

Edinburgh Research Explorer

Middle-Out Reasoning for Logic Program Synthesis

Citation for published version:
Kraan, I, Basin, D & Bundy, A 1993, 'Middle-Out Reasoning for Logic Program Synthesis' Paper presented
at Proceedings of the Tenth International Conference on Logic Programming June 21-24, 1993, Budapest,
Hungary, 21/06/93 - 24/06/93, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/middleout-reasoning-for-logic-program-synthesis(70271340-7da0-4dd5-8f31-6acf9397d434).html

Middle-Out Reasoning for LogicProgram SynthesisIna Kraan, David Basin and Alan BundyDAI Research Paper No.May 11, 1993
Accepted at ICLP'93

Department of Arti�cial IntelligenceUniversity of Edinburgh80 South BridgeEdinburgh EH1 1HNScotlandc Ina Kraan, David Basin and Alan Bundy

Middle-Out Reasoning for Logic Program SynthesisIna Kraan David Basin� Alan Bundy yAbstractWe propose a novel approach to automating the synthesis of logic programs: Logicprograms are synthesized as a by-product of the planning of a veri�cation proof. Theapproach is a two-level one: At the object level, we prove program veri�cation conjecturesin a sorted, �rst-order theory. The conjectures are of the form 8args����!: prog(args����!) $spec(args����!). At the meta-level, we plan the object-level veri�cation with an unspeci�edprogram de�nition. The de�nition is represented with a (second-order) meta-level variable,which becomes instantiated in the course of the planning.Key words and phrases. Logic program synthesis, proof planning, automated theorem proving1 IntroductionThe framework of the work presented here is the automatic synthesis of logic programs viamiddle-out reasoning in explicit proof plans [Bundy 88, Bundy et al 90a]. We synthesize purelogic programs from speci�cations in sorted, �rst-order theories. The approach encompasses twolevels of reasoning: An object level, which is sorted, �rst-order predicate logic with equality, anda meta-level, at which object-level proofs are reasoned about explicitly. At the object level, weprove that speci�cation and program are logically equivalent. At the meta-level, we construct aplan for the object-level proof. We represent the body of the program to be synthesized with asecond-order meta-variable, which becomes instantiated to a program during planning.Normally, the �rst and crucial step within proof planning is the selection of an induction scheme.It is crucial for synthesis in particular because the type of induction will correspond to the typeof recursion of the synthesized program. By using meta-variables to represent the constructorfunctions applied to induction variables in the step case, we can plan the step case withoutcommitting to a particular induction scheme. We thus postpone the selection of an inductionscheme to a later stage of the proof, when more information has been gained from the proofplanning.The contributions of this paper are the following: First, it develops the idea that middle-out reasoning, i.e., the use of the variables at the planning level, can be used to synthesizeprograms. Middle-out reasoning for program synthesis was �rst proposed in [Kraan et al 93].Here, approach is improved by limiting the higher-order uni�cation to a decidable case wheremost general uni�ers exist. Second, we demonstrate a new application of middle-out reasoning,namely, the selection of induction schemes.The ideas presented in this paper have been implemented as an application of the proof plannerCLAM [Bundy et al 90c]. The system has been used to synthesize the examples in this paper.�Current a�liation: Max-Planck-Institut f�ur Informatik, Im Stadtwald, W-6600 Saarbr�ucken, Germany. Sup-ported by the German Ministry for Research and Technology (BMFT) under grant ITS 9102. Responsibility forthe contents of this publication lies with the authors.ySupported by SERC grant GR/E/44598, Esprit BRA grant 3012, Esprit BRA grant 3245, and an SERCSenior Fellowship. 1

