.1.∗.∗ 50.∗.∗.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Table 9.1 Filtering Policy rules for allocated firewalls

automatic enforcement of security in network orchestration. It shows that existing

9.4 Final considerations 185

frameworks can be extended to manage automatically reaction mechanisms, so as
to optimize their operations. This achievement if even more important in cloud
infrastructures, such as the ones managed by Kubernetes, where limitations of the
policies that can be defined there makes security management an open challenge in
general [175].

Besides, the feasibility of this integration proved that the VEREFOO approach
can be effectively applied to manage the security of real environments. As both
the required inputs and produced outputs simply require a translation step for being
exchanged with other modules of the comprehensive orchestrating platform, this
means that the medium-level language characterizing the data in the VEREFOO
approach really prove all the information that are useful to (re)configure a security
service during an orchestration process.

Final Discussion on Network Security
Automation

Chapter 10

Conclusions and Future Work

Since the beginning of the last decade, computer networks have been undergoing an
incessant revolution, determined by the advent of softwarization technologies (e.g.,
Network Functions Virtualization and Software-Defined Networking) and the perva-
sive diffusion of distributed technologies (e.g., Internet of Things, and smart home
networking). As part of this ongoing revolution of networking, the size, complexity,
and dynamics of modern computer networks are constantly increasing too, ruling
out the traditional manual ways of performing network security management. Old
manual approaches are becoming unfeasible and unbearable for human operators,
who likely make errors and sub-optimizations in performing their tasks and take
more time than available in rapidly evolving dynamic networks.

As a possible solution to this problem, this dissertation studied the introduction
of automation into network security management. On the one hand, automation
reduces the number of human interventions, as automatic approaches just require
input specification and assistance during their independent work, so reducing the
possibility of human error. On the other hand, as shown in this thesis, automation can
be paired with two important features for security, i.e., formal verification, to further
improve correctness assurance of the management operations, and optimization,
to improve their results from the efficiency point of view. The study illustrated in
this thesis started from a state of the art characterized by just few attempts made to
introduce automation in network security management, the attention of researchers
having been focused much more on the automation of network-related management

189

problems. Besides, formal verification and optimization had rarely been leveraged to
improve automatic security management approaches.

This dissertation contributed to improve the state of art of network security au-
tomation by proposing novel formal and optimized approaches related to two main
thematic areas: automatic security configuration and automatic security orchestra-
tion.

For what concerns automatic security configuration, this dissertation proposed
the VEREFOO approach, which combines automation, formal verification and
optimization to compute the allocation scheme and configuration rule set of multiple
types of network security functions in the logical topology of a virtual computer
network. In this approach, the automatic configuration problem has been formalized
as a Maximum Satisfiability Modulo Theories problem, thus pursuing correctness
by construction, integrating optimization objectives, and avoiding the application
of time-consuming a-posteriori formal verification techniques. The VEREFOO
approach has been successfully applied to solve the configuration problem for packet
filtering firewalls and VPN gateways. The most challenging goal of this work has
been the definition of formal models that are detailed enough to solve the problem
automatically, but lightweight enough to make the automatic resolution algorithm
efficient and scalable to networks of significant size. This was a central objective
of this work, as formal verification and optimization are features that may worsen
the performance of a technique where they are embedded, if they are not correctly
managed. The experimental results confirmed the achievement of this goal and the
correctness and efficiency/scalability of the approach.

For what concerns automatic orchestration, this dissertation addressed three main
problems. First, it proposed the FATO formal methodology for the optimization of
distributed firewall reconfiguration transients, so as to minimize the number of tran-
sitory states where undesired intrusions and service disruptions may occur. Second,
it described a novel abstraction of network security functions, so as to abstract from
their vendor-dependent characteristics and simplify function selection before their
deployment in the physical network infrastructure, allowing more optimized results.
Third, it discussed how the VEREFOO approach can be integrated with state-of-the-
art orchestrators, such as Docker Compose and Kubernetes. The proposed solutions
for these three problems jointly concur to improve the comprehensive security orches-
tration workflow, as they are strictly dependent to each other to introduce automation

190 Conclusions and Future Work

in this field. Specifically, an automated security orchestrator based on the above
proposals may use the projection abstraction to identify the vendor-independent
security functionalities that must be enforced, a (re)configuration mechanism like
VEREFOO to allocate and configure them in the logical network topology, an opti-
mized strategy for VNF selection, where only the really required ones to enforce the
allocated security projections are chosen, and a transient optimization mechanism
like FATO to schedule the deployment of the new configuration in the optimum
way. This dissertation investigated the solution of open problems that are essential to
make this orchestration process possible. The experiments that have been carried
out showed that these security orchestration strategies can cooperate in close syn-
ergy with orchestrators oriented to solve networking problems. This achievement
represents an important step ahead towards full autonomy in network security.

These results leave space for further research in both research areas. First, the
Maximum Satisfiability Modulo Theories formulation is flexible enough to be ex-
tended to support other network and security function types, such as web-application
gateways, anti-spam filters, intrusion detection systems, stateful network address
translators and more. Second, currently the VEREFOO approach can only work
on a service graph devoid of network security functions, thus creating the security
configuration from scratch even when it is not necessary, e.g., when a distributed
firewall is already configured and only some of the user-specified security policies
are modified. Therefore, another possible future research direction is the study of
an optimized version of the VEREFOO approach, which can manage the reconfigu-
ration of distributed security functions in an optimized way, i.e., by identifying the
network components that are affected by the changes, and by using this information
to compute the new configuration starting from the previous one rather than starting
again from scratch. Third, a pending problem of the Maximum Satisfiability Modulo
Theories formulation is that, even if it scales to large networks, it cannot manage
the largest networks composed of tens of thousands nodes. Therefore, a heuristic
algorithm could be investigated to be used as an alternative strategy. Finally, reac-
tion and mitigation strategies can be investigated for a possible integration with the
VEREFOO approach and the network orchestrators, with the aim of making further
steps in the direction of full autonomy in network security management.

References

[1] Nick Feamster, Jennifer Rexford, and Ellen W. Zegura. The road to SDN:
an intellectual history of programmable networks. Comput. Commun. Rev.,
44(2):87–98, 2014.

