126 research outputs found

    Idealized models for FEA derived from generative modeling processes based on extrusion primitives

    No full text
    International audienceShape idealization transformations are very common when adapting a CAD component to FEA requirements. Here, an idealization approach is proposed that is based on generative shape processes used to decompose an initial B-Rep object, i.e. extrusion processes. The corresponding primitives form the basis of candidate sub domains for idealization and their connections conveyed through the generative processes they belong to, bring robustness to set up the appropriate connections between idealized sub domains. Taking advantage of an existing construction tree as available in a CAD software does not help much because it may be complicated to use it for idealization processes. Using generative processes attached to an object that are no longer reduced to a single construction tree but to a graph containing all non trivial construction trees, is more useful for the engineer to evaluate variants of idealization. From this automated decomposition, each primitive is analyzed to define whether it can idealized or not. Subsequently, geometric interfaces between primitives are taken into account to determine more precisely the idealizable sub domains and their contours when primitives are incrementally merged to come back to the initial object

    Idealized models for FEA derived from generative modeling processes based on extrusion primitives

    Get PDF
    International audienceShape idealization transformations are very common when adapting a CAD component to FEA requirements. Here, an idealization approach is proposed that is based on generative shape processes used to decompose an initial B-Rep object, i.e. extrusion processes. The corresponding primitives form the basis of candidate sub domains for idealization and their connections conveyed through the generative processes they belong to, bring robustness to set up the appropriate connections between idealized sub domains. Taking advantage of an existing construction tree as available in a CAD software does not help much because it may be complicated to use it for idealization processes. Using generative processes attached to an object that are no longer reduced to a single construction tree but to a graph containing all non trivial construction trees, is more useful for the engineer to evaluate variants of idealization. From this automated decomposition, each primitive is analyzed to define whether it can idealized or not. Subsequently, geometric interfaces between primitives are taken into account to determine more precisely the idealizable sub domains and their contours when primitives are incrementally merged to come back to the initial object

    Extraction of generative processes from B-Rep shapes and application to idealization transformations

    Get PDF
    International audienceA construction tree is a set of shape generation processes commonly produced with CAD modelers during a design process of B-Rep objects. However, a construction tree does not bring all the desired properties in many configurations: dimension modifications, idealization processes, etc. Generating a non trivial set of generative processes, possibly forming a construction graph, can significantly improve the adequacy of some of these generative processes to meet user's application needs. This paper proposes to extract generative processes from a given B-rep shape as a high-level shape description. To evaluate the usefulness of this description, finite element analyses (FEA) and particularly idealizations are the applications selected to evaluate the adequacy of additive generative processes. Non trivial construction trees containing generic extrusion and revolution primitives behave like well established CSG trees. Advantageously, the proposed approach is primitive-based, which ensures that any generative process of the construction graph does preserve the realizability of the corresponding volume. In the context of FEA, connections between idealized primitives of a construction graph can be efficiently performed using their interfaces. Consequently, generative processes of a construction graph become a high-level object structure that can be tailored to idealizations of primitives and robust connections between them

    Computer-Aided Geometry Modeling

    Get PDF
    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design

    CAD vs. Sketching: An Exploratory Case Study

    Get PDF
    This paper presents a preliminary comparison between the role of computer-aided design (CAD) and sketching in engineering through a case study of a senior design project and interviews with industry and academia. The design team consisted of four senior level mechanical engineering students each with less than 1 year of professional experience are observed while completing an industry sponsored mechanical engineering capstone design project across a 17 week semester. Factors investigated include what CAD tools are used, when in the design process they are implemented, the justification for their use from the students\u27 perspectives, the actual knowledge gained from their use, the impact on the final designed artifact, and the contributions of any sketches generated. At each design step, comparisons are made between CAD and sketching. The students implemented CAD tools at the onset of the project, generally failing to realize gains in design efficiency or effectiveness in the early conceptual phases of the design process. As the design became more concrete, the team was able to recognize clear gains in both efficiency and effectiveness through the use of computer assisted design programs. This study is augmented by interviews with novice and experienced industry users and academic instructors to align the trends observed in the case study with industry practice and educational emphasis. A disconnect in the perceived capability of CAD tools was found between novice and experienced user groups. Opinions on the importance of sketching skills differed between novice educators and novice industry professionals, suggesting that there is a change of opinion as to the importance of sketching formed when recent graduates transition from academia to industry. The results suggest that there is a need to emphasize the importance of sketching and a deeper understanding as to the true utility of CAD tools at each stage of the design process

