7,863 research outputs found

    High throughput methodology for synthesis, screening, and optimization of solid state Lithium ion electrolytes

    No full text
    A study of the lithium ion conductor Li3xLa2/3–xTiO3 solid solution and the surrounding composition space was carried out using a high throughput physical vapor deposition system. An optimum total ionic conductivity value of 5.45 × 10–4 S cm–1 was obtained for the composition Li0.17La0.29Ti0.54 (Li3xLa2/3–xTiO3x = 0.11). This optimum value was calculated using an artificial neural network model based on the empirical data. Due to the large scale of the data set produced and the complexity of synthesis, informatics tools were required to analyze the data. Partition analysis was carried out to determine the synthetic parameters of importance and their threshold values. Multivariate curve resolution and principal component analysis were applied to the diffraction data set. This analysis enabled the construction of phase distribution diagrams, illustrating both the phases obtained and the compositional zones in which they occur. The synthetic technique presented has significant advantages over other thin film and bulk methodologies, in terms of both the compositional range covered and the nature of the materials produce

    A Compositional Semantics for Stochastic Reo Connectors

    Full text link
    In this paper we present a compositional semantics for the channel-based coordination language Reo which enables the analysis of quality of service (QoS) properties of service compositions. For this purpose, we annotate Reo channels with stochastic delay rates and explicitly model data-arrival rates at the boundary of a connector, to capture its interaction with the services that comprise its environment. We propose Stochastic Reo automata as an extension of Reo automata, in order to compositionally derive a QoS-aware semantics for Reo. We further present a translation of Stochastic Reo automata to Continuous-Time Markov Chains (CTMCs). This translation enables us to use third-party CTMC verification tools to do an end-to-end performance analysis of service compositions.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Recovering complete and draft population genomes from metagenome datasets.

    Get PDF
    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem of chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution

    Seismic anisotropy of Precambrian lithosphere : Insights from Rayleigh wave tomography of the eastern Superior Craton

    Get PDF
    The seismic data used in this study are freely available from the CNDC (Canadian National Data Centre for Earthquake Seismology and Nuclear Explosion Monitoring) and IRIS DMC (Data Management Center) via their data request tools. The Leverhulme Trust (grant RPG-2013-332) and National Science Foundation are acknowledged for financial support. L.P. is supported by Janet Watson Imperial College Department Scholarship and the Romanian Government Research Grant NUCLEU. F.D. is supported by NSERC through the Discovery Grants and Canada Research Chairs program. We also thank two anonymous reviewers and the Associate Editor for insightful comments that helped improve the manuscript.Peer reviewedPublisher PD

    Scale-dependent influence of pre-existing basement shear zones on rift faulting : a case study from NE Brazil

    Get PDF
    Rifting of continental crust initiates faults that are commonly influenced by pre-existing structures. We document newly identified faults cutting Precambrian units in the interior of the NE Brazilian margin to assess the effects of structural inheritance on both rift geometry and fault architecture. Stratigraphic and structural data indicate that the faults were active in the main phase of rifting of Gondwana. The influence of pre-existing structures on the Mesozoic rift faulting is scale dependent. Regionally, the faults trend parallel to subvertical, crustal-scale Brasiliano (c. 750–540 Ma) shear zones. Mylonitic foliations and broadly distributed low strain in the lower crust indicated by shear-wave splitting controlled the overall orientation and kinematics of the rift faults. However, outcrop observations of the faults show that at scales up to hundreds of metres, mylonitic foliations have little influence on fault architectures. Faults cross-cut shear zones and do not commonly utilize foliation planes as shear fractures. Instead, slip zones and fractures have a range of orientations that form acute angles to the local foliation orientation. This observation explains the range of focal mechanisms associated with seismicity that coincides with ancient shear zones in intra-continental areas
    corecore