[2] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De
Turck, and Raouf Boutaba. Network function virtualization: State-of-the-art
and research challenges. IEEE Commun. Surv. Tutorials, 18(1):236–262,
2016.

[3] Gang Mei, Nengxiong Xu, Jiayu Qin, Bowen Wang, and Pian Qi. A survey of
internet of things (iot) for geohazard prevention: Applications, technologies,
and challenges. IEEE Internet Things J., 7(5):4371–4386, 2020.

[4] Daniele Bringhenti and Fulvio Valenza. A twofold model for VNF embedding
and time-sensitive network flow scheduling. IEEE Access, 10:44384–44399,
2022.

[5] Sandra Scott-Hayward, Gemma O’Callaghan, and Sakir Sezer. Sdn security:
A survey. In IEEE SDN for Future Networks and Services, SDN4FNS 2013,
Trento, Italy, November 11-13, 2013, pages 1–7. IEEE, 2013.

[6] Dinesh Verma. Simplifying network administration using policy-based man-
agement. IEEE Netw., 16(2):20–26, 2002.

[7] David D. Clark and D. R. Wilson. A comparison of commercial and military
computer security policies. In Proceedings of the 1987 IEEE Symposium on
Security and Privacy, Oakland, California, USA, April 27-29, 1987, pages
184–195. IEEE Computer Society, 1987.

[8] Raouf Boutaba and Issam Aib. Policy-based management: A historical
perspective. J. Netw. Syst. Manag., 15(4):447–480, 2007.

[9] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Serena Spinoso, Ful-
vio Valenza, and Jalolliddin Yusupov. Improving the formal verification of
reachability policies in virtualized networks. IEEE Trans. Netw. Serv. Manag.,
18(1):713–728, 2021.

192 References

[10] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and
Jalolliddin Yusupov. Automated optimal firewall orchestration and configura-
tion in virtualized networks. In NOMS 2020 - IEEE/IFIP Network Operations
and Management Symposium, Budapest, Hungary, April 20-24, 2020, pages
1–7. IEEE, 2020.

[11] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and
Jalolliddin Yusupov. Automated firewall configuration in virtual networks.
IEEE Tran. on Dep. and Sec. Comp., pages 1–18, 2022. in press.

[12] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, and Fulvio Valenza.
Short paper: Automatic configuration for an optimal channel protection in vir-
tualized networks. In CYSARM@CCS ’20: Proceedings of the 2nd Workshop
on Cyber-Security Arms Race, Virtual Event, USA, November, 2020, pages
25–30. ACM, 2020.

[13] Daniele Bringhenti and Fulvio Valenza. Optimizing distributed firewall recon-
figuration transients. Comput. Networks, 215:109183, 2022.

[14] Daniele Bringhenti, Jalolliddin Yusupov, Alejandro Molina Zarca, Fulvio
Valenza, Riccardo Sisto, Jorge Bernal Bernabé, and Antonio F. Skarmeta.
Automatic, verifiable and optimized policy-based security enforcement for
sdn-aware iot networks. Comput. Networks, 213:109123, 2022.

[15] Daniele Bringhenti, Fulvio Valenza, and Cataldo Basile. Toward cybersecurity
personalization in smart homes. IEEE Secur. Priv., 20(1):45–53, 2022.

[16] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, and Fulvio Valenza. A
novel approach for security function graph configuration and deployment. In
7th IEEE International Conference on Network Softwarization, NetSoft 2021,
Tokyo, Japan, June 28 - July 2, 2021, pages 457–463. IEEE, 2021.

[17] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and
Jalolliddin Yusupov. Introducing programmability and automation in the
synthesis of virtual firewall rules. In 6th IEEE Conference on Network Soft-
warization, NetSoft 2020, Ghent, Belgium, June 29 - July 3, 2020, pages
473–478. IEEE, 2020.

[18] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and
Jalolliddin Yusupov. Towards a fully automated and optimized network
security functions orchestration. In 2019 4th International Conference on
Computing, Communications and Security (ICCCS), Rome, Italy, October
10-12, 2019, pages 1–7. IEEE, 2019.

[19] Fulvio Valenza. Modelling and Analysis of Network Security Policies. PhD
thesis, 2017.

[20] Ehab Al-Shaer, Hazem H. Hamed, Raouf Boutaba, and M. Hasan. Conflict
classification and analysis of distributed firewall policies. IEEE J. on Sel.
Areas in Commun., 23(10), 2005.

References 193

[21] Hazem Hamed and Ehab Al-Shaer. Taxonomy of conflicts in network security
policies. IEEE Commun. Mag., 44 (3), 2006.

[22] Fulvio Valenza, Cataldo Basile, Daniele Canavese, and Antonio Lioy. Classifi-
cation and analysis of communication protection policy anomalies. IEEE/ACM
Trans. Netw., 25(5):2601–2614, 2017.

[23] Kresimir Popovic and Zeljko Hocenski. Cloud computing security issues and
challenges. In Proc. of the 33rd Inter. Convention MIPRO, 2010.

[24] Ipsos MORI and University of Portsmouth. Cyber Security Breaches
Survey 2018, 2018. Available: https://www.ipsos.com/ipsos-mori/en-uk/
cyber-security-breaches-survey-2018, Visited: 2022-10-18.

[25] Oracle Communications. Enterprise Networks in Transition - Tam-
ing the Chaos, 2018. Available: http://www.oracle.com/us/industries/
communications/enterprise-networks-transition-5073874.pdf, Visited: 2022-
10-18.

[26] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. A survey
of heterogeneous information network analysis. IEEE Trans. Knowl. Data
Eng., 29(1), 2017.

[27] Ponemon Institute and IBM Security. Cost of a Data Breach Re-
port 2019, 2019. Available: https://www.ibm.com/security/digital-assets/
cost-data-breach-report/, Visited: 2022-10-18.

[28] Ken Goldberg. What is automation? IEEE Trans. Autom. Sci. Eng., 9(1),
2012.

[29] Deloitte. The future of cyber survey 2019, 2019. Available: https://www.
marsh.com/us/insights/research/marsh-microsoft-cyber-survey-report-2019.
html, Visited: 2022-10-18.

[30] Marsh and Microsoft. 2019 Global Cyber Risk Perception Sur-
vey, 2019. Available: https://www.marsh.com/us/insights/research/
marsh-microsoft-cyber-survey-report-2019.html, Visited: 2022-10-18.

