
Automated Forensic Extraction of Encryption Keys

Using Behavioral Analysis

Gareth Owen
University of Greenwich

United Kingdom

g.h.owen@gre.ac.uk

Abstract—In this paper we describe a technique for automatic

algorithm identification and information extraction from

unknown binaries. We emulate the binary using PyEmu forcing

complete code coverage whilst simultaneously examining its

behavior. Our behavior matcher then identifies specific

algorithmic behavior and extracts information. We demonstrate

the use of this technique for automated extraction of encryption

keys from an unseen program with no prior knowledge about its

implementation. Our technique can also be used for automatic

categorization and suggestion of function purpose to analysts.

Keywords: binary analysis, encryption key extraction,

behavioural analysis.

I. INTRODUCTION

Software is often written by a programmer in a high-level

language which is then compiled into machine code (a binary)

for execution on the system. Software is then distributed in

binary form without the original high-level source code. This

process of conversion (compilation) from a high-level

language to a binary is a lossy process. Comments, structure

naming, code layout are all lost in this conversion process as

they only serve to aid computer programmers in reading the

code and are not required for execution.

Binary analysis is used to discover the function of software

after compilation to detect security holes or verify the software

performs as intended (verification). As key information used

by humans to decipher code is removed, the task of binary

analysis is exceptionally time consuming. Often optimized

sections of code bear little resemblance to the high level code

typed by the programmer – requiring the analyst to

painstakingly examine the assembly code line by line.

The binary analysis task is further obstructed because it is not

trivial to recognize common code such as that in statically

linked libraries. Tools such as IDA Pro [1] have made some

efforts to tackle this problem by compiling a database of

library function fingerprints; however, a new or obfuscated

version will fail recognition. Further consider two

programmers who implement the RC4 [2] encryption

algorithm, both programmer’s code behaves the same but they

may be coded in radically different ways.

Consider now the task of trying to discover an encryption key

embedded in a program or stored in a running process’s

memory dump. Unless the encryption algorithm

implementation is previously known it is a slow and painful

task of binary analysis to identify where the key is stored.

In this paper, we set out a method of recognizing code based

on its behaviour and apply it to a number of different

implementations of the RC4 encryption. Instead of examining

the compiled instructions and trying to perform a pattern

match, we examine the behaviour, the net effect of the

instructions and pattern match against this. This enables

matching regardless of the particular implementation choices

or style of the programmer and also allows matches where

code has been obfuscated. We then go on to show that it is

possible to automatically recover the key without prior

knowledge of the particular implementation.

We envisage that this technique will not only be used by

binary analysts to extract keys from static binaries but also by

forensics analysts to extract encryption keys from process

memory dumps acquired through a cold memory attack [3].

Forensics is often hindered or completely obstructed by the

use of cryptography but the approach presented in this paper

paves the way for automatic extraction of encryption keys

from a system/process memory dump.

II. RELATED WORK

Anti-virus software uses signatures as a tool in its arsenal to

recognise known viruses by storing stub instruction

combinations; however, this is fraught with difficulty [4] as

viruses often ‘evolve’ or use complicated polymorphic

obfuscation techniques [5]. Therefore, anti-virus has evolved

to examine behaviour of viruses through monitoring API calls.

Wagener [6] proposes use of a phylogenetic tree to identify

behaviours of similar malware based on the system and API

calls they make. Identifying malware by its API call

behaviour is a common technique but using the same

technique to detect algorithmic behaviour is fraught with

difficulty.

Rhee [7] proposes profiling the data object access behaviour

of malware and using this information to identify it. He

applies the technique to detecting rootkits and claims no false

positives on uncompromised kernels. Their work has some

small similarities with ours to the extent that we do not

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29583040?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

examine API calls, except our focus is identifying specific

algorithmic behaviour and then extracting encryption keys

whereas they focus on producing better malware signatures.