Section 2 of this paper discusses related work in program synthesis and selecting inductionschemes for synthesis proofs. Section 3 contains a de�nition of pure logic programs. Sections 4and 5 provide brief introductions to higher-order patterns and to proof planning, respectively.Section 6 shows how middle-out reasoning can be used for synthesis proper, and Section 7 howmiddle-out reasoning can be used to select induction schemes for synthesis proofs. Section 8contains conclusions and suggestions for future work.2 Background and Related Work2.1 Logic Program SynthesisThe approach we take to program synthesis is similar to proofs-as-programs. Proofs-as-programs evolved from ideas in constructive logic, e.g., the Curry-Howard isomorphism[Howard 80], where a proposition is identi�ed with the type of terms in the �-calculus rep-resenting evidence for its truth. Under this isomorphism, a proposition is true if and only if thecorresponding type has members. A proof of a proposition constructs such a member. Sinceterms in the �-calculus can be evaluated, proofs give rise to functional programs.Adapting proofs-as-programs to logic program synthesis is not straightforward. The proofs-as-programs approach synthesizes total functions, whereas logic programs are partial and multival-ued [Bundy et al 90b]. Logic programs may return no value, i.e., fail, or they may return morethan one value on backtracking. Moreover, they may not terminate.One adaptation of proofs-as-programs to logic program synthesis is presented in [Fribourg 90].Fribourg synthesizes programs in Prolog-style proofs. He extends standard Prolog goals toimplicational goals of the form 8x�!: 9y�!: q(x�!; y�!)(r(x�!)where q(x�!; y�!) and r(x�!) are conjunctions of atoms. He also extends standard Prolog SLD-resolution to the rules of de�nite clause inference, simpli�cation and restricted structuralinduction. Each of these rules is associated with a program construction rule. Given a speci�c-ation, extended Prolog execution will return a program to compute y�! in terms of x�!. However,the program will only be correct when the variables in x�! are ground and the variables in y�! areunbound. Also, it will return only one answer. It is thus a functional program in the guise of alogic program.To overcome these disadvantages, [Bundy et al 90b] suggests viewing logic programs in all-ground mode as functions returning a boolean value. Speci�cations of logic programs are thusof the form: 8args����!: 9boole: spec(args����!) = booleThe programs resulting from proofs of such speci�cations are still higher-order and functionaland thus di�cult to translate into equivalent logic programs. Therefore, [Bundy et al 90b]suggests working with a constructive �rst-order logic in which the extract terms are pure logicprograms.This idea was pursued in [Wiggins et al 91] and has been implemented in Whelk, an interactiveproof editor for logic program synthesis. The Whelk system distinguishes between the logicof the speci�cation and the logic of the program. The two are related by a mapping from theprogram logic to the speci�cation logic. Each inference rule in the speci�cation logic correspondsto a program construction rule in the program logic. A major concern, however, is proving thecorrectness of the rules [Wiggins 92].In our approach, at the object level, we are not proving 89 speci�cations, but veri�cationconjectures of the form1 8args����!: prog(args����!)$ spec(args����!)1Here, and in the following, we omit sort information to avoid notational clutter.2

in a �rst-order theory. However, at the planning level, we represent the program body with ameta-variable. Thus, what we do is closely related to proving the higher-order conjecture9P: 8args����!: P(args����!)$ spec(args����!)where P represents a pure logic program. The universal quanti�cation of the arguments allowsthe program to be truly relational, i.e., to run in any mode. Since we are proving a veri�cationconjecture, the synthesized programs are partially correct and complete, if the execution of theproof plan succeeds.2.2 Selecting Induction Schemes for Synthesis ProofsDetermining the appropriate type of induction for a given conjecture is a di�cult task. Themost widely used technique is recursion analysis [Boyer & Moore 79, Bundy et al 89]. Recur-sion analysis selects an appropriate induction scheme by examining the recursion schemes ofthe functions and relations in the conjecture to determine which of the variables available forinduction occur in the recursive positions of these functions and relations.Recursion analysis works poorly in the presence of existential quanti�ers, which are inherentin 89 speci�cations of functions. This is because the appropriate induction scheme usuallydepends on the recursion scheme of the witnessing function|which is precisely what we wantto synthesize and therefore do not know. Using an inappropriate induction scheme may makeit di�cult to �nd a proof or may lead to an unintuitive or ine�cient program.A simple example where recursion analysis breaks down is the speci�cation of a quotient andremainder function: 8x; y: 9q; r: x 6= 0 ! q� x+ r = y ^ r < xOnly x and y are available as induction variables, and, given the standard de�nitions of additionand multiplication, recursion analysis cannot �nd the appropriate induction, which is inductionon y from y� x to y.Recursion analysis works better for the conjectures in our approach than for 89 speci�cations.This is because the relations are universally quanti�ed over all arguments. We thus have morevariables to choose from as induction variables and hence stand a better chance of success. Theconjecture for quotient and remainder in our approach is8x; y; q; r: quotient remainder(x; y; q; r) $ q � x+ r = y ^ r < xwhere, for synthesis, the relation quotient remainder would remain unspeci�ed. Since x,y, q and r are all universally quanti�ed, they are all candidate induction variables. For thisconjecture, recursion analysis will indeed suggest an appropriate induction, namely one-stepstructural induction on q.However, recursion analysis is always limited to a type of induction which is based on therecursion schemes present in the speci�cation. Even for relational conjectures, the recursion ofthe program may not be among them. An example of this is the speci�cation:8x: even(x)$ (9y: y� s(s(0)) = x)The natural recursion scheme for the program would be two-step recursion, which is not sug-gested by the standard de�nition of multiplication.[Hutter 92] suggests a technique which can be used to select induction schemes for 89 formulae.Hutter recognizes the close relationship between the instantiation of the existential variables,the induction variables and the type of induction. Instead of selecting the induction variableand type of induction and then �nding the instantiation of the existential variable, he picks aninduction variable and an instantiation of an existential variable, leaving the type of induction3