[31] Enterprise Strategy Group. Network Security Operations Transformation:
Embracing Automation, Cloud Computing, and DevOps, 2018. Avail-
able: https://www.tufin.com/network-security-operations-esg-research, Vis-
ited: 2022-10-18.

[32] Enterprise Strategy Group. 2018 It Spending Intentions Survey, 2018. Avail-
able: https://research.esg-global.com/reportaction/2018ITSpendingIntentions/
Marketing, Visited: 2022-10-18.

[33] Ponemon Institute and IBM Security. The fourth annual
study on the Cyber Resilient Organization, 2019. Avail-
able: https://www.techrepublic.com/resource-library/whitepapers/

https://www.ipsos.com/ipsos-mori/en-uk/cyber-security-breaches-survey-2018
https://www.ipsos.com/ipsos-mori/en-uk/cyber-security-breaches-survey-2018
http://www.oracle.com/us/industries/communications/enterprise-networks-transition-5073874.pdf
http://www.oracle.com/us/industries/communications/enterprise-networks-transition-5073874.pdf
https://www.ibm.com/security/digital-assets/cost-data-breach-report/
https://www.ibm.com/security/digital-assets/cost-data-breach-report/
https://www.marsh.com/us/insights/research/marsh-microsoft-cyber-survey-report-2019.html
https://www.marsh.com/us/insights/research/marsh-microsoft-cyber-survey-report-2019.html
https://www.marsh.com/us/insights/research/marsh-microsoft-cyber-survey-report-2019.html
https://www.marsh.com/us/insights/research/marsh-microsoft-cyber-survey-report-2019.html
https://www.marsh.com/us/insights/research/marsh-microsoft-cyber-survey-report-2019.html
https://www.tufin.com/network-security-operations-esg-research
https://research.esg-global.com/reportaction/2018ITSpendingIntentions/Marketing
https://research.esg-global.com/reportaction/2018ITSpendingIntentions/Marketing
https://www.techrepublic.com/resource-library/whitepapers/2019-ponemon-institute-study-on-the-cyber-resilient-organization/
https://www.techrepublic.com/resource-library/whitepapers/2019-ponemon-institute-study-on-the-cyber-resilient-organization/

194 References

2019-ponemon-institute-study-on-the-cyber-resilient-organization/,
Visited: 2022-10-18.

[34] Donald Norman. The ’problem’ with automation: Inappropriate feedback and
interaction, not ’over-automation’. Philosophical transactions of the Royal
Society of London. Series B, Biological sciences, 327, 1990.

[35] Enrique Dávalos and Benjamín Barán. A survey on algorithmic aspects of
virtual optical network embedding for cloud networks. IEEE Access, 6:20893–
20906, 2018.

[36] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman.
Survey of intrusion detection systems: techniques, datasets and challenges.
Cybersecur., 2(1):20, 2019.

[37] Seungwon Shin, Phillip A. Porras, Vinod Yegneswaran, Martin W. Fong,
Guofei Gu, and Mabry Tyson. FRESCO: modular composable security ser-
vices for software-defined networks. In Proc. of the 20th Network and Dis-
tributed System Security Symp., 2013.

[38] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. Simple-fying middlebox policy enforcement using SDN. In Proc.
of the ACM SIGCOMM Conf., 2013.

[39] Andrey Gushchin, Anwar Walid, and Ao Tang. Scalable routing in sdn-
enabled networks with consolidated middleboxes. In Proc. of the ACM
Workshop on Hot Topics in Middleboxes and Network Function Virtualization,
2015.

[40] Nicolas Schnepf, Remi Badonnel, Abdelkader Lahmadi, and Stephan Merz.
Rule-based synthesis of chains of security functions for software-defined
networks. ECEASST, 76, 2018.

[41] Thomas Szyrkowiec, Michele Santuari, Mohit Chamania, Domenico Siracusa,
Achim Autenrieth, Victor Lopez, Joo Cho, and Wolfgang Kellerer. Auto-
matic intent-based secure service creation through a multilayer sdn network
orchestration. J. Opt. Commun. Netw., 10(4), 2018.

[42] Arthur Selle Jacobs, Ricardo José Pfitscher, Ronaldo Alves Ferreira, and
Lisandro Zambenedetti Granville. Refining network intents for self-driving
networks. In Proc. of the Workshop on Self-Driving Networks (SelfDN18),
2018.

[43] Nicolas Schnepf, Remi Badonnel, Abdelkader Lahmadi, and Stephan Merz.
Automated factorization of security chains in software-defined networks.
In Proc. of the IFIP/IEEE Int. Symp. on Integrated Network Management
(INM19), 2019.

https://www.techrepublic.com/resource-library/whitepapers/2019-ponemon-institute-study-on-the-cyber-resilient-organization/
https://www.techrepublic.com/resource-library/whitepapers/2019-ponemon-institute-study-on-the-cyber-resilient-organization/
https://www.techrepublic.com/resource-library/whitepapers/2019-ponemon-institute-study-on-the-cyber-resilient-organization/

References 195

[44] Eder J. Scheid, Cristian Cleder Machado, Ricardo Luis dos Santos, Alberto
E. Schaeffer Filho, and Lisandro Zambenedetti Granville. Policy-based dy-
namic service chaining in network functions virtualization. In IEEE Symp. on
Computers and Communication (ISCC16), 2016.

[45] Eder J. Scheid, Cristian Cleder Machado, Muriel Figueredo Franco, Ri-
cardo Luis dos Santos, Ricardo J. Pfitscher, Alberto E. Schaeffer Filho, and
Lisandro Zambenedetti Granville. Inspire: Integrated nfv-based intent refine-
ment environment. In Proc. of the IFIP/IEEE Symp. on Integrated Network
and Service Management (IM17), 2017.

[46] Zheng Hao, Zhaowen Lin, and Ran Li. A sdn/nfv security protection architec-
ture with a function composition algorithm based on trie. In Proc. of the 2nd
Intern. Conf. on Computer Science and Application Engineering (CSAE18),
2018.

[47] Woosik Lee and Namgi Kim. Security policy scheme for an efficient security
architecture in software-defined networking. Information, 8(2), 2017.

