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Abstract—In this paper we describe a technique for automatic 

algorithm identification and information extraction from 

unknown binaries.   We emulate the binary using PyEmu forcing 

complete code coverage whilst simultaneously examining its 

behavior. Our behavior matcher then identifies specific 

algorithmic behavior and extracts information.  We demonstrate 

the use of this technique for automated extraction of encryption 

keys from an unseen program with no prior knowledge about its 

implementation.  Our technique can also be used for automatic 

categorization and suggestion of function purpose to analysts. 

Keywords: binary analysis, encryption key extraction, 

behavioural analysis. 

I.  INTRODUCTION 

Software is often written by a programmer in a high-level 

language which is then compiled into machine code (a binary) 

for execution on the system.  Software is then distributed in 

binary form without the original high-level source code.  This 

process of conversion (compilation) from a high-level 

language to a binary is a lossy process.  Comments, structure 

naming, code layout are all lost in this conversion process as 

they only serve to aid computer programmers in reading the 

code and are not required for execution. 

 

Binary analysis is used to discover the function of software 

after compilation to detect security holes or verify the software 

performs as intended (verification).  As key information used 

by humans to decipher code is removed, the task of binary 

analysis is exceptionally time consuming.  Often optimized 

sections of code bear little resemblance to the high level code 

typed by the programmer – requiring the analyst to 

painstakingly examine the assembly code line by line. 

 

The binary analysis task is further obstructed because it is not 

trivial to recognize common code such as that in statically 

linked libraries.  Tools such as IDA Pro [1] have made some 

efforts to tackle this problem by compiling a database of 

library function fingerprints; however, a new or obfuscated 

version will fail recognition.  Further consider two 

programmers who implement the RC4 [2] encryption 

algorithm, both programmer’s code behaves the same but they 

may be coded in radically different ways. 

 

Consider now the task of trying to discover an encryption key 

embedded in a program or stored in a running process’s 

memory dump.   Unless the encryption algorithm 

implementation is previously known it is a slow and painful 

task of binary analysis to identify where the key is stored.   

 

In this paper, we set out a method of recognizing code based 

on its behaviour and apply it to a number of different 

implementations of the RC4 encryption.  Instead of examining 

the compiled instructions and trying to perform a pattern 

match, we examine the behaviour, the net effect of the 

instructions and pattern match against this.  This enables 

matching regardless of the particular implementation choices 

or style of the programmer and also allows matches where 

code has been obfuscated.  We then go on to show that it is 

possible to automatically recover the key without prior 

knowledge of the particular implementation. 

 

We envisage that this technique will not only be used by 

binary analysts to extract keys from static binaries but also by 

forensics analysts to extract encryption keys from process 

memory dumps acquired through a cold memory attack [3].  

Forensics is often hindered or completely obstructed by the 

use of cryptography but the approach presented in this paper 

paves the way for automatic extraction of encryption keys 

from a system/process memory dump. 

 

II. RELATED WORK 

Anti-virus software uses signatures as a tool in its arsenal to 

recognise known viruses by storing stub instruction 

combinations; however, this is fraught with difficulty [4] as 

viruses often ‘evolve’ or use complicated polymorphic 

obfuscation techniques [5].  Therefore, anti-virus has evolved 

to examine behaviour of viruses through monitoring API calls. 

Wagener [6] proposes use of a phylogenetic tree to identify 

behaviours of similar malware based on the system and API 

calls they make.  Identifying malware by its API call 

behaviour is a common technique but using the same 

technique to detect algorithmic behaviour is fraught with 

difficulty.  

 

Rhee [7] proposes profiling the data object access behaviour 

of malware and using this information to identify it.  He 

applies the technique to detecting rootkits and claims no false 

positives on uncompromised kernels.  Their work has some 

small similarities with ours to the extent that we do not 
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examine API calls, except our focus is identifying specific 

algorithmic behaviour and then extracting encryption keys 

whereas they focus on producing better malware signatures. 

 

There has been a substantial body of work on identifying and 

automatically unpacking malware regardless of the packing 

technique used.  Omniunpack [8] and PolyUnpack [9] assume 

that packers have fairly similar behaviour characterised by, for 

example, execution of a dynamicly generated memory page 

allowing identification of the unpacker and entry point. Lyda 

[10] proposes identifying packed executables based on the 

level of entropy in their code section.  Code sections typically 

have low entropy whereas packed code often appears to be 

random.  This technique could be used to identify code which 

changes the entropy of memory, allowing for the potential 

identification of code sections that employ cryptography; 

however, manual analysis would still be required for specific 

algorithm determination and key extraction. 