open until a later stage of the proof. In doing so, he is not limited to induction schemes suggestedby the speci�cation, but can also �nd ones suggested by the proof.Our approach is related to that suggested in [Hutter 92]. We also postpone a decision onthe induction scheme until a later stage of the proof. However, where Hutter commits to aninduction variable and an instantiation of an existential variable, we leave that choice open aswell. Moreover, whereas Hutter's approach is geared towards 89 formulae, ours is generallyapplicable.3 Pure Logic ProgramsOur notion of pure logic programs is related to pure logic programs in [Bundy et al 90b] and sim-ilar to logic descriptions [Deville 90] and completions of normal programs [Lloyd 87]. Pure logicprograms are a suitable intermediate representation on the borderline between non-executablespeci�cations and executable programs; pure logic programs are a subset of �rst-order predic-ate logic and can thus be reasoned about within that framework. Their syntax, however, issu�ciently restricted that, even if they are not meant to be directly executed, they are straight-forward to translate into executable programs in languages such as Prolog or G�odel.For the purpose of this paper, pure logic programs are collections of sentences of the form:8x1 :t1; : : : ; xn :tn: pred(x1; : : : ; xn)$ bodywhere pred is a predicate symbol, the xi are distinct variables of sorts ti and body is a purelogic program body. There can be no more than one de�nition per predicate symbol. Pure logicprogram bodies are de�ned recursively:� The predicates true and false are pure logic program bodies.� A member of a prede�ned set of decidable atomic relations is a pure logic program body2.� A call to a previously de�ned predicate (including the predicate being de�ned) is a purelogic program body.� If P and Q are pure logic program bodies, thenP ^Q P _Q 9x: Pare pure logic program bodies.Other connectives such as negation or implication can be added. Avoiding those, however,largely prevents oundering, without restricting the expressive power of the language.An example of a pure logic program is:8x; l: member(x; l) $ 9h; t: l = [hjt]^ (x = h _member(x; t))8i; j: subset(i; j) $ i = []_9h; t: i = [hjt]^member(h; j) ^ subset(t; j)The predicate member(x; l) is true if x is a member of the list l, the predicate subset(i; j) istrue if i is a subset of j. Translated into Prolog, for instance, this becomes:member(X, [X|]).member(X, [|T]) :- member(X, T).subset([],).subset([H|T], J) :- member(H, J), subset(T, J).2For the purpose of this paper, the set consists of equality (=) and inequality (6=).4