[48] Younghee Park, Pritesh Chandaliya, Akshaya Muralidharan, Nikash Kumar,
and Hongxin Hu. Dynamic defense provision via network functions virtualiza-
tion. In Proc. of the ACM Intern. Workshop on Security in Software Defined
Networks & Network Function Virtualization, (SDN-NFVSec17), 2017.

[49] Xin Li and Chen Qian. An NFV orchestration framework for interference-free
policy enforcement. In Proc. of the 36th IEEE Intern. Conf. on Distributed
Computing Systems, (ICDCS16), 2016.

[50] Yi Liu, Hongqi Zhang, Jiang Liu, and Yingjie Yang. A new approach for
delivering customized security everywhere: Security service chain. Sec. and
Commun. Netw., 2017, 2017.

[51] Yicen Liu, Yu Lu, Wenxin Qiao, and Xingkai Chen. A dynamic composition
mechanism of security service chaining oriented to sdn/nfv-enabled networks.
IEEE Access, 6, 2018.

[52] Alireza Shameli Sendi, Yosr Jarraya, Makan Pourzandi, and Mohamed Cheriet.
Efficient provisioning of security service function chaining using network
security defense patterns. IEEE Trans. Services Comput., 12(4), 2019.

[53] Andrés F. Ocampo, Juliver Gil-Herrera, Pedro Heleno Isolani, Miguel C.
Neves, Juan Felipe Botero, Steven Latré, Lisandro Zambenedetti Granville,
Marinho P. Barcellos, and Luciano Paschoal Gaspary. Optimal service func-
tion chain composition in network functions virtualization. In Proc. of
the Intern. Conf. on Autonomous Infrastructure, Management, and Security,
(AIMS17), 2017.

[54] Cataldo Basile, Antonio Lioy, Christian Pitscheider, Fulvio Valenza, and
Marco Vallini. A novel approach for integrating security policy enforcement

196 References

with dynamic network virtualization. In Proceedings of the 1st IEEE Con-
ference on Network Softwarization, NetSoft 2015, London, United Kingdom,
April 13-17, 2015, pages 1–5. IEEE, 2015.

[55] Cataldo Basile, Fulvio Valenza, Antonio Lioy, Diego R. Lopez, and Anto-
nio Pastor Perales. Adding support for automatic enforcement of security
policies in NFV networks. IEEE/ACM Trans. Netw., 27(2), 2019.

[56] Dhanu Dwiardhika and Takuji Tachibana. Optimal construction of service
function chains based on security level for improving network security. IEEE
Access, 7, 2019.

[57] MyungKeun Yoon, Shigang Chen, and Zhan Zhang. Minimizing the maximum
firewall rule set in a network with multiple firewalls. IEEE Trans. Comput.,
59(2), 2010.

[58] Mohammad Ashiqur Rahman and Ehab Al-Shaer. Automated synthesis of
distributed network access controls: A formal framework with refinement.
IEEE Trans. Parallel Distrib. Syst., 28(2), 2017.

[59] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato: A
novel firewall management toolkit. ACM Trans. Comput. Syst., 22(4), 2004.

[60] Frédéric Cuppens, Nora Cuppens-Boulahia, Thierry Sans, and Alexandre
Miège. A formal approach to specify and deploy a network security policy.
In Proc. of the 2nd IFIP TC1 WG1.7 Workshop on Formal Aspects in Security
and Trust (FAST), 2004.

[61] Joshua D. Guttman. Filtering postures: Local enforcement for global policies.
In Proc. of the IEEE Symp. on Security and Privacy, 1997.

[62] Angelos Keromytis, Kostas Anagnostakis, Sotiris Ioannidis, Michael Green-
wald, and Jonathan Smith. Managing access control in large scale heteroge-
neous networks. In Proc. of the NATO Consultation, Command and Control
Interoperable Networks for Secure Communication Symp., 2003.

[63] Pavan Verma and Atul Prakash. FACE: A firewall analysis and configuration
engine. In Proc. of the IEEE/IPSJ Intern. Symp. on Applications and the
Internet (SAINT05), 2005.

[64] John Govaerts, Arosha K. Bandara, and Kevin Curran. A formal logic ap-
proach to firewall packet filtering analysis and generation. Artif. Intell. Rev.,
29(3-4), 2008.

[65] Padmalochan Bera, Soumya Kanti Ghosh, and Pallab Dasgupta. Policy based
security analysis in enterprise networks: A formal approach. IEEE Trans.
Netw. Service Manag., 7(4), 2010.

[66] Nicolas Stouls and Marie-Laure Potet. Security policy enforcement through
refinement process. In Proc. of the 7th Intern. Conf. of B Users, Besançon,
2007.

References 197

[67] Arosha K. Bandara, Antonis C. Kakas, Emil C. Lupu, and Alessandra Russo.
Using argumentation logic for firewall configuration management. In Proc. of
the 11th IFIP/IEEE Intern. Symp. on Integrated Network Management, 2009.

[68] Pedro Adão, Claudio Bozzato, G. Dei Rossi, Riccardo Focardi, and Flaminia L.
Luccio. Mignis: A semantic based tool for firewall configuration. In Proc. of
the IEEE 27th Computer Security Foundations Symp., 2014.

[69] Dinesha Ranathunga, Matthew Roughan, Phil Kernick, and Nick Falkner. The
mathematical foundations for mapping policies to network devices. In Proc.
of the 13th Intern. Joint Conf. on e-Business and Telecommunications, 2016.

[70] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin T. Vechev.
Network-wide configuration synthesis. In Proc. of the 29th Intern. Conf. on
Computer Aided Verification CAV17, 2017.

[71] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin T. Vechev.
Netcomplete: Practical network-wide configuration synthesis with autocom-
pletion. In Proc. of the 15th USENIX Symp. on Networked Systems Design
and Implementation, NSDI18, 2018.

[72] Chiara Bodei, Pierpaolo Degano, Letterio Galletta, Riccardo Focardi, Mauro
Tempesta, and Lorenzo Veronese. Language-independent synthesis of firewall
policies. In Proc. of the IEEE European Symp. on Security and Privacy, 2018.

[73] Manuel Cheminod, Luca Durante, Lucia Seno, Fulvio Valenza, and Adriano
Valenzano. A comprehensive approach to the automatic refinement and
verification of access control policies. Comp. & Sec., 80, 2019.

