188 research outputs found

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy

    Non Invasive Tools for Early Detection of Autism Spectrum Disorders

    Get PDF
    Autism Spectrum Disorders (ASDs) describe a set of neurodevelopmental disorders. ASD represents a significant public health problem. Currently, ASDs are not diagnosed before the 2nd year of life but an early identification of ASDs would be crucial as interventions are much more effective than specific therapies starting in later childhood. To this aim, cheap an contact-less automatic approaches recently aroused great clinical interest. Among them, the cry and the movements of the newborn, both involving the central nervous system, are proposed as possible indicators of neurological disorders. This PhD work is a first step towards solving this challenging problem. An integrated system is presented enabling the recording of audio (crying) and video (movements) data of the newborn, their automatic analysis with innovative techniques for the extraction of clinically relevant parameters and their classification with data mining techniques. New robust algorithms were developed for the selection of the voiced parts of the cry signal, the estimation of acoustic parameters based on the wavelet transform and the analysis of the infant’s general movements (GMs) through a new body model for segmentation and 2D reconstruction. In addition to a thorough literature review this thesis presents the state of the art on these topics that shows that no studies exist concerning normative ranges for newborn infant cry in the first 6 months of life nor the correlation between cry and movements. Through the new automatic methods a population of control infants (“low-risk”, LR) was compared to a group of “high-risk” (HR) infants, i.e. siblings of children already diagnosed with ASD. A subset of LR infants clinically diagnosed as newborns with Typical Development (TD) and one affected by ASD were compared. The results show that the selected acoustic parameters allow good differentiation between the two groups. This result provides new perspectives both diagnostic and therapeutic

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    How can cry acoustics associate newborns’ distress levels with neurophysiological and behavioral signals?

    Get PDF
    IntroductionEven though infant crying is a common phenomenon in humans’ early life, it is still a challenge for researchers to properly understand it as a reflection of complex neurophysiological functions. Our study aims to determine the association between neonatal cry acoustics with neurophysiological signals and behavioral features according to different cry distress levels of newborns.MethodsMultimodal data from 25 healthy term newborns were collected simultaneously recording infant cry vocalizations, electroencephalography (EEG), near-infrared spectroscopy (NIRS) and videos of facial expressions and body movements. Statistical analysis was conducted on this dataset to identify correlations among variables during three different infant conditions (i.e., resting, cry, and distress). A Deep Learning (DL) algorithm was used to objectively and automatically evaluate the level of cry distress in infants.ResultsWe found correlations between most of the features extracted from the signals depending on the infant’s arousal state, among them: fundamental frequency (F0), brain activity (delta, theta, and alpha frequency bands), cerebral and body oxygenation, heart rate, facial tension, and body rigidity. Additionally, these associations reinforce that what is occurring at an acoustic level can be characterized by behavioral and neurophysiological patterns. Finally, the DL audio model developed was able to classify the different levels of distress achieving 93% accuracy.ConclusionOur findings strengthen the potential of crying as a biomarker evidencing the physical, emotional and health status of the infant becoming a crucial tool for caregivers and clinicians

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference

    Reactions of adult listeners to infant speech-like vocalizations and cry

    Get PDF

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 4th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2005, held 29-31 October 2005, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Klasifikasi Suara Tangisan Bayi Berdasarkan Prosodic Features Menggunakan Metode Moments of Distribution dan K-Nearest Neighbours

