
Framework-Specific Modeling
Languages

by

Micha l Antkiewicz

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008

c© Micha l Antkiewicz 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Micha l Antkiewicz

ii

Abstract

Framework-specific modeling languages (FSMLs) help developers build applications
based on object-oriented frameworks. FSMLs formalize abstractions and rules of
the framework’s application programming interfaces (APIs) and can express models
of how applications use an API. Such models, referred to as framework-specific
models, aid developers in understanding, creating, and evolving application code.

We present the concept of FSMLs, propose a way of specifying their abstract
syntax and semantics, and show how such language specifications can be interpreted
to provide reverse, forward, and round-trip engineering of framework-specific mod-
els and framework-based application code.

We present a method for engineering FSMLs that was extracted post-mortem
from the experience of building four such languages. The method is driven by the
use cases that the FSMLs under development are to support. We present the use
cases, the overall process, and its instantiation for each language. The presenta-
tion focuses on providing concrete examples for engineering steps, outcomes, and
challenges. It also provides strategies for making engineering decisions.

The presented method and experience are aimed at framework developers and
tool builders who are interested in engineering new FSMLs. Furthermore, the
method represents a necessary step in the maturation of the FSML concept. Finally,
the presented work offers a concrete example of software language engineering.
FSML engineering formalizes existing domain knowledge that is not present in
language form and makes a strong case for the benefits of such formalization.

We evaluated the method and the exemplar languages. The evaluation is both
empirical and analytical. The empirical evaluation involved measuring the precision
and recall of reverse engineering and verifying the correctness or forward and round-
trip engineering. The analytical evaluation focused on the generality of the method.

iii

Acknowledgements

I would like to thank the people who have contributed to this thesis. First and
foremost, I would like to thank my supervisor Professor Krzysztof Czarnecki who
enormously helped to shape, reinvent, and crystallize the material presented in this
thesis in countless discussions. I am deeply grateful that despite his busy schedule,
Professor Czarnecki always found the time to delve into the details of my research
and that he was never satisfied with “easy” answers. His emphasis on the quality
of research is a valuable lesson I am striving to follow.

I would also like to thank Professor Ladan Tahvildari, Professor Kostas Kon-
togiannis, and Professor Michael Godfrey for serving on my thesis committee. I
thank Professor Ralf Lämmel for being my external examiner.

I am also deeply grateful to my wife Agata, who’s continuous support, trust,
and understanding were crucial to finishing this thesis.

I would like to thank my colleagues from the Generative Software Development
Lab at the University of Waterloo who contributed to this research and its imple-
mentation: Thiago Tonelli Bartolomei, Herman Lee, and Matthew Stephan. I also
thank Henry Lau for his work on the implementation.

iv

Acknowledgment of contributions

Most of the material presented in this thesis was taken from existing and submitted
papers. The structure of the thesis is based on [12], to which my personal contri-
bution was approximately 70%. Chapter 4 is based on [14], to which my personal
contribution was approximately 70%. Section 2.5 is based on [10], to which my
personal contribution was approximately 90%.

Micha l Antkiewicz

As one of the authors of [10, 12, 14], I fully acknowledge the thesis author’s
statement above and give full permission to use any part of the papers we co-
authored mentioned above. I also fully acknowledge that the thesis represents
original research conducted by the thesis author.

Krzysztof Czarnecki

As one of the authors of [14], I fully acknowledge the thesis author’s statement
above and give full permission to use any part of the papers we co-authored men-
tioned above. I also fully acknowledge that the thesis represents original research
conducted by the thesis author.

Thiago Tonelli Bartolomei

As one of the authors of [12], I fully acknowledge the thesis author’s statement
above and give full permission to use any part of the papers we co-authored men-
tioned above. I also fully acknowledge that the thesis represents original research
conducted by the thesis author.

Matthew Stephan

v

Dedication

I would like to dedicate this thesis to my mother Ma lgorzata and my wife Agata.

vi

Contents

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Contributions . 5

2 Framework-Specific Modeling Languages 6

2.1 Overview . 6

2.2 Feature Models of Abstract Syntax 10

2.3 Mapping Definitions . 15

2.4 Code Queries and Transformations 17

2.5 Metamodel Interpretation Algorithms 19

2.5.1 Forward engineering . 20

2.5.2 Reverse engineering . 21

2.5.3 Round-trip engineering . 24

2.6 The Generic FSML Infrastructure 28

2.7 Summary . 29

3 Method for Engineering FSMLs 30

3.1 Overview . 30

3.2 Inception . 32

3.3 Elaboration . 39

3.4 Construction . 42

3.5 Transition . 49

3.6 Summary . 51

vii

4 Evaluation of Reverse Engineering 52

4.1 Introduction . 52

4.2 Challenges of Statically Analyzing Completion Code 53

4.3 Setup of the Study . 54

4.3.1 Setup of phase 1 . 54

4.3.2 Setup of phase 2 . 55

4.3.3 Setup of phase 3 . 56

4.3.4 Data collection process . 56

4.4 Results of Phase 1: Code Patterns & Code Queries 58

4.5 Results of Phase 2: Evaluation of the Simple Code Queries 64

4.5.1 Precision & recall . 64

4.5.2 The Refined Code Queries 65

4.5.3 Interpretation of the data 66

4.5.4 Conclusion for phases 1 and 2 70

4.6 Results of Phase 3: the Refined Code Queries 70

4.6.1 Static analysis services used by the code queries 70

4.6.2 Implementation of the refined code queries 75

4.6.3 Precision & recall data and interpretation 77

4.6.4 Conclusion for phase 3 . 80

4.7 Discussion . 82

4.7.1 Threats to validity . 82

4.7.2 Empirical approach to code query refinement 84

4.7.3 Difficulties of analyzing and understanding framework-based
code . 84

4.8 Conclusion . 86

5 Evaluation of Forward Engineering 87

5.1 Introduction . 87

5.2 Code Transformations for Java . 88

5.3 Setup of the Test . 90

5.4 Results and Discussion . 93

5.4.1 Threats to validity . 94

5.5 Conclusion . 95

viii

6 Evaluation of Round-Trip Engineering 96

6.1 Introduction . 96

6.2 Setup of the Tests . 97

6.3 Results and Discussion . 98

6.3.1 Results of test 1 . 98

6.3.2 Results of test 2 . 99

6.3.3 Threats to validity . 99

6.4 Conclusion . 101

7 Evaluation of the Method 102

7.1 Evaluation of the Exemplar Languages 102

7.1.1 Framework API understanding 102

7.1.2 Completion code understanding and analysis 103

7.1.3 Completion code generation and evolution 105

7.2 Threats to Validity . 106

8 Related Work 109

8.1 Framework Instantiation . 109

8.2 Reverse Engineering . 111

8.3 Forward Engineering . 112

8.4 Round-Trip Engineering . 114

8.5 Reengineering . 114

8.6 FSML Engineering Method . 115

9 Conclusion 118

9.1 Summary of Contributions . 118

9.2 Limitations and Future Work . 119

APPENDICES 121

A Mapping types, Constraints, and Forward parameters 122

B Applications Used in the Third Phase of the Evaluation of Reverse
Engineering 124

B.1 Eclipse . 124

B.2 Struts . 124

B.3 Applets . 124

ix

C Applications Used in the Computation of the CDC and CDO Met-
rics 126

C.1 Eclipse . 126

C.2 Struts . 126

C.3 Applets . 126

D Models Used in the Evaluation of Forward and Round-trip Engi-
neering 128

E Traces of the Execution of the Tests in the Evaluation of Round-
trip Engineering 135

F Complete Metamodels of the Exemplar FSMLs 138

F.1 Metamodel of WPI FSML . 139

F.2 Metamodel of Struts FSML . 141

F.3 Metamodel of Applet FSML . 142

F.4 Metamodel of EJB FSML . 144

References 147

x

List of Tables

2.1 Examples of languages, their artifacts, and language definition for-
malisms . 7

2.2 Selected mapping types for structural code patterns for Java 15

2.3 Selected Mapping types for behavioural code patterns for Java . . . 17

2.4 Selected code transformations . 21

2.5 Selected code queries . 23

2.6 Synchronization States Decision Table 27

3.1 Inception of the exemplar FSMLs 33

3.2 Overview of the Use Cases . 34

3.3 Distribution of features over sources of knowledge 37

3.4 Legend of Features’ Sources . 37

4.1 Mapping types for structural code patterns for Java 58

4.2 Mapping types for behavioural code patterns for Java 59

4.3 Code queries for the callsTo mapping type 62

4.4 Code queries for the callsRec mapping type 62

4.5 Code queries for the argVal mapping type 62

4.6 Code queries for the argSameObj mapping type 62

4.7 Code queries for the before mapping type 63

4.8 Code queries for the retTypes mapping type 63

4.9 Code queries for the assgnNew mapping type 63

4.10 Code queries for the assignNull mapping type 63

4.11 Statistics for framework-specific models retrieved using Applet FSML 66

4.12 Statistics for framework-specific models retrieved using Struts FSML 67

4.13 Statistics for a framework-specific model retrieved using WPI FSML 68

xi

4.14 Statistics for framework-specific models retrieved using Applet FSML 77

4.15 Statistics for framework-specific models retrieved using Struts FSML 78

4.16 Statistics for a framework-specific model retrieved using WPI FSML 79

4.17 Time and memory statistics for various analysis settings 81

5.1 Code transformation for the class mapping type 88

5.2 Code transformation for the assignableTo mapping type 89

5.3 Code transformation for the field mapping type 89

5.4 Code transformation for the methods mapping type 89

5.5 Code transformation for the argIsThis mapping type 89

5.6 Code transformation for the argIsField mapping type 89

5.7 Code transformation for the argIsNew mapping type 89

5.8 Code transformation for the argIsVar mapping type 90

5.9 Code transformation for the callsTo mapping type 90

5.10 Code transformation for the callsRec mapping type 90

5.11 Code transformation for the argVal mapping type 90

5.12 Code transformation for the argSameObj mapping type 90

5.13 Code transformation for the retTypes mapping type 90

5.14 Code transformation for the assgnNew mapping type 91

5.15 Code transformation for the assgnNull mapping type 91

7.1 Concern diffusion over components (CDC) 104

7.2 Concern diffusion over operations (CDO) 104

A.1 Mapping types for structural code patterns for plugin.xml 122

A.2 Mapping types for structural code patterns for XML 122

A.3 Constraints . 123

A.4 Constraints and parameters for forward engineering 123

xii

List of Figures

2.1 Overview of model-supported application engineering using FSMLs 8

2.2 Mapping definitions specify the feature-to-code-pattern correspondence 9

2.3 Fragments of the Java Applet Tutorial 10

2.4 Feature model for the concept applet 12

2.5 Feature configurations of two applet instances 14

2.6 Mapping definitions for features from the applet feature model . . . 16

2.7 Sample code described by the first configuration from Table 2.5 . . 18

2.8 Code generated for the first configuration from Figure 2.5 21

2.9 Artifacts and processes of agile round-trip engineering 24

2.10 Feature model for the concept Applet including key annotations . . 26

2.11 Architecture of the generic FSML infrastructure 28

3.1 FSML life cycle: iterations and phases 31

3.2 FSML life cycle: phases and their dominant activities 32

3.3 Excerpt of WPI FSML Metamodel 40

3.4 Excerpt of Struts FSML Metamodel 41

3.5 Excerpt of Applet FSML Metamodel 42

3.6 Excerpt of EJB FSML Metamodel 43

4.1 Fragment of the metamodel of the Applet FSML 60

4.2 Fragment of the metamodel of the Struts FSML 60

4.3 Fragment of the metamodel of the WPI FSML 61

D.1 A model and the code generated using Applet FSML (Applet1) . . 129

D.2 A model and the code generated using Applet FSML (Applet2) . . 130

D.3 A model and the code generated using WPI FSML (View1) 131

D.4 A model and the code generated using WPI FSML (View2) 131

xiii

D.5 A model and the code generated using WPI FSML (View3) 132

D.6 A model and the code generated using WPI FSML (Editor1) . . . 133

D.7 A model and the code generated using WPI FSML (Editor2) . . . 133

D.8 A model and the code generated using WPI FSML (Editor3) . . . 134

xiv

Chapter 1

Introduction

Object-oriented frameworks are widely used as a basis for the development of ap-
plications in many domains. Frameworks provide domain-specific concepts that
are generic units of functionality. Developers create framework-based applications
by writing framework completion code that instantiates these concepts. For exam-
ple, the framework underlying Eclipse’s workbench offers concepts such as views
and editors. Eclipse’s outline view and Java editor are specific instances of these
concepts. The instantiation of the concepts require the developers to perform im-
plementation steps, such as subclassing framework-defined classes, implementing
framework-defined interfaces, and calling appropriate framework services. Concept
instantiation is governed by the application programming interface (API) of the
framework, which specifies the exposed programming elements, for example, the
classes to subclass, the methods to call, and how they should be used.

Framework APIs are often complex and difficult to use. They may provide
many concept variants and several alternative ways of instantiating them. For ex-
ample, an Eclipse editor may be single- or multi-page. Furthermore, an action
can be added to the editor’s toolbar directly or by using a special action contrib-
utor mechanism. Some implementation steps are different for a multi-page editor
compared to a single-page one. Furthermore, the developers have to respect API-
prescribed constraints on the implementation steps, such as having to instantiate
a multi-page action contributor for a multi-page editor rather than a regular ac-
tion contributor. Finally, the developers also have to follow general rules of API
engagement. For example, the callbacks that are called by Eclipse’s User Interface
(UI) framework API must not be blocking.

API documentation, code examples, and wizards, if available, offer some support
in writing completion code. Cookbook-style articles and tutorials can be effective in
teaching how framework-provided concepts should be instantiated. However, their
main drawback is their passive nature, meaning that the developers still have to
perform the necessary implementation steps manually. Since steps implementing
a particular concept are often scattered across the application code and tangled
with steps implementing other concepts, writing and understanding completion

1

code can still be challenging. This scattering and tangling is also the reason why
sample applications may be difficult to use as an implementation guide. Further-
more, cookbook-style documentation is often partial and does not cover the full
range of concept variants. In contrast, API reference documentation, such as that
produced by JavaDoc, is usually more complete. However, this form of documen-
tation describes only individual API elements, such as interface methods, and does
not explain the higher-level concepts whose implementation involves multiple API
elements. Code generation wizards, as offered by some frameworks, represent an
active form of concept instantiation knowledge. Unfortunately, they usually cannot
be re-run with different settings after the generated code was modified manually.
Also, they typically cover only a few of the most used concept variants and they do
not provide traceability between the configuration parameters and the generated
code.

We believe that the existing support for the application developers can be sig-
nificantly improved by taking a language-oriented perspective on framework API
usage. In essence, the framework’s API implicitly defines a domain-specific lan-
guage in which domain-specific concepts are implemented and exposed using the
mechanisms of the framework’s programming language. The implementation is
supplemented with descriptions in natural language whenever the programming
language is insufficient. For example, the concept of a Java Applet being a mouse
listener corresponds to several Java Applet API elements, including two API calls
to register and then deregister a mouse listener. Whereas the API calls are rep-
resented by Java, the higher-level concept of an Applet being a mouse listener is
defined in the Applet API documentation. The language-oriented perspective is
based on the premise that the application developers think about these concepts
when programming, even though they might not be explicitly represented by the
available programming language constructs.

Framework-specific modeling languages (FSMLs) are explicit representations of
the domain-specific concepts provided by framework APIs [9]. In FSMLs concepts
are formalized as feature models [61], [30, ch. 4]. A feature model is a hierarchy
of features that are concept properties. The model further specifies whether each
feature is variable or not. For example, the property of being a mouse listener is
optional for an Applet, whereas subclassing Applet is essential for every Applet. A
concept instance is characterized by a feature configuration, which is the particular
set of features that the instance possesses. A concept instance is legal with respect
to the concept definition given as a feature model if and only if the feature configu-
ration of the instance satisfies all the constraints imposed by the feature model. In
essence, feature hierarchies and constraints define the structure of the concepts, i.e.,
the abstract syntax of an FSML. The semantics of features is defined by mapping
definitions that relate the features to structural and behavioural patterns that im-
plement the features in the completion code. The mapping definitions are attached
to individual features and they state that, for example, a feature corresponds to
a call to a particular method or a particular method calling order. Mapping defi-
nitions use mapping types, which are generic kinds or feature-to-code-pattern cor-

2

respondences, such as, correspondence to classes or method calls. Mapping types
may define mapping parameters that must be set in mapping definitions in order
to define an actual correspondence. Consequently, we refer to the feature model
together with mapping definitions attached to its features as the metamodel of an
FSML.

This thesis presents a method for engineering FSMLs that was extracted post-
mortem from the experience of building four such languages. Similar to the Unified
Process of object-oriented software development [58], the presented FSML engi-
neering method is iterative and use-case-driven. FSML use cases play a central
role in the method since they embody the value proposition of FSMLs. Conse-
quently, FSML scoping and design decisions are made with respect to the target
use cases for the FSML under development. The method considers four main use
cases in which FSMLs provide value to the application developers.

The first use case is framework API understanding in which the developers learn
about the framework-provided concepts and different ways of implementing them
by inspecting the feature models and mapping definitions of an FSML. The features
and their mapping definitions precisely and concisely specify API usage patterns
extracted from the API documentation and expert knowledge and therefore are
relevant in understanding the framework API in the scope of the FSML.

The second use case is completion code analysis and understanding, in which the
developers use an FSML to automatically reverse engineer the completion code.
Reverse engineering is enabled by code queries, which implement mapping defini-
tions in the reverse direction (code to model). The result of reverse engineering
is a framework-specific model, which contains feature configurations of concept in-
stances identified in the completion code. A framework-specific model provides an
overview of the completion code from the viewpoint of the FSML and traceability
from features in the model to the matched code patterns. It allows the developers
to understand what concept instances are implemented in the completion code and
how and where they are implemented. Furthermore, an automated analysis of the
framework-specific model can uncover violations of API rules and constraints.

The third use case is forward engineering in which the developers first create a
framework-specific model and then they generate code that implements the model.
Completion code generation is enabled by code transformations, which implement
mapping definitions in the forward direction (model to code). In general, code
transformations and may add, modify, or remove structural or behavioural patterns
in the completion code. For completion code generation, code transformations only
have to support pattern addition. The value of the use case lies in automating the
creation of parts of the application code. Furthermore, the developers can inspect
the generated code and learn the default ways of implementing the concepts.

The fourth use case is completion code evolution. We distinguish four different
scenarios in which FSMLs can support code evolution. At the most basic level, the
developers can simply compare framework-specific models extracted at different
points in time of the application’s life cycle and see how the code has evolved. A

3

more advanced support is round-trip engineering in which both the model and the
code can be independently modified and synchronized on demand using incremental
updates. Round-trip engineering is useful if only certain changes can be made or
are easier to make in either the model or in the code. The third scenario involves
migrating application code to a new version of the API. In this case, the FSML is
extended with the new features and the old features that are being replaced are
marked as deprecated. After reverse engineering, the application developers would
see that some features are deprecated and need to be migrated. The migration
could be supported by an automated transformation. Finally, FSMLs can support
migration between two different, but conceptually similar, frameworks.