4 Higher-Order PatternsHigher-order terms are normally di�cult to deal with, since uni�cation is undecidable and thereis no most general uni�er. When using higher-order terms, one either accepts this and uses,for instance, the pre-uni�cation procedure of [Huet 75], or one restricts oneself to a subset ofhigher-order terms which is tractable.Higher-order patterns form a tractable subset of higher-order terms. They are expressions whosefree variables have no arguments other than bound variables. The class of higher-order patternswas �rst investigated by [Miller 90], and followed up among others by [Nipkow 91]. Formally,following [Nipkow 91], a term t in �-normal form is called a (higher-order) pattern if every freeoccurrence of a variable F is in a subterm F(u1; : : : ; un) of t such that each ui is �-equivalent toa bound variable and the bound variables are distinct.Higher-order patterns are akin to �rst-order terms in that uni�cation is decidable and thereexists a most general uni�er of uni�able terms. Also, the uni�cation of two higher-order patternsis again a higher-order pattern. Both [Miller 90] and [Nipkow 91] give uni�cation algorithms.[Qian 92] shows that the uni�cation of higher-order patterns can be done in linear time. Higher-order patterns are thus as tractable as �rst-order terms.The higher-order meta-variables we use in the proof planning can be restricted by letting themrepresent functions or predicates applied to distinct bound variables only (see Sections 6 and 7).Thus the terms containing them are higher-order patterns. This restriction is natural for the ap-plications suggested here. For synthesis proper, we are creating programs that represent relationsand that are therefore developed in the context of a collection of universally bound variables. Thedistinctness requirement is already present in the de�nition of pure logic programs. Thus, whatwe start out with as our program is already a higher-order pattern. Furthermore, any step thatfurther instantiates the higher-order pattern does so via uni�cation with another higher-orderpattern. For middle-out induction, we use meta-variables to represent the constructor functionapplied to the induction variable. Since the variable on which we induce must be universallybound to begin with, the expressions we obtain are again higher-order patterns. The instanti-ation of the meta-variables occurs via the application of rewrite rules, which are themselves alsoinherently higher-order patterns.5 Proof PlanningTo avoid the built-in heuristics common in theorem provers, which are often inexible and di�-cult to understand, [Bundy 88] suggests using a meta-logic to reason about and to plan proofs.Proof plans are combinations of methods, which are speci�cations of tactics. A tactic is a pro-gram that applies a number of object-level inference rules to a goal formula. A method is aspeci�cation of a tactic such that, if a goal formula matches the input pattern and if the precon-ditions are met, the tactic is applicable, and, if the tactic succeeds, the output conditions willbe true of the resulting goal formulae. The proof planner CLAM [Bundy et al 90c] incorporatesthese ideas.Middle-out reasoning [Bundy et al 90a] extends the meta-level reasoning of proof planning inthat it allows the meta-level representation of object-level entities to contain meta-variables.This enables proof planning to proceed even though an object-level entity is not fully speci�edand thus allows a decision about its identity to be postponed.The proof planner CLAM is geared towards proving theorems by induction. Its central methodis rippling [Bundy et al 91], used in the step case of inductive proofs. Rippling keeps trackof the di�erences between the induction hypothesis and the induction conclusion and reducesthem by applying special rewrite rules called wave rules until the induction hypothesis can beexploited. To this end, rippling uses annotations on the induction conclusion and on the wave5

rules. Schematically, the step case of a (constructor-style) induction is annotated as follows:p(x) ` p(c(x))Non-underlined parts in boxes (called wave fronts) do not appear in the induction hypothesisand thus need to be eliminated before we can appeal to the induction hypothesis. Underlinedparts in boxes (called wave holes) and remaining parts of the conclusion form a copy of theinduction hypothesis. Wave rules are annotated similarly:p(c(X))) c0(p(X))They are applied only if the rule and a subexpression of the conclusion match, including an-notations. The annotations on the wave rule ensure that it will move wave fronts outwards.Once all wave fronts have been eliminated or moved to surround the conclusion, the inductionhypothesis can be exploited.Other methods are induction, symbolic evaluation, simpli�cation and fertilization. Their usewill become apparent in the following sections.6 Middle-Out Reasoning for SynthesisWe synthesize programs via middle-out reasoning by planning veri�cation proofs for programswith initially unspeci�ed bodies. The veri�cation conjectures, which we prove classically, are�rst-order sentences of the form:8args����!: prog(args����!)$ spec(args����!)Proving the logical equivalence of the speci�cation and the program guarantees the partialcorrectness and completeness of the program with respect to the speci�cation [Hogger 81].To synthesize a program, we plan the proof of the veri�cation conjecture while representing thebody of the program with a second-order meta-variable. During the proof planning, the variablewill become instantiated to a program. To illustrate the synthesis process, we will work throughthe synthesis of the subset program from Section (3).Our conjecture is 8i; j: subset(i; j) $ (8x: member(x; i)!member(x; j)) (1)where member is de�ned as:8x; l: member(x; l) $ 9h; t: l = [hjt]^ (x = h _member(x; t))and the unspeci�ed subset program is represented as:8i; j: subset(i; j)$ P(i; j)P is the variable representing the program body.The de�nition of member gives rise to the following wave rule3:member(X; [HjT])) X = H _member(X; T) (2)We also need the following wave rules derived from lemmas:P _Q ! R) P! R ^Q! R (3)8x: P ^Q) 8x: P ^ 8x: Q (4)3Wave rules are generated automatically from de�nitions and lemmas provided to CLAM.6

