16,956 research outputs found

    Recursive Program Optimization Through Inductive Synthesis Proof Transformation

    Get PDF
    The research described in this paper involved developing transformation techniques which increase the efficiency of the noriginal program, the source, by transforming its synthesis proof into one, the target, which yields a computationally more efficient algorithm. We describe a working proof transformation system which, by exploiting the duality between mathematical induction and recursion, employs the novel strategy of optimizing recursive programs by transforming inductive proofs. We compare and contrast this approach with the more traditional approaches to program transformation, and highlight the benefits of proof transformation with regards to search, correctness, automatability and generality

    Middle-Out Reasoning for Logic Program Synthesis

    Get PDF
    We propose a novel approach to automating the synthesis of logic programs: Logic programs are synthesized as a by-product of the planning of a verification proof. The approach is a two-level one: At the object level, we prove program verification conjectures in a sorted, first-order theory. The conjectures are of the form 8args \Gamma\Gamma\Gamma\Gamma! : prog(args \Gamma\Gamma\Gamma\Gamma! ) $ spec(args \Gamma\Gamma\Gamma\Gamma! ). At the meta-level, we plan the object-level verification with an unspecified program definition. The definition is represented with a (second-order) meta-level variable, which becomes instantiated in the course of the planning

    Synthesizing Certified Code

    No full text
    Code certification is a lightweight approach for formally demonstrating software quality. Its basic idea is to require code producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates that can be checked independently. Since code certification uses the same underlying technology as program verification, it requires detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. Given a high-level specification, our approach simultaneously generates code and all annotations required to certify the generated code. We describe a certification extension of AutoBayes, a synthesis tool for automatically generating data analysis programs. Based on built-in domain knowledge, proof annotations are added and used to generate proof obligations that are discharged by the automated theorem prover E-SETHEO. We demonstrate our approach by certifying operator- and memory-safety on a data-classification program. For this program, our approach was faster and more precise than PolySpace, a commercial static analysis tool

    Proof-Pattern Recognition and Lemma Discovery in ACL2

    Full text link
    We present a novel technique for combining statistical machine learning for proof-pattern recognition with symbolic methods for lemma discovery. The resulting tool, ACL2(ml), gathers proof statistics and uses statistical pattern-recognition to pre-processes data from libraries, and then suggests auxiliary lemmas in new proofs by analogy with already seen examples. This paper presents the implementation of ACL2(ml) alongside theoretical descriptions of the proof-pattern recognition and lemma discovery methods involved in it

    Transformational derivation of programs using the Focus system

    Get PDF
    A program derivation support system called Focus is being constructed. It will formally derive programs using the paradigm of program transformation. The following issues are discussed: (1) the integration of validation and program derivation activities in the Focus system; (2) its tree-based user interface; (3) the control of search spaces in program derivation; and (4) the structure and organization of program derivation records. The inference procedures of the system are based on the integration of functional and logic programming principles. This brings about a synthesis of paradigms that were heretofore considered far apart, such as logical and executable specifications and constructive and transformational approaches to program derivation. A great emphasis has been placed, in the design of Focus, on achieving small search spaces during program derivation. The program manipulation operations such as expansion, simplification and rewriting were designed with this objective. The role of operations that are expensive in search spaces, such as folding, has been reduced. Program derivations are documented in Focus in a way that the high level descriptions of derivations are expressed only using program level information. All the meta-level information, together with dependencies between derivations of program components, is automatically recorded by the system at a lower level of description for its own use in replay
    corecore