We devised the FSML engineering method based on our experience in designing
and building four FSMLs: Eclipse Workbench Part Interactions (WPI) FSML, Java
Applet FSML, Apache Struts FSML, and Enterprise Java Beans (EJB) FSML.
Each of these languages has a different purpose and value proposition. WPI was
the first FSML we built as a proof of concept. Its implementation of round-trip
engineering was first hand crafted and served as a basis for building a generic
FSML infrastructure that supports declarative specification of mapping definitions.
Struts FSML was also first implemented manually and later migrated to the FSML
infrastructure. Applet FSML was the first language built entirely declaratively
using the infrastructure. EJB FSML is the newest language and it was also specified
declaratively. Furthermore, the four languages represent a set of exemplars, i.e., a
set of representative examples for FSMLs.

The method divides each iteration of the life cycle of an FSML into four phases:
inception, elaboration, construction, and transition. Each phase involves several
development activities, and activities are subdivided into steps. The thesis focuses
on providing concrete examples for the development steps and the outcomes and
challenges in each activity based on the four FSMLs. It also provides strategies for
making engineering decisions, such as deciding the language scope or the language
structure.

Furthermore, we evaluate the method and the exemplar languages. The evalua-
tion is both empirical and analytical. The empirical evaluation involved measuring
the precision and recall of reverse engineering and verifying the correctness or for-
ward and round-trip engineering. The evaluation showed that 1) framework-specific
models can be extracted from application code with 100% precision and high recall
in reverse engineering, 2) the completion code that correctly uses framework’s API
can be generated in forward engineering, and 3) the model and the code created in
multiple iterations of round-trip engineering are equivalent to the model and code
created in reverse and forward engineering, respectively. The analytical evaluation
focused on the external validity of the method, i.e., evaluating the degree in which
the method can be applied for the construction of new FSMLs for other frameworks.

The intended audience of this thesis are framework developers and modeling
language developers. Framework developers can learn about the benefits of taking
a language-oriented perspective on framework APIs and making framework APIs

4

more usable through FSMLs. Modeling language developers can learn about the
specific steps and guidelines for engineering modeling languages for frameworks.
They can benefit from the experience we gathered during the development of four
concrete and working sample languages.

The thesis is organized as follows. Chapter 2 provides the necessary background
on feature modeling and gives key ideas behind FSMLs. Chapter 3 describes the
method for engineering FSMLs. Reverse engineering, forward engineering, and
round-trip engineering are evaluated in Chapters 4, 5, and 6, respectively. The
method and the experience of building the four FSMLs are discussed in Chapter 7.
Related work is presented in Chapter 8. Chapter 9 summarizes the contributions,
limitations, and the future work.

1.1 Contributions

We claim the following research contributions of this thesis.

• The concept of FSMLs. This thesis contains the most complete and up-to-
date description of the concept of FSMLs to date. The thesis supersedes all
previous publications on the topic [6, 9, 13], including the technical reports [8,
10].

• FSML engineering method. This thesis presents language engineering method
extracted from the experience of building four exemplar FSMLs.

• Three of the exemplar languages: Applet FSML, Struts FSML, and WPI
FSML. EJB FSML was built by Matthew Stephan and it was used only in
the preparation of the method.

• Empirical evaluation of the precision and recall of code queries used for reverse
engineering. The thesis contains the evaluation of the code queries which are
improved versions of the code queries presented in an earlier paper [13].

• An approach to fully-incremental, bidirectional, and homogeneous synchro-
nization called agile round-trip engineering. In this approach, the comparison
and reconciliation are performed at the model side.

• Experimental evaluation of the correctness of forward and round-trip engi-
neering. The thesis describes tests used to verify the correctness of code
transformations for Java and algorithms used in forward and round-trip en-
gineering.

• The generic FSML infrastructure for building FSMLs and a set of algorithms
for reverse, forward, and round-trip engineering.

• A reusable set of mapping types together with code queries and code trans-
formations implementing them.

5

Chapter 2

Framework-Specific Modeling
Languages

2.1 Overview

Using object-oriented frameworks as bases for building applications is hard [23,
57, 67]. Frameworks are designed to be highly reusable and therefore they must
be applicable in many different situations, in which they must satisfy particular
requirements of the given application. This increases the complexity of the design
of the framework. One of the premises of using frameworks for building applications
is that application developers do not have to understand the implementation of the
entire framework; instead, they should only learn the application programming
interface (API) of the framework they are using. The API of a framework provides
a set of abstractions, in this thesis referred to as framework-provided concepts,
and means of implementing them in the application code. After choosing an API
concept, application developers instantiate it by writing framework completion code
according to the rules and constraints specified in the API. However, understanding
framework’s API as well as writing, understanding, verifying, and evolving the
completion code are challenging.

In engineering, modeling complex systems is a well established approach to deal-
ing with complexity. A model is an artificial representation of real entities, phe-
nomena, or processes that is useful for answering certain questions about them. In
software engineering, well known examples of models include architectural models,
class models, and business process models. These models allow answering questions
about software systems they represent, such as, what are the components of the
system and how they interact, what is the class hierarchy of an object-oriented
system, and what business process activities are supported by the system.

In this thesis, we propose using framework-specific models to support engineering
of framework-based applications. A framework-specific model is a representation
of a framework-based application that is useful for answering questions related to

6

the usage of the framework’s API by that application. Such questions include:
how is the application using the framework, is the application using the framework
correctly, how should the application use the framework, and is the application
using the framework the way it should be using it.

Every model needs to be expressed using a formal or an informal modeling lan-
guage. In computer science, a formal language is a set of words over an alphabet.
Analogously, a modeling language is a set of models that can be expressed using
the constructs of that language. The above definitions are extensional, that is, they
specify a language as a set of artifacts (words, sentences, models, expressions). In
practice, however, languages are defined intensionally, that is, by specifying the
properties that the artifacts must satisfy in order to belong to the language. Tradi-
tionally, textual languages are defined using grammars, e.g., context-free grammars,
whereas modeling languages are defined using metamodels, e.g., class models.

In this thesis, we propose framework-specific modeling languages (FSMLs) as
languages for expressing framework-specific models. An FSML is a modeling lan-
guage that formalizes API concepts and constraints provided by the framework
the FSML is built for. Also, we propose using cardinality-based feature models as
abstract syntax definition formalism and, consequently, feature configurations as a
representation of the framework-specific models. We choose to define the structure
of framework-provided concepts using feature modeling because the notation is well
suited for expressing variability, which is an important aspect of FSMLs. Feature
modeling has been conceived as a commonality and variability modeling technique
in the context of domain analysis and software product lines [61], [30, ch. 4]. The
connection of feature modeling to domain analysis is important since a substantial
part of FSML engineering can be understood as domain analysis.

Table 2.1 presents four example languages, artifacts that they can express, and
syntax definition formalisms used for defining them.

Table 2.1: Examples of languages, their artifacts, and language definition for-
malisms

Language Artifact Syntax definition formalism
a* string of letters a regular expression
Java program BNF context-free grammar
UML model, e.g., class, activity MOF class model
Applet FSML framework-specific model cardinality-based feature model

(feature configuration)

Figure 2.1 presents an overview of model-supported engineering of framework-
based applications using FSMLs. Boxes represent entities, black arrows repre-
sent relationships, callouts represent contents of entities, and yellow (thick) arrows
represent use cases. The figure presents key relationships between applications,
frameworks, and framework-specific models and languages. An application uses
a framework, that is, it implements instances of concepts provided by the frame-
work’s API. A framework-specific model represents the instances of the concepts

7

Figure 2.1: Overview of model-supported engineering of framework-based applica-
tions using FSMLs

implemented in the application code as feature configurations. An FSML formal-
izes API concepts and constraints as feature models. A framework-specific model
should conform to an FSML, that is, feature configuration should satisfy all con-
straints specified in a feature model. Finally, a framework-specific model contains
feature instances and the application code consists of code patterns that implement
different functionalities of the application. Code patterns can be structural (e.g., a
field) and behavioural (e.g., a method call in the control flow of an object, order of
method calls).

A framework-specific model represents an application because feature instances
from a feature configuration correspond to code patterns that implement them
in the application code. In FSMLs, the correspondence relationship between the
features and code patterns is specified using mapping definitions as shown on Fig-
ure 2.2. The figure is divided into four parts: application, model, FSML, and
mapping interpreter, each representing a different entity of the approach. In the
figure, a feature instance represents a code pattern and a code pattern implements
a feature instance. This correspondence is specified using mapping definitions that
precisely specify what code patterns implement instances of a given feature using a
pattern expression. Mapping definitions may also specify values of some additional
parameters that may be required by code queries of transformations. Each mapping

8

Figure 2.2: Mapping definitions specify the feature-to-code-pattern correspondence

definition uses a particular mapping type. Mapping types are generic and reusable
and they represent different kinds of feature-to-code-pattern correspondences, such
as, a correspondence to Java classes, method calls, or XML elements. Mapping
types define parameters that are set in mapping definitions to define a particular
correspondence, such as, a parameter method signature used to specify a correspon-
dence to method calls with the given signature. The difference between mapping
types and definitions is similar to the difference between SQL language constructs
(e.g., select <p> from <t>, where p and t are parameters) and particular SQL
queries (e.g., select * from ’transactions’).

We refer to the feature model together with mapping definitions as the meta-
model of an FSML. The metamodel can be used in each of the four main use cases
introduced in Section 1: framework API understanding, completion code analysis
and understanding, forward engineering, and completion code evolution. In Fig-
ure 2.1, we present framework API understanding and forward engineering use
cases directly. Reverse engineering and API constraint checking belong to the
completion code analysis and understanding use case. Round-trip engineering and
migration belong to the completion code evolution use case. In framework API un-
derstanding, the metamodel is inspected manually. In reverse, forward, round-trip
engineering use cases the metamodel is interpreted by algorithms for reverse, for-
ward, and round-trip engineering, respectively, implemented in the generic FSML
infrastructure. Migration is performed using specialized forward engineering that
creates new code patterns in a new application that uses a new version of the
frameworks or even an entirely new framework.

Since the mapping types are only specifications, they are implemented by code
queries for reverse engineering and code transformations for forward and round-trip
engineering (cf. Figure 2.2). Mapping definitions provide values of parameters de-
fined by mapping types and required by code queries and transformations. The top

9

part of Figure 2.2, labelled as mapping interpreter, illustrates that mapping types
are generic, reusable, implemented in a mapping interpreter, and that they are not
part of the metamodel of any FSML. We refer to the time when the metamodel
is interpreted by the algorithms as FSML execution. During FSML execution, the
generic FSML infrastructure delegates the execution of code queries and transfor-
mations to pluggable mapping interpreters, which interpret mapping definitions
attached to the features.

In the following sections we delve into the details of feature models and con-
figurations, mapping types and definitions, code queries and transformations, and
metamodel interpretation algorithms. We also briefly present the generic FSML
infrastructure that is used for implementing FSMLs.

2.2 Feature Models of Abstract Syntax

In this chapter we use Java Applet as an example concept from the Java Applet
framework and we show how this concept can be formalized as an FSML. Figure 2.3
shows fragments of the Java Applet Tutorial [90] that we use.

“An applet is a special kind of Java program that a browser enabled with Java
technology can download from the internet and run.”
“An applet must be a subclass of the java.applet.Applet class, which provides
the standard interface between the applet and the browser environment.”
“Swing provides a special subclass of Applet, called javax.swing.JApplet, which
should be used for all applets that use Swing components to construct their GUIs.”
“Life Cycle of an Applet: Basically, there are four methods in the Applet class on
which any applet is built.
init: This method is intended for whatever initialization is needed for your applet.
It is called after the param attributes of the applet tag.
start: This method is automatically called after init method. It is also called
whenever user returns to the page containing the applet after visiting other pages.
stop: This method is automatically called whenever the user moves away from the
page containing applets. You can use this method to stop an animation.
destroy: This method is only called when the browser shuts down normally.”
“To draw the applet’s representation within a browser page, you use the paint
method.”
“Parameters are to applets what command-line arguments are to applications. They
allow the user to customize the applet’s operation.
Applets get the user-defined values of parameters by calling the Applet getPara-
meter method. ”
“You should also implement the getParameterInfo method so that it returns in-
formation about your applet’s parameters.”

Figure 2.3: Fragments of the Java Applet Tutorial [90] used as a running example
in this chapter

10

In FSMLs, we use feature models to model framework API concepts by decom-
posing them into their characteristic features so that a particular instance of the
concept can be described by a particular selection of features it possesses. In our
example, features will represent the quoted fragments of the documentation, for
example, whether an applet extends the JApplet class or whether it uses named
parameters. A particular instance of the concept, that is a particular applet, will
have certain features and may be missing other ones, for example, an applet may
implement the method init, use two parameters named ’WIDTH’ and ’HEIGHT’,
and not implement the method stop.

A feature model is 1) a hierarchy of features and 2) a list of additional constraints
that cannot be expressed using the hierarchy. The root of the hierarchy is referred
to as a concept or a root feature. A feature model encodes a set of all possible legal
feature configurations, which contain feature instances. A feature configuration is
said to be legal if it satisfies a conjunction of all constraints encoded in the feature
hierarchy and the additional constraints. The relation between a feature model
and a feature configuration is similar to the relation between a class model and an
object model, in which objects are instances of classes and the object model is legal
if it satisfies all constraints encoded in the class model. Also, the feature hierarchy
is semantically similar to the containment hierarchy in a class model in that an
instance of a feature cannot exist in a feature configuration without an instance of
its parent feature (except the root feature) the same way as a part object cannot
exist without its container object.

Figure 2.4 presents a fragment of the feature model of the concept Applet.
The left column contains a hierarchy of features represented using indentation:
subfeatures are further to the right. The right column contains explanations of
elements in the left column.

We use a slightly extended form of the cardinality-based feature modeling [31, 33].
In this variant of feature modeling, each feature has a feature cardinality. The car-
dinality is an interval specifying how many instances of a given feature may be
present as children of an instance of its parent feature in a feature configuration.
Optional features have the cardinality of [0..1]. Mandatory features have the car-
dinality [1..1]. Prohibited features are denoted by [0..0]. Multiple features have
the upper bound of the interval greater than 1 or no upper bound as indicated by
the Kleene star (*). For example, the cardinality [2..*] specifies that at least two
clones (instances) of the feature should be present in the feature configuration as
children of every instance of the parent feature. In Figure 2.4, extendsApplet is
a mandatory feature, extendsJApplet is optional, and parameter is an optional
multiple feature.

Features can be also organized into feature groups. Each feature group has a
group cardinality, which is an interval specifying how many of the grouped features
can be present in a feature configuration. Exclusive-or (xor) feature groups have
the cardinality of <1-1>, and inclusive-or (or) feature groups have the cardinality
of <1-k>, where k is the number of features in the group. A feature group with

11

Feature hierarchy Explanation
Applet concept (root feature)

[1..1] name (String) mandatory feature with attribute
![1..1] extendsApplet essential feature

[0..1] extendsJApplet optional feature
[1..1] lifecycleMethods mandatory feature
!<1-5> essential or feature group

[0..1] init

[0..1] start

[0..1] paint optional grouped features
[0..1] stop

[0..1] destroy

[0..*] parameter optional multiple feature
[0..*] name (String) multiple feature with attribute

[0..1] providesParamInfo optional feature
[1..1] infoForParams mandatory feature

Figure 2.4: Feature model for the concept applet

the cardinality <0-k> is equivalent to k optional subfeatures. The sample model
in Figure 2.4 contains an or-group with five features, that is, at least one feature
from that group has to be present in the configuration.

Features may also have a type, which means that a single value of that type can
be associated with a given feature instance in a feature configuration. A feature
with a type is essentially an attribute whose value is set in configuration. For
example, the sample model in Figure 2.4 contains two features having the type
String. Some attributes may also point to other features in the configuration; we
refer to such attributes as reference attributes.

Constraints that cannot be encoded in the hierarchy can be specified separately
as additional constraints or they can be included in the hierarchy as mandatory
features. For example, a constraint may specify that an instance of an optional
feature in one part of the hierarchy may require an instance of another optional
feature in a different part of the hierarchy. More complex constraints may in-
volve Boolean expressions and constraints over sets of feature instances [33]. In
Figure 2.4, the mandatory feature infoForParams corresponds to the constraint
../parameter→../providesParamInfo, that is, whenever at least one instance of
the feature parameter is present in a feature configuration, an instance of the fea-
ture providesParamInfo should also be present. Such a constraint could also be
specified separately as ∀a:Applet . a/parameter→a/providesParamInfo, that
is, the constraint must hold for every instance of the concept Applet. Note that
both constraints use path expressions for feature hierarchy navigation, which are
similar to XPath or Unix file system paths.

The notation we use also supports feature inheritance, which is similar to class
inheritance and allows a feature to inherit the subfeatures of another feature [20].

12

We denote feature inheritance by -|>, e.g., ViewPart -|> Part means that the
feature ViewPart inherits subfeatures of the feature Part. Features can also be
abstract in the same sense as classes, that is, they cannot be instantiated. For
example, the feature Part is abstract. Also, the Liskov substitution principle holds,
that is, inheriting features can be used in place of the feature they inherit from.
For example, a feature with a reference attribute [1..1] provider (Part) may
point at exactly one instance of any feature that inherits from feature Part in a
feature configuration but not at an instance of feature Part since it is abstract.

For the purpose of FSML modeling, we also introduce the notion of essential
features and essential feature groups. Essential features and feature groups have
the lower bound of the cardinality greater than zero and that lower bound can-
not be violated at any time. The notion of essential constraint is similar to the
philosophical notion of essential property, that is, a property that the instance of
a concept has always and in every possible world; otherwise it is not an instance
of that concept [95]. We mark the essential features and feature groups using the
exclamation point (!). Note that the essentiality constraint, similarly to the cardi-
nality constraint, is specified with respect to the direct parent feature only, that is,
it constraints the presence of instances of the parent feature.

For example, the feature extendsApplet is an essential feature of Applet and
the group <1-5> is an essential feature group of the feature lifecycleMethods.
Note that without an instance of extendsApplet feature, an instance of the con-
cept Applet is not an applet. Similarly, without at least one instance of any
of the life cycle methods features (init, start, . . .) an instance of the feature
lifecycleMethods should never be present in a configuration.

Semantically, a feature model describes a set of all legal feature configurations,
that is, configurations that satisfy all constraints encoded in the feature model (hi-
erarchy, cardinality, and additional constraints). However, for practical reasons,
we must be able to express illegal feature configurations in which some constraints
can be violated, which allows us to check for these violations. By introducing the
notion of essential features and feature groups whose cardinality constraints can-
not be violated at any time and allowing non-essential constraints to be violated,
we define a superset of the set of legal feature configurations. Such a superset al-
lows for expressing incorrect concept instances while making sure that the essential
constraints are never violated.

