11 research outputs found

    Threshold calculation for R wave detection in complex cardiac

    Get PDF
    La señal electrocardiográfica es una señal eléctrica con una amplitud de 1 mV aproximadamente y componentes espectrales entre 0,7 y 100 Hz. El electrocardiograma representa el comportamiento eléctrico del corazón humano y está conformado principalmente por un grupo de ondas denominado el complejo cardiaco. Las ondas que componen el complejo cardiaco son: P, Q, R, S y T. La onda R corresponde a la onda positiva de mayor amplitud de la señal electrocardiográfica y el tiempo entre cada onda permite el cálculo de la frecuencia cardiaca instantánea. Para el cálculo del tiempo entre cada onda R es necesario la implementación de un sistema de filtrado que permita una atenuación de las componentes espectrales que no pertenecen a esta forma de onda. Posteriormente se procede a un proceso de umbralización que consiste en generar una señal binaria que toma el valor de uno en la muestra que registra la existencia de una onda R y cero en las demás muestras. El objetivo de este trabajo es presentar los resultados obtenidos al implementar un algoritmo para el establecer del umbral basado en el cálculo del histograma de la señal electrocardiográfica que ha sido previamente tratada a través de un sistema basado en bancos de filtros.The electrocardiographic signal is an electrical signal and its amplitude is 1 mV approximately and spectral components between 0.7 and 100 Hz. The electrocardiographic signal represents the electrical behavior of the human heart and it has a group of waves called the cardiac complex. Waves comprising the cardiac complex are: P, Q, R, S and T. The R-wave corresponds to the positive wave of greater amplitude of the electrocardiographic signal and the time between each wave allows the calculation of instantaneous heart rate. The calculation of the time between R wave requires implementation of a filtering system that allows an attenuation of the spectral components that do not belong to this waveform. Then proceed to a thresholding process that consists of generating a binary signal which takes the value of one in the sample that records the wave R and zero in the other samples. The principal goal of this paper is to present the results to implement an algorithm for setting the threshold based on the calculation of the histogram of the electrocardiographic signal that has been previously addressed through a system based on filter banks

    Automatic Detection of Eye Blinking Using the Generalized Ising Model

    Get PDF
    Electroencephalogram (EEG) is a widely used technique to record electrical brain activity. It is prone to be contaminated by non-neuronal sources that can generate artifacts in the signal due to its sensitivity and its poor signal-to-noise ratio. One of the main challenges in analyzing EEG data is the systematical and effective removal of artifacts from the signal. Although many methods have already been introduced to approach this issue, there is still no robust method for handling all sources of contaminations. For example, eye blinking is a physiological artifact occurring very frequently in spontaneous EEG recordings and therefore, removing these artifacts in a systematic way is a compelling need. The aim of this research is to build an automated pipeline to detect eye blinking artifacts in EEG signals using the generalized Ising model to act as a pattern recognition algorithm. A sample blink pattern is extracted from a single subject whose blink events are validated and marked by an EEG expert. The generalized Ising Model Algorithm works as a fully automated method for identifying all epochs similar to the eye blink pattern. Using the proposed method to discriminate the blinks artifact in continuous EEG data yields optimistic results. From eight healthy subjects, the results show high level of accuracy (90.5 %)

    Automated Detection and Elimination of Periodic ECG Artifacts in EEG using the Energy Interval Histogram Method

    No full text
    An automated method for electrocardiogram (ECG)-artifact detection and elimination is proposed for application to a single-channel electroencephalogram (EEG) without a separate ECG channel for reference. The method is based on three characteristics of ECG artifacts: the spike-like property, the periodicity and the lack of correlation with the EEG. The method involves a two-step process: ECG artifact detection using the energy interval histogram (EIH) method and ECG artifact elimination using a modification of ensemble average subtraction. We applied a smoothed nonlinear energy operator to the contaminated EEG, which significantly emphasized the ECG artifacts compared with the background EEG. The EIH method was initially proposed to estimate the rate of false positives (FPs) and false negatives (FNs) that were necessary to determine the optimal threshold for the detection of the ECG artifact. As a postprocessing step, we used two types of threshold adjusting algorithms that were based on the periodicity of the ECG R-peaks. The technique was applied to four whole-night sleep EEG recordings from four subjects with severe obstructive sleep apnea syndrome, from which a total of 132 878 heartbeats were monitored over 31.8 h. We found that ECG artifacts were successfully detected and eliminated with FP = 0.017 and FN = 0.074 for the epochs where the elimination process is necessarily required.ope

    Electroencephalogram Signal Processing For Hybrid Brain Computer Interface Systems