    Get PDF
    Bagi sebagian orang, suara tangisan bayi terdengar sangat mengganggu, apalagi jika tangisannya berlarut-larut. Sulit untuk dimengerti arti dari suara tangisan bayi. Di era teknologi informasi, pengenalan suara tangisan bayi dapat dilakukan secara otomatis menggunakan komputer. Hal tersebut tentu dapat membantu bagi orang tua untuk mengenali kebutuhan bayi agar dapat segera tenang. Untuk mengidentifikasi suara tangisan bayi dapat menggunakan salah satu algoritma klasifikasi di bidang Machine Learning, salah satunya adalah algoritma K-Nearest Neighbour. Langkah pertama untuk melakukan klasifikasi suara tangisan bayi, yakni data audio suara tangisan bayi diubah menjadi data numerik yang disebut proses ekstraksi fitur yang menghasilkan Prosodic Features. Setelah melewati proses ekstraksi fitur perlu dilakukan identifikasi pola untuk mendapatkan perbedaan pola  antara satu data suara tangisan bayi dengan data suara tangisan bayi yang lain menggunakan Metode Moment of Dsitribution. Pengenalan suara tangisan bayi dilakukan dengan menerapkan algoritma klasifikasi menggunakan K-Nearest Neighbour. Akurasi terbaik pada proses klasifikasi menggunakan data sampling Percentage Rate yaitu 76% dimana nilai K yang digunakan adalah 9. Sedangkan akurasi terbaik pada proses klasifikasi menggunakan data sampling Leave One Out yaitu 42% dengan nilai K yang digunakan adalah 5

    Towards an Integrative Information Society: Studies on Individuality in Speech and Sign

    Get PDF
    The flow of information within modern information society has increased rapidly over the last decade. The major part of this information flow relies on the individual’s abilities to handle text or speech input. For the majority of us it presents no problems, but there are some individuals who would benefit from other means of conveying information, e.g. signed information flow. During the last decades the new results from various disciplines have all suggested towards the common background and processing for sign and speech and this was one of the key issues that I wanted to investigate further in this thesis. The basis of this thesis is firmly within speech research and that is why I wanted to design analogous test batteries for widely used speech perception tests for signers – to find out whether the results for signers would be the same as in speakers’ perception tests. One of the key findings within biology – and more precisely its effects on speech and communication research – is the mirror neuron system. That finding has enabled us to form new theories about evolution of communication, and it all seems to converge on the hypothesis that all communication has a common core within humans. In this thesis speech and sign are discussed as equal and analogical counterparts of communication and all research methods used in speech are modified for sign. Both speech and sign are thus investigated using similar test batteries. Furthermore, both production and perception of speech and sign are studied separately. An additional framework for studying production is given by gesture research using cry sounds. Results of cry sound research are then compared to results from children acquiring sign language. These results show that individuality manifests itself from very early on in human development. Articulation in adults, both in speech and sign, is studied from two perspectives: normal production and re-learning production when the apparatus has been changed. Normal production is studied both in speech and sign and the effects of changed articulation are studied with regards to speech. Both these studies are done by using carrier sentences. Furthermore, sign production is studied giving the informants possibility for spontaneous speech. The production data from the signing informants is also used as the basis for input in the sign synthesis stimuli used in sign perception test battery. Speech and sign perception were studied using the informants’ answers to questions using forced choice in identification and discrimination tasks. These answers were then compared across language modalities. Three different informant groups participated in the sign perception tests: native signers, sign language interpreters and Finnish adults with no knowledge of any signed language. This gave a chance to investigate which of the characteristics found in the results were due to the language per se and which were due to the changes in modality itself. As the analogous test batteries yielded similar results over different informant groups, some common threads of results could be observed. Starting from very early on in acquiring speech and sign the results were highly individual. However, the results were the same within one individual when the same test was repeated. This individuality of results represented along same patterns across different language modalities and - in some occasions - across language groups. As both modalities yield similar answers to analogous study questions, this has lead us to providing methods for basic input for sign language applications, i.e. signing avatars. This has also given us answers to questions on precision of the animation and intelligibility for the users – what are the parameters that govern intelligibility of synthesised speech or sign and how precise must the animation or synthetic speech be in order for it to be intelligible. The results also give additional support to the well-known fact that intelligibility in fact is not the same as naturalness. In some cases, as shown within the sign perception test battery design, naturalness decreases intelligibility. This also has to be taken into consideration when designing applications. All in all, results from each of the test batteries, be they for signers or speakers, yield strikingly similar patterns, which would indicate yet further support for the common core for all human communication. Thus, we can modify and deepen the phonetic framework models for human communication based on the knowledge obtained from the results of the test batteries within this thesis.Siirretty Doriast
    • …
    corecore