 

Our work is similar to that on detecting and automatically 

extracting packed malware to the extent that we exmaine non-

API call behaviors; however, our approach is generalizable to 

a wide spectrum of algorithms and behaviours located 

anywhere within the binary. 

III. BINARYMO - BEHAVIOURAL ANALYSIS FRAMEWORK 

In this section we present BinaryMO, our binary behaviour 

analyzer.  We describe the techniques used for recognizing 

functionality in an executable without consideration to the 

specific implementation choices.  This technique is able to 

identify algorithms, such as encryption, regardless of the finer 

details of their implementation. 

 

BinaryMO emulates a program and analyzes the behaviour of 

the code rather than the particular way in which it was 

implemented.  We then use a set of algorithms to detect 

particular behaviours and then extract any required 

information.  For emulation we use the PyEmu x86-32 

emulator for Python [11].  PyEmu provides an emulated CPU, 

paged memory and limited system call emulation.  PyEmu 

also provides us with the ability to step through binaries one 

instruction at a time hooking memory access, register access, 

individual instructions, etc. PyEmu’s CPU emulator is mostly 

complete but omits a number of instructions used in some 

binaries we analysed (namely 8-bit operations) – we have 

therefore implemented these instructions and will contribute 

our additions freely.  But, we caution other researchers that 

some of the instructions omitted do not cause PyEmu to throw 

an exception but are silently ignored. 

 

If one starts with the executable to be analysed, the executable 

file can be broken into two main sections: data and code.  

Each section must be loaded into memory at the specified 

address and the executable must be linked with the desired 

libraries. Alternatively, if we are using a forensic memory 

dump then this will be loaded verbatim into memory and the 

process context used to initialise registers and the instruction 

pointer.  The code section is then scanned for call instructions 

and the call address noted in a symbol table.  This provides us 

with a list of functions within the program and their respective 

offset.  We then emulate the program aiming for complete 

code coverage whilst allowing a set of behaviour modules to 

match desired traits.  As soon as complete coverage is 

achieved, the program terminates. 

 

If code coverage is incomplete and the program enters a large 

loop or exits, it may become necessary to intervene.  At this 

stage, we build a tree of function calls in the binary with the 

tree head as the entry point.  We then build a list of the 

unexecuted functions ordered by their depth in the tree 

(ignoring children of unexecuted functions).  We examine the 

references to each function and attempt to extract static 

parameters and dynamic values that might have been 

determined during prior emulation.   Where this fails to 

determine a parameter, a dummy value is inserted after type 

determination.  Each function is then emulated in turn as 

illustrated in Figure 1 and the process is repeated if code 

coverage is still incomplete. 

 

 
 

 

Next, the analyzer will load a library of code matching 

modules for the particular functionality the analyst is looking 

for.  Each module will have three components: 

 

Trigger: The purpose of the trigger is to identify code that 

MAY be what this module is looking for.  It will often look at 

the initial behaviour from an algorithm and trigger the 

confirmatory stage.  The reason for separating the trigger and 

confirmation is one of overhead – emulation is slow and 

overly onerous matching will slow down performance 

substantially.  The trigger acts as flag, flagging up interesting 

code and encouraging analysts to produce simple triggers. 

 

Confirmation: The confirmation section will confirm that the 

code is that which we are looking for.  At this stage, it can 

either identify the code to the analyst or if it is likely the 

analyst will desire particular information from the code (such 

as keys) then it will move to the extraction stage. 
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Figure 1: Forced execution determination 



Extraction: If called by the confirmatory stage then this part 

will either continue execution to acquire the relevant 

information or examine the emulation log to extract it. 

 

Figure 2 gives an overview of how the components of the 

behavioural analyzer fit together. 

 

 
 

 

There are evidently some important points to this approach 

that require consideration, as follows: 

 

1. Code coverage: As we force code coverage when it is 

not achieved readily we inevitably put some functions 

into unexpected states; analysts should bear this in mind 

when developing matchers.  Ideally, we will be matching 

algorithmic behaviour rather than tracking stack variable 

contents. 

2. Code linearity: When an algorithm is divided across a 

number of functions, the analyzer depends on the 

functions being executed in sequence to provide a 

positive match.  This is likely to happen in all cases but 

is wholly dependent on the intelligence of the code 

coverage functionality.  We believe the forced execution 

tree described above mitigates this problem as best as 

possible. 

3. Library calls: It is often undesirable to execute library 

calls particularly from malicious code.   Where possible, 

the call is either emulated or replaced with a stub.  The 

latter has the effect of changing the behaviour of an 

algorithm if it is dependent on library call and therefore 

we discourage the use of this approach where this is the 

case. 