Figure 2.5 presents two sample feature configurations of the feature model from
Figure 2.4. The first configuration is legal because it satisfies all constraints imposed
by the feature model. The second configuration is illegal because the cardinality
constraint of the feature lifecycleMethods is violated: a mandatory feature is
missing. The feature lifecycleMethods cannot be present because the group
cardinality of the essential group is violated. Note that if the essential feature
extendsApplet had been missing, the concept instance Applet would not have
existed.

Feature modeling is closely related to class modeling, which is currently more

13

Feature Instance Hierarchy Explanation
[1] Applet concept instance

[1] name (’MyApplet’) attribute value
[1] extendsApplet essential feature present

[0] extendsJApplet optional feature missing
[1] lifecycleMethods mandatory feature present
!<1-5> group constraint satisfied

[1] init grouped feature present
[1] start grouped feature present
[0] paint

[0] stop grouped features missing
[0] destroy

[1] parameter clone of a multiple feature
[1] name (’color’) attribute value

[1] parameter clone of a multiple feature
[1] name (’width’) clone with an attribute value
[1] name (’height’) clone with an attribute value

[1] providesParamInfo optional feature present
[1] infoForParams mandatory feature present

[1] Applet concept instance
[1] name (’MyApplet2’) attribute value
[1] extendsApplet essential feature present

[1] extendsJApplet optional feature present
[0] lifecycleMethods mandatory feature missing
!<1-5> group constraint violated

[0] init

[0] start

[0] paint grouped features missing
[0] stop

[0] destroy

[0] parameter no clones
[0] name (String) no values

[1] providesParamInfo optional feature present
[1] infoForParams mandatory feature present

Figure 2.5: Feature configurations of two applet instances

commonly used to define the abstract syntax of modeling languages. Cardinality-
based feature modeling with feature reference attributes and feature inheritance
nearly coincides with class modeling [32, 66]. An important property of feature
modeling that distinguishes it from class modeling is improved support for vari-
ability modeling due to feature groups. Furthermore, feature models are rendered
hierarchically with a focus on the concept decomposition into features, whereas the
graph-like rendering of class models is more geared towards showing relations among
classes. Feature models are also closely related to grammars and logic [22, 31, 34].

14

This relation has enabled the application of grammar and logic-based algorithms
in the analysis of feature models and in feature configuration.

2.3 Mapping Definitions

Although feature models adequately represent the structure and variability of the
concepts, the feature model notation treats features merely as symbols devoid of
further semantics. In FSMLs, we specify the semantics of features using mapping
definitions that define the correspondence between features and structural and
behavioural code patterns in the completion code [13].

Traditionally, semantics of languages is specified by giving a semantic domain
and a semantic mapping [52]. Semantic mapping maps syntactic elements to the
elements of the semantic domain. For example, assuming a semantic domain of
natural numbers, a semantic mapping would map expressions in some arithmetic
language (e.g., 12 add: 4) into their interpretation in the semantic domain (e.g.,
16, that is the result of 12 + 4).

In the case of FSMLs, the semantic domain is structural and behavioural code
patterns and the semantic mapping maps features to code patterns. Mapping
definitions, however, are only a part of the semantic mapping because they only
map a single feature to a single code pattern. Semantic mapping, on the other
hand, recursively maps a single feature to the code patterns that that feature and
all of its subfeatures correspond to. Formally defining the semantic domain and the
semantic mapping, however, remains future work. Here we only provide intuitions
for such a formalization.

Figure 2.6 presents mapping definitions for the features from Figure 2.4. The
mapping definitions are presented in angle brackets using a Smalltalk-like notation.
They use predefined mapping types that represent basic kinds of feature-to-code-
pattern correspondences. Mapping types used in this example are presented in
Tables 2.2 and 2.3. For example, the mapping definition <class> for the concept
Applet specifies that the instances of the concept correspond to Java classes.

Table 2.2: Selected mapping types for structural code patterns from Table 4.1
Structural Pat-
tern Expression

Structural Element(s) Matched

class matches a Java class
c fullyQualified-
Name

matches the fully qualified name of the class c

c assignableTo: t
[concrete: r] [local:
p]

matches if objects of the class c are assignable to the type t. The optional parameter
r specifies that only concrete classes should be matched. The optional parameter p
specifies that only source types of the project p should be matched

c methods: s
matches methods with signature s that are implemented or overridden by the class c.
The signature may contain * for the method name to match any method name

Each mapping type has a number of parameters that must be set to define
an actual correspondence to code patterns. In mapping definitions, the parameter

15

Feature hierarchy Feature correspondence explanation
Applet <class> concept instance corresponds to a Java class

[1..1] name (String) <fullyQualifiedName> value of the feature is a fully
qualified name of the context class

![1..1] extendsApplet <assignableTo:’Applet’> feature is present if the
context class is a subtype of Applet

[0..1] extendsJApplet <assignableTo:’JApplet’>
[1..1] lifecycleMethods a feature used for grouping, no mapping definition
!<1-5>

[0..1] init <methods:’void init()’> each grouped feature corre-
sponds to a non-inherited method of the context class

[0..1] start <methods:’void start()’>
[0..1] paint <methods:’void paint(Graphics)’>
[0..1] stop <methods:’void stop()’>
[0..1] destroy <methods:’void destroy()’>

[0..*] parameter <callsReceived:’String getParameter(String)’ lo-

cation:’void init()’> clones correspond to calls received
by objects of the context class

[0..*] name (String) <valueOfArg:1> value of the feature is the value
of the first argument of the context method call

[0..1] providesParamInfo <methods:’String[][] getParameterInfo()’>
[1..1] infoForParams <constraint:../parameter requires:../provi-

desParamInfo> constraint

Figure 2.6: Mapping definitions for features from the applet feature model

values can be provided statically or retrieved from other features during FSML
execution. The first option involves specifying the parameter values directly in the
mapping definitions. For example, the type name Applet is specified explicitly as
a parameter value in <assignableTo: ’Applet’>. The second option involves
specifying a feature as a parameter, in which case the code pattern corresponding
to that feature during FSML execution will be used as the parameter value. The
feature to be used for the retrieval of the parameter value is specified by an absolute
or relative path expression, such as, ../parameter in Figure 2.6.

In addition to specifying parameters explicitly, parameter values can also be de-
termined implicitly using a context mechanism. The context mechanism retrieves
the value for a parameter from the instance of the closest parent feature with the
required mapping type. For example, the mapping type c fullyQualifiedName

requires a class as the value of its parameter c (cf. Table 2.2). However, the map-
ping definition for Applet’s subfeature name is <fullyQualifiedName>; that is,
it does not explicitly specify the feature corresponding to a class. Therefore, the
context mechanism selects Applet as the feature since it is the closest parent with a
mapping type that matches a class, which means that the class corresponding to an
instance of Applet is used as the parameter value to fullyQualifiedName. That

16

Table 2.3: Selected mapping types for behavioural code patterns from Table 4.2
Behavioural Pat-
tern Expression

Run-time Event Pattern(s) Matched

c callsTo: s re-
ceiver: r [statement:
s]

matches method calls to methods with the signature s received by objects assignable
to the type r in the control flow of instances of the class c. The optional parameter s
specifies whether only method calls which are individual statements should be matched.

c callsReceived: s
matches method calls to methods with the signature s received by objects assignable
to the class c

mc valueOfArg: i matches run-time values of the ith argument of the method call mc

class is also referred to as the context class. As a result, the mapping definition
<fullyQualifiedName> specifies that the feature name corresponds to the fully
qualified name of the class corresponding to the instance of Applet. By similar rea-
soning, the context class is also implicitly the parameter value in all the remaining
mapping definitions in Table 2.6 except the subfeature name of parameter. The
method call required as a value for the parameter mc for the mapping definition
<valueOfArg: 1>, is the method call that corresponds to the instance of its par-
ent feature. Note that the context mechanism is redundant because an explicit path
to the appropriate parent feature can always be given. However, the mechanism
greatly simplifies the metamodels and it reflects the fact that, in feature modeling,
subfeatures are properties of their parent features.

An instance of a mandatory, optional, or essential feature in a configuration
directly corresponds to at least one pattern in the code. Each instance (clone) of
a multiple feature, e.g., parameter, directly corresponds to exactly one pattern
in the code. Note that the semantic mapping specifies the actual correspondence,
that is, every feature instance directly corresponds to a code pattern specified by its
mapping definition and indirectly corresponds to all code patterns of its subfeatures.

For example, underlined code patterns in Figure 2.7 implement feature instances
from the first configuration in Figure 2.5. For clarity, we only underlined names
of class and method declarations instead of the whole declarations. In summary,
the concept instance Applet corresponds to the entire class declaration (lines 1-
14), the instance of name corresponds to the class’ name (line 1), the instance of
extendsApplet corresponds to the super class declaration (line 1). Instances of
init, start, and providesParamInfo correspond to method declarations on lines
2-9, 10, and 11-13, respectively. Two instances of parameter correspond to method
calls on lines 3 and 8 which are received by the applet. The instance of name for
the first parameter corresponds to the first argument of the method call on line 3.
The two instances of name for the second parameter correspond to the two possible
values (lines 4 and 6) of the first argument of the method call on line 8.

2.4 Code Queries and Transformations

Mapping types define only the feature-to-code-pattern correspondence and they
are not directly executable. In our implementation, we realized mapping types by

17

1 public class MyApplet extends Applet {

2 public void init() {

3 String color = getParameter("color");

4 String paramName = "width";

5 if (...)

6 paramName = "height";

7 ...

8 String dimension = getParameter(paramName);

9 }

10 public void start() { ... }

11 public String[][] getParameterInfo() {

12 return ...;

13 }

14 }

Figure 2.7: Sample code described by the first configuration from Table 2.5

implementing code queries and code transformations for each type. Code queries
match structural and behavioural patterns in the completion code and code trans-
formations incrementally add, modify, and remove code patterns. Code transfor-
mations may require additional information which is usually abstracted away by
code queries. Such information is specified using forward parameters of mapping
types.

For example, a code query for the callsReceived mapping type from Ta-
ble 2.3 matches method calls to methods with a given signature received by objects
assignable to a given type (cf. Table 2.5), whereas a code transformation for that
mapping type adds such a method call in the context class (cf. Table 2.4). The
signature of a target method in which the method call is to be added is speci-
fied using the forward parameter location, e.g., location: ’void init()’ (cf.
Figure 2.6).

Mapping types are defined for a certain artifact type, such as Java or XML,
and so are code queries and transformations. That way, the FSML approach is
not tied to a particular artifact type and providing support for a new artifact
type amounts to defining new mapping types and implementing code queries and
transformations. The generic FSML infrastructure is artifact-type-agnostic, i.e.,
it supports pluggable mapping interpreters that implement mapping types for a
given artifact type. To date, we developed three mapping interpreters: a Java
mapping interpreter for Java files, a Plug-in mapping interpreter for plugin.xml
files of Eclipse plug-ins, and an XML mapping interpreter for XML documents.

It is important to note that, whereas mapping definitions specify an exact cor-
respondence between the features and code patterns, code queries and code trans-
formations may only approximate that correspondence. For example, a code query
for the mapping type callsTo (cf. Table 2.3) locates method calls in the control

18

flow of objects of a given class and, by the very nature of static analysis, the control
flow graph used during search is an approximation of the run-time control flow [13].

Mapping types used in the exemplar languages and code queries implementing
them are presented in Chapter 4. Code transformations implementing the mapping
types are presented in Chapter 5.

2.5 Metamodel Interpretation Algorithms

The algorithms implemented in the generic FSML infrastructure were designed to
leverage the structure of feature models which are trees and where subfeatures are
properties of parent features. In a feature configuration, a feature cannot exist
without its parent feature and a parent feature cannot exist without all of its essen-
tial subfeatures. Therefore, the algorithms process the metamodel in the depth-first
manner. Additionally, the subfeatures of a feature are processed in the order they
appear in the metamodel. Although, using the order of features to control the order
of feature processing is somewhat arbitrary because the order could be automati-
cally determined by analyzing dependencies between mapping definitions, we did
not find it too restrictive and it simplified the design of the algorithms.

The processing of a feature involves two phases: parameter evaluation and ex-
ecution of code queries and transformations. For a given feature, its mapping def-
inition is processed by an appropriate mapping interpreter, that is, an interpreter
that implements the mapping type used in the mapping definition (cf. Figure 2.2).
Parameter evaluation consists of computing default values for optional static pa-
rameters and retrieving values from other features for dynamic parameters; the
latter involves either using context mechanism or navigating to the target feature
using the explicit path as described in Section 2.3. Note that the value can be re-
trieved only if the target feature has already been processed before processing the
given feature: this is always the case for context mechanism, because the parent
feature is always processed first. When using explicit paths for specifying target
features the FSML designer must ensure, by controlling the order of features, that
the target feature will be processed first.

The algorithms assume that the metamodel is both syntactically correct and
well typed. Well-typedness is related to the requirements imposed by the mapping
types used in mapping definitions: (1) all required static parameters must be set
(optional static parameters can be left unspecified); (2) target features specified
by path expressions for dynamic parameters must exist, they must have mapping
definitions using the required mapping type, and they must be processed before
the feature with the given mapping definition; and (3) if the context mechanism is
used for a dynamic parameter (i.e., the path expression is not specified), then the
parent feature with a mapping definition using the required mapping type must
exist. Design-time type checking is currently not implemented; instead, run-time
exceptions are thrown if any of the conditions mentioned above is violated. Addi-
tionally, certain checks cannot be executed at design time. For example, verifying

19

the existence of classes and interfaces referred to by fully qualified name in mapping
definitions can be performed only in the context of a particular project at run-time.

The algorithms also actively enforce the satisfaction of the essentiality constraint
by removing an instance of the parent feature whenever the lower bound of an
essential subfeature or subfeature group is not satisfied. The entire subtree must
be removed because a feature instance cannot exist without an instance of its
parent feature. Note that every essential feature also is, by definition, mandatory.
However, the cardinality constraint of mandatory features is not actively enforced,
that is, missing instances of mandatory features cause errors in the configuration
of instances of their parent features instead of causing the removal of the parent
instance. This active enforcement of the essentiality constraint is similar to the
enforcement of the containment constraint in class models, whereby a part object
cannot exist without its container object, and therefore all part objects are removed
together with their container object.

2.5.1 Forward engineering

Forward engineering creates code for a given framework-specific model and is driven
by the model. The algorithm simply traverses the feature configuration in a depth-
first manner starting from the instance of the root feature and executes code trans-
formations for every feature with a mapping definition.

Table 2.4 presents selected code transformations that implement mapping types
used in the example from Figure 2.6. Because forward engineering is executed for an
existing model, some code transformations retrieve values of their parameters from
other features. This allows specifying, for example, class or method names as at-
tribute values of feature instances. For example, the code transformation addClass

retrieves the fully qualified name of the class to be created from subfeatures with
mapping types className and qualifier or from a subfeature with mapping type
fullyQualifiedName.

For example, for the first configuration from Figure 2.5, the algorithm first cre-
ates a Java class called MyApplet using addClass, next it adds the extends Applet

superclass declaration and the necessary import statement import java.applet.-

Applet; using addAssignableTo, it creates two methods void init() and void

start() using addMethod, it creates two method calls getParameter(null) using
addCallTo, it replaces the first argument of the first method call with "color" and
of the second call with name0, where name0 is a local variable assigned twice with
values "width" and "height" using addArgVal. Both method calls are inserted into
the method init as specified using a forward parameter location (cf. Table 2.6).
Finally, the algorithm creates a method String[][] getParameterInfo() using
addMethod. Figure 2.8 presents the resulting code. We evaluate forward engineer-
ing in Chapter 5.

20

Code Transformation
Expr. | Defaults

Result

p addClass: n [in: q] | q=”
creates a compilation unit with a class declaration named n in package q. Re-
trieves values of the parameters n and q from subfeatures with mapping types
className and qualifier or fullyQualifiedName

c addAssignableTo: t [con-
crete: e] | e=true

If t is an interface, adds a c implements t superinterface declaration or adds t
to the existing list of implemented interfaces. If t is a class, adds a c extends

t superclass declaration. If e=true, adds implementations of the unimplemented
methods of the superinterface or an abstract superclass

c addMethod: s [name: n]

adds a method declaration of signature s in the class c. If method name n is
given, replaces the name from the signature s with n. If the signature contains *
for the method name, the parameter n is mandatory. Retrieves the value of the
parameter n from a feature with the mapping type methods

c addCallTo: s [receiver-
Expr: r] location: l [posi-
tion: p] | r=”, p=after

creates a method call to a method with the signature s with the receiver expres-
sion r in the method of signature l of the class c at the position p ∈ {before,
after}

mc addArgVal: i [values: v]
adds values of the ith argument of the method call mc. Adds a literal for a single
value. For multiple values create a variable and multiple assignments with values
v

Table 2.4: Selected code transformations for the class, assignableTo, methods,
callsReceived, and valueOfArg mapping types

import java.applet.Applet;

public class MyApplet extends Applet {

void init() {

getParameter("color");

String name0 = "width";

name0 = "height";

getParameter(name0);

}

void start() {

}

public String[][] getParameterInfo() {

return null;

}

}

Figure 2.8: Code generated for the first configuration from Figure 2.5

2.5.2 Reverse engineering

Reverse engineering creates a framework-specific model for the given application
code. Reverse engineering is driven by the metamodel of an FSML: the algorithm
traverses the metamodel, executes code queries for features in the metamodel, and
creates instances of these features in the model for the code patterns matched by
the queries. After creating an instance of a feature in the model, a traceability link
is established between the feature’s instance and the corresponding code pattern.
Traceability links enable bidirectional navigation between the model and the code.
The algorithm begins with creating instances of the root feature. In general, there
are five ways in which an instance of a feature is created.

21

(1) If a feature does not have any mapping definitions attached, an instance
of the feature is created and its subfeatures are processed next. For example, an
instance of the feature lifecycleMethods is created this way.

(2) If a feature has a mapping definition that uses a mapping type for which a
code query can be directly executed, an instance is created for each result of the
query if a feature is multiple or a single instance is created if the result is non-empty
otherwise. For example, instances of the feature parameter are created for every
method call matched by the query for the callsRec mapping type.

(3) If a feature has a mapping definition that uses a mapping type for which
a code query cannot be directly executed, the query for an essential feature is
executed in the essential mode. In the essential mode, instances of the parent
feature are created based on the results of the code query for a subfeature. For
example, instances of the concept Applet are created based on the results of the
query for the feature extendsApplet, that is, an instance of Applet is created for
every Java class that extends the java.applet.Applet class.