There has been a substantial body of work on identifying and

automatically unpacking malware regardless of the packing

technique used. Omniunpack [8] and PolyUnpack [9] assume

that packers have fairly similar behaviour characterised by, for

example, execution of a dynamicly generated memory page

allowing identification of the unpacker and entry point. Lyda

[10] proposes identifying packed executables based on the

level of entropy in their code section. Code sections typically

have low entropy whereas packed code often appears to be

random. This technique could be used to identify code which

changes the entropy of memory, allowing for the potential

identification of code sections that employ cryptography;

however, manual analysis would still be required for specific

algorithm determination and key extraction.

Our work is similar to that on detecting and automatically

extracting packed malware to the extent that we exmaine non-

API call behaviors; however, our approach is generalizable to

a wide spectrum of algorithms and behaviours located

anywhere within the binary.

III. BINARYMO - BEHAVIOURAL ANALYSIS FRAMEWORK

In this section we present BinaryMO, our binary behaviour

analyzer. We describe the techniques used for recognizing

functionality in an executable without consideration to the

specific implementation choices. This technique is able to

identify algorithms, such as encryption, regardless of the finer

details of their implementation.

BinaryMO emulates a program and analyzes the behaviour of

the code rather than the particular way in which it was

implemented. We then use a set of algorithms to detect

particular behaviours and then extract any required

information. For emulation we use the PyEmu x86-32

emulator for Python [11]. PyEmu provides an emulated CPU,

paged memory and limited system call emulation. PyEmu

also provides us with the ability to step through binaries one

instruction at a time hooking memory access, register access,

individual instructions, etc. PyEmu’s CPU emulator is mostly

complete but omits a number of instructions used in some

binaries we analysed (namely 8-bit operations) – we have

therefore implemented these instructions and will contribute

our additions freely. But, we caution other researchers that

some of the instructions omitted do not cause PyEmu to throw

an exception but are silently ignored.

If one starts with the executable to be analysed, the executable

file can be broken into two main sections: data and code.

Each section must be loaded into memory at the specified

address and the executable must be linked with the desired

libraries. Alternatively, if we are using a forensic memory

dump then this will be loaded verbatim into memory and the

process context used to initialise registers and the instruction

pointer. The code section is then scanned for call instructions

and the call address noted in a symbol table. This provides us

with a list of functions within the program and their respective

offset. We then emulate the program aiming for complete

code coverage whilst allowing a set of behaviour modules to

match desired traits. As soon as complete coverage is

achieved, the program terminates.

If code coverage is incomplete and the program enters a large

loop or exits, it may become necessary to intervene. At this

stage, we build a tree of function calls in the binary with the

tree head as the entry point. We then build a list of the

unexecuted functions ordered by their depth in the tree

(ignoring children of unexecuted functions). We examine the

references to each function and attempt to extract static

parameters and dynamic values that might have been

determined during prior emulation. Where this fails to

determine a parameter, a dummy value is inserted after type

determination. Each function is then emulated in turn as

illustrated in Figure 1 and the process is repeated if code

coverage is still incomplete.

Next, the analyzer will load a library of code matching

modules for the particular functionality the analyst is looking

for. Each module will have three components:

Trigger: The purpose of the trigger is to identify code that

MAY be what this module is looking for. It will often look at

the initial behaviour from an algorithm and trigger the

confirmatory stage. The reason for separating the trigger and

confirmation is one of overhead – emulation is slow and

overly onerous matching will slow down performance

substantially. The trigger acts as flag, flagging up interesting

code and encouraging analysts to produce simple triggers.

Confirmation: The confirmation section will confirm that the

code is that which we are looking for. At this stage, it can

either identify the code to the analyst or if it is likely the

analyst will desire particular information from the code (such

as keys) then it will move to the extraction stage.

UnExec

1

E.Pt

2 3

4

5

6

Execution Tree Forced Exec List

5

2

3

1.

2.

3.

Figure 1: Forced execution determination

Extraction: If called by the confirmatory stage then this part

will either continue execution to acquire the relevant

information or examine the emulation log to extract it.