For simplicity, we will rely on recursion analysis to suggest an appropriate induction. For conjec-ture (1), based on wave rules (2){(4), recursion analysis suggests one-step structural inductionon i. The annotated step case is then:subset(t; j)$ (8x: member(x; t)!member(x; j)) (5)s̀ubset([hjt] ; j)$ (8x: member(x; [hjt])!member(x; j)) (6)The duality between induction and recursion determines the recursive structure of the body ofthe program: There will be a base case where i is empty, and a step case where i consists ofa head and a tail and which may contain a recursive call. There are several ways to representthis. Previously, in [Kraan et al 93] we suggested instantiating P(i; j) in the following way:8i; j: subset(i; j) $ i = []^ B(j) _ (7)9h; t: i = [hjt]^ S(h; t; j; subset(t; j))B and S are again meta-variables. This particular representation for the program was suggestedbecause it gives rise to a wave rule for the subset program of the form:subset([HjT] ; J)) S(H;T; J; subset(T; J)) (8)However, with this representation, neither program nor wave rule are higher-order patterns,since the last argument of S is not a bound variable.Here, we show that it is possible to obtain a synthesis proof plan without wave rule (8) and witha simpler representation of the structure of the program. Instead of (7), we use8i; j: subset(i; j) $ i = []^ B(j) _ (9)9h; t: i = [hjt]^ S(h; t; j)which no longer contains an explicit recursive call. This representation does not give rise to awave rule.We now proceed with the step case and ripple the induction conclusion (6). Applying waverule (2) on the right gives us:subset([hjt] ; j)$ (8x: x = h _member(x; t) !member(x; j))Applying wave rule (3) on the right results in:subset([hjt] ; j)$(8x: x = h!member(x; j)^member(x; t)!member(x; j))Applying wave rule (4) on the right leads to:subset([hjt] ; j)$8x: x = h!member(x; j)^ 8x: member(x; t)!member(x; j)Now, none of the wave rules apply. However, the expression in the wave hole on the right-hand side, i.e., 8x: member(x; t)!member(x; j), matches the right-hand side of the inductionhypothesis (5). Thus, we can exploit the induction hypothesis itself as a rewrite rule. This iscalled weak fertilization. We obtain the conclusion:subset([hjt] ; j)$ 8x: x = h!member(x; j)^ subset(t; j) (10)7

Once we have appealed to the induction hypothesis, we are left with a conclusion that cor-responds to the step case of the program we are synthesizing. Thus, from the perspective ofsynthesis, we are done. Remember, however, that we are synthesizing a program and planningits veri�cation proof at the same time. In order to complete the veri�cation, we must showthat (10) follows from the program de�nition. This step will further instantiate the body of theprogram.To appeal to the program de�nition (9), we instantiate it appropriatelysubset([hjt]; j) $ [hjt] = []^ B(j) _9h0; t0: [hjt] = [h0jt0] ^ S(h0; t0; j)and simplify it to: subset([hjt]; j)$ S(h; t; j) (11)Unifying (10) and (11) instantiates S with the expression �u; v;w: (8x: x = u!member(x;w)^subset(v;w)).We thus obtain the partially instantiated program:8i; j: subset(i; j)$i = []^ B(j) _9h; t: i = [hjt]^ 8x: x = h!member(x; j)^ subset(t; j)This instantiation is not yet acceptable. In Section 3, we imposed syntactic restrictions on purelogic programs. The program we have synthesized so far does not quite comply with them,since it contains a universal quanti�er. In this case, the o�ending expression 8x: x = h !member(x; j) can easily be simpli�ed to member(h; j). In other cases, an auxiliary synthesismay be required. For a brief discussion of auxiliary syntheses, see [Kraan et al 93].To complete the proof plan, we need to deal with the base case:` subset([]; j)$ (8x: member(x; [])!member(x; j))Symbolic evaluation of member(x; []) gives us` subset([]; j)$ (8x: false !member(x; j))which simpli�es to: ` subset([]; j)$ trueAfter simpli�cation, we are left with a conclusion that corresponds to the base case of theprogram. We appeal to the program de�nition as before in the step case.The proof plan is complete, and the fully instantiated subset program is:8i; j: subset(i; j) $ i = []^ true _9h; t: i = [hjt]^member(h; j)^ subset(t; j)The example of the subset synthesis closely follows the general schema of synthesis proof plans,which can be summarized as follows:1. Apply induction2. Step case(s): Apply rippling and weak fertilization, appeal to program3. Base case(s): Apply symbolic evaluation and simpli�cation, appeal to program4. Run auxiliary syntheses if necessary 8