(4) If a feature has a mapping definition that uses a mapping type for which a
code query cannot be directly executed and the feature has a base concept reference
subfeature, an instance of the feature is created for every instance of the feature
referenced through the base concept reference and the reference attribute is set to
point at that feature. The base concept reference mechanism is used for modulariz-
ing the metamodels of FSMLs and it allows for composition of multiple languages.
For example, the feature provider (Figure 3.3, line 63) is a base concept reference.
An instance of the concept AdapterProvider will be created for every instance of
the concept Part and the reference attribute of the feature provider will be set to
the instance of Part for which the adapter provider was created. As a result, an
instance of AdapterProvider will correspond to the same class as the instance of
Part corresponds to. Note that, due to ordering of features, all instances of Part

will be created before instances of AdapterProvider.

(5) If a feature has an attribute and no subfeatures, an instance of the feature
is created for every value returned by the code query and the feature’s attribute is
set to that value. For example, an instance of the feature name will be created for
each value returned by the query for the mapping type valueOfArg 1.

(6) Finally, if a feature corresponds to a constraint, an instance of the feature
is created if the constraint is satisfied. For example, an instance of the feature
infoForParams (cf. Figure 2.6) will be created if the requires constraint is satis-
fied.

After creating an instance in one of the ways mentioned above, the instance can
be removed if any of its essential features are missing or essential feature groups
are violated (we say that an instance is excluded from the configuration). If an
instance is not removed, the traceability links are established between the instance
and the matched code pattern(s).

1Static analysis may return multiple values if the argument is a variable (cf. Section 4))

22

The last phase of reverse engineering is evaluation of model queries and it takes
place after the entire model has been created. Model queries can set the values of
feature attributes to the values of other features or set reference attributes to point
at other features. For example, the feature actionImpl (Figure 3.4, line 19) points
at an instance of the concept ActionImpl.

The essential mode significantly reduces the time of reverse engineering. For
example, the mapping definition <class> specifies that instances of the concept
correspond to Java classes and executing a query directly would match all classes
in the system and an instance of applet would be created for each class. All in-
stances that correspond to classes that do not extend the class Applet would then
be excluded from the configuration because they would not have the essential fea-
ture extendsApplet. Using the essential mode avoids unnecessary processing of
instances for which essential features are missing. Also note that it is not neces-
sary to execute queries in essential mode for each essential feature and intersect
resulting sets of instances because the intersection will be computed by removing
all instances that have at least one of the remaining essential features missing. This
way only instances that have all their essential features will remain.

Not every code query can be executed in the essential mode. Furthermore,
whether a query will be executed in the essential mode depends on the structure of
the feature model and whether the feature is essential. For example, the code query
for the feature extendsJApplet (i.e., getAssignableTo) will not be executed in
the essential mode since the feature is not essential. An instance of the feature will
be created only if the context class extends the class JApplet (cf. (2)).

Table 2.5 presents code queries that implement mapping types used in the ex-
ample from Figure 2.6. Out of these, only the query getAssignableTo can be
executed in the essential mode.

Code Query Expr. Result

c getAssignableTo: t [con-
crete: e] | e=true

true if the class c is assignable to the type t. In essential mode, set of classes
assignable to the type t, limited to concrete classes only if e=true.

c getFullyQualifiedName fully qualified name of the class (c).

c getMethods: s
set of methods of signature s in the class c. The signature s may contain * for
the method name.

c getCallsReceivedTI: s

a set of method calls with the signature s, such that the receiver of each call is
assignable to the type c. In the case when the type of the receiver is more general
then the type c, the query traverses the receiver’s dataflow graph backwards to
infer its more specific type

mc getArgValConstant-
Prop: i

set of values of the ith argument of the method call mc retrieved using interproce-
dural constant propagation limited in scope to the class that contains the called
method

Table 2.5: Selected code queries for the class, assignableTo, methods, callsRe-
ceived, and valueOfArg mapping types

For example, reverse engineering the code from Figure 2.8 produces the first
configuration from Figure 2.5 and proceeds as follows. First, one instance of the
concept Applet is created for the only Java class that extends java.applet.Applet
by executing getAssignableTo for the essential feature extendsApplet in the es-
sential mode (cf. (3)). Next, the value of the feature name is set to the fully

23

qualified name of the context class (cf. (5)) using getFullyQualifiedName. Next,
the feature extendsApplet is instantiated and its subfeature extendsJApplet is
not instantiated using getAssignableTo. Next, the feature lifecycleMethods is
instantiated (cf. (1)) and two of its subfeatures are instantiated (init and start)
using getMethods. The feature paint is not instantiated because the applet does
not implement the method paint. The instance of the feature lifecycleMethods

is not removed because its essential group’s cardinality is satisfied. Next, the query
getCallsReceivedTI for the feature parameter matches two method calls. One
instance of the feature parameter is created for the first method call (cf. (2))
and an instance of the feature name is created for and set with the value of the
first argument of the context method call using getArgValConstantProp (cf. (5)).
Analogously, the second instance of the feature parameter is created for the sec-
ond method call (cf. (2)) and two instances the feature name are created for each
possible argument value (cf. (5)). The feature providesParamInfo is instantiated
using getMethods. Finally, an instance of the feature infoForParams is created
(cf. (6)). We evaluate reverse engineering in Chapter 4.

2.5.3 Round-trip engineering

Round-trip engineering (RTE) incrementally synchronizes a number of related arti-
facts. The artifacts are first compared to identify the changes that were made since
the last time the artifacts were synchronized. Next, in the reconciliation phase,
the identified changes are propagated to the related artifacts in order to reestablish
the consistency among the artifacts. We implemented a particular approach to
round-trip engineering called agile round-trip engineering [9] in which comparison
and reconciliation are performed on the model side.

Figure 2.9: Artifacts and processes of agile round-trip engineering

Figure 2.9 presents an overview of agile round-trip engineering. The intention
of agile round-trip engineering is to synchronize the current asserted model, which
represents the intended model of the application, and the current framework com-
pletion code, which may be inconsistent with the asserted model. The asserted

24

model and the completion code that are consistent are also referred to as being rec-
onciled. In order to synchronize the asserted model and the completion code, the
current implementation model is automatically reverse engineered from the current
code. Furthermore, we assume that the last reconciled model contains the latest
copy of each feature instance that was archived after the features’s most recent syn-
chronization. Special cases occur if any of the three artifacts, namely the asserted
model, the last reconciled model, or the completion code, are missing. These cases
include situations in which the code has to be first created from an existing model
or the model has to be first created from existing code or independently created
model and code need to be synchronized for the first time.

After reverse engineering the implementation model, the three models are com-
pared and the result of the comparison is presented to the developer. Synchro-
nization states, the result of the comparison, describe the identified changes such
as feature additions and removals or feature attribute value changes. Conflict-
ing changes, such as attribute values that changed inconsistently, are also detected.
During the reconciliation, the developer decides in which way a given change should
be propagated: to the model or to the code. Reconciliation decisions towards code
trigger code transformations and decisions towards model trigger model update
with the features and values from the implementation model. In the following two
sections we describe the comparison and reconciliation phases and the reconciliation
algorithm.

Comparison

The comparison of the asserted, implementation, and last-reconciled models con-
sists of two phases: matching and computation of synchronization states. Matching
computes a tree of triples (3-tuples) < a, i, l > in which features a, i, and l reside
in the three models, respectively, and they correspond to each other. The tree of
triples is created by overlaying trees of features from the three models. We use “-”
to indicate a missing feature in a model corresponding to the position in the triple,
that is, the first position corresponds to the asserted model, second to the imple-
mentation model, and the third to the last reconciled model. In our implementation
we use a form of structural matching [11] in which the correspondence between fea-
tures from the three models is established based on their position in each model
and the values of some of their subfeatures. We encode structural information of
each feature in a key. The computation of the key for a given feature is guided
by key annotations attached to features: key, parentKey, and indexKey, and it
proceeds as follows. The key always includes the name of the feature. The annota-
tion parentKey specifies that the key for the given feature should include the key
of the feature’s parent. The annotation indexKey is used for multiple features and
it specifies that the key for the given feature should include the feature’s position
in the sequence of instances of the multiple feature. Finally, the annotation key

is used to specify the subfeatures of the given feature whose values should be in-
cluded in the key. Note that it is the responsibility of FSML designer to attach key

25

annotations to features so that feature instances can be unambiguously identified.

Figure 2.10 presents key annotations for the fragment of the example feature
model from Table 2.4. The annotations are surrounded with “|” (bar). According

Applet

[1..1] name (String) |key|

![1..1] extendsApplet |parentKey|

[0..1] extendsJApplet |parentKey|

...

[0..*] parameter |parentKey,indexKey|

[0..*] name (String)

Figure 2.10: Feature model for the concept Applet including key annotations

to the annotations, the key for an instance of the concept Applet will include the
value of the feature name; the key for an instance of the feature extendsApplet will
include the key for its parent; and the key for an instance of the feature parameter

will include the key for its parent and the index of the instance in the sequence of
parameters.

After matching, synchronization states can be computed for each triple. The
computation follows a decision table in Table 2.6. The table assumes the existence
of feature equality operator “=”. Two features are considered equal if their values
are equal or all of their subfeatures are equal. A feature can be characterized as
unchanged, added, removed, or modified. A feature is modified if its value changed
or any of its subfeatures changed. Additionally, a change can be consistent or
inconsistent. Inconsistent (conflicting) changes propagate upwards in the feature
hierarchy. For example, if a subfeature was added inconsistently then all its parent
features will be added or modified inconsistently.

Reconciliation

After detecting changes for each triple, actions can be taken to reestablish the con-
sistency between the model and the code. The reconciliation can be both manual
and automatic as indicated in Figure 2.9. In manual reconciliation, developers
simply update the model and the code. In automatic reconciliation, developers
make reconciliation decisions which trigger code transformations and model up-
dates. Possible reconciliation decisions are enforce, override-and-enforce, update,
override-and-update, and ignore. Enforce decisions trigger code transformations
and update decisions trigger model updates.

For example, if a feature was modified in the code (cf. Table 2.6, row 4), the
default reconciliation decision is model update. The developer may decide on update
or override-and-enforce. In the first case, the model would be updated according to
the code. In the second case, the code would be overridden according to the model.
Developers can also resolve conflicts using the override-and-enforce and override-
and-update decisions. For example, if a feature was removed from the code and

26

Table 2.6: Results of three-way compare of the corresponding features < a, i, l >
from the asserted model A, the implementation model I, and the last-reconciled
model L, respectively. The absence of a corresponding feature is represented by -.
Table adapted from [10].

A I L condition detected changes
1 a i l a = i = l unchanged
2 a i l a = i ∧ a 6= l modified consistently in A & I
3 a i - a = i added consistently to A & I
4 a i l a 6= i ∧ a = l modified in I
5 a i l a 6= i ∧ i = l modified in A
6 a i l a 6= i 6= l 6= a (conflict) modified inconsistently in A & I
7 a i - a 6= i (conflict) added inconsistently to A & I
8 a - l a = l removed from I
9 a - l a 6= l (conflict) removed from I, modified in A
10 a - - added to A
11 - i l i = l removed from A
12 - i l i 6= l (conflict) removed from A, modified in I
13 - i - added to I
14 - - l removed from A & I

modified in the model (cf. Table 2.6, row 9), the conflict can be resolved by adding
the feature back to the code according to the model using override-and-enforce or
by removing the feature from the model using override-and-update.

Reconciliation algorithm

Reconciliation algorithm executes code transformations and model updates accord-
ing to synchronization states and reconciliation decisions. It is similar to the algo-
rithm for forward engineering; however, it is driven by synchronization states and
reconciliation decisions rather then just the model. The algorithm simply traverses
the tree of triples in the depth-first manner starting from the feature it was invoked
on and executes code transformations for enforce decisions and model updates for
update decisions. The algorithm can be invoked on any triple in which at least one
feature exists or on a triple whose parent triple has at least one existing feature.

In our implementation, not every change can be automatically propagated to the
code. In particular, code transformations for only a few mapping types support code
pattern modification (refactoring) and none support pattern removal. However,
most of them support pattern addition. We evaluate round-trip engineering in
Chapter 6.

27

Figure 2.11: Architecture of the generic FSML infrastructure

2.6 The Generic FSML Infrastructure

The generic FSML infrastructure is a framework for implementing FSMLs. Fig-
ure 2.11 presents an architectural overview of the infrastructure. The infrastructure
implements the metamodel interpretation algorithms presented in the previous sec-
tions. The infrastructure is implemented as an Eclipse plug-in and it contributes
two views: Model-Code Navigation and Model-Code Synchronization, and two ac-
tions: Model-Code Synchronize and Model-Code Reconcile. The first view displays
traceability links established for a selected model element in a model editor; fol-
lowing the link highlights a corresponding fragment of the code. The Model-Code
Synchronize action executes reverse engineering and comparison processes of round-
trip engineering and displays the results (synchronization states) in the Model-Code
Synchronization view. The Model-Code Reconcile action executes the reconciliation
algorithm for the selected synchronization triple.

The infrastructure also provides a basis for implementing new model wizards,
which execute reverse engineering and create a model file. A new model wizard is
implemented by extending the basic FSML Analysis Wizard.

The infrastructure also provides a support for implementing the mapping inter-
preters for different artifact types. Each mapping interpreter is implemented in a
separate Eclipse plug-in. Each mapping interpreter has to be registered with the
infrastructure before it is used; usually each FSML extends the basic Model-Code
Synchronize action and it registers the required interpreters. FSMLs also register
the mapping interpreters in new model wizards because they are needed for reverse
engineering.

Finally, the infrastructure contributes a preferences page offering different log-
ging options, such as computing reverse engineering statistics, enabling code variant
analysis, and computing code pattern scattering metrics.

All mapping interpreters also use different Eclipse APIs. The Java mapping in-
terpreter uses Eclipse Java Development Tools (JDT) [40] API and it relies on the
parser, abstract syntax trees API, and the incremental compiler. The Java mapping
interpreter handles both plain Java as well as Java projects based on the OSGi [77]
component framework. Handling of OSGi components (bundles) is critical for being
able to analyze Eclipse plug-ins, which are OSGi components. The Plug-in map-

28

ping interpreter uses Eclipse Plug-in Development Environment (PDE) [41] API for
handling the plugin.xml files. Finally, the XML mapping interpreter uses Eclipse
Web Tools Platform (WTP) [42] API for handling XML files.

2.7 Summary

In this chapter we presented the key ideas underlying framework-specific modeling
languages. FSMLs formalize framework API concepts and can be used for express-
ing framework-specific models that describe how an application instantiates the
concepts in the scope of an FSML. We showed how feature models can be used
for modeling API concepts and how feature configurations can be used for repre-
senting framework-specific models. We described that feature instances represent
code patterns in the application code and that correspondence is defined by attach-
ing mapping definitions to features. Mapping definitions use mapping types that
are generic and reusable kinds of feature-to-code-pattern correspondences. Map-
ping types are implemented by code queries and transformations that are used in
reverse, forward, and round-trip engineering. Finally, we briefly introduced the
generic FSML infrastructure that is a framework for building new FSMLs.

In the next chapter, we present a method for engineering new FSMLs. The
method was extracted post-mortem from our experience with building four FSMLs.

29

Chapter 3

Method for Engineering FSMLs

In this chapter we present a method for engineering new framework-specific mod-
eling languages that we devised post-mortem from the experience of building four
such languages. We present the method instead of simply describing the four ex-
emplar FSMLs because this allows us to expose the rationale behind certain design
decisions we made and to present the value propositions, use cases, and interesting
metamodel fragments of the FSMLs as examples. Full metamodels are presented
in Appendix F.

Since the method embodies our experience with FSML engineering, we make
no claims of the method’s completeness or usefulness. The method presented here
is our first attempt to creating an FSML engineering method and we expect it to
be extended and refined in the future. Also, we leave the evaluation of the method
for future work. Such an evaluation would involve an experiment in which subjects
without prior FSML engineering experience would apply the method and provide
feedback about correctness, completeness, and usefulness of the method.

The method focuses only on the abstract syntax and semantics of the language.
Concrete syntax is outside of the scope of this thesis; however, certain information,
such as, whether a concept is component- or connector-oriented, could be used in
the development of the concrete syntax.

Finally, we believe that presenting an engineering method is more valuable then
presenting the four FSMLs because the method is a result of the analysis of the
languages that would have to be otherwise done by anybody attempting to build a
new FSML.

3.1 Overview

The design and implementation of FSMLs is an iterative and incremental process.
In each iteration, new entities, such as concepts, features, mapping types and def-
initions, and implementations of code queries and transformations are added and
existing ones are evolved.

30

Figure 3.1: FSML life cycle: iterations and phases

Our engineering method was inspired by the Unified Process for software devel-
opment [58]. The life cycle of an FSML consists of multiple iterations, each having
the following phases as shown on Figure 3.1. Each iteration has different focus and
requirements.

1. Inception is the initial planning phase. It is focused on resolving global ques-
tions such as determining the value proposition of the language and the use
cases to be supported.

2. Elaboration is focused on identifying the main concepts and creating the over-
all structure of the feature model.

3. Construction is a refinement phase in which the concepts are decomposed
into features and mapping definitions are created. Additionally, new mapping
types, code queries, and code transformations can be added or existing ones
can be refined.

4. Transition is focused on improving the quality of the language, verifying
whether the language delivers its value proposition, and preparing it for the
release to the users (application developers).

Within each phase, FSML developers perform several activities and activities con-
sist of steps. Certain activities are dominant in certain phases, but each activity
can potentially be performed in any phase. For example, value proposition is usu-
ally defined in the inception phase, but it can also be redefined in the subsequent
phases. Furthermore, activities are performed iteratively. For example, the identi-
fication of a concept is followed by the identification of its features, which may be
followed again by the identification of another concept.

The following sections describe the phases and their dominant activities. The
activities and steps are presented in the form of instructions that can be directly
followed by FSML developers. The presentation uses a naming scheme whereby

31

Figure 3.2: FSML life cycle: phases and their dominant activities in a single itera-
tion

each activity is labeled with the initial letter of the corresponding phase name and
its consecutive number in the activity list for the phase. Each step is labeled by
its activity label and the number representing its position within its activity. For
example, I1 is the label of the first activity of the inception phase and I1.1 is the
first step of that activity. Figure 3.2 illustrates the frequency of performing certain
activities in certain phases of the FSML’s life cycle.

3.2 Inception

The input to this phase is a concrete framework for which an FSML is to be
designed. Table 3.1 shows information related to the inception of the four exemplar
languages. In this phase, the following activities are performed.

I1: Determine the purpose of the language. The first activity in FSML
engineering is determining the value proposition for the language in the current
iteration. What problem or problems should the language address? Table 3.1
summarizes the value propositions for the four exemplar FSMLs.

The main value proposition for developing WPI was that implementing Eclipse
part interactions involves several implementation steps that are usually highly scat-
tered in the completion code. As a result, determining the presence and the prop-
erties of interactions in the completion code is challenging for application develop-
ers. Also, some necessary implementation steps may easily be missed when imple-
menting interactions. Consequently, the purpose of the WPI FSML is to ease the
understanding of the interactions by providing a model and navigability to the cor-
responding code fragments and to simplify the creation of interactions by checking
API constraints and offering round-trip engineering.