Figure 2 gives an overview of how the components of the

behavioural analyzer fit together.

There are evidently some important points to this approach

that require consideration, as follows:

1. Code coverage: As we force code coverage when it is

not achieved readily we inevitably put some functions

into unexpected states; analysts should bear this in mind

when developing matchers. Ideally, we will be matching

algorithmic behaviour rather than tracking stack variable

contents.

2. Code linearity: When an algorithm is divided across a

number of functions, the analyzer depends on the

functions being executed in sequence to provide a

positive match. This is likely to happen in all cases but

is wholly dependent on the intelligence of the code

coverage functionality. We believe the forced execution

tree described above mitigates this problem as best as

possible.

3. Library calls: It is often undesirable to execute library

calls particularly from malicious code. Where possible,

the call is either emulated or replaced with a stub. The

latter has the effect of changing the behaviour of an

algorithm if it is dependent on library call and therefore

we discourage the use of this approach where this is the

case.

In the next section, we provide an example of matching the

RC4 algorithm with high probability and extracting the

encryption key.

IV. BINARYMO: AUTOMATED RC4 KEY EXTRACTION

We apply the behavioural analysis technique to the RC4

algorithm [2] to automatically extract the encryption key. We

have chosen RC4 because of its simplicity for the purposes of

demonstration; however, the behavioural technique is

applicable to any other cipher.

The RC4 algorithm consists of two parts: A key scheduling

algorithm whose purpose is to turn an encryption key, K, into

a randomly ordered initial permutation S of � 0, … , � � 1 	,

and a key stream output part which uses this permutation to

generate the pseudo-random key stream sequence.

The algorithm first initializes S to the ordered set � 0, … , � �

1 	, and then initializes i and j to zero. The algorithm loops N

times incrementing i as a counter, and incrementing j pseudo-

randomly based upon the key. For each iteration,
�� and

�� are swapped resulting in a pseudo-random shuffle of S

based upon the key. The algorithm then goes on to enter a

second loop, iterating once for each key stream byte. In each

iteration, the algorithm selects an entry from S pseudo-

randomly and performs one additional swap.

The algorithm is set out in Figure 4 with all variables modulo

N.

Key Scheduling Algorithm

(KSA)

Initialization
S = {0, …, N – 1}

i = j = 0

Key-based shuffle

For i = 0 … N – 1

j = j + S[i]

+ K[i mod Klen]

Swap S[i], S[j]

Pseudo Random Generation

Algorithm (PRGA)

Initialization
i = j = 0

Output Loop

i = i + 1

j = j + S[i]

Swap S[i], S[j]

Output S[S[i] + S[j]]

Figure 3: RC4 Stream Cipher

Our goal is to automatically identify either K or �
, �, �	 after

recognising the algorithm in the binary. K is the Holy Grail,

with which we should be able to decrypt all data; �
, �, �	

would allow us to decrypt future data and make it substantially

easier to work backward (vs. no knowledge). Strictly a

program does not require K after initialisation of RC4 but it is

rarely discarded because typical implementations frequently

re-initialised RC4 with a different initialization vector (K +

IV). For example, the Wireless Equivalence Protocol would

both change the initialization key of RC4 frequently based on

the original key.

We first need to identify particular behaviours which are

characteristic of RC4 and not easily obfuscated by

programmers or compiler optimisation. The code in Figure 3

is a fairly typical implementation and is already optimised.

The initialization of S to the ordered set � 0, … , � � 1 	 is a

prime target for detecting the start of RC4 (a trigger);

however, this could be obfuscated by initializing S in some

other order than linearly ascending; however, regardless the

BinaryMO Core

Binary program

or

Program memory dump Extraction Stages

Confirmation Stages

Triggers

PyEmu

Figure 2: Behavioural analyzer overview

behaviour is a series of log � log 2⁄ sized writes in a block S

of size N where the write value compiles with the following

(after all writes complete):

 �
�� �
,
�� � 1 �
�� � 1: (1)

Therefore, we select this as our trigger – the first part of the

initialisation of S. As N is almost always 256 it makes it trivial

to write a memory write hook to detect this behaviour. Whilst

processor architecture may dictate a different write size, the

net effect of each write will always be a single byte change in

memory and so our hook should look for behaviour where the

net effect is a single byte write.