7 Middle-Out Reasoning for InductionThe fundamental problem in selecting induction schemes for synthesis is that the appropriateinduction scheme is closely related to the recursion scheme of the program|which is preciselypart of what we want to synthesize. Yet selecting an induction scheme is normally the �rststep of the proof planning, and we therefore have no information beyond the speci�cation itself.Using middle-out reasoning we can escape this problem: We use meta-variables to representthe constructor functions applied to potential induction variables. Thus, we can proceed withrippling in the step case without having to commit to any particular induction scheme. Oncethe rippling has been completed and the induction hypothesis has been appealed to, the meta-variables will be fully instantiated. We can either check whether the instantiations of the meta-variables correspond to one of a set of given induction schemes, or we can prove that the orderingde�ned by the instantiations is well-founded. In the current implementation, we take the �rstapproach.To illustrate this, we work through an example similar to that in Section 28x: even(x)$ (9y: double(y) = x)where double is de�ned as follows:double(0) = 08x: double(s(x)) = s(s(double(x)))The wave rules for double and equality aredouble(s(U))) s(s(double(U))) (12)s(U) = s(V)) U = V (13)The step case is even(x)$ (9y: double(y) = x)èven(C(x))$ (9y: double(y) = C(x))where C is the meta-variable standing for the constructor function applied to the inductionvariable. The dashed wave front around the variable y indicates that it can be involved in therippling. Note that, because we have no knowledge of the induction scheme until we completethe step case, we cannot determine the structure of the program yet.We can apply wave rule (12) to the induction conclusion. This instantiates the existentiallyquanti�ed variable y with s(y0), where y0 is a new existentially quanti�ed variable. Ripplingwith existentially quanti�ed variables is explained in detail in [Bundy et al 91]. Applying (12)yields the conclusion: even(C(x))$ (9y0: s(s(double(y0))) = C(x))Applying wave rule (13) twice then results in:even(s(s(C0(x))))$ (9y0: double(y0) = C0(x))The applications of wave rule (13) partially instantiate C to �u:s(s(C0(u))). We can now weakfertilize, i.e., apply the induction hypothesis as a rewrite rule. This leaves us with the conclusioneven(s(s(x)))$ even(x)9

which corresponds to the step case of the program. This also instantiates C0 to �u:u and C to�u:s(s(u)). Thus, the induction scheme is two-step induction, and the program structure is:8x: even(x) $ x = 0 ^ B1 _x = s(0) ^ B2 _9y: x = s(s(y)) ^ S(y)We can now �nish the step case and the bases cases following the general schema in Section 6.The �nal even program is:8x: even(x) $ x = 0 ^ true _x = s(0) ^ false _9y: x = s(s(y)) ^ even(y)The even example was chosen for its simplicity and does not show the full power of middle-outreasoning for induction. The technique is particularly powerful in examples involving manycandidate variables to select from.8 Conclusions and Future WorkIn this paper, we have shown how pure logic programs can be synthesized with the help of middle-out reasoning in the planning of veri�cation proofs. First, a meta-variable is used to representthe body of the program to be synthesized. Second, meta-variables are used to represent theconstructor functions applied to candidate induction variables in the step case of the induction.This facilitates �nding appropriate induction schemes. By restricting the meta-variables suchthat we need only work with higher-order patterns, we obtain a formal system which is a tractableextension of �rst-order terms. The approach provides a sound and computationally viable basisfor the automatic synthesis of partially correct and complete programs.The ideas presented in this paper have been implemented as an application of the proof plannerCLAM. We have adapted CLAM to �rst-order predicate logic, added higher-order pattern uni-�cation and developed synthesis methods. The system has synthesized a number of examples,including those presented here.To scale the approach up to larger and more di�cult problems, there are issues that need to beaddressed. Di�cult issues, often caused by the use of meta-variables, are that rippling may notterminate or may stop before it the induction hypothesis can be exploited. To cope with non-termination, additional heuristic control is needed. The need for additional control arises fromthe fact that working with meta-variables means working with less knowledge, which usuallyleads to more choices. When rippling stops before the induction hypothesis can be used, thecause is often a missing lemma. In Section 6, for instance, we assumed that we had the lemmasnecessary to derive wave rules (3) and (4). In general, we cannot expect to have all necessarylemmas, and should therefore be able to generate them on demand.Another important issue is leading the proof planning to particular types of programs, e.g.,divide-and-conquer algorithms or tail-recursive programs. In this context, it is worth investig-ating whether mode information could help guide the proof planning.References[Boyer & Moore 79] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979. ACMmonograph series. 10