    Get PDF
    The goal of this research was to evaluate and compare three types of brain computer interface (BCI) systems, P300, steady state visually evoked potentials (SSVEP) and Hybrid as virtual spelling paradigms. Hybrid BCI is an innovative approach to combine the P300 and SSVEP. However, it is challenging to process the resulting hybrid signals to extract both information simultaneously and effectively. The major step executed toward the advancement to modern BCI system was to move the BCI techniques from traditional LED system to electronic LCD monitor. Such a transition allows not only to develop the graphics of interest but also to generate objects flickering at different frequencies. There were pilot experiments performed for designing and tuning the parameters of the spelling paradigms including peak detection for different range of frequencies of SSVEP BCI, placement of objects on LCD monitor, design of the spelling keyboard, and window time for the SSVEP peak detection processing. All the experiments were devised to evaluate the performance in terms of the spelling accuracy, region error, and adjacency error among all of the paradigms: P300, SSVEP and Hybrid. Due to the different nature of P300 and SSVEP, designing a hybrid P300-SSVEP signal processing scheme demands significant amount of research work in this area. Eventually, two critical questions in hybrid BCl are: (1) which signal processing strategy can best measure the user\u27s intent and (2) what a suitable paradigm is to fuse these two techniques in a simple but effective way. In order to answer these questions, this project focused mainly on developing signal processing and classification technique for hybrid BCI. Hybrid BCI was implemented by extracting the specific information from brain signals, selecting optimum features which contain maximum discrimination information about the speller characters of our interest and by efficiently classifying the hybrid signals. The designed spellers were developed with the aim to improve quality of life of patients with disability by utilizing visually controlled BCI paradigms. The paradigms consist of electrodes to record electroencephalogram signal (EEG) during stimulation, a software to analyze the collected data, and a computing device where the subject’s EEG is the input to estimate the spelled character. Signal processing phase included preliminary tasks as preprocessing, feature extraction, and feature selection. Captured EEG data are usually a superposition of the signals of interest with other unwanted signals from muscles, and from non-biological artifacts. The accuracy of each trial and average accuracy for subjects were computed. Overall, the average accuracy of the P300 and SSVEP spelling paradigm was 84% and 68.5 %. P300 spelling paradigms have better accuracy than both the SSVEP and hybrid paradigm. Hybrid paradigm has the average accuracy of 79 %. However, hybrid system is faster in time and more soothing to look than other paradigms. This work is significant because it has great potential for improving the BCI research in design and application of clinically suitable speller paradigm

    Application of Signal Advance Technology to Electrophysiology

    Get PDF
    Medical instrumentation used in diagnosis and treatment relies on the accurate detection and processing of various physiological events and signals. While signal detection technology has improved greatly in recent years, there remain inherent delays in signal detection/ processing. These delays may have significant negative clinical consequences during various pathophysiological events. Reducing or eliminating such delays would increase the ability to provide successful early intervention in certain disorders thereby increasing the efficacy of treatment. In recent years, a physical phenomenon referred to as Negative Group Delay (NGD), demonstrated in simple electronic circuits, has been shown to temporally advance the detection of analog waveforms. Specifically, the output is temporally advanced relative to the input, as the time delay through the circuit is negative. The circuit output precedes the complete detection of the input signal. This process is referred to as signal advance (SA) detection. An SA circuit model incorporating NGD was designed, developed and tested. It imparts a constant temporal signal advance over a pre-specified spectral range in which the output is almost identical to the input signal (i.e., it has minimal distortion). Certain human patho-electrophysiological events are good candidates for the application of temporally-advanced waveform detection. SA technology has potential in early arrhythmia and epileptic seizure detection and intervention. Demonstrating reliable and consistent temporally advanced detection of electrophysiological waveforms may enable intervention with a pathological event (much) earlier than previously possible. SA detection could also be used to improve the performance of neural computer interfaces, neurotherapy applications, radiation therapy and imaging. In this study, the performance of a single-stage SA circuit model on a variety of constructed input signals, and human ECGs is investigated. The data obtained is used to quantify and characterize the temporal advances and circuit gain, as well as distortions in the output waveforms relative to their inputs. This project combines elements of physics, engineering, signal processing, statistics and electrophysiology. Its success has important consequences for the development of novel interventional methodologies in cardiology and neurophysiology as well as significant potential in a broader range of both biomedical and non-biomedical areas of application

    Low-voltage embedded biomedical processor design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 180-190).Advances in mobile electronics are fueling new possibilities in a variety of applications, one of which is ambulatory medical monitoring with body-worn or implanted sensors. Digital processors on such sensors serve to analyze signals in real-time and extract key features for transmission or storage. To support diverse and evolving applications, the processor should be flexible, and to extend sensor operating lifetime, the processor should be energy-efficient. This thesis focuses on architectures and circuits for low power biomedical signal processing. A general-purpose processor is extended with custom hardware accelerators to reduce the cycle count and energy for common tasks, including FIR and median filtering as well as computing FFTs and mathematical functions. Improvements to classic architectures are proposed to reduce power and improve versatility: an FFT accelerator demonstrates a new control scheme to reduce datapath switching activity, and a modified CORDIC engine features increased input range and decreased quantization error over conventional designs. At the system level, the addition of accelerators increases leakage power and bus loading; strategies to mitigate these costs are analyzed in this thesis. A key strategy for improving energy efficiency is to aggressively scale the power supply voltage according to application performance demands. However, increased sensitivity to variation at low voltages must be mitigated in logic and SRAM design. For logic circuits, a design flow and a hold time verification methodology addressing local variation are proposed and demonstrated in a 65nm microcontroller functioning at 0.3V. For SRAMs, a model for the weak-cell read current is presented for near-V supply voltages, and a self-timed scheme for reducing internal bus glitches is employed with low leakage overhead. The above techniques are demonstrated in a 0.5-1.OV biomedical signal processing platform in 0.13p-Lm CMOS. The use of accelerators for key signal processing enabled greater than 10x energy reduction in two complete EEG and EKG analysis applications, as compared to implementations on a conventional processor.by Joyce Y. S. Kwong.Ph.D
    corecore