Once the trigger has identified the code as a potential RC4

algorithm, we enter the next stage, confirmation and key

extraction. To confirm this code is indeed RC4, we hook

memory and look for a series of 2N read and writes in the

same N sized block as the trigger. By limiting our hook to the

N sized block, we eliminate the appearance of read/writes to

temporary variables that may be used. Once confirmed, we

compare the values of the read and writes – the read and write

values must perform a swap inside S. Although the order may

vary, the sequence is likely to appear as two reads followed by

two writes as follows:

� �
�� READ

��
�� READ

�� � � WRITE

�� � � WRITE

(2)

If one then extracts the offset into S for each read and write,

we will see that there will be two sets of numbers, where the

value of the first set increments linearly to N – 1 and the other

set increments pseudo-randomly. These offsets represent i and

j respectively. This gives a confirmation of RC4 KSA

completion. Knowledge of both i and j for the execution of

this KSA shuffle allows us to calculate the key. For each

series of two reads and two writes, where ji denotes the value

of j at iteration i, one calculates the key as follows (all

variables modulo N) using the value of S before the swap

writes:

��0 � �� (3)

��� � �� � ���� �
�� (4)

Given the set K, one can then determine the key length, Klen,

by identifying the repeating sequence length and then extract

the key ��0 . . . �!"# � 1.

An alternative approach would be to locate the key in memory

or a processor register, but given that there are several places

the key could be stored and then subsequently manipulated we

would need to implement recognition algorithms for each. By

calculating the key from i and j during the KSA shuffle our

technique is not concerned with the location of the key but

determined from the behaviour of the code – essentially

abstracting us another layer from the implementation choices

of the programmer.

V. EVALUATION

To evaluate our approach for key extraction, we took a variety

of RC4 implementations. The implementation in Figure 4

below was taken from the Government Communications

Headquarters (GCHQ) Cyber Security challenge [12]: a binary

analysis challenge set by one of Britain’s intelligence agencies

which uses RC4 to obfuscate data in the program.

 x86 assembly Comments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

ksainit:

mov [esp+ecx],cl

inc cl

jnz ksa_part1_loop

xor eax,eax

mov edx,0xdeadbeef

ksa_key_loop:

add al,[esp+ecx];

add al,dl

ror edx,0x8

mov bl,[esp+ecx]

mov bh,[esp+eax]

mov [esp+eax],bl

mov [esp+ecx],bh

inc cl

jnz ksa_key_loop

S[i] = i

i++

The key

j += S[i]

j += K[i mod len]

Next byte from key

Read S[i]

Read S[j]

Write S[j]

Write S[i]

i++

Figure 4: RC4 assembly code

The profile of this code in terms of read and writes is that the

ksainit function performs the initial S fill exactly as described

in the last section and correctly triggers the confirmation and

extraction stage. The ksa_key_loop function performs the

KSA shuffle; however, it performs an extra read on line 11 but

because our behaviour analyser is configured to ignore

identical sequential read/writes forcing conformation with

behaviour profile.

In Figure 5, we illustrate the actions of the memory hook once

the extraction stage has begun. The analyser splits the

sequence of reads and writes into blocks representing the

iterations of the KSA shuffle and then extracts i and j. The

calculations outlined earlier are then used to extract the

0xDEADBEEF key as follows:

Action Offset Value

Read

Read

Read

Write

Write

00h

00h

EFh

EFh

00h

00h

00h

EFh

00h

EFh

� � 0

� � $%& � 0 � 0 � ��0

��0 � '(&

Read

Read

Read

Write

Write

01h

01h

AEh

AEh

01h

01h

01h

AEh

01h

AEh

� � 0

� �)$& � ��0 �
�1 � ��1

��1 �)$& � ��0 �
�1 � *'&

Figure 5: Read / write memory hook

In Figure 5, both i and j are inferred from the memory offset

relative to the start of S. As i always begins at zero and j is

always based on the key it is possible to determine which read

and write are responsible for each. In this example, the

technique extracts EFh and BEh, the first two bytes of the key,

and if allowed to run for an additional two iterations would

have extracted ADh and then DEh, revealing the complete

key.