[74] Abhijeet Sahu, Patrick Wlazlo, Nastassja Gaudet, Ana Goulart, Edmond
Rogers, and Katherine Davis. Generation of firewall configurations for a large
scale synthetic power system. In Proc. of the IEEE Texas Power and Energy
Conference, 2022.

[75] Arthur Selle Jacobs, Ricardo J. Pfitscher, Rafael Hengen Ribeiro, Ronaldo A.
Ferreira, Lisandro Zambenedetti Granville, Walter Willinger, and Sanjay G.
Rao. Hey, lumi! using natural language for intent-based network management.
In Proc. of the USENIX Annual Technical Conference, 2021.

[76] Manel Smine, David Espes, Nora Cuppens-Boulahia, Frédéric Cuppens, and
Marc-Oliver Pahl. A priority-based domain type enforcement for exception
management. In Proc. of the Inter. Symp. on Foundations and Practice of
Security, 2021.

[77] Erisa Karafili, Fulvio Valenza, Yichen Chen, and Emil C. Lupu. Towards a
framework for automatic firewalls configuration via argumentation reasoning.
In Proc. of the IEEE/IFIP Network Operations and Management Symp., 2020.

[78] Dinesha Ranathunga, Matthew Roughan, and Hung X. Nguyen. Verifiable
policy-defined networking using metagraphs. IEEE Trans. Dependable Secur.
Comput., 19(1), 2022.

198 References

[79] J. Burns, A. Cheng, P. Gurung, S. Rajagopalan, P. Rao, D. Rosenbluth, A. V.
Surendran, and D. M. Martin. Automatic management of network security
policy. In Proc. of the DARPA Information Survivability Conf. and Expos.,
volume 2, 2001.

[80] Mohamed G. Gouda and Alex X. Liu. Firewall design: Consistency, com-
pleteness, and compactness. In Proc. of the 24th Intern. Conf. on Distributed
Computing Systems (ICDCS04), 2004.

[81] Frédéric Cuppens, Nora Cuppens-Boulahia, and Joaquin Garcia-Alfaro. De-
tection of network security component misconfiguration by rewriting and
correlation. Conf. on Security in network Architectures and Security of Infor-
mation Systems, 2006.

[82] Sruthi Bandhakavi, Sandeep N. Bhatt, Cat Okita, and Prasad Rao. Analyzing
end-to-end network reachability. In Proc. of the 11th IFIP/IEEE Intern. Symp.
on Integrated Network Management, 2009.

[83] Sanjai Narain, Rajesh Talpade, and Gary Levin. Network Configuration
Validation. 2010.

[84] Nihel Ben Youssef and Adel Bouhoula. A fully automatic approach for
fixing firewall misconfigurations. In Proc. of the 11th IEEE Intern. Conf. on
Computer and Information Technology, CIT11, 2011.

[85] Fei Chen, Alex X. Liu, JeeHyun Hwang, and Tao Xie. First step towards
automatic correction of firewall policy faults. TAAS, 7(2), 2012.

[86] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and
Hongqiang Harry Liu. Automatically repairing network control planes using
an abstract representation. In Proc. of the 26th Symp. on Operating Systems
Principles, 2017.

[87] Kamel Adi, Lamia Hamza, and Liviu Pene. Automatic security policy en-
forcement in computer systems. Comp. & Sec., 73, 2018.

[88] Seungwon Shin and Guofei Gu. Cloudwatcher: Network security monitoring
using openflow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?). In Proc. of the IEEE Intern. Conf. on
Network Protocols, 2012.

[89] Md. Mazharul Islam, Qi Duan, and Ehab Al-Shaer. Specification-driven
moving target defense synthesis. In Proc. of the 6th ACM Workshop on
Moving Target Defense, MTD@CCS19, 2019.

[90] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: a language
for high-level reactive network control. In Proc. of the 1st workshop on Hot
topics in software defined networks, HotSDN12, 2012.

[91] Adrian Lara and Byrav Ramamurthy. Opensec: Policy-based security using
software-defined networking. IEEE Trans. Netw. Service Manag., 13(1), 2016.

References 199

[92] Vijay Varadharajan, Kallol Krishna Karmakar, and Udaya Kiran Tupakula.
Securing communication in multiple autonomous system domains with soft-
ware defined networking. In Proc. of the IFIP/IEEE Symp. on Integrated Net.
and Serv. Manag., 2017.

[93] Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid. Tran-
siently policy-compliant network updates. IEEE/ACM Trans. Netw., 26(6),
2018.

[94] V. Varadharajan and U. Tupakula. Counteracting attacks from malicious end
hosts in software defined networks. IEEE Trans. Netw. Service Manag., 2019.

[95] Mudassar Hussain, Nadir Shah, and Ali Tahir . Graph-based policy change
detection and implementation in sdn. Electronics, 8(10), 2019.

[96] Zhi Fu and Shyhtsun Felix Wu. Automatic generation of ipsec/vpn security
policies in an intra-domain environment. In Proc. of the 12th Intern. Workshop
on Distributed Systems, DSOM01, 2001.

[97] Yanyan Yang, Charles U. Martel, and Shyhtsun Felix Wu. On building the
minimum number of tunnels: an ordered-split approach to manage ipsec/vpn
policies. In Proc. of the IEEE/IFIP Network Operations and Management
Symp., 2004.

[98] Yanyan Yang, Zhi (Judy) Fu, and Shyhtsun Felix Wu. BANDS: an inter-
domain internet security policy management system for ipsec/vpn. In Proc. of
the IFIP/IEEE 8th Intern. Symp. on Integrated Network Management (IM03),,
2003.

[99] Chi-Lan Chang, Yun-Peng Chiu, and Chin-Laung Lei. Automatic generation
of conflict-free ipsec policies. In Proc. of the 25th IFIP WG 6.1 Intern. Conf.
Formal Techniques for Networked and Distributed Systems - FORTE, 2005.

[100] Mohammad Mehdi Gilanian Sadeghi, Borhanuddin Mohd Ali, Hossein Pe-
dram, Mehdi Dehghan, and Masoud Sabaei. A new method for creating
efficient security policies in virtual private network. In Proc. of the 4th Intern.
Conf. Collaborative Computing: Networking, Applications and Worksharing,
CollaborateCom 08,, 2008.