The Struts FSML was developed initially to demonstrate the feasibility of mi-
grating Struts applications to Java Server Faces (JSF) framework. Struts and JSF
are two frameworks for developing web applications that are conceptually similar,

32

with JSF providing more advanced features. Later (in the next iteration), the
focus of the Struts FSML shifted towards visualizing page flow and checking the
referential integrity between Java completion code and the corresponding XML con-
figuration files. The latter aspect is important in Struts-based development since
framework concepts are represented both in Java and XML and related by name
and naming mistakes are frequent and typically discovered only at runtime. The
FSML allows detecting such mistakes at development time.

The Applet FSML was developed primarily as an pedagogical example. It pro-
vides an overview of the main features of applets from the viewpoint of the Applet
API and supports full round-trip engineering. The language was the main example
used when extending our FSML implementation infrastructure with support for
declarative mapping definitions. It was also used to compare the FSML approach
to the design fragment approach, which documents usage patterns for framework
APIs [46]. We used the same set of 56 applets as a benchmark for testing the
FSML. Since the Applet API is relatively simple, the Applet FSML is particularly
useful as an introductory example when learning the FSML approach.

The main motivation for the EJB FSML was the introduction of Java anno-
tations as an additional configuration mechanism in EJB 3.0, which supplements
the usual configuration through XML-based deployment descriptors. The EJB 3.0
specification defines a set of complex rules governing the merge and overriding of
configuration information specified in Java and XML. As a result, tool support is
required in order to see the final configuration and understand how it originated.

Table 3.1: Inception of the exemplar FSMLs
WPI FSML Struts FSML Applet FSML EJB FSML

Inception Fall 2005 Fall 2006 Fall 2006 Fall 2007
Developers Micha l Antkiewicz Micha l Antkiewicz,

Aseem P. Cheema
Micha l Antkiewicz Matthew Stephan

Framework Eclipse Workbench 3.x Apache Struts 1.x Java 5.0 Applet Sun EJB 3.0
Value
proposi-
tion

Provide (1) design-
level overview of the
system, which contains
workbench parts and
interactions among
them; (2) navigability
to the crosscutting
implementation; and
(3) API constraints
checking. Demon-
strate feasibility of
round-trip engineer-
ing.

Initial focus was to
provide (1) semi-
automatic comple-
tion code migration
from Struts to Java
Server Faces frame-
work; later the focus
changed to support-
ing (2) referential
integrity checking be-
tween Java and XML
and (3) visualizing
web-page flow

(1) Drive the exten-
sion of the generic
FSML infrastructure
to support defining
FSMLs declaratively;
(2) Compare FSML
approach to design
fragments approach
using applets as
benchmark. (3)
Demonstrate feasi-
bility of round-trip
engineering. (4) Pro-
vide an introductory
FSML example

Provide (1) an over-
all configuration
view merging infor-
mation from Java
and deployment
descriptors and (2)
support detection
of EJB antipatterns

Use cases RE, ACC, FE, RTE M, later RE and RIC AU, RE, ACC, FE,
RTE

RE, RIC, ACC, MI

Horizontal
scope

editors, views, selec-
tion interactions, part
life cycle interactions,
adapter interactions

actions, forwards,
messages, forms,
XML declarations

applets, status, mouse
listeners, threads, pa-
rameters

EJBs, business in-
terfaces, Java anno-
tations, XML dec-
larations, override
rules

Artifact
types

Java, plugin.xml Java, XML Java Java, XML

33

Table 3.2: Overview of the Use Cases
Use Case Abbrv Description Users
Framework API
Understanding

AU Learn API concepts and their implementation variants
from FSML concept definitions

Application devel-
opers, framework
instructors

Completion Code
Analysis and Un-
derstanding

Use framework-specific model as a view of the system
from the viewpoint defined in an FSML. Navigate from
features to the implementation of the features and vice
versa.

Application devel-
opers, architects,
testers, and ana-
lysts

Reverse Engineering RE Identify concept instances in the code and present
them in the form of a framework-specific model

Application devel-
opers and archi-
tects

Referential Integrity
Checking

RIC Use the extracted model to evaluate referential in-
tegrity constraints

Application devel-
opers, architects,
and testers

API constraint check-
ing

ACC Use the extracted model to evaluate API constraints
encoded in the feature model and additional constrains

Application devel-
opers, architects,
and testers

Model Interpretation MI Analyze or transform the extracted model in order to
retrieve information needed to achieve the language’s
value proposition. May range from simple model fil-
tering to applying inference rules

Application archi-
tects, testers, and
analysts

Forward Engineer-
ing

FE Generate framework completion code that implements
concept instances specified in the model or add im-
plementation of new concepts and features to existing
code.

Application devel-
opers and archi-
tects

Completion Code
Evolution

Support evolution of the completion code by compar-
ing models extracted at different times of the life cycle

Application devel-
opers and archi-
tects

Round-Trip Engi-
neering

RTE Compare and synchronize independently modified
model and code

Application devel-
opers and archi-
tects

Migration M Migrate the completion code either to the new version
of the API or to a different but conceptually similar
framework

Migration engi-
neers

The EJB FSML offers exactly such a tool. Furthermore, a secondary purpose of
the FSML is to detect typical EJB antipatterns, such as Bloated Session or Fragile
Links [38].

Table 3.1 additionally indicates the inception date in the first iteration of the
languages.

I2: Determine which use cases should be supported.

The use cases to be supported should be the ones required to achieve the lan-
guage’s purpose in the current iteration. Table 3.1 lists the use cases supported by
each exemplar FSML. The use cases are explained in Table 3.2.

Framework API understanding (AU) refers to the application developers and
framework educators using the FSML definition to learn API concepts and their
implementation variants. Since the Applet FSML covers most of the scope of the
Applet API, it can be used to learn about Java applets. The remaining FSMLs
focus on specific aspects of the corresponding framework API, such as areas that
are difficult to understand in completion code. Although they also can be used to
learn about the specific API aspects, their primary goal is supporting completion
code analysis and evolution.

34

Completion code analysis and understanding groups four use cases concerned
with analyzing and understanding completion code.

Reverse engineering (RE) is focused on identifying concept instances in the
completion code and presenting them in the form of a framework-specific model.
Code queries are used to match code patterns according to mapping definitions
of features. If a pattern is matched, a feature is asserted to be present in feature
configuration and a traceability link is established, otherwise a feature is missing.
Traceability links allow navigating from features in the model to code patterns and
vice versa. As a result, concept instances and their features are identified in the
completion code and they are presented to the developer in a form of a framework-
specific model. All four exemplars support RE.

Referential integrity checking (RIC) is focused on checking the referential in-
tegrity among concepts within one or more artifacts. The checking is performed
by evaluating referential integrity constraints over the extracted model. The con-
straints are expressed as model queries using the pre-defined model query types
from Table A.3. Struts FSML contains features that correspond to information
from Java and XML and features that correspond to the referential integrity con-
straints.

API constraint checking (ACC) goes beyond RIC and also checks more complex
constraints defined in the feature models, including the additional constraints. All
exemplars support this use case.

Model interpretation (MI) involves analyzing or transforming the extracted
model in order to retrieve information needed to achieve the language’s value propo-
sition. The processing may range from simple model filtering to applying inference
rules. In EJB FSML, the processing involves applying override rules to produce a
merged view of the EJB configuration.

Forward engineering (FE) involves generating code for an existing model from
scratch or incrementally adding code for newly added concepts and features to ex-
isting code. The FSML infrastructure supports incremental code addition by code
transformations. The forward engineering aspect of an FSMLs is specified com-
positionally, whereby the generated implementation of the model is a composition
of the implementations of the features. Code transformation of each feature is ex-
ecuted on the existing code regardless if the existing code was written manually
or was generated by code transformations executed previously for other features.
Code generation is only possible if the mapping types used in mapping definitions of
the features from the model have code transformations implemented. WPI, Struts,
and Applet FSMLs support incremental forward engineering. Struts FSML was
not required to support this use case, but it does since all code transformations for
the used mapping types were already implemented.

Completion Code Evolution groups two use cases.

Round-trip engineering (RTE) involves comparing independently modified model
and code and reconciling them by propagating changes in one or both directions.

35

The model is updated by copying features from the model of the current imple-
mentation and the code is updated by executing code transformations. If the code
transformations are not implemented, RTE can still be used for comparing the code
and the model and incrementally updating the model. WPI and Applet FSMLs
support round-trip engineering for all of their features.

Migration (M) of the completion code can be either to a new version of the
same API or to a different but conceptually similar framework. In the first case,
the migration requires detecting deprecated features and adapting their implemen-
tation to the new API. In the second case, the migration can be achieved by reverse
engineering the code for the source framework and using specialized forward engi-
neering to produce the code for the target framework. Both frameworks need to
be close conceptually, since a single model is used. For example, both Struts and
JSF frameworks have similar concepts but different ways of implementing them and
therefore the completion code can be automatically migrated [26].

I3: Determine the sources of knowledge about the framework and the
domain.

The sources of knowledge useful for concept formalization include API docu-
mentation, tutorials, articles, expert knowledge, experience, sample applications,
and existing metamodels and XML schemas provided with the framework. These
sources of knowledge are used with varying intensity in different phases.

Table 3.3 showcases the sources of knowledge that were used in the design of
the exemplar FSMLs and the distribution of the FSML features over these sources.
Each three-row-block in the table provides the number of features (second row)
originating from the given source (first row). The third row contains the percent-
age of the features from the given source to the overall number of features of the
language. A summary of features originating from all documents is presented in the
column ΣDoc. Features originating from non-documentation sources are presented
in columns to the right of the column ΣDoc.

We explain the specific labels of the knowledge sources in Table 3.4. For ex-
ample, the feature SelectionListener (Figure 3.3, line 29) originated from API
documentation (DW), the feature ActionDecl (Figure 3.4, line 15) originated from
an XML Schema (SS), the feature registersMouseListener (Figure 3.5, line 15)
originated from a tutorial (TA1), the feature typedThread (line 53) is implied (I),
the feature deregisters (line 19) originated from expert knowledge (E), the feature
registersKeyListener (line 39) originated from the analysis of example applica-
tions (EA), and the feature local (Figure 3.3, line 6) specifying that a workbench
part is a source class of the analysed project was added by an FSML developer (X).

As can be seen from Table 3.3, the sources of knowledge and the distribution of
features over those sources depend much on the framework concepts in scope, the
amount of material available on the framework concepts being formalized, and the
experience of the FSML developer with the framework. For example, in the case
where the FSML developer is a domain expert, the majority of features will likely
come from his or her own experience with little coming from documentation.

36

Table 3.3: Distribution of features over sources of knowledge
Source kind API Tutorials Articles ΣDoc Other (non-doc) ΣF

W
P

I Source DW [44] TW1 [39] AW1 [86] AW2 [78] AW3 [54] D* I E X F*
Features 11 - 6 - 7 11 6 41 14 15 - 1 71
Percentage 15.5% 8.5% 9.9% 15.5% 8.5% 57.8% 19.7% 21.1% 1.4% 100%

S
tr

u
ts Source DS [19] SS [3] TS1 [18] AS1 [17] D* I X F*

Features 3 13 14 - 8 - - 38 7 - - 2 47
Percentage 6.4% 27.7% 29.8% 17.0% 80.9% 14.9% 4.3% 100%

A
p

p
le

t Source TA1 [90] TA2 [91] D* I E EA F*
Features - - 19 7 - - - 26 23 24 2 - 75
Percentage 25.3% 9.3% 34.7% 30.7% 32.0% 2.7% 100%

E
J
B

Source DE [89, 37] SE [2] TE1 [59] D* I F*
Features 21 13 27 - - - - 61 12 - - - 73
Percentage 28.7% 17.8% 36.9% 83.5% 16.4% 100%

Table 3.4: Legend of Features’ Sources
Source Description

f
Letter indicating a framework. W - Eclipse Workbench, S - Apache Struts, A
- Java Applet, and E - Sun EJB3.0

Df
Features that were extracted from API documentation, such as Javadoc or
other specifications, where f is the framework.

Sf
Features derived from schemas contained in the framework, where f is the
framework.

Tf i
Features that came from the framework’s tutorials, where f is the framework
and i is the identification number for the tutorial.

Af i
Features acquired from articles, where f is the framework and i is the identifi-
cation number for the article.

D* All the features derived from any of documents.

I
An implicit feature. For example, every class has a name, so a name feature is
implied.

E Features created from expert knowledge.
EA Features acquired by going through examples of the framework.
X Extra features added by FSML developer.
F* All the features contained in the FSML.

37

On the other hand, in the case where a FSML developer has little to no knowl-
edge of the domain, such as in the case of the EJB FSML, the majority of features
will come from documentation with little to none coming from experience or expert
knowledge.

For frameworks that have extensive configuration schemas, such as Struts and
EJB, the schemas were a significant source of knowledge, for example, 28% of
features for Struts and 18% for EJB. Such schemas can be viewed as metamodels
of the artifacts they represent and can be, to some degree, incorporated into the
FSML.

I4: Determine the scope of the language.

The purpose of this activity is to determine the criteria for deciding whether
a given concept or feature is in scope of the language or not. We distinguish two
kinds of scope.

Horizontal scope is measured with respect to the coverage of the API. The FSML
could have the full API in scope or just parts of it. The breadth of the horizontal
scope can be delineated early by deciding which top-level concepts should be in-
cluded. The decision is guided by the value proposition. For example, the purpose
of the FSML could be to (1) enforce certain API constraints and good practices
and to detect typical errors or omissions, antipatterns, or bad code smells or (2)
support understanding and implementing features that are difficult to locate in the
code due to scattering and tangling. For each case, only the concepts and features
involved in these areas of difficulty would be included. The horizontal scope is also
influenced by the kinds of stakeholders, their experience, and their viewpoints. For
example, quality assurance engineers are likely to be interested in detecting API
constraint violations, whereas developers are likely to have broader interests. The
key concepts in scope of the exemplar languages are listed in Table 3.1.

Vertical scope refers to the depth of the feature models. The deeper the mod-
els, the more detailed features are captured. Usually, the leaves of the hierarchy
correspond to the implementation steps stipulated by the API, such as calling a
framework method, or the parameters of these steps, method call’s arguments. The
vertical scope is usually impacted by the choice of the use cases to be supported.

Languages targeting API understanding are likely to cover the entire API. Their
vertical scope may emphasize the most used areas and perhaps also the more tricky
ones. The vertical scope of the Applet FSML is fairly balanced. Languages for re-
verse engineering are likely to focus on areas that are more difficult to understand,
such as viewpart interactions for WPI. Languages supporting integrity checking,
e.g., Struts FSML, are quite selective in terms of their horizontal scope. Model in-
terpretation involves adding higher level concepts for representing the results of the
model analysis. Also, the extracted model is typically scoped towards the model
queries that need to be executed, which is the case for the antipattern detection in
the EJB FSML. Adding support for incremental forward engineering and round-
trip engineering typically requires deeper vertical scope than reverse engineering.
We observed this in WPI and Applet FSMLs. Adding support for these use cases

38

required adding more detailed features, such as those representing method call ar-
guments. Finally, migration requires determining the commonalities and differences
between the source and target domain of the migration.

Table 3.1 additionally specifies the artifact types covered by the languages.

3.3 Elaboration

In this phase, the following activities are performed.

E1: Identify framework-provided concepts in the scope. Use the iden-
tified sources of knowledge, such as,

• API documentation, tutorials, articles. These sources provide concepts and
features and their intended use as envisioned by the framework developers.

• Experience and best practices. These sources provide features related to how
the expert users use the framework. Note that experts often also contribute
articles and tutorials.

• Sample applications. Analysis of sample applications, both supplied with the
framework and real-life applications, provides information about the typical
use of the framework as well as about other implementation variants of con-
cepts that are not included in other sources.

• Metamodels and XML schemas. These sources provide concepts and features
made explicit by framework developers. Note that various configuration di-
alogs and wizards supplied together with the framework can be based on those
metamodels or schemas.

E2: Determine kinds of concepts in scope. We distinguish three main
kinds of concepts.

Component-oriented concepts are concepts that usually correspond to code com-
ponents, such as Java classes and XML documents.

For example, ViewPart (Figure 3.3, lines 7-11) is a component-oriented concept.

Connector-oriented concepts are concepts that relate other concepts with each
other. Connector-oriented concepts can correspond to code components (e.g., lis-
teners) but they can also correspond to code patterns scattered across the compo-
nents related by the connector, such as method calls or XML declarations.

For example, AdapterRequestor (Figure 3.3, lines 66-70) is a connector-oriented
concept. It relates a part referenced through the requestor reference (line 67) with
multiple AdapterProviders referenced through the adapterProvider reference
(line 70). The method call represented by the essential feature requestsAdapter is
what actually connects a requestor with the provider.

39

1 [1..1] WorkbenchPartInteractions <project>

3 [0..*] Part <class>
4 ![1..1] name (String) <className>

5 [0..1] package (String) <qualifier>

6 [0..1] local <isLocal>
7 [0..*] ViewPart -|> Part
8 [0..1] partId (String) <viewPartId>

9
![1..1] implementsIViewPart <assignableTo: ’IViewPart’ concrete: true> <subsumedBy:

extendsViewPart/ >
10 [0..1] extendsViewPart <assignableTo: ’ViewPart’> <subsumedBy: extendsPageBookView>

11 [0..1] extendsPageBookView <assignableTo: ’PageBookView’>

12 [0..*] EditorPart -|> Part
13 [0..1] partId (String) <editorPartId>

14 [0..1] contributor <class>
15 ![1..1] contributor (String) <editorContributor> <fullyQualifiedName>

16
[1..1] extendsEditorActionBarContributor <assignableTo: ’EditorActionBarContributor’>

<subsumedBy: extendsMultiPageEditorActionBarContributor>

17
[0..1] extendsMultiPageEditorActionBarContributor <assignableTo: ’MultiPageEditorActionBar-

Contributor’>

18
[1..1] multiPageEditorAndContributor <constraint ../../extendsEditorPart/extendsMultiPage-

EditorPart implies: ../extendsEditorActionBarContributor/extendsMultiPageEditorActionBarContributor>

19
![1..1] implementsIEditorPart <assignableTo: ’IEditorPart’ concrete: true> <subsumedBy:

extendsEditorPart/>
20 [0..1] extendsEditorPart <assignableTo: ’EditorPart’> <subsumedBy: extendsMultiPageEditorPart>

21 [0..1] extendsMultiPageEditorPart <assignableTo: ’MultiPageEditorPart’>

22 [0..0] extendsMultiPageEditor <assignableTo: ’MultiPageEditor’> <deprecated>

29 [0..*] SelectionListener <class>
32 ![1..1] registersAs

33 !<1-3>

34
[0..*] globalSelectionListener <callsTo: ’void ISelectionService.addSelectionListener(ISe-

lectionListener)’ receiverExpr: ’getSite().getPage()’ >

35
[1..*] deregisters <callsTo: ’void ISelectionService.removeSelectionListener(ISelection-

Listener)’ receiverExpr: ’getSite().getPage()’>

36
![1..1] deregistersSameObject <argument: 1 ofCall: ../ sameAsArg: 1 ofMethodCall:

../../>

37
[1..1] registersBeforeDeregisters <methodCall call: ../../../ before: ../../

givenCallbackSeq: ’init createPartControl dispose’>

38
[0..*] globalPostSelectionListener <callsTo: ’void ISelectionService.addPostSelectionListe-

ner(ISelectionListener)’ receiverExpr: ’getSite().getPage()’ >

42
[0..*] specificSelectionListener <callsTo: ’void ISelectionService.addSelectionListener(String,

ISelectionListener)’ receiverExpr: ’getSite().getPage()’>
62 [0..*] AdapterProvider <class>

63 ![1..1] provider (Part) <baseConcept>

64 ![1..1] providesAdapter <allMethods signature: ’Object getAdapter(Class)’>

65 ![1..*] adapters (String) <returnedObjectTypes ifkey: 1>

66 [0..*] AdapterRequestor <class>

67 ![1..1] requestor (Part) <baseConcept>

68
![1..*] requestsAdapter <callsTo: ’Object IAdaptable.getAdapter(Class)’ receiver:

’IWorkbenchPart’ receiverExpr: ’iWorkbenchPart’>
69 [1..1] adapter (String) <valueOfArg: 1>

70
[0..*] adapterProvider (AdapterProvider) <where attribute: providesAdapter/adapters contains:

../adapter>

Figure 3.3: Excerpt of WPI FSML Metamodel

Port-oriented concepts are concepts that interface between the components and
connectors, that is, they enable connecting a connector to a component.