 

In the next section, we provide an example of matching the 

RC4 algorithm with high probability and extracting the 

encryption key. 

IV.  BINARYMO: AUTOMATED RC4 KEY EXTRACTION 

We apply the behavioural analysis technique to the RC4 

algorithm [2] to automatically extract the encryption key.  We 

have chosen RC4 because of its simplicity for the purposes of 

demonstration; however, the behavioural technique is 

applicable to any other cipher. 

 

The RC4 algorithm consists of two parts: A key scheduling 

algorithm whose purpose is to turn an encryption key, K, into 

a randomly ordered initial permutation S of � 0, … , � � 1 	, 

and a key stream output part which uses this permutation to 

generate the pseudo-random key stream sequence. 

 

The algorithm first initializes S to the ordered set � 0, … , � �

1 	, and then initializes i and j to zero.  The algorithm loops N 

times incrementing i as a counter, and incrementing j pseudo-

randomly based upon the key.  For each iteration, 
�� and 


�� are swapped resulting in a pseudo-random shuffle of S 

based upon the key.  The algorithm then goes on to enter a 

second loop, iterating once for each key stream byte.  In each 

iteration, the algorithm selects an entry from S pseudo-

randomly and performs one additional swap. 

 

The algorithm is set out in Figure 4 with all variables modulo 

N. 

 

 

Key Scheduling Algorithm 

(KSA) 

 

Initialization 
S = {0, …, N – 1} 

i = j = 0 

 

Key-based shuffle 

For i = 0 … N – 1 

j = j + S[i]  

+ K[i mod Klen] 

Swap S[i], S[j] 

Pseudo Random Generation 

Algorithm (PRGA) 

 

Initialization 
i = j = 0 

 

 

Output Loop 

i = i + 1 

j = j + S[i] 

Swap S[i], S[j] 

Output S[S[i] + S[j]] 

Figure 3: RC4 Stream Cipher 

 

Our goal is to automatically identify either K or �
, �, �	  after 

recognising the algorithm in the binary.  K is the Holy Grail, 

with which we should be able to decrypt all data; �
, �, �	 

would allow us to decrypt future data and make it substantially 

easier to work backward (vs. no knowledge).  Strictly a 

program does not require K after initialisation of RC4 but it is 

rarely discarded because typical implementations frequently 

re-initialised RC4 with a different initialization vector (K + 

IV).  For example, the Wireless Equivalence Protocol would 

both change the initialization key of RC4 frequently based on 

the original key. 

 

We first need to identify particular behaviours which are 

characteristic of RC4 and not easily obfuscated by 

programmers or compiler optimisation.  The code in Figure 3 

is a fairly typical implementation and is already optimised.  

The initialization of S to the ordered set � 0, … , � � 1 	  is a 

prime target for detecting the start of RC4 (a trigger); 

however, this could be obfuscated by initializing S in some 

other order than linearly ascending; however, regardless the 
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Figure 2: Behavioural analyzer overview 



behaviour is a series of log � log 2⁄  sized writes in a block S 

of size N where the write value compiles with the following 

(after all writes complete): 

 

 �
�� � 
, 
�� � 1 �  
�� �  1: (1)  

 

Therefore, we select this as our trigger – the first part of the 

initialisation of S. As N is almost always 256 it makes it trivial 

to write a memory write hook to detect this behaviour.  Whilst 

processor architecture may dictate a different write size, the 

net effect of each write will always be a single byte change in 

memory and so our hook should look for behaviour where the 

net effect is a single byte write.  

 

Once the trigger has identified the code as a potential RC4 

algorithm, we enter the next stage, confirmation and key 

extraction.  To confirm this code is indeed RC4, we hook 

memory and look for a series of 2N read and writes in the 

same N sized block as the trigger.  By limiting our hook to the 

N sized block, we eliminate the appearance of read/writes to 

temporary variables that may be used.  Once confirmed, we 

compare the values of the read and writes – the read and write 

values must perform a swap inside S.  Although the order may 

vary, the sequence is likely to appear as two reads followed by 

two writes as follows: 

 

� � 
��  READ 

��
��  READ 


�� �  � WRITE 


�� � �  WRITE 

(2)  

 

If one then extracts the offset into S for each read and write, 

we will see that there will be two sets of numbers, where the 

value of the first set increments linearly to N – 1 and the other 

set increments pseudo-randomly.  These offsets represent i and 

j respectively. This gives a confirmation of RC4 KSA 

completion.  Knowledge of both i and j for the execution of 

this KSA shuffle allows us to calculate the key.  For each 

series of two reads and two writes, where ji denotes the value 

of j at iteration i, one calculates the key as follows (all 

variables modulo N) using the value of S before the swap 

writes: 

 

��0 � �� (3)  

 

��� � �� � ���� � 
�� (4)  

 

Given the set K, one can then determine the key length, Klen, 

by identifying the repeating sequence length and then extract 

the key ��0 . . .  �!"#  �  1. 
 