    PHYSICS-AWARE MODEL SIMPLIFICATION FOR INTERACTIVE VIRTUAL ENVIRONMENTS

    Get PDF
    Rigid body simulation is an integral part of Virtual Environments (VE) for autonomous planning, training, and design tasks. The underlying physics-based simulation of VE must be accurate and computationally fast enough for the intended application, which unfortunately are conflicting requirements. Two ways to perform fast and high fidelity physics-based simulation are: (1) model simplification, and (2) parallel computation. Model simplification can be used to allow simulation at an interactive rate while introducing an acceptable level of error. Currently, manual model simplification is the most common way of performing simulation speedup but it is time consuming. Hence, in order to reduce the development time of VEs, automated model simplification is needed. The dissertation presents an automated model simplification approach based on geometric reasoning, spatial decomposition, and temporal coherence. Geometric reasoning is used to develop an accessibility based algorithm for removing portions of geometric models that do not play any role in rigid body to rigid body interaction simulation. Removing such inaccessible portions of the interacting rigid body models has no influence on the simulation accuracy but reduces computation time significantly. Spatial decomposition is used to develop a clustering algorithm that reduces the number of fluid pressure computations resulting in significant speedup of rigid body and fluid interaction simulation. Temporal coherence algorithm reuses the computed force values from rigid body to fluid interaction based on the coherence of fluid surrounding the rigid body. The simulations are further sped up by performing computing on graphics processing unit (GPU). The dissertation also presents the issues pertaining to the development of parallel algorithms for rigid body simulations both on multi-core processors and GPU. The developed algorithms have enabled real-time, high fidelity, six degrees of freedom, and time domain simulation of unmanned sea surface vehicles (USSV) and can be used for autonomous motion planning, tele-operation, and learning from demonstration applications

    A systematic design recovery framework for mechanical components.

    Get PDF

    Specifying a hybrid, multiple material CAD system for next-generation prosthetic design

    Get PDF
    For many years, the biggest issue that causes discomfort and hygiene issues for patients with lower limb amputations have been the interface between body and prosthetic, the socket. Often made of an inflexible, solid polymer that does not allow the residual limb to breathe or perspire and with no consideration for the changes in size and shape of the human body caused by changes in temperature or environment, inflammation, irritation and discomfort often cause reduced usage or outright rejection of the prosthetic by the patient in their day to day lives. To address these issues and move towards a future of improved quality of life for patients who suffer amputations, Loughborough University formed the Next Generation Prosthetics research cluster. This work is one of four multidisciplinary research studies conducted by members of this research cluster, focusing on the area of Computer Aided Design (CAD) for improving the interface with Additive Manufacture (AM) to solve some of the challenges presented with improving prosthetic socket design, with an aim to improve and streamline the process to enable the involvement of clinicians and patients in the design process. The research presented in this thesis is based on three primary studies. The first study involved the conception of a CAD criteria, deciding what features are needed to represent the various properties the future socket outlined by the research cluster needs. These criteria were then used for testing three CAD systems, one each from the Parametric, Non Uniform Rational Basis Spline (NURBS) and Polygon archetypes respectively. The result of these tests led to the creation of a hybrid control workflow, used as the basis for finding improvements. The second study explored emerging CAD solutions, various new systems or plug-ins that had opportunities to improve the control model. These solutions were tested individually in areas where they could improve the workflow, and the successful solutions were added to the hybrid workflow to improve and reduce the workflow further. The final study involved taking the knowledge gained from the literature and the first two studies in order to theorise how an ideal CAD system for producing future prosthetic sockets would work, with considerations for user interface issues as well as background CAD applications. The third study was then used to inform the final deliverable of this research, a software design specification that defines how the system would work. This specification was written as a challenge to the CAD community, hoping to inform and aid future advancements in CAD software. As a final stage of research validation, a number of members of the CAD community were contacted and interviewed about their feelings of the work produced and their feedback was taken in order to inform future research in this area
    corecore