5 research outputs found

    Towards a unified methodology for supporting the integration of data sources for use in web applications

    Get PDF
    Organisations are making increasing use of web applications and web-based systems as an integral part of providing services. Examples include personalised dynamic user content on a website, social media plug-ins or web-based mapping tools. For these types of applications to have maximum use for the user where the applications are fully functional, they require the integration of data from multiple sources. The focus of this thesis is in improving this integration process with a focus on web applications with multiple sources of data. Integration of data from multiple sources is problematic for many reasons. Current integration methods tend to be domain specific and application specific. They are often complex, have compatibility issues with different technologies, lack maturity, are difficult to re-use, and do not accommodate new and emerging models and integration technologies. Technologies to achieve integration, such as brokers and translators do exist, but they cannot be used as a generic solution for developing web-applications achieving the integration outcomes required for successful web application development due to their domain specificity. It is because of these difficulties with integration, and the wide variety of integration approaches that there is a need to provide assistance to the developer in selecting the integration approach most appropriate to their needs. This thesis proposes GIWeb, a unified top-down data integration methodology instantiated with a framework that will aid developers in their integration process. It will act as a conceptual structure to support the chosen technical approach. The framework will assist in the integration of data sources to support web application builders. The thesis presents the rationale for the need for the framework based on an examination of the range of applications, associated data sources and the range of potential solutions. The framework is evaluated using four case studies

    Framework-Specific Modeling Languages

    Get PDF
    Framework-specific modeling languages (FSMLs) help developers build applications based on object-oriented frameworks. FSMLs formalize abstractions and rules of the framework's application programming interfaces (APIs) and can express models of how applications use an API. Such models, referred to as framework-specific models, aid developers in understanding, creating, and evolving application code. We present the concept of FSMLs, propose a way of specifying their abstract syntax and semantics, and show how such language specifications can be interpreted to provide reverse, forward, and round-trip engineering of framework-specific models and framework-based application code. We present a method for engineering FSMLs that was extracted post-mortem from the experience of building four such languages. The method is driven by the use cases that the FSMLs under development are to support. We present the use cases, the overall process, and its instantiation for each language. The presentation focuses on providing concrete examples for engineering steps, outcomes, and challenges. It also provides strategies for making engineering decisions. The presented method and experience are aimed at framework developers and tool builders who are interested in engineering new FSMLs. Furthermore, the method represents a necessary step in the maturation of the FSML concept. Finally, the presented work offers a concrete example of software language engineering. FSML engineering formalizes existing domain knowledge that is not present in language form and makes a strong case for the benefits of such formalization. We evaluated the method and the exemplar languages. The evaluation is both empirical and analytical. The empirical evaluation involved measuring the precision and recall of reverse engineering and verifying the correctness or forward and round-trip engineering. The analytical evaluation focused on the generality of the method

    Automated Support for Framework-Based Software Evolution

    No full text
    In this paper, we show how elaborate support for framework-based software evolution can be provided based on explicit documentation of the hot spots of object-oriented application frameworks. Such support includes high-level transformations that guide a developer when instantiating applications from a framework by propagating the necessary changes, as well as application upgrading facilities based on these transformations. The approach relies on active declarative documentation of the design and evolution of the framework鈥檚 hot spots, by means of metapatterns and their associated transformations. 1
    corecore