[101] Michael Rossberg, Guenter Schaefer, and Thorsten Strufe. Distributed auto-
matic configuration of complex ipsec-infrastructures. J. Network Syst. Man-
age., 18(3), 2010.

[102] Salman Niksefat and Masoud Sabaei. Efficient algorithms for dynamic detec-
tion and resolution of ipsec/vpn security policy conflicts. In Proc. of the 24th
IEEE Conf. on Advanced Information Networking and Applications, 2010.

[103] Lotfi Firdaouss, Ayoub Bahnasse, Belkadi Manal, and Yazidi Ikrame. Au-
tomated VPN configuration using devops. In Proc. of the Inter. Conf. on
Emerging Ubiquitous Systems and Pervasive Networks, 2021.

200 References

[104] Ricardo Neisse, Gary Steri, and Gianmarco Baldini. Enforcement of security
policy rules for the internet of things. In Proc. of the IEEE 10th Inter. Conf.
on Wireless and Mobile Computing, Networking and Communications, 2014.

[105] Sabrina Sicari, Alessandra Rizzardi, Daniele Miorandi, Cinzia Cappiello, and
Alberto Coen-Porisini. Security policy enforcement for networked smart
objects. Comput. Net., 108, 2016.

[106] S. Sicari, A. Rizzardi, L.A. Grieco, G. Piro, and A. Coen-Porisini. A policy
enforcement framework for internet of things applications in the smart health.
Smart Health, 3-4, 2017.

[107] Sabrina Sicari, Alessandra Rizzardi, Daniele Miorandi, and Alberto Coen-
Porisini. Security towards the edge: Sticky policy enforcement for networked
smart objects. Inf. Syst., 71, 2017.

[108] Gokhan Sagirlar, Barbara Carminati, and Elena Ferrari. Decentralizing privacy
enforcement for internet of things smart objects. Comput. Net., 143, 2018.

[109] Vasudevan Nagendra, Arani Bhattacharya, Vinod Yegneswaran, Amir Rah-
mati, and Samir Ranjan Das. An intent-based automation framework for
securing dynamic consumer iot infrastructures. In Proc. of the Web Confer-
ence, 2020.

[110] Mohammad Ashiqur Rahman, Amarjit Datta, and Ehab Al-Shaer. Auto-
mated configuration synthesis for resilient smart metering infrastructure. EAI
Endorsed Trans. Security Safety, 8(28), 2021.

[111] Sian En Ooi, Razvan Beuran, Yasuo Tan, Takayuki Kuroda, Takuya Kuwahara,
and Norihito Fujita. Secureweaver: Intent-driven secure system designer. In
Proc. of the 2022 ACM Workshop on Secure and Trustworthy Cyber-Physical
Systems, 2022.

[112] Sébastien Ziegler, Antonio F. Skarmeta, Jorge Bernal Bernabé, Eunsook Eu-
nah Kim, and Stefano Bianchi. ANASTACIA: advanced networked agents for
security and trust assessment in CPS iot architectures. In Proc. of the IEEE
Glob. Internet of Things Summit, 2017.

[113] Alejandro Molina Zarca, Jorge Bernal Bernabé, Ivan Farris, Yacine Khettab,
Tarik Taleb, and Antonio F. Skarmeta. Enhancing iot security through network
softwarization and virtual security appliances. Int. J. Netw. Manag., 28(5),
2018.

[114] Alejandro Molina Zarca, Jorge Bernal Bernabé, Antonio F. Skarmeta, and
Jose M. Alcaraz Calero. Virtual iot honeynets to mitigate cyberattacks in
sdn/nfv-enabled iot networks. IEEE J. Sel. Areas Commun., 38(6), 2020.

[115] Alejandro Molina Zarca, Miloud Bagaa, Jorge Bernal Bernabé, Tarik Taleb,
and Antonio F. Skarmeta. Semantic-aware security orchestration in sdn/nfv-
enabled iot systems. Sensors, 20(13), 2020.

References 201

[116] Joshua D. Guttman and Amy L. Herzog. Rigorous automated network security
management. Int. J. Inf. Sec., 4 (1), 2005.

[117] Tomás E. Uribe and Steven Cheung. Automatic analysis of firewall and
network intrusion detection system configurations. J. of Comp. Sec., 15(6),
2007.

[118] Joaquín García-Alfaro, Frédéric Cuppens, Nora Cuppens-Boulahia, and Stere
Preda. MIRAGE: A management tool for the analysis and deployment of
network security policies. In Proc. of the 5th Intern. Workshop, Data Privacy
Management and Autonomous Spontaneous Security DPM10, 2010.

[119] Patrick Lingga, Jeonghyeon Kim, Jorge David Iranzo Bartolomé, and Jae-
hoon Jeong. Automatic data model mapper for security policy translation in
interface to network security functions framework. In Proc. of the IEEE Inter.
Conf. on Information and Communication Technology Convergence, 2021.

[120] Alain J. Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis
engine. In Proc. of the Symp. on Sec. and Priv., 2000.

[121] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKe-
own, and Scott Shenker. Ethane: Taking control of the enterprise. In Proc.
of the Conf. on Applications, Technologies, Architectures, and Protocols for
Computer Communications, 2007.

[122] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto,
Jennifer Rexford, Alec Story, and David Walker. Frenetic: A network pro-
gramming language. In Proc. of the 16th ACM SIGPLAN Intern. Conf. on
Functional Programming, 2011.

[123] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. Policycop: An
autonomic qos policy enforcement framework for software defined networks.
In Proc. of the IEEE SDN for Future Networks and Services (SDN4FNS)13,
2013.

[124] Celio Trois, Marcos Didonet Del Fabro, Luis Carlos Erpen De Bona, and
Magnos Martinello. A survey on SDN programming languages: Toward a
taxonomy. IEEE Commun. Surveys Tuts., 18(4), 2016.

[125] Günter Karjoth, Matthias Schunter, and Michael Waidner. Privacy-enabled
services for enterprises. In Proc. of the 13th IEEE Inter. Work. on Database
and Expert Systems Applications, 2002.

