3 research outputs found

    Formal approaches to modelling and verifying resource-bounded agents-state of the art and future prospects

    Get PDF
    This paper reviews formal approaches to modelling and verifying resource-bounded agents focusing on state of the Art and future prospects

    Practical Verification of Decision-Making in Agent-Based Autonomous Systems

    Get PDF
    We present a verification methodology for analysing the decision-making component in agent-based hybrid systems. Traditionally hybrid automata have been used to both implement and verify such systems, but hybrid automata based modelling, programming and verification techniques scale poorly as the complexity of discrete decision-making increases making them unattractive in situations where complex log- ical reasoning is required. In the programming of complex systems it has, therefore, become common to separate out logical decision-making into a separate, discrete, component. However, verification techniques have failed to keep pace with this devel- opment. We are exploring agent-based logical components and have developed a model checking technique for such components which can then be composed with a sepa- rate analysis of the continuous part of the hybrid system. Among other things this allows program model checkers to be used to verify the actual implementation of the decision-making in hybrid autonomous systems

    Automated verification of resource requirements in multi-agent systems using abstraction

    No full text
    We describe a framework for the automated verification of multi-agent systems which do distributed problem solving, e.g. query answering. Each reasoner uses facts, messages and Horn clause rules to derive new information. We show how to verify correctness of distributed problem solving under resource constraints, such as the time required to answer queries and the number of messages exchanged by the agents. The framework allows the use of abstract specifications consisting of Linear Time Temporal Logic (LTL) formulas to specify some of the agents in the system. We illustrate the use of the framework on a simple example. © 2011 Springer-Verlag
    corecore