[Bundy 88] A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk andR. Overbeek, editors, 9th Conference on Automated Deduction, pages 111{120.Springer-Verlag, 1988. Longer version: Edinburgh DAI Research Paper 349.[Bundy et al 89] A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill, and A. Stevens. A rational recon-struction and extension of recursion analysis. In N.S. Sridharan, editor, Proceedingsof the Eleventh International Joint Conference on Arti�cial Intelligence, pages359{365. Morgan Kaufmann, 1989. Also Edinburgh DAI Research Paper 419.[Bundy et al 90a] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calculations inautomatic program synthesis. In S.L.H. Clarke, editor, Proceedings of UK IT 90,pages 221{6, 1990. Also Edinburgh DAI Research Paper 448.[Bundy et al 90b] A. Bundy, A. Smaill, and G. A. Wiggins. The synthesis of logic programs from in-ductive proofs. In J. Lloyd, editor, Computational Logic, pages 135{149. Springer-Verlag, 1990. Esprit Basic Research Series. Also Edinburgh DAI Research Paper501.[Bundy et al 90c] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system.In M.E. Stickel, editor, 10th International Conference on Automated Deduction,pages 647{648. Springer-Verlag, 1990. Lecture Notes in Arti�cial Intelligence No.449. Also Edinburgh DAI Research Paper 507.[Bundy et al 91] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: Aheuristic for guiding inductive proofs. Edinburgh DAI Research Paper 567, 1991.To appear in Arti�cial Intelligence.[Deville 90] Y. Deville. Logic Programming. Systematic Program Development. InternationalSeries in Logic Programming. Addison-Wesley, 1990.[Fribourg 90] L. Fribourg. Extracting logic programs from proofs that use extended Prolog ex-ecution and induction. In Proceedings of Eighth International Conference onLogic Programming, pages 685 { 699. MIT Press, June 1990.[Hogger 81] C.J. Hogger. Derivation of logic programs. JACM, 28(2):372{392, April 1981.[Howard 80] W.A. Howard. The formulae-as-types notion of construction. In J.P. Seldin andJ.R. Hindley, editors, To H.B. Curry; Essays on Combinatory Logic, LambdaCalculus and Formalism, pages 479{490. Academic Press, 1980.[Huet 75] G. Huet. A uni�cation algorithm for lambda calculus. Theoretical ComputerScience, 1:27{57, 1975.[Hutter 92] D. Hutter. Synthesis of induction orderings for existence proofs. 1992. Forthcoming.[Kraan et al 93] I. Kraan, D. Basin, and A. Bundy. Logic program synthesis via proof planning.In K.K. Lau and T. Clement, editors, Logic Program Synthesis and Transforma-tion, pages 1{14. Springer-Verlag, 1993. Also Max-Planck-Institut f�ur InformatikResearch Paper MPI-I-92-244.[Lloyd 87] J.W. Lloyd. Foundations of Logic Programming. Symbolic Computation.Springer-Verlag, 1987. Second edition.[Miller 90] D. Miller. A logic programming language with lambda abstraction, function vari-ables and simple uni�cation. Technical Report MS-CIS-90-54, Department of Com-puter and Information Science, University of Pennsylvania, 1990.[Nipkow 91] T. Nipkow. Higher-order critical pairs. In Proc. 6th IEEE Symp. Logic in Com-puter Science, pages 342{349, 1991.[Qian 92] Z. Qian. Uni�cation of higher-order patterns in linear time and space. TechnicalReport 5/92, FB 3 Informatik, Universit�at Bremen, 1992.[Wiggins 92] G. A. Wiggins. Synthesis and transformation of logic programs in the Whelk proofdevelopment system. In K. R. Apt, editor, Proceedings of JICSLP-92, 1992.[Wiggins et al 91] G. A. Wiggins, A. Bundy, H. C. Kraan, and J. Hesketh. Synthesis and trans-formation of logic programs through constructive, inductive proof. In K-K. Lauand T. Clement, editors, Proceedings of LoPSTr-91, pages 27{45. Springer Verlag,1991. Workshops in Computing Series.11