For example, BusinessInterface (Figure 3.6, lines 3-12) is a port-oriented con-
cept. The concept BusinessInterface, and all non-abstract concepts that inherit
from it, allow EJB clients to connect to EJBs. Specifically, EJB clients connect
to EJBs through a business interface by specifying the interface in Java annota-
tions, @Local or @Remote, put on the EJB class or through the XML deployment
descriptor.

40

1 [1..1] StrutsApplication <project>

3
[1..1] StrutsConfig <xmlDocument: ’/WEB-INF/struts-config.xml’> <xmlElement name:

’struts-config’>
15 [0..*] ActionDecl <xmlElements: ’action-mappings/action’> <xmlElement>

16 [1..1] path (String) <xmlAttribute>

17 [0..1] name (String) <xmlAttribute>

18 [0..1] type (String) <xmlAttribute>

19 [1..1] actionImpl (ActionImpl) <where attribute: qualifiedName equalsTo: ../type>

32 [0..*] ActionImpl <class>

35 [1..1] qualifiedName (String)

37 ![1..1] extendsAction <assignableTo: ’Action’>

Figure 3.4: Excerpt of Struts FSML Metamodel

The characterization of the concepts is helpful in determining the structure of
the language, that is, which concepts should be main concepts and which con-
cepts should be parts (subfeatures) of other concepts. In WPI FSML, the concept
ViewPart was modeled as an individual concept so that it can be represented in
the model once and referenced by other concepts. We also chose to model all
connector-oriented concepts in WPI FSML as individual concepts; however, they
could as well be modeled as subfeatures of parts. In EJB FSML, business interfaces
that begin with Explicit are modeled as individual concepts and they are referenced
(Figure 3.6, lines 40, 41). Business interfaces that begin with Derived are subfeatures
of other concepts (lines 33, 36).

E3: Define the overall structure of the feature model.

E3.1: Introduce features for grouping related concepts. A feature model can be
divided into logical parts that group related concepts/features. The concepts can
be logically related or grouped based on the artifact they represent.

For example, the feature InformationFromAnnotations (Figure 3.6, line 2) is
used for grouping subfeatures related to Java annotations and the feature Informa-
tionFromDeploymentDescriptor (line 60) is used for grouping subfeatures related
to the XML deployment descriptor.

Subfeatures can also be logically grouped inside a single concept.

For example, the feature overridesLifecycleMethods (Figure 3.5, lines 6-12)
is used for grouping features corresponding to life cycle methods.

E3.2: Determine the order of concepts. This step is needed only if metamodel
interpretation algorithms rely on the ordering of features and the base concept

reference mechanism is used (cf. Section 2.5.2). Base concept reference mech-
anism is used for defining separate concepts whose instances correspond to code
patterns that other (existing) concept instances correspond to. Base concepts, that
is, concepts referenced through a base concept reference, should be processed before
the concepts referencing them.

For example, the feature requestor (Figure 3.3, line 67) is a base concept refer-
ence of the concept AdapterRequestor (line 66) and specifies that each instance of
the concept AdapterRequestor will correspond to the same code pattern (class in

41

1 AppletModel <project>

2 [0..*] Applet <class>

4 ![1..1] extendsApplet <assignableTo: ’Applet’ local: true> <subsumedBy: extendsJApplet>

6 [0..1] overridesLifecycleMethods

7 !<1-5>
8 [0..1] init <methods: ’void init()’>

12 [0..1] destroy <methods: ’void destroy()’>

15 [0..*] registersMouseListener <callsTo: ’void Component.addMouseListener(MouseListener)’>

16 !<1-1>
17 [0..1] this <argumentIsThis: 1>

19 [1..1] deregisters <callsTo: ’void Component.removeMouseListener(MouseListener)’>

39
[0..*] registersKeyListener <callsTo: ’void Component.addKeyListener(KeyListener)’ position:

’after’ location: ’void init()’>
51 [0..*] Thread <field>
52 [1..1] thread (String) <fieldName>

53 ![1..1] typedThread <fieldOfType: ’Thread’>

54 [1..1] InitializesThread
55 !<1-1>

56
[0..1] initializesThreadWithRunnable <assignedNew: ’void Thread(Runnable)’ position:

’after’ location: ’void init()’>

66
[0..1] initializesWithThreadSubclass <assignedNew: initializer: true subtypeOf:

’Thread’>
68 [1..1] overridesRun <methods: ’void run()’>
70 [1..1] nullifiesThread <assignedNull>

71 [0..*] singleTaskThread <callsTo: ’void Thread(Runnable)’ statement: true>

78 [0..*] parameter <callsReceived: ’String Applet.getParameter(String)’ location: ’void init()’>

79 [0..*] name <valueOfArg: 1>

80 [0..1] providesParameterInfo <methods: ’String[][] getParameterInfo()’>

81 [1..1] providesInfoForParameters <constraint: ../parameter implies: ../providesParameterInfo>

Figure 3.5: Excerpt of Applet FSML Metamodel

this case) that the referenced base concept instance corresponds to (instance of the
concept Part in this case). Also, the concept Part is processed before the concept
AdapterRequestor because of their order in the feature model.

3.4 Construction

In this phase, the feature model is refined and the required elements of the approach
are created.

C1: Decompose the concepts into features.

C1.1: Choose appropriate level of abstraction and granularity. Which features
are important with respect to the value proposition? Which features can be ab-
stracted away? Below we list some criteria on deciding which features are poten-
tially useful to include.

Features corresponding to implementation steps. Such features correspond to
steps, such as, subclassing a framework class, implementing a framework inter-
face, implementing callback methods, invoking a framework service, placing a Java
annotation, or creating framework-stipulated XML declarations and setting XML
attribute values.

Most of the features correspond to implementation steps. For example, in order
to create an instance of the concept Applet (Figure 3.5), the developer must create

42

1 EJBProject <project>

2 [0..1] InformationFromAnnotations
3 [0..*] BusinessInterface <class>
4 [1..1] interfaceName (String) <fullyQualifiedName>

5 [0..*] DerivedLocalInterface -|> BusinessInterface
6 [0..*] DerivedRemoteInterface -|> BusinessInterface
7 [0..*] ExplicitLocalInterface -|> BusinessInterface

8 ![1..1] localAnnotation <annotatedWith: ’Local’> <annotation>
9 ![1..1] isMarker <hasNoAttribute>

10 [0..*] ExplicitRemoteInterface -|> BusinessInterface

11 ![1..1] remoteAnnotation <annotatedWith: ’Remote’> <annotation>
12 ![1..1] isMarker <hasNoAttribute>
13 [0..*] EJBClass <class>
31 [0..*] SessionBean -|> EJBClass
32 [0..1] localInterfaceSpecification <annotatedWith: ’Local’> <annotation>

33 ![1..*] localInterfaces (DerivedLocalInterface) <attribute: ’value’>
35 [0..1] remoteInterfaceSpecification <annotatedWith: ’Remote’> <annotation>

36 ![1..*] remoteInterfaces (RemoteLocalInterface) <attribute: ’value’>
37 [1..1] interfaceName (String) <fullyQualifiedName>

38 [0..*] implementedLocalInterface <ImplementsExplicitLocalInterface>

39 [0..*] implementedRemoteInterface <ImplementsExplicitRemoteInterface>

40
[0..*] explicitLocalInterface (ExplicitLocalInterface) <where attribute: interfaceName in:

../implementedLocalInterface>

41
[0..*] explicitRemoteInterface (ExplicitRemoteInterface) <where attribute: interfaceName in:

../implementedRemoteInterface>
42 [0..*] StatelessEJB -|> SessionBean
43 ![1..1] statelessAnnotation <annotatedWith: ’Stateless’> <annotation>

60
[0..1] InformationFromDeploymentDescriptor <xmlDocument: ’/META-INF/ejb-jar.xml’> <xmlElement

name: ’ejb-jar’>
64 [0..*] DDStatefulEJB -|> DDSessionBean <xmlElements: ’enterprise-beans/session’>

65 ![1..1] sessionType <xmlElements: ’session-type’> <xmlElement>

66 ![1..1] isStatefulSessionType <xmlElementValueEqualsString StringToSearchFor: ’Stateful’>

Figure 3.6: Excerpt of EJB FSML Metamodel

a Java class (line 2) which extends the framework class Applet (line 4). Next, the
developer may override life cycle methods (lines 8-12), register and deregister mouse
listeners by adding calls to the appropriate methods (lines 15, 19), or retrieve values
of parameters (lines 78-79) by adding a method call and specifying the name of the
parameter.

Frequently used features. Such features increase the usefulness of the language.

Examples of features that almost every applet has include the feature init

(Figure 3.5, line 8) and parameter (lines 78-79).

Composite features. Composite features are features that have some structure or
that are at a higher level of abstraction. These features raise the level of abstraction
above the code.

For example, the feature StrutsConfig (Figure 3.4, line 3) is a composite feature
because it groups all features related to the form, action, and forward declarations
in struts-config.xml file.

Features involved in complex constraints or dependencies. Including these fea-
tures in the language will enable checking these constraints in the model.

For example, the features parameter and providesParameterInfo (Figure 3.5,
lines 78, 80) are involved in a constraint (line 81). The constraint asserts that if at least
one parameter is used, the applet should provide information about the parameters.

43

Features with a life cycle. These features are related to API life cycle constraints
such as that certain framework services must be invoked in conjunction and in a
certain order. Such constraints are easy to violate in the code and therefore checking
them in the model may support the developers.

In our exemplar FSMLs, features related to listeners have a life cycle because
the listener has to be first registered and deregistered when no longer needed.
The feature globalSelectionListener (Figure 3.3, line 34) corresponds to the
registration method call and the feature deregisters (line 35) corresponds to the
deregistration method call. Furthermore, the features on lines 36 and 37, specify that
the same object must be used in both method calls and that the registration must
occur before deregistration, respectively.

Features with variability. These are the features that can be implemented in
alternative ways. The implementation variants may be equivalent whereby the
same effect is achieved in different ways or they may be alternative whereby different
effects are achieved for the same feature.

The feature Thread (Figure 3.5, lines 51-70) is an example of a feature with
two equivalent variants. In Java, a thread can be initialized in two ways: by
instantiating the Thread class (line 56) or subclassing the Thread class (line 66).
The choice is modeled using a feature group (line 55).

The feature registersAs (Figure 3.3, line 32) is an example of a feature with
three alternative variants. A selection listener can be registered as a global selection
listener (line 34), a global post selection listener (line 38), or a specific selection
listener (line 42). Registering a listener in different ways achieves different effects
for the same feature.

In general, there are different degrees of variability: more configuration-oriented
vs. more construction-oriented. Both examples above are more configuration-
oriented. The more cloning and referencing involved in concept instantiation, the
more construction-oriented the variability of the concept is.

Scattered features. These are the features which correspond or whose subfeatures
correspond to code patterns scattered across the completion code. Such features
provide an alternative-to-code decomposition in which the related features are pre-
sented in a single hierarchy whereas the corresponding code patterns are scattered
across the code.

In our exemplar FSMLs most composite features are scattered features, for
example the feature Thread (Figure 3.5, lines 51-70).

C1.2: Decide on feature nesting. Which features should be parent features and
which should be subfeatures? Feature nesting may mirror relationships between
the code patterns that the features correspond to.

Code pattern nesting. Features corresponding to the nested patterns may be
children of the features corresponding to the parent patterns.

For example, the features corresponding to fields and methods are children
of features corresponding to classes (Figure 3.5, lines 8-12, 51, 80). Also, features

44

corresponding to XML attributes are children of features corresponding to XML
elements (Figure 3.4, lines 16-18).

Semantic implications. In feature models, a subfeature implies its parent fea-
ture. In the code, certain patterns may imply other patterns and so the correspond-
ing features may mirror the implication.

For example, features corresponding to being assignable to more specific types
are children of features corresponding to being assignable to more general types
(Figure 3.3, lines 9-11) because of the semantics of type inheritance.

Logical dependency. Certain features are meaningful (or should be considered)
only in the presence of other features. In that case the former can be children of
the latter.

For example, the feature overridesRun (Figure 3.5, line 68) specifying that a
subclass of the class Thread should override the method void run() only applies
if the variant with a subclass is used (line 66).

C1.3: Specify feature cardinality. What are the code patterns (both structural
and behavioural) that implement the features? In general, features correspond to
code patterns in the completion code stipulated by the API and their cardinality
depends on the possible number of the patterns.

Essential features. These features correspond to patterns that are the minimum
required to identify a concept instance. Without its essential features an instance
cannot be considered an instance of a particular concept.

For example, essential features of component-oriented concepts may correspond
to being assignable to a certain type (Figure 3.5, line 4 or 53), being annotated with
a Java annotation of a certain type (Figure 3.6, line 43), or being declared as a
component in an XML configuration file (Figure 3.6, lines 65-66). Essential features
of connector-oriented concepts may correspond to method calls that attach the
connector to a component (Figure 3.3, line 68). Finally, an essential feature of port-
oriented concepts may correspond to explicitly naming the port in a Java annotation
of the component (Figure 3.6, lines 35-37).

Mandatory features. These features correspond to patterns that should be
present according to the API but which are not essential. Mandatory features
have cardinality [1..1].

For example, the features initializesThread (Figure 3.5, line 54) and nul-

lifiesThread (line 70) are required for the correct implementation but they are
non-essential since only the feature typedThread (line 53) is required to determine
that a given field is a thread.

Often, mandatory features are used to model constraints, so that a missing
mandatory feature indicates constraint violation.

For example, the feature providesInfoForParameters (line 81) corresponds to
an API constraint that should always be satisfied.

45

Optional features. These features correspond to patterns that may be present
according to the API. Optional features have cardinality [0..1]. Optional features
can be grouped in feature groups to capture certain constraints, such as, that certain
patterns are exclusive or alternative.

For example, the features on lines 10 and 11 in Figure 3.3 indicate that the
developer can optionally extend two other API classes. We have already seen
examples of optional grouped features (Figure 3.5, lines 56 and 66).

Multiple features. These features correspond to patterns that can be repeated
in the code. We distinguish three kinds of multiple features depending on the
lower bound of the feature cardinality: optional multiple with cardinality [0..n],
mandatory multiple with cardinality [m..n], and essential multiple with cardinality
![m..n], where m, n > 1 ∧ (n > m ∨ n = ∗).

For example, the feature on line 34 in Figure 3.3 corresponds to the registration
method calls and it is an optional multiple feature. In the feature configuration,
each clone (instance) of the feature will correspond to a single method call. The
feature on line 35 is a mandatory multiple feature because for every registration
method call there should be at least one deregistration call. The feature on line 68

is an essential multiple feature because a given part is an adapter requestor only if
it requests at least one adapter by calling the method getAdapter.

Prohibited features. These features correspond to patterns that should not be
present in the code. Prohibited features have cardinality [0..0]. Prohibited features
may indicate common problems or API misuses as well as uses of the deprecated
API.

For example, the feature extendsMultiPageEditor (Figure 3.3, line 22) corre-
sponds to extending a deprecated API class MultiPageEditor.

C1.4: Specify additional constraints. Feature hierarchy cannot capture certain
constraints involving features from different parts of the hierarchy. However, certain
constraints can be specified by adding mandatory features as shown is step C1.3.

Referential integrity constraints can also be expressed by mandatory reference
features, i.e., features with an attribute which can point to other features. Referen-
tial integrity constraints are constraints of the form ∀x.∃y|x.a = y.b or ∃y|y.v = x
for the given x.

For example, the feature actionImpl (Figure 3.4, line 19) corresponds to a ref-
erential integrity constraint that action implementation must exist for every action
declaration. actionImpl is a reference feature and can point to instances of the
concept ActionImpl (line 32). The constraint specifies that the value of the feature
qualifiedName of the ActionImpl must be the same as the value of the feature
type of ActionDecl. Table A.3 shows constraints used in the exemplar FSMLs.

C1.5: Define reference features. Connector-oriented concepts relate a number of
other concepts and therefore they need to point to concept instances in the model.
Reference features can be used for that purpose, since values of reference attributes
are other features.

46

In activity E2, we presented an example of a connector-oriented concept Adap-
terRequestor which references adapter providers through the adapterProvider

reference feature (Figure 3.3, line 70). The constraint specifies that the values of
that reference should be all instances of the AdapterProvider concept whose list
of provided adapters contains the requested adapter.

C2: Create mapping definitions for the features. Mapping definitions
specify the correspondence between features and code patterns.

C2.1: Choose a mapping type. Choose an existing mapping type that defines
the correspondence of the feature to code patterns. Define a new mapping type if
needed.

We present the mapping types used in this thesis in Tables 4.1-4.2 and Ta-
bles A.1-A.2. In the following description, we use abbreviations from the third
column of these tables to refer to the mapping types.

Each mapping type can have a number of parameters. We categorize the pa-
rameters into core, reverse, and forward parameters. Core parameters define the
correspondence, reverse parameters are used only by code queries to control code
pattern matching, and forward parameters are used only by code transformations
to control code pattern creation. Core and reverse parameters are included in Ta-
bles 4.1-4.2 and Tables A.1-A.2. Forward parameters are presented in Table A.4
since they are common for many mapping types. Some parameters are optional and
we present them in square brackets. Furthermore, we categorize the parameters into
static and dynamic.