An alternative approach would be to locate the key in memory 

or a processor register, but given that there are several places 

the key could be stored and then subsequently manipulated we 

would need to implement recognition algorithms for each.  By 

calculating the key from i and j during the KSA shuffle our 

technique is not concerned with the location of the key but 

determined from the behaviour of the code – essentially 

abstracting us another layer from the implementation choices 

of the programmer. 

V. EVALUATION 

To evaluate our approach for key extraction, we took a variety 

of RC4 implementations.  The implementation in Figure 4 

below was taken from the Government Communications 

Headquarters (GCHQ) Cyber Security challenge [12]: a binary 

analysis challenge set by one of Britain’s intelligence agencies 

which uses RC4 to obfuscate data in the program.  

 

 x86 assembly Comments 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

ksainit: 

mov [esp+ecx],cl 

inc cl 

jnz ksa_part1_loop 

 

xor eax,eax 

 

mov edx,0xdeadbeef 

 

ksa_key_loop:    

add al,[esp+ecx]; 

add al,dl        

ror edx,0x8      

mov bl,[esp+ecx] 

mov bh,[esp+eax] 

mov [esp+eax],bl 

mov [esp+ecx],bh 

inc cl 

jnz ksa_key_loop 

 

S[i] = i 

i++ 

 

 

 

 

The key 

 

 

j += S[i] 

j += K[i mod len] 

Next byte from key 

Read S[i] 

Read S[j] 

Write S[j] 

Write S[i] 

i++ 

Figure 4: RC4 assembly code 

 

The profile of this code in terms of read and writes is that the 

ksainit function performs the initial S fill exactly as described 

in the last section and correctly triggers the confirmation and 

extraction stage. The ksa_key_loop function performs the 

KSA shuffle; however, it performs an extra read on line 11 but 

because our behaviour analyser is configured to ignore 

identical sequential read/writes forcing conformation with 

behaviour profile. 

 

In Figure 5, we illustrate the actions of the memory hook once 

the extraction stage has begun.  The analyser splits the 

sequence of reads and writes into blocks representing the 

iterations of the KSA shuffle and then extracts i and j. The 

calculations outlined earlier are then used to extract the 

0xDEADBEEF key as follows: 

 

Action Offset Value 

Read 

Read 

Read 

Write 

Write 

00h 

00h 

EFh 

EFh 

00h 

00h 

00h 

EFh 

00h 

EFh 

� � 0 



� � $%& � 0 � 0 � ��0 

��0 � '(& 

Read 

Read 

Read 

Write 

Write 

01h 

01h 

AEh 

AEh 

01h 

01h 

01h 

AEh 

01h 

AEh 

� � 0 

� � )$& � ��0 � 
�1 � ��1 

��1 � )$& � ��0 � 
�1 � *'& 

Figure 5: Read / write memory hook 

 

In Figure 5, both i and j are inferred from the memory offset 

relative to the start of S.  As i always begins at zero and j is 

always based on the key it is possible to determine which read 

and write are responsible for each. In this example, the 

technique extracts EFh and BEh, the first two bytes of the key, 

and if allowed to run for an additional two iterations would 

have extracted ADh and then DEh, revealing the complete 

key. 

 

As discussed earlier, the key has been extracted from the 

behaviour of the algorithm rather than locating it in the edx 

register.  By doing this, we ensure the technique is applicable 

regardless of where the programmer chooses to store the key. 

 

VI. CONCLUSIONS 

We have presented a general framework for behavioural 

analysis of algorithmic behaviour in binaries.  We have then 

used this approach to automatically extract the key from a 

variety of RC4 implementations. 

 

There are two threads to our future work.  The first is applying 

the approach to other cipher algorithms so it is possible to 

extract keys from more than just RC4.  We will also 

investigate whether it is possible to produce a behavioural 

matcher for a generalised class of ciphers (e.g. feistal block 

ciphers).  The second strand to our future work is extracting 

keys from memory dumps obtained through cold-boot attacks 

– specifically we will first reconstruct the virtual memory 

from the page tables and then perform an automated analysis 

of the program to identify the key in a similar way to outlined 

in this paper.  We also envisage that this technique can be used 

to automatically profile a program and suggest to the binary 

analyst what the behaviour of each function may be (e.g. 

HTTP request, etc) and even categorise functions 

automatically.   
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