As discussed earlier, the key has been extracted from the

behaviour of the algorithm rather than locating it in the edx

register. By doing this, we ensure the technique is applicable

regardless of where the programmer chooses to store the key.

VI. CONCLUSIONS

We have presented a general framework for behavioural

analysis of algorithmic behaviour in binaries. We have then

used this approach to automatically extract the key from a

variety of RC4 implementations.

There are two threads to our future work. The first is applying

the approach to other cipher algorithms so it is possible to

extract keys from more than just RC4. We will also

investigate whether it is possible to produce a behavioural

matcher for a generalised class of ciphers (e.g. feistal block

ciphers). The second strand to our future work is extracting

keys from memory dumps obtained through cold-boot attacks

– specifically we will first reconstruct the virtual memory

from the page tables and then perform an automated analysis

of the program to identify the key in a similar way to outlined

in this paper. We also envisage that this technique can be used

to automatically profile a program and suggest to the binary

analyst what the behaviour of each function may be (e.g.

HTTP request, etc) and even categorise functions

automatically.

VII. BIBLIOGRAPHY

[1] Ilfak Guilfanov. (2012) IDA Pro Disassembler. [Online].

http://www.hex-rays.com/products/ida/index.shtml

[2] Scott Fluhrer, Itsik Mantin, and Adi Shamir,

"Weaknesses in the Key Scheduling Algorithm of RC4,"

in Selected Areas in Cryptography.: Springer Berlin /

Heidelberg, 2001, vol. 2259, pp. 1-24.

[3] Alex Halderman et al., "Lest We Remember: Cold boot

attacks on encryption keys," in Proc. 17th USENIX

Security Symposium, San Jose, CA, 2008.

[4] Adrian Stepan, "Improving proactive detection of packed

malware," Virus Bulletin, 2006.

[5] A.H. Sung, J. Xu, P. Chavez, and S Mukkamala, "Static

analyzer of vicious executables (save)," in ACSAC ’04:

Proceedings of the 20th Annual Computer Security

Applications Conference, IEEE Computer Society, 2004,

pp. 326-334.

[6] Gerard Wagener, Radu State, and Alexandre Dulaunoy,

"Malware behaviour analysis," Journal in Computer

Virology, pp. 279-287, 2008.

[7] Junghwan Rhee, Zhiqiang Lin, and Dongyan Xu,

"Characterizing kernel malware behavior with kernel data

access patterns," in Proceedings of the 6th ACM

Symposium on Information, Computer and

Communications Security, New York, 2011, pp. 207-216.

[8] Lorenzo Martignoni, Mihai Christodorescu, and Somesh

Jha, "OmniUnpack: Fast,Generic, and Safe Unpacking of

Malware," in 23rd Annual Computer Security

Applications Conference (ACSAC), 2007.

[9] Paul Royal, Mitch Halpin, David Dagon, Robert

Edmonds, and Wenke Lee, "PolyUnpack: Automating the

Hidden-Code Extraction of Unpack-Executing Malware,"

in 22nd Annual Computer Security Applications

Conference, 2006, pp. 289-300.

[10] R Lyda and J. Hamrock, "Using Entropy Analysis to Find

Encrypted and Packed Malware," IEEE Security and

Privacy, vol. 5, no. 2, pp. 40-45, 2007.

[11] Cody Pierce. (2012) PyEmu. [Online].

http://code.google.com/p/pyemu/

[12] GCHQ. (2011) GCHQ CanYouCrackIt. [Online].

http://www.canyoucrackit.co.uk