C2.2: Set the values of the static parameters in the mapping definition. Extend
the mapping with new parameters as needed.

For example, the forward parameter receiverExpr was added to specify the
expressions that are generated as receivers of method calls. The parameter can be
used in conjunction with the mapping types callsTo and callsRec. For example,
the method call for the feature globalSelectionListener (Figure 3.3, line 34) will
be generated as getSite().getPage().addSelectionListener(null).

C2.3: Specify features for the retrieval of dynamic parameter values. For each
dynamic parameter, decide whether the value should be determined implicitly using
the context mechanism or explicitly using a path. Make sure that parent features
exist for the parameters whose value will be retrieved using the context mechanism.

• Adjust the order of features to make sure that the required feature will have
the value before the given mapping can be evaluated,

• Insert new parent features to be contexts as required by the mapping,

• Define paths to other features that have the required values.

For example, features on lines 34-37 in Figure 3.3 use both the context mechanism
and explicit paths. The mapping type callsTo requires a Java class as a value of

47

its parameter c. The parameter is left unspecified for the features on lines 34 and
35 and therefore the context mechanism will be used to retrieve the value of the
parameter. The mapping type argSameObj requires two method calls as values of
its parameters mc1 and mc2. In the mapping definition on line 36, path expressions
are used to explicitly point to the features from which the method calls should be
retrieved. Analogously explicit paths are used in the mapping definition for the
feature on line 37.

C2.4: Implement missing code queries and transformations for the used map-
ping types if required by the chosen use cases.

For example, currently code transformations for mapping types related to Java
annotations (annotatedWith, attribute, and noAttribute) are not implemented
because the EJB FSML, which uses them, does not need to support the forward
engineering use case. All mapping types used in WPI and Applet FSMLs have code
transformations implemented since the languages must support forward engineering
and round-trip engineering use cases.

C3: Put key annotations. Key annotations are required for round-trip engi-
neering because the correspondence between the features from the three models is
established based on their keys. Keys are also needed for establishing traceability
links during reverse engineering. For each feature put the annotation parentKey

if the key of the parent should be included in the feature’s key. For multiple fea-
tures that cannot be distinguished based on their subfeatures, put the annotation
indexKey to include the index of the given feature in the sequence of instances
which are children of the same parent feature. Put the annotation key on the sub-
features of the given feature whose values should be included in the key of the given
feature. Figure 2.10 illustrates a concrete example.

The annotation indexKey should be used as rarely as possible because it makes
the key very sensitive to the position of the given feature in the list of instances
which easily changes when the code is rearranged.

C4: Add support for new use cases. Usually, the evolution of mapping
types, code queries, and transformations is driven by the need to achieve the value
proposition of a language. Often, however, it is possible to add support for new use
cases with very little cost.

For example, initially Struts FSML was not required to support round-trip
engineering. However, since all required code transformations for the mapping
types used in the language are available, adding support for round-trip engineering
amounts to setting forward parameters in mapping definitions.

C5: Build a test suite. A test suite is the completion code that includes
features supported by the language. It can be used to test the use cases.

The code should have both correct and incorrect patterns. The former should
be matched by code queries and produced by code transformations. The latter
should be missed by code queries.

48

Feature models typically have very large number of possible configurations and
it is not possible to build code that tests each configuration. However, there is
some degree of orthogonality in the feature models, meaning that not all features
are related with each other. This facilitates testing parts of the feature model
separately, thus greatly reducing the number of configurations that have to be
tested.

3.5 Transition

In this phase, the language is extensively tested and refined until the required
quality and usefulness are achieved. In this phase, no more new concepts and
features are added (i.e., feature freeze in Figure 3.1); however, modifications to the
metamodel required for fixing errors are allowed (i.e., corrections in Figure 3.1).
Below we list activities that may be performed in this phase.

T1: Perform system testing. System testing aims at answering the following
questions. Is the structure of the feature model correct? Are the mapping defini-
tions correct? Is the implementation of code queries and the code transformations
correct? What is the precision and recall of the code queries? Does the generated
code compile? Is it complete or skeletal? Are the code patterns created by code
transformations matched by code queries?

T1.1: Test the structure of the feature model. Check satisfiability, that is,
whether the set of legal feature configurations is non-empty. Create example feature
configurations and verify that meaningful configurations are allowed by the feature
model and additional constraints and that incorrect configurations are disallowed.
Correct feature nesting (cf. C1.2), cardinality constraints (cf. C1.3), and additional
constraints (cf. C1.4).

T1.2: Verify mapping definitions. Verify that the metamodel is well-typed (cf.
Section 2.5), that is, (1) static mapping type parameters are set and their values are
correct (e.g., correct method signatures or type names), (2) target features specified
by path expressions exist and have a required mapping type, and (3) parent features
with the required mapping type exist if the context mechanism is used. Correct
feature nesting (cf. C1.2), mapping definitions (cf. C2), feature ordering (cf. C2.3).

T1.3: Test the implementation of code queries and transformations. Refine code
queries and transformations to improve the quality of the retrieved models and the
generated code. Adjust the feature model to the capabilities of the queries and
transformations.

We first developed simple code queries for Java that employed simple approxi-
mations of behavioural code patterns. We then evaluated the precision and recall
of those code queries [13]. Although the precision and recall were very high, we
learned that the code queries can be improved without incurring a prohibitive in-
crease in the execution time. We also implemented and evaluated the precision and
recall of the new and more sophisticated code queries (cf. Section 4).

49

However, the feature models had to be adjusted to support the more powerful
code queries. For example, a simple code query for the mapping type argVal was
returning a value of a method call argument only if the argument was a constant
or a literal. Therefore it was sufficient for the feature name (Figure 3.5, line 79) to
have the cardinality [0..1]. The new code query performs constant propagation if
the argument of a method call is a variable. Because constant propagation may
return multiple potential values of the variable, the cardinality of the feature name

had to be changed to [0..*].

T1.4: Refine the test suite. As the feature models, mapping types, code queries,
and code transformations evolve, the test suite should be extended to cover new
features and implementation variants.

T2: Perform acceptance testing. Is the language fulfilling its purpose and
providing the value as expected? Are the required use cases supported?

T2.1: Include missing implementation variants. Use API, sample applications,
and best practices to identify missing implementation variants. Extend the feature
models, mapping definitions, mapping types, code queries, and code transforma-
tions as needed.

During the evaluation of the precision and recall of code queries we analyzed
large body of sample applications and we noticed few additional variants for imple-
menting features that were not included in the FSMLs.

For example, applet threads can be also initialized by subclassing the class
Thread and directly overriding the method run (this variant is also explicitly men-
tioned in the API). We refined the Applet FSML by inserting a feature group
(Figure 3.5, line 55) and adding new features (lines 66-68).

We also noticed in the sample applications that some applets used single-task
threads that were not assigned to a field but were simply instantiated in an in-
dividual statement (regular threads are instantiated in the right hand side of an
assignment to a field). To support single-task threads, we added new features
(starting at line 71). We also had to extend the mapping type callsTo by intro-
ducing a new parameter statement that specifies whether only method calls that
are statements should be matched by the code query.

Similarly, we refined code transformations to enable generating different vari-
ants. During code generation, certain additional decisions have to be made and
these are specified using the forward parameters of the mapping types.

For example, the code transformation for the mapping type assignNew creates
an assignment to a field in which the right hand side is a constructor call of the
given signature. Such an assignment can be created in two ways: as an individual
statement in a method body or as a field initializer. Mapping definition of the
feature on line 56 uses the first variant and the assignment will be generated at the
end of the method init. Mapping definition of the feature on line 66 uses the second
variant by setting the value of the forward parameter initializer to true.

50

T2.2: Test support for the required use cases. Verify that the language can be
used to perform the required use cases.

For example, in Chapters 5 and 6 we present tests we performed to verify that
Applet and WPI FSMLs support the forward and round-trip engineering use cases.

T3: Perform beta testing. Beta testing aims at answering the following
questions. Is the retrieved model useful for application developers? Is the gener-
ated code useful for application developers? How much more work do application
developers need to invest to get the code working?

None of our sample languages have been released to the public yet; however, we
performed the evaluation of code queries on real-life applications [13] (cf. Chapter 4)
and we performed tests of the forward engineering and round-trip engineering of
Applet and WPI FSMLs, as described later in Chapters 5 and 6. We think that
the evaluated languages would provide value to application developers.

The purpose of this phase is to deliver a working end product of the iteration.
The phase and the iteration end when the language can deliver the value propo-
sition established in the inception phase. Chapters 4–6 present tests that can be
performed to evaluate reverse, forward, and round-trip engineering capabilities of
the language. Finally, when the constructed FSML delivers the value proposition
of this iteration, a new iteration may begin.

3.6 Summary

In this chapter we presented an FSML engineering method extracted post-mortem
from our experience in building four FSMLs. The method is a result of the analysis
of the exemplar languages. The method divides the life cycle of an FSML into
iterations, each iteration into phases, each phase into activities, and each activity
into steps. We presented the phases, activities, and steps that guide an FSML
developer in each iteration and we illustrated them with examples from the four
FSMLs. The next three chapters present the evaluation of reverse, forward, and
round-trip engineering. Chapter 7 presents the evaluation of the method.

51

Chapter 4

Evaluation of Reverse Engineering

4.1 Introduction

In this chapter we report on a study we conducted to measure the precision and
recall of reverse engineering using code queries that locate instances of behavioural
patterns in the completion code. The study was executed in three phases:

1. identification of types of patterns and their corresponding code queries,

2. evaluation of the precision and recall of the simple code queries and proposing
the refined code queries, and

3. evaluation of the precision and recall of the refined code queries.

In the first phase, we analyzed mapping definitions attached to features in three
exemplar framework-specific modeling languages (FSMLs). The FSMLs used in
this study were designed for: (i) Java Applet framework [88], (ii) Apache Struts
framework [16], and (iii) a part of the Eclipse Workbench framework [78]. The
result of the analysis is a classification of (i) patterns that the features correspond
to and (ii) code queries that were implemented in the prototypes of the FSMLs in
order to detect these patterns in application code.

In the second phase, we used the prototype implementations of the three FSMLs
to reverse engineer a large number of sample applications built on top of the three
frameworks. We then manually verified the correctness of the retrieved framework-
specific models and calculated precision and recall of the used code queries. Ad-
ditionally, we categorized common false positives and false negatives of the code
queries and proposed a refined set of queries that would reach 100% precision and
recall for the studied applications [13].

In the third phase, we implemented the refined code queries, slightly extended
the three FSMLs, and repeated the study for an even larger number of applications
in order to gather more evidence and confirm the results.

52

The main contribution of this chapter is providing evidence that fast retrieval
of high-quality models that represent the dynamic interaction between application
code and frameworks is feasible using static analysis. We argue that by concentrat-
ing on the static framework boundary, which consists of all places in the application
that interact with the framework, and by leveraging framework-specific knowledge
(e.g., order of callbacks), simple code queries are often sufficient for reverse engi-
neering. We provide evidence that the refined code queries provide precision and
recall of close to 100% and do not incur a prohibitive increase in the analysis time.
Furthermore, we give precise definitions of behavioural code patterns using meta
pointcuts. We provide code queries that are approximations of the behavioural
patterns and can be used for retrieving them. Finally, we discuss possible false
positives and false negatives of those queries.

4.2 Challenges of Statically Analyzing Comple-

tion Code

Framework-specific models describe how concepts provided by the framework are
instantiated in the completion code. Concept instances are characterized by con-
figurations of features and the features correspond to structural and behavioural
patterns in the completion code. Therefore, automatic extraction of framework-
specific models requires matching the structural and behavioural patterns in the
completion code using static analysis.

Unfortunately, static analysis of framework completion code is difficult. One
reason is the inversion of control inherent to framework design, whereby the main
threads of control belong to the framework and the framework passes the control
to the application using callback methods. Due to the inversion of control, both
the application and the framework need to be considered during the analysis. Also,
frameworks commonly interpret configuration files and use reflection to dynamically
load and instantiate application classes. Therefore, the construction of the complete
and precise control flow graph, which is a basis for many other static analyses, is
often infeasible.

However, we believe that analyzing the complete code of both the application
and the framework is not necessary. To understand how an application is using
a framework and extract framework-specific models, one must focus on the static
framework boundary, that is, all places in the code where the application interacts
with the framework. The static framework boundary consists of all callback meth-
ods implemented in the application and all references to the framework code from
the application. For example, all method calls to framework methods and all usages
of framework types belong to the boundary.

Another characteristic of framework-based code is the use of configuration files,
which are declarative specifications interpreted by a framework and which also be-
long to the framework boundary. The configuration files are used not only for spec-

53

ifying parameters to the framework, but also for assigning roles to code elements,
such as classes and methods, and defining relationships among code elements. In
some cases, static analysis of the completion code is not possible without interpret-
ing the configuration files because code elements are indistinguishable when only
considering the code. For example, any Java class can be assigned the role of a
bean in the Spring framework [4] or a method can be assigned the role of an action
method in Java Server Faces [87] framework. Sometimes understanding the final
behaviour of the application requires analyzing both the code and the configura-
tion file in conjunction. For example, in Enterprise Java Beans 3 [45] the name
of a bean, which is by default the name of the class, can be overridden using an
appropriate Java annotation or using a configuration file. Hence, determining the
final name requires interpreting the code and the configuration file with respect to
the name override rules.

Therefore, the retrieval of framework-specific models requires both using config-
uration files and code queries that i) do not require complete control flow informa-
tion and ii) perform the required static analyses on-demand, i.e., compute partial
control or data flow graphs.

Given these challenges of and requirements for static analysis of the completion
code, we propose a number of code queries that can be used for framework-specific
model extraction. The proposed code queries are both incomplete and unsound ap-
proximations of behavioural patterns, that is, they can miss some pattern instances
in the code and they can match some parts of the code incorrectly. However, by
allowing misses and incorrect matches, we are able to use simple analyses that scale
to large bodies of code. At the same time, our study shows that only very few actual
misses and incorrect matches occur for a large set of the analyzed applications.

4.3 Setup of the Study

We conducted the study in three phases. The purpose of the first phase was to
identify types of structural and behavioural patterns that need to be matched in
the completion code in order to retrieve framework-specific models using the three
FSMLs. The purpose of the second phase was twofold: i) determine the precision
and recall of the code queries used in the prototypes for the location of code pat-
terns, and ii) propose refined versions of the code queries that would provide 100%
precision and recall. The purpose of the third phase was to implement the proposed
(refined) code queries and evaluate their precision and recall on a larger number of
applications.

4.3.1 Setup of phase 1

The inputs to the first phase of the study are three exemplar FSMLs, one for
each of the following frameworks: Java Applet [88], Apache Struts [16], and a

54

part of Eclipse Workbench [78]. The metamodels of the FSMLs consist of abstract
syntax and mapping definitions. Applet FSML captures the concept of Java applet
and has 20 features. Struts FSML captures the concepts of action, form, and
forward, and has 43 features. It addresses the problem of maintaining the referential
integrity between Java code and an XML configuration file. Eclipse Workbench Part
Interaction (WPI) FSML captures the concepts of editor, view, selection provider,
selection listener, part listener, adapter provider, and adapter requestor. WPI FSML
has 52 features and it models the interactions that can potentially occur among
workbench parts. WPI FSML also encodes many framework rules and helps with
maintaining the referential integrity between Java code and XML plug-in manifest
files related to part IDs.

In this study, we only considered features related to Java code and omitted (i)
features related to XML configuration files and (ii) features that represent referen-
tial integrity constraints, which are realized by model queries. The features related
to XML configuration files in our FSMLs simply correspond to XML elements and
attributes and can be retrieved with 100% precision and recall. Model queries op-
erate on the already retrieved features and thus are irrelevant with respect to code
querying. The identified types of code patterns and the implemented queries are
presented in Section 4.4.

4.3.2 Setup of phase 2

In the second phase of the study we used the prototype implementations of the three
FSMLs to automatically reverse engineer a number of sample applications. The pro-
totypes implement code queries that realize mapping definitions of the FSMLs. The
unit of analysis was a project : an abstract entity that groups all source artifacts
of the analyzed application. For the Java Applet framework, sample applets were
grouped into two projects, one with 20 examples provided by Sun and one with 51
applets collected from the Internet. 36 of the applets from the internet were the
applets used in the design fragments study [46]. The authors of that study used
the search string import java.applet.Applet -site:sun.com and they revised
the search results to select applets that meaningfully used the framework. The
remaining 15 applets were not used in that study but they were collected using the
same method. Each of the Struts applications, Apache Roller [15] (v.3.0), Mail-
reader [16] (v.1.3.8), and Cookbook [16] (v.1.3.8), constitutes a separate project.
Apache Roller is a large, open-source, and widely used application implementing 58
actions and using 186 forwards. Mailreader and Cookbook are small example appli-
cations provided with the framework implementing 19 and 16 actions, respectively.
For the Eclipse Workbench framework, an application is encapsulated as an Eclipse
plug-in. Because Eclipse plug-ins form complex dependency graphs, it is difficult to
analyze plug-ins separately. However, by analyzing a plug-in that depends on most
of the other plug-ins, we can analyze all these plug-ins at once. For WPI FSML,
the project consisted of the org.eclipse.pde.ui plug-in (v.3.2), which depends on

55

many other ui plug-ins including1 ant.ui, debug.ui, jdt.debug.ui, jdt.ui, ui, ui.edi-
tors, ui.ide, ui.views, and ui.workbench.texteditor. This allowed us to analyze part
interactions that can occur among 88 workbench parts (editors and views).

The result of the analysis revealed the precision and recall with which the queries
were able to approximate the code patterns. By manually inspecting the code, we
were able to identify categories of patterns missed by the used code queries. Sub-
sequently, we proposed refined versions of code queries that would capture the
patterns missed by the original code queries. The queries obtained from this iter-
ative process are presented in Section 4.4 and the data relative to their precision
and recall is described in Section 4.5.1. The results are discussed in Sections 4.5.3
and 4.7.

4.3.3 Setup of phase 3

The purpose of the third phase of the study was to provide stronger evidence
supporting our findings in the initial phases. To this end, we implemented the
refined code queries proposed in Phase 2, slightly extended the definitions of the
three FSMLs, and repeated the evaluation on a larger set of applications. For the
Applet FSML, we gathered 13 additional applets from the Internet, three extra
Struts applications (Ajax Chat, Beer4all and Pools [1]) were used in the evaluation
of the Struts FSML. The three applications implement 30 actions and 87 forwards,
in total. For the WPI FSML we created a new plug-in that depends on a subset
of the Eclipse Europa plug-ins (Eclipse 3.3.2). This way we analyzed potential
interaction that can occur among 133 editors and views, 45 parts more as compared
to phase 2. We analyzed the latest available versions of the applications as of March
2008. The detailed list of applications used in Phase 3 of the study is presented in
Appendix B. The results are presented and discussed in Sections 4.6.3 and 4.7.

