4,806 research outputs found

    SystemC Through the Looking Glass : Non-Intrusive Analysis of Electronic System Level Designs in SystemC

    Get PDF
    Due to the ever increasing complexity of hardware and hardware/software co-designs, developers strive for higher levels of abstractions in the early stages of the design flow. To address these demands, design at the Electronic System Level (ESL) has been introduced. SystemC currently is the de-facto standard for ESL design. The extraction of data from system designs written in SystemC is thereby crucial e.g. for the proper understanding of a given system. However, no satisfactory support of reflection/introspection of SystemC has been provided yet. Previously proposed methods for this purpose %introduced to achieve the goal nonetheless either focus on static aspects only, restrict the language means of SystemC, or rely on modifications of the compiler and/or parser. In this thesis, approaches that overcome these limitations are introduced, allowing the extraction of information from a given SystemC design without changing the SystemC library or the compiler. The proposed approaches retrieve both, static and dynamic (i.e. run-time) information

    Golden Reference-Free Hardware Trojan Localization using Graph Convolutional Network

    Full text link
    The globalization of the Integrated Circuit (IC) supply chain has moved most of the design, fabrication, and testing process from a single trusted entity to various untrusted third-party entities worldwide. The risk of using untrusted third-Party Intellectual Property (3PIP) is the possibility for adversaries to insert malicious modifications known as Hardware Trojans (HTs). These HTs can compromise the integrity, deteriorate the performance, deny the service, and alter the functionality of the design. While numerous HT detection methods have been proposed in the literature, the crucial task of HT localization is overlooked. Moreover, a few existing HT localization methods have several weaknesses: reliance on a golden reference, inability to generalize for all types of HT, lack of scalability, low localization resolution, and manual feature engineering/property definition. To overcome their shortcomings, we propose a novel, golden reference-free HT localization method at the pre-silicon stage by leveraging Graph Convolutional Network (GCN). In this work, we convert the circuit design to its intrinsic data structure, graph and extract the node attributes. Afterward, the graph convolution performs automatic feature extraction for nodes to classify the nodes as Trojan or benign. Our automated approach does not burden the designer with manual code review. It locates the Trojan signals with 99.6% accuracy, 93.1% F1-score, and a false-positive rate below 0.009%.Comment: IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 202

    Symbolic QED Pre-silicon Verification for Automotive Microcontroller Cores: Industrial Case Study

    Full text link
    We present an industrial case study that demonstrates the practicality and effectiveness of Symbolic Quick Error Detection (Symbolic QED) in detecting logic design flaws (logic bugs) during pre-silicon verification. Our study focuses on several microcontroller core designs (~1,800 flip-flops, ~70,000 logic gates) that have been extensively verified using an industrial verification flow and used for various commercial automotive products. The results of our study are as follows: 1. Symbolic QED detected all logic bugs in the designs that were detected by the industrial verification flow (which includes various flavors of simulation-based verification and formal verification). 2. Symbolic QED detected additional logic bugs that were not recorded as detected by the industrial verification flow. (These additional bugs were also perhaps detected by the industrial verification flow.) 3. Symbolic QED enables significant design productivity improvements: (a) 8X improved (i.e., reduced) verification effort for a new design (8 person-weeks for Symbolic QED vs. 17 person-months using the industrial verification flow). (b) 60X improved verification effort for subsequent designs (2 person-days for Symbolic QED vs. 4-7 person-months using the industrial verification flow). (c) Quick bug detection (runtime of 20 seconds or less), together with short counterexamples (10 or fewer instructions) for quick debug, using Symbolic QED

    A NASA-wide approach toward cost-effective, high-quality software through reuse

    Get PDF
    NASA Langley Research Center sponsored the second Workshop on NASA Research in Software Reuse on May 5-6, 1992 at the Research Triangle Park, North Carolina. The workshop was hosted by the Research Triangle Institute. Participants came from the three NASA centers, four NASA contractor companies, two research institutes and the Air Force's Rome Laboratory. The purpose of the workshop was to exchange information on software reuse tool development, particularly with respect to tool needs, requirements, and effectiveness. The participants presented the software reuse activities and tools being developed and used by their individual centers and programs. These programs address a wide range of reuse issues. The group also developed a mission and goals for software reuse within NASA. This publication summarizes the presentations and the issues discussed during the workshop

    SCAR: Power Side-Channel Analysis at RTL-Level

    Full text link
    Power side-channel attacks exploit the dynamic power consumption of cryptographic operations to leak sensitive information of encryption hardware. Therefore, it is necessary to conduct power side-channel analysis for assessing the susceptibility of cryptographic systems and mitigating potential risks. Existing power side-channel analysis primarily focuses on post-silicon implementations, which are inflexible in addressing design flaws, leading to costly and time-consuming post-fabrication design re-spins. Hence, pre-silicon power side-channel analysis is required for early detection of vulnerabilities to improve design robustness. In this paper, we introduce SCAR, a novel pre-silicon power side-channel analysis framework based on Graph Neural Networks (GNN). SCAR converts register-transfer level (RTL) designs of encryption hardware into control-data flow graphs and use that to detect the design modules susceptible to side-channel leakage. Furthermore, we incorporate a deep learning-based explainer in SCAR to generate quantifiable and human-accessible explanation of our detection and localization decisions. We have also developed a fortification component as a part of SCAR that uses large-language models (LLM) to automatically generate and insert additional design code at the localized zone to shore up the side-channel leakage. When evaluated on popular encryption algorithms like AES, RSA, and PRESENT, and postquantum cryptography algorithms like Saber and CRYSTALS-Kyber, SCAR, achieves up to 94.49% localization accuracy, 100% precision, and 90.48% recall. Additionally, through explainability analysis, SCAR reduces features for GNN model training by 57% while maintaining comparable accuracy. We believe that SCAR will transform the security-critical hardware design cycle, resulting in faster design closure at a reduced design cost
    • …
    corecore