1,149 research outputs found

    NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    Get PDF
    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Optical Storage Shines Over the Horizon

    Get PDF
    Ranging from read-only, write-once and erasable designs, optical storage promises to store large amounts of data at lower than Winchester costs. But lack of media, standards and software is slowing market acceptance

    Large Format Multifunction 2-Terabyte Optical Disk Storage System

    Get PDF
    The Kodak Digital Science OD System 2000E automated disk library (ADL) base module and write-once drive are being developed as the next generation commercial product to the currently available System 2000 ADL. Under government sponsorship with the Air Force's Rome Laboratory, Kodak is developing magneto-optic (M-O) subsystems compatible with the Kodak Digital Science ODW25 drive architecture, which will result in a multifunction (MF) drive capable of reading and writing 25 gigabyte (GB) WORM media and 15 GB erasable media. In an OD system 2000 E ADL configuration with 4 MF drives and 100 total disks with a 50% ration of WORM and M-O media, 2.0 terabytes (TB) of versatile near line mass storage is available

    Goddard Conference on Mass Storage Systems and Technologies, volume 2

    Get PDF
    Papers and viewgraphs from the conference are presented. Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional discussion topics addressed the evolution of the identifiable unit for processing (file, granule, data set, or some similar object) as data ingestion rates increase dramatically, and the present state of the art in mass storage technology

    Linear laser diode arrays for improvement in optical disk recording for space stations

    Get PDF
    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated

    NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 2

    Get PDF
    This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    A centrifugal microfluidic platform for capturing, assaying and manipulation of beads and biological cells

    Get PDF
    Microfluidics is deemed a field with great opportunities, especially for applications in medical diagnostics. The vision is to miniaturize processes typically performed in a central clinical lab into small, simple to use devices - so called lab-on-a-chip (LOC) systems. A wide variety of concepts for liquid actuation have been developed, including pressure driven flow, electro-osmotic actuation or capillary driven methods. This work is based on the centrifugal platform (lab-on-a-disc). Fluid actuation is performed by the forces induced due to the rotation of the disc, thus eliminating the need for external pumps since only a spindle motor is necessary to rotate the disc and propel the liquids inside of the micro structures. Lab-on-a-disc systems are especially promising for point-of-care applications involving particles or cells due to the centrifugal force present in a rotating system. Capturing, assaying and identification of biological cells and microparticles are important operations for lab-on-a-disc platforms, and the focus of this work is to provide novel building blocks towards an integrated system for cell and particle based assays. As a main outcome of my work, a novel particle capturing and manipulation scheme on a centrifugal microfluidic platform has been developed. To capture particles (biological cells or micro-beads) I designed an array of V-shaped micro cups and characterized it. Particles sediment under stagnant flow conditions into the array where they are then mechanically trapped in spatially well-defined locations. Due to the absence of flow during the capturing process, i.e. particle sedimentation is driven by the artificial gravity field on the centrifugal platform, the capture efficiency of this approach is close to 100% which is notably higher than values reported for typical pressure driven systems. After capturing the particles, the surrounding medium can easily be exchanged to expose them to various conditions such as staining solutions or washing buffers, and thus perform assays on the captured particles. By scale matching the size of the capturing elements to the size of the particles, sharply peaked single occupancy can be achieved. Since all particles are arrayed in the same focal plane in spatially well defined locations, operations such as counting or fluorescent detection can be performed easily. The application of this platform to perform multiplexed bead-based immunoassays as well as the discrimination of various cell types based on intra cellular and membrane based markers using fluorescently tagged antibodies is demonstrated. Additionally, methods to manipulate captured particles either in batch mode or on an individual particle level have been developed and characterized. Batch release of captured particles is performed by a novel magnetic actuator which is solely controlled by the rotation frequency of the disc. Furthermore, the application of this actuator to rapidly mix liquids is shown. Manipulation of individual particles is performed using an optical tweezers setup which has been developed as part of this work. Additionally, this optical module also provides fluorescence detection capabilities. This is the first time that optical tweezers have been combined with a centrifugal microfluidic system. This work presents the core technology for an integrated centrifugal platform to perform cell and particle based assays for fundamental research as well as for point-of- care applications. The key outputs of my specific work are: 1. Design, fabrication and characterization of a novel particle capturing scheme on a centrifugal microfluidic platform (V-cups) with very high capture efficiency (close to 100%) and sharply peaked single occupancy (up to 99.7% single occupancy). 2. A novel rotation frequency controlled magnetic actuator for releasing captured particles as well as for rapidly mixing liquids has been developed, manufactured and characterized. 3. The V-cup platform has successfully been employed to capture cells and perform multi-step antibody staining assays for cell discrimination. 4. An optical tweezers setup has been built and integrated into a centrifugal teststand, and successful manipulation of individual particles trapped in the V-cup array is demonstrated

    Goddard Conference on Mass Storage Systems and Technologies, Volume 1

    Get PDF
    Copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in Sep. 1992 are included. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems (data ingestion rates now approach the order of terabytes per day). Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional topics addressed the evolution of the identifiable unit for processing purposes as data ingestion rates increase dramatically, and the present state of the art in mass storage technology

    Mass storage technologies for libraries & information centres

    Get PDF
    To overcome growing requirements for additional space and for archival storage of less used, old and important documents, libraries have been using compact or dormitory storage and microfilming techniques. Of late, information technologies have come to their rescue. Many technologies-magnetic as well as optical have been tried for the past many years for mass storage of information. While magnetic drum and tape are, heading towards obsolescence, optical' technologies with their enormous storage capacities are trying to fill the gap. This paper overviews the various 'technologies available for mass storage in the library environment. The paper covers the magnetic storage devices including magnetic tape, magnetic disc, cartridge tape and digital audio tape. The optical disc storage technologies including read-only, write once read many and erasable/rewritable media have been described. The role of optical discs in making electronic publishing a popular technology has also been described. Future trends in the mass storage technologies like volume holographic technology, electronic trap and proximal probe technologies, and fluorescent multi-layered technology which are under various stages of development have also been briefly discussed. Applications of these technologies in library and information centres. have been listed
    corecore