[126] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. Survey of
consistent software-defined network updates. IEEE Commun. Surv. Tutorials,
21(2):1435–1461, 2019.

[127] Sandra Scott-Hayward, Gemma O’Callaghan, and Sakir Sezer. Sdn security:
A survey. In IEEE SDN for Future Networks and Services, SDN4FNS 2013,
Trento, Italy, November 11-13, 2013, pages 1–7. IEEE, 2013.

202 References

[128] Charles C. Zhang, Marianne Winslett, and Carl A. Gunter. On the safety
and efficiency of firewall policy deployment. In Proc. of the IEEE Symp. on
Security and Privacy (S&P), pages 33–50, 2007.

[129] Zeeshan Ahmed, Abdessamad Imine, and Michaël Rusinowitch. Safe and
efficient strategies for updating firewall policies. In Proc. of the 7th Inter.
Conf. Trust, Privacy and Security in Digital Business,, pages 45–57, 2010.

[130] A. Kartit and M. E. Marraki. An enhanced algorithm for firewall policy
deployment. In Proc. of the Inter. Conf. on Multimedia Computing and
Systems, pages 1–4, 2011.

[131] F. Bezzazi, A. Kartit, M. E. Marraki, and D. Aboutajdine. Optimized strategy
of deployment firewall policies. In Proc. of the 2nd Inter. Conf. on the
Innovative Computing Technology (INTECH12), pages 46–50, 2012.

[132] Zaid Kartit, H. Idrissi, Kartit Ali, and Mohamed El marraki. Improvement of
algorithm for updating firewall policies. Journal of Theoretical and Applied
Information Technology, 66:158–289, 08 2014.

[133] Bruno Astuto A. Nunes, Marc Mendonca, Xuan Nam Nguyen, Katia Obraczka,
and Thierry Turletti. A survey of software-defined networking: Past, present,
and future of programmable networks. IEEE Commun. Surv. Tutorials,
16(3):1617–1634, 2014.

[134] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert
Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. Opennf: enabling
innovation in network function control. In Proc. of the ACM SIGCOMM Conf.
(SIGCOMM’14), pages 163–174, 2014.

[135] Juan Deng, Hongda Li, Hongxin Hu, Kuang-Ching Wang, Gail-Joon Ahn,
Ziming Zhao, and Wonkyu Han. On the safety and efficiency of virtual
firewall elasticity control. In Proc. of the 24th Network and Distributed
System Security Symp., NDSS, 2017.

[136] Naga Praveen Katta, Jennifer Rexford, and David Walker. Incremental con-
sistent updates. In Proc. of the 2nd ACM SIGCOMM Work. on Hot Topics in
Software Defined Networking, pages 49–54, 2013.

[137] Rick McGeer. A correct, zero-overhead protocol for network updates. In
Proc. of the 2nd ACM SIGCOMM Work. on Hot Topics in Software Defined
Networking, pages 161–162, 2013.

[138] Jingyu Hua, Xin Ge, and Sheng Zhong. FOUM: A flow-ordered consistent
update mechanism for software-defined networking in adversarial settings. In
Proc. of the 35th IEEE Inter. Conf. on Computer Communications, (INFO-
COM16), pages 1–9, 2016.

[139] Pavol Cerný, Nate Foster, Nilesh Jagnik, and Jedidiah McClurg. Optimal
consistent network updates in polynomial time. In Proc. of the 30th Inter.
Symp. Distributed Computing, DISC16, pages 114–128. Springer, 2016.

References 203

[140] Stefano Vissicchio, Laurent Vanbever, Luca Cittadini, Geoffrey G. Xie, and
Olivier Bonaventure. Safe update of hybrid SDN networks. IEEE/ACM Trans.
Netw., 25(3):1649–1662, 2017.

[141] Weijie Liu, Rakesh B. Bobba, Sibin Mohan, and Roy H. Campbell. Inter-
flow consistency: A novel SDN update abstraction for supporting inter-flow
constraints. In 2015 IEEE Conference on Communications and Network
Security, CNS 2015, Florence, Italy, September 28-30, 2015, pages 469–478.
IEEE, 2015.

[142] Radhika Sukapuram and Gautam Barua. PPCU: proportional per-packet
consistent updates for software defined networks. In 24th IEEE International
Conference on Network Protocols, ICNP 2016, Singapore, November 8-11,
2016, pages 1–2. IEEE Computer Society, 2016.

[143] Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid. Good
network updates for bad packets: Waypoint enforcement beyond destination-
based routing policies. In Proc. of the 13th ACM Work. on Hot Topics in
Networks, (HotNets14), pages 15:1–15:7, 2014.

[144] Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid. Tran-
siently secure network updates. In Proc. of the ACM SIGPLAN Inter. Conf. on
Measurement and Modeling of Computer Science, pages 273–284, 2016.

[145] Jedidiah McClurg, Hossein Hojjat, Pavol Cerný, and Nate Foster. Efficient
synthesis of network updates. In Proc. of the 36th ACM Conf. on Programming
Language Design and Implementation, pages 196–207, 2015.

[146] Stefano Vissicchio and Luca Cittadini. FLIP the (flow) table: Fast lightweight
policy-preserving SDN updates. In Proc. of the 35th IEEE Inter. Conf. on
Computer Communications, (INFOCOM16), pages 1–9, 2016.

[147] Bernd Jäger. Security orchestrator: Introducing a security orchestrator in
the context of the ETSI NFV reference architecture. In Proc. of the IEEE
TrustCom/BigDataSE/ISPA, 2015.

[148] Liang Xia, John Strassner, Cataldo Basile, and Diego R. Lopez. Information
model of nsfs capabilities. Rfc, RFC Editor, 2019.

[149] Kostas Giotis, Yiannos Kryftis, and Vasilis Maglaris. Policy-based orchestra-
tion of NFV services in software-defined networks. In Proceedings of the 1st
IEEE Conference on Network Softwarization, NetSoft 2015, London, United
Kingdom, April 13-17, 2015, pages 1–5. IEEE, 2015.

[150] Sangwon Hyun, Jinyong Kim, Hyoungshick Kim, Jaehoon Jeong, Susan
Hares, Linda Dunbar, and Adrian Farrel. Interface to network security func-
tions for cloud-based security services. IEEE Commun. Mag., 56(1):171–178,
2018.

