987 research outputs found

    Ransomware Detection and Classification Strategies

    Full text link
    Ransomware uses encryption methods to make data inaccessible to legitimate users. To date a wide range of ransomware families have been developed and deployed, causing immense damage to governments, corporations, and private users. As these cyberthreats multiply, researchers have proposed a range of ransomware detection and classification schemes. Most of these methods use advanced machine learning techniques to process and analyze real-world ransomware binaries and action sequences. Hence this paper presents a survey of this critical space and classifies existing solutions into several categories, i.e., including network-based, host-based, forensic characterization, and authorship attribution. Key facilities and tools for ransomware analysis are also presented along with open challenges.Comment: 9 pages, 2 figure

    Research Toward a Partially-Automated, and Crime Specific Digital Triage Process Model

    Get PDF
    The digital forensic process as traditionally laid out begins with the collection, duplication, and authentication of every piece of digital media prior to examination. These first three phases of the digital forensic process are by far the most costly. However, complete forensic duplication is standard practice among digital forensic laboratories. The time it takes to complete these stages is quickly becoming a serious problem. Digital forensic laboratories do not have the resources and time to keep up with the growing demand for digital forensic examinations with the current methodologies. One solution to this problem is the use of pre-examination techniques commonly referred to as digital triage. Pre-examination techniques can assist the examiner with intelligence that can be used to prioritize and lead the examination process. This work discusses a proposed model for digital triage that is currently under development at Mississippi State University

    Malware Detection Based on Structural and Behavioural Features of API Calls

    Get PDF
    In this paper, we propose a five-step approach to detect obfuscated malware by investigating the structural and behavioural features of API calls. We have developed a fully automated system to disassemble and extract API call features effectively from executables. Using n-gram statistical analysis of binary content, we are able to classify if an executable file is malicious or benign. Our experimental results with a dataset of 242 malwares and 72 benign files have shown a promising accuracy of 96.5% for the unigram model. We also provide a preliminary analysis by our approach using support vector machine (SVM) and by varying n-values from 1 to 5, we have analysed the performance that include accuracy, false positives and false negatives. By applying SVM, we propose to train the classifier and derive an optimum n-gram model for detecting both known and unknown malware efficiently

    Cybersecurity: Past, Present and Future

    Full text link
    The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.Comment: Author's copy of the book published under ISBN: 978-620-4-74421-
    • …
    corecore