204 References

[151] Alejandro Molina Zarca, Dan García Carrillo, Jorge Bernal Bernabé, Jordi Or-
tiz Murillo, Rafael Marín-Pérez, and Antonio F. Skarmeta. Enabling virtual
AAA management in sdn-based iot networks. Sensors, 19(2):295, 2019.

[152] Susan Hares, Diego R. López, Myo Zarny, Christian Jacquenet, Rakesh Kumar,
and Jaehoon (Paul) Jeong. Interface to network security functions (I2NSF):
problem statement and use cases. RFC, 8192:1–29, 2017.

[153] Nathan F. Saraiva de Sousa, Danny Alex Lachos Perez, Raphael Vicente Rosa,
Mateus A. S. Santos, and Christian Esteve Rothenberg. Network service
orchestration: A survey. Comput. Commun., 142-143:69–94, 2019.

[154] Juan Camilo Correa Chica, Jenny Cuatindioy Imbachi, and Juan Felipe
Botero. Security in SDN: A comprehensive survey. J. Netw. Comput. Appl.,
159:102595, 2020.

[155] Preeti Mishra, Emmanuel S. Pilli, Vijay Varadharajan, and Udaya Kiran
Tupakula. Intrusion detection techniques in cloud environment: A survey. J.
Netw. Comput. Appl., 77:18–47, 2017.

[156] Tao Han, Syed Rooh Ullah Jan, Zhiyuan Tan, Muhammad Usman, Mian Ah-
mad Jan, Rahim Khan, and Yongzhao Xu. A comprehensive survey of security
threats and their mitigation techniques for next-generation SDN controllers.
Concurr. Comput. Pract. Exp., 32(16), 2020.

[157] Montida Pattaranantakul, Ruan He, Qipeng Song, Zonghua Zhang, and
Ahmed Meddahi. NFV security survey: From use case driven threat anal-
ysis to state-of-the-art countermeasures. IEEE Commun. Surv. Tutorials,
20(4):3330–3368, 2018.

[158] Anna L. Buczak and Erhan Guven. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Commun. Surv.
Tutorials, 18(2):1153–1176, 2016.

[159] Jun-feng Xie, F. Richard Yu, Tao Huang, Renchao Xie, Jiang Liu, Chen-meng
Wang, and Yunjie Liu. A survey of machine learning techniques applied to
software defined networking (SDN): research issues and challenges. IEEE
Commun. Surv. Tutorials, 21(1):393–430, 2019.

[160] Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, Khalifa Toumi, and Hervé
Debar. Adaptive policy-driven attack mitigation in sdn. In Proceedings of the
1st International Workshop on Security and Dependability of Multi-Domain
Infrastructures, XDOMO’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[161] Luiz Fernando Carvalho, Taufik Abrão, Leonardo de Souza Mendes, and
Mario Lemes Proença Jr. An ecosystem for anomaly detection and mitigation
in software-defined networking. Expert Syst. Appl., 104:121–133, 2018.

References 205

[162] Jinyong Tim Kim, Eunsoo Kim, Jinhyuk Yang, Jaehoon Paul Jeong, Hy-
oungshick Kim, Sangwon Hyun, Hyunsik Yang, Jaewook Oh, Younghan
Kim, Susan Hares, and Linda Dunbar. IBCS: intent-based cloud services for
security applications. IEEE Communications Magazine, 58(4):45–51, 2020.

[163] J. Garay, J. Matias, J. Unzilla, and E. Jacob. Service description in the nfv
revolution: Trends, challenges and a way forward. IEEE Commun. Mag.,
54(3), 2016.

[164] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proc. of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340, 2008.

[165] Mohamed El Halaby. On the computational complexity of maxsat. Electron.
Colloquium Comput. Complex., 2016.

[166] Robert Robere, Antonina Kolokolova, and Vijay Ganesh. The proof complex-
ity of SMT solvers. In Computer Aided Verification. Springer International
Publishing, 2018.

[167] Guido Marchetto, Riccardo Sisto, Matteo Virgilio, and Jalolliddin Yusupov.
A framework for user-friendly verification-oriented VNF modeling. In Proc.
of the 41st IEEE Annual Computer Software and Applications Conference,
2017.

[168] Girma M. Yilma, Faqir Zarrar Yousaf, Vincenzo Sciancalepore, and
Xavier Pérez Costa. Benchmarking open source NFV MANO systems: OSM
and ONAP. Comput. Commun., 161:86–98, 2020.

[169] Aaron Paradowski, Lu Liu, and Bo Yuan. Benchmarking the performance
of openstack and cloudstack. In 17th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing,
ISORC 2014, Reno, NV, USA, June 10-12, 2014, pages 405–412. IEEE Com-
puter Society, 2014.

[170] Maciej Kuzniar, Peter Peresíni, and Dejan Kostic. What you need to know
about SDN flow tables. In Jelena Mirkovic and Yong Liu, editors, Passive and
Active Measurement - 16th International Conference, PAM 2015, New York,
NY, USA, March 19-20, 2015, Proceedings, volume 8995 of Lecture Notes in
Computer Science, pages 347–359. Springer, 2015.

[171] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David
Walker. Abstractions for network update. In Proc. of the ACM SIGCOMM
Conf. (SIGCOMM’12), pages 323–334, 2012.

[172] Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle,
Mario Pickavet, and Piet Demeester. Network service chaining with optimized
network function embedding supporting service decompositions. Comput.
Networks, 93:492–505, 2015.

206 References

[173] Ignazio Pedone, Antonio Lioy, and Fulvio Valenza. Towards an efficient man-
agement and orchestration framework for virtual network security functions.
Secur. Commun. Networks, 2019:2425983:1–2425983:11, 2019.

[174] Chuan Pham, Nguyen H. Tran, Shaolei Ren, Walid Saad, and Choong Seon
Hong. Traffic-aware and energy-efficient vnf placement for service chaining:
Joint sampling and matching approach. IEEE Trans. Serv. Comp., 13(1), 2020.

[175] Francesco Minna, Agathe Blaise, Filippo Rebecchi, Balakrishnan Chan-
drasekaran, and Fabio Massacci. Understanding the security implications of
kubernetes networking. IEEE Secur. Priv., 19(5):46–56, 2021.