In addition to extending the set of applications to be analyzed, we also improved
the FSMLs. In particular, we made changes to accommodate (i) multiple listener
registrations and deregistrations and (ii) multiple values resulting from constant
propagation. We also added some new features. In total, we added eight features
to Applet FSML, one feature to Struts FSML, and four features to WPI FSML.
We removed one feature from WPI FSML.

4.3.4 Data collection process

For any given feature, we consider the code patterns that all of its instances in the
reverse-engineered project correspond to. The correspondence is specified using
mapping definitions attached to the features. For a feature f let

• Af be the number of all patterns in the code that satisfy the mapping defini-
tion and that can be determined statically,

1For brevity, we omit prefix org.eclipse. from the names.

56

• Qf be the number of patterns matched by the query,

• Cf be the number of patterns that satisfy the mapping definition and are
matched (correctly) by the code query,

• Mf be the number of patterns that satisfy the mapping definition and are
missed by the code query (false negatives),

• If be the number of patterns that do not satisfy the mapping definition and
are matched (incorrectly) by the code query (false positives).

Note that Af takes into consideration only patterns that can be determined
statically. For example, for method calls, Af accounts for all method calls matching
the given signature, but does not account for the possible method calls through
reflection. Similarly, for the values of method call arguments Af does not account
for dynamic values, such as coming from the user of the application or an input
stream. In the latter case, we did not count dynamic values as false negatives,
which is reflected in the following equations, whereby the recall depends on the
value of Af .

The following two equations hold:

Af = Cf + Mf (4.1)

Qf = Cf + If (4.2)

Precision (Pf) and recall (Rf) can be defined as follows:

Pf =
Cf

Qf

=
Cf

Cf + If

(4.3)

Rf =
Cf

Af

=
Cf

Cf + Mf

(4.4)

In Phase 2, we collected the data as follows. For a feature f, value Qf was
returned by the prototypes at the end of reverse engineering for the code queries
used by the prototypes. We then manually analyzed the code to determine the
values for Mf and If for the given query. The analysis allowed us to propose
the refined code queries that would capture the false negatives and exclude false
positives of the previous query.

In contrast to the original code queries, the values Qf , Mf and If for the
proposed refined code queries were obtained manually by checking whether each
false negative and false positive would belong to the results of the proposed query.
Values Cf were calculated using equation 2. We present the details of the study in
Section 4.5.

In Phase 3, for a feature f, value Qf was also returned by the prototypes.
Value If was obtained by manually checking every feature from the automatically

57

retrieved model and its corresponding code and counting those features that were
incorrectly identified in the code. Value Mf was obtained by manual code inspection
driven by the comparison of models extracted using different analysis settings. We
present the details of the study in Section 4.6.

4.4 Results of Phase 1: Code Patterns & Code

Queries

Table 4.1: Mapping types for structural code patterns for Java (adapted from [13])
Structural Pat-
tern Expression

Structural Element(s) Matched Abbreviation

project matches a Java project project

p projectName matches the name of the project p projectName
class matches a Java class class
c fullyQualified-
Name

matches the fully qualified name of the class c fqName

c className matches the simple name of the class c className
c qualifier matches the qualifier (package name) of the class c qualifier

c assignableTo: t
[concrete: r] [local:
p]

matches if objects of the class c are assignable to the type t. The optional
parameter r specifies that only concrete classes should be matched. The
optional parameter p specifies that only source types of the project p
should be matched

assignable

c isLocal: p matches if the class c is a source class of the project p isLocal

field matches a field field
f fieldName matches the name of the field f fieldName
f fieldOfType: t matches if objects of the type t are assignable to the field f fieldOfType

c methods: s
matches methods with signature s that are implemented or overridden
by the class c. The signature may contain * for the method name to
match any method name

methods

c allMethods: s
matches methods with signature s that are implemented, overridden or
inherited by the class c. The signature may contain * for the method
name to match any method name

allMethods

x annotated-
With: t

matches a Java 5 annotation of type t placed on element x. The element
x can be a class, a method, or a field

annotatedWith

a attribute: n matches the value of attribute called n of a Java 5 annotation a attribute

a hasNoAttribute
matches if the annotation a has no attributes (i.e., the annotation is a
marker annotation)

noAttribute

mc argumen-
tIsThis: i class:
c

matches if the ith argument of the method call mc is a this literal
assignable to the class c.

argIsThis

mc argumentIs-
Field: i [sameAs:
f]

matches if the ith argument of the method call mc is a field. Parameter f
is optional and specifies a constraint that the matched field must be the
same as the field that the feature f corresponds to.

argIsField

mc argumentIs-
New: i signature:
s

matches if the ith argument of the method call mc is a constructor call
of the signature s

argIsNew

mc argumentIs-
Variable: i

matches if the ith argument of the method call mc is a variable argIsVar

In order to retrieve framework-specific models, code patterns specified by the
mapping definitions attached to features of an FSML must be matched in the frame-
work completion code. Code patterns can be classified as structural or behavioural
patterns. In general, structural patterns consist of code elements and their static
properties as well as properties derived according to the static semantics, such as

58

Table 4.2: Mapping types for behavioural code patterns for Java (adapted from [13])
Behavioural Pat-
tern Expression

Run-time Event Pattern(s) Matched Abbrev.

c callsTo: s re-
ceiver: r [statement:
s]

matches method calls to methods with the signature s received by objects
assignable to the type r in the control flow of instances of the class c.
The optional parameter s specifies whether only method calls which are
individual statements should be matched.

callsTo

callsTo($c o): call($s) && target($r) && cflow(execs(o))

c callsReceived: s
matches method calls to methods with the signature s received by objects
assignable to the class c

callsRec

callsRec($c o): call($s) && target(o)

mc valueOfArg: i matches run-time values of the ith argument of the method call mc argVal
argVal(): $mc && args(.., $i, ..)

c argument: i
ofCall: mc1

sameAsArg: j
ofCall: mc2

matches if the ith argument of the method call mc1 points to the same
object as the jth argument of the method call mc2, in the control flow of
objects of the class c

argSameObj

argSameObj($c o): $argVal(mc2, j) && dflow[j, i]

($argVal(mc1, i)) && execs(o)

c methodCall: mc1

before: mc2

matches if in the control flow of instances of the class c, the method call
mc1 occurs at least once before the occurrence of method call mc2

before

before($c o): execs(o) && ($mc1+ $mc2)

m returnedObject-
Types: c

matches all possible types of the objects returned by the method m from
the point of view of the class c that implements, overrides, or inherits m

retTypes

retTypes(): execution($m) && returnTypes() && this($c)

f assignedNull matches assignments to the field f with the null value assignNull
assignNull(Object o): set($f) && args(o) && if(o == null)

f assignedNew: cs
[subtypeOf: t]

matches assignments to the field f with an object returned by a con-
structor call with the signature cs. The optional parameter subtypeOf
specifies that only constructor calls that create instance of the subtype
of the type t should be matched

assignNew

assignNew(Object o): set($f) && args(o) && dflow[o, i]

(call($cs) && returns(i))

Helper Defini-
tions

matches executions of methods in instances of class c

execs($c o) : execution(* *(..)) && this(o);

resolved type and method bindings. Because run-time events do not exist statically,
behavioural patterns consist of shadows [53] of the run-time events over the code.

The types of code patterns identified in the mapping definitions of the three
FSMLs are summarized in Tables 4.1 and 4.2. The first column contains Smalltalk-
like expressions that can be used to specify the patterns. The last column defines
abbreviations used to refer to the given pattern type in the remainder of this pa-
per. The second column presents descriptions of the semantics of code patterns.
The description specifies the patterns in the code that match the given pattern
expression. Since structural patterns can be fully retrieved from the code by static
analysis and their semantics are rather simple, we deem unnecessary a more formal
definition in this paper. However, the semantics of behavioural patterns, which is
more difficult to define, is specified more precisely using meta pointcuts in addition
to the informal description.

Pointcuts were introduced in aspect-oriented programming [65] as expressions
that define patterns of run-time events. In that context, crosscutting behaviour
can be applied when such patterns occur at run-time. In the context of FSMLs,
pointcuts provide the exact definitions of the behavioural patterns that features

59

correspond to. In Table 4.2, we use meta pointcuts parametrized with variables
from the pattern expressions. The parameters and macro calls prefixed with a $ sign
are replaced by the corresponding variable value or by expanding the corresponding
meta pointcut, respectively. We reuse elements of syntax of AspectJ [64] and some
of its extensions, namely the Data Flow Pointcut [71] and Tracematches [5]. For
example, the meta pointcut for the pattern type callsTo uses AspectJ’s call,
target, and cflow pointcuts. This meta pointcut also uses the helper pointcut
execs, which is defined at bottom of Table 4.2. Furthermore, the meta pointcut
for the pattern type argSameObj uses dflow to specify that the argument of the
first method call is the same object as the argument of the second call. The meta
pointcut for the pattern type before uses the Tracematches notation to define the
order in which method calls occur. Finally, we had to introduce a new primitive
pointcut, namely returnTypes. This new pointcut captures the run-time type of
the object returned by a method and is used in the meta pointcut for the pattern
type retTypes.

[0..*] Applet <class>

![1] extendsApplet <assignableTo: ’Applet’>

[0..*] showsStatus <callsReceived: ’Applet.showStatus(String)’>

[0..1] message (String) <valueOfArg: 1>

[0..1] listensToMouse

![1] implementsMouseListener <assignableTo: ’MouseListener’>

![1] registers <callsReceived: ’Component.addMouseListener(IMouseListener)’>

[1] deregisters <callsReceived: ’Component.removeMouseListene(IMouseListener)’>

[1] deregistersSameObject <argument: 1 ofCall: ../../registers sameAsArg: 1 ofCall: ..>

[1] registersBeforeDeregisters <methodCall: ../../../registers before: ../..>

[0..*] thread <field>

![1] typedThread <fieldOfType: ’Thread’>

[1] initializesThread <assignedNew: ’Thread(IRunnable)’>

[1] nullifiesThread <assignedNull>

[0..*] parameter <callsReceived: ’Applet.getParameter(String)’>

[0..1] name (String) <valueOfArg: 1>

[1] providesParameterInfo <methods: ’Applet.getParameterInfo()’>

Figure 4.1: Fragment of the metamodel of the Applet FSML

[0..*] Action <class>

![1] extendsAction <assignableTo: ’Action’>

[0..1] extendsDispatchAction <assignableTo: ’DispatchAction’>

[0..*] actionMethod <methods: ’*(ActionMapping, ActionForm, [..], [..])’ >

[0..1] overridesExecute <methods: ’execute(ActionMapping, ActionForm, [..])’>

[0..*] forwardImpl <callsTo: ’findForward(String)’>

[1] name (String) <valueOfArg: 1>

Figure 4.2: Fragment of the metamodel of the Struts FSML

Figures 4.1-4.3 present fragments of the metamodels of the three FSMLs used in
the study. We provided values for some parameters of pattern expressions to give
the reader an idea about the meaning of the features. We used “[. . .]” to indicate
omitted details.

We present the metamodels for two reasons: (i) to show fragments of the meta-
models before they were modified in the elaboration phase, and (ii) to help the

60

[0..*] Part <class>

![1] implementsIView/IEditorPart <assignableTo: ’IViewPart/IEditorPart’ concreteOnly: true>

[0..*] SelectionProvider <class>

![1] implementsISelectionProvider <assignableTo: ’ISelectionProvider’>

[1]registers <callsTo: ’setSelectionProvider(ISelectionProvider)’>

[0..*] SelectionListener <class>

![1] implementsISelectionListener <assignableTo: ’ISelectionListener’>

[0..1] globalSelectionListener <callsTo: ’addSelectionListener(ISelectionListener)’>

[1] deregisters <callsTo: ’removeSelectionListener(ISelectionListener)’>

[1] deregistersSameObject <argument: 1 ofCall: ../.. sameAsArg: 1 ofCall: .. >

[1] registersBeforeDeregisters <methodCall: ../../.. before: ../..>

[0..1] globalPostSelectionListener <callsTo: ’addPostSelectionListener(ISelectionListener)’>

[1] deregisters <callsTo: ’removePostSelectionListener(ISelectionListener)’>

[1] deregistersSameObject <argument: 1 ofCall: ../.. sameAsArg: 1 ofCall: ..>

[1] registersBeforeDeregisters <methodCall: ../../.. before: ../..>

[0..*] specificSelectionListener <callsTo: ’addSelectionListener(String, ISelectionListener)’>

![1] registrationPartId <valueOfArg: 1>

[1] deregisters <callsTo: ’removeSelectionListener(String, ISelectionListener)’>

[1] deregistrationPartId <valueOfArg: 1>

[1] deregistersSameObject <argument: 2 ofCall: ../.. sameAsArg: 2 ofCall: ..>

[1] registersBeforeDeregisters <methodCall: ../../.. before: ../..>

[0..*] PartListener <class>

![1] implementsIPartListener <assignableTo: ’IPartListener’>

[1] registers <callsTo: ’addPartListener(IPartListener)’>

[1] deregisters <callsTo: ’removePartListener(IPartListener)’>

[1] deregistersSameObject <argument: 1 ofCall: ../../registers sameAsArg: 1 ofCall: ..>

[1] registersBeforeDeregisters <methodCall: ../../../registers before: ../..>

[0..*] AdapterProvider <class>

![1] providesAdapter <allMethods: ’Object getAdapter(Class)’>

![1..*] adapters (String) <returnedObjectTypes>

[0..*] AdapterRequestor <class>

![1..*] requestsAdapter <callsTo: ’getAdapter(Class)’ receiver: ’IWorkbenchPart’>

[1] adapter (String) <valueOfArg: 1>

Figure 4.3: Fragment of the metamodel of the WPI FSML

reader understand the tables with precision and recall presented in Sections 4.5.1
and 4.6.3.

The mapping definitions of the analyzed FSMLs use pattern expressions, whereas
the prototype implementations of the FSMLs use code queries for matching the re-
quired code patterns.

We present the code queries that approximate behavioural patterns in Ta-
bles 4.3-4.10. Code queries are defined in the Smalltalk-like notation, similar to
their corresponding pattern expressions in Tables 4.1 and 4.2. For each code query,
we provide a description of the results obtained by statically applying the query to
the code.

Queries marked with an asterisk (*) are the ones used in the prototypes in Phase
2 of the study and they will be discussed in this section. The remaining queries
are the ones we proposed as query refinements in Phase 2. These queries are the
hypothetical ones that would match behavioural code patterns with 100% precision
and recall. They are hypothetical in the sense of assuming perfect static analyzes
that could infer any code property that could be statically inferred. These queries
are discussed in Section 4.5. In Phase 2, they were only “executed” manually;
obviously, such an execution represents our “best effort” and we discuss this issue

61

in the threats to validity. However, the refined queries were implemented in Phase
3 by making specific implementation choices about the involved static analyzes,
which could potentially reduce their precision and recall. The implementations are
presented in Section 4.6.

Code Query Query Expression
Abbrev. Result

getCallsWH∗ c getCallsInHierarchy: s receiver: r
a set of method calls with the signature s within the bodies of the class c and its superclasses,
such that the receiver of each call is assignable to the type r

getCallsCF c getCallsCFlow: s receiver: r
a set of method calls with the signature s in the control flow of every implemented, inherited,
and overridden method of the class c, such that the receiver of each call is assignable to the
type r

Table 4.3: Code queries for the callsTo mapping type

Code Query Query Expression
Abbrev. Result

getCallsRec∗ c getCallsReceived: s
a set of method calls with the signature s, such that the receiver of each call is assignable
to the type c

getCallsRecTI c getCallsReceivedTI: s
a set of method calls with the signature s, such that the receiver of each call is assignable
to the type c. In the case when the type of the receiver is more general then the type c,
the query traverses the receiver’s dataflow graph backwards to infer its more specific type

Table 4.4: Code queries for the callsRec mapping type

Code Query Query Expression
Abbrev. Result

getArgValLC∗ mc getArgValLiteralConstant: i
value of the ith argument of the method call mc retrieved from a static final variable or
a literal

getArgValCP mc getArgValConstantProp: i
set of values of the ith argument of the method call mc retrieved using interprocedural
constant propagation limited in scope to the class that contains the called method

getArgValPE mc getArgValPartialEval: i
set of values of the ith argument of the method call mc retrieved using partial evaluation

Table 4.5: Code queries for the argVal mapping type

Code Query Query Expression
Abbrev. Result

argIsThis∗ c thisAsArgument: i ofCall: mc1 andArg: j ofCall: mc2

true iff both the ith argument of the method call mc1 and the jth argument of the method
call mc2 are the literal this and the resolved type of the literal is class c

argIsPrvFieldAO c prvFieldAsArgument: i ofCall: mc1 andArg: j ofCall: mc2 givenCSeq: cs
true iff both the ith argument of the method call mc1 and the jth argument of the method
call mc2 are references to the same private field of class c whose value has been assigned
once before both calls

Table 4.6: Code queries for the argSameObj mapping type

Code queries presented in Tables 4.3-4.10 can be grouped based on the kind
of approximation they employ. We discuss their potential false positives and false
negatives.

62

Code Query Query Expression
Abbrev. Result

isBeforeWH∗ c is: mc1 before: mc2 inHierarchyGivenCSeq: cs
true iff the method calls mc1 and mc2 are located within the bodies of callback methods
m1 and m2, respectively, such that the method m1 occurs before the method m2 in the
callback sequence cs OR
true iff mc1 occurs before mc2 in the cflow of the method m1 if m1 = m2. Methods m1

and m2 can be any implemented, inherited or overridden methods of the class c
isBeforeCF c is: mc1 before: mc2 inCFlowGivenCSeq: cs

true iff the method calls mc1 and mc2 occur in the control flows of callback methods m1

and m2, respectively, such that the method m1 occurs before the method m2 in the callback
sequence cs OR
true iff mc1 occurs before mc2 in the cflow of the method m1 if m1 = m2. Methods m1

and m2 can be any implemented, inherited or overridden methods of the class c

Table 4.7: Code queries for the before mapping type

Code Query Query Expression
Abbrev. Result

getRetTypesWS∗ m returnStmsWithinAndSuper: c
a set of types of objects returned by the method m (excluding Object) retrieved from type
bindings of return statements within the body of the method, including bodies of super
methods if called. The type of the returned literal this is interpreted as class c

getRetTypesMST m returnStmsMostSpecificType: c
a set of types of objects returned by the method m (excluding Object) retrieved from return
statements, inferring the most specific type in the data flow of each returned object. The
type of the returned literal this is interpreted as class c

Table 4.8: Code queries for the retTypes mapping type

Code Query Query Expression
Abbrev. Result

getAssgnNew∗ f getAssignedNew: cc
a set of assignments to the field f with the constructor call cc

Table 4.9: Code queries for the assgnNew mapping type

Code Query Query Expression
Abbrev. Result

getAssgnNull∗ f getAssignedNull
a set of assignments to the field f with the null literal

Table 4.10: Code queries for the assignNull mapping type

One group of queries approximate interprocedural control flow graph of an ob-
ject: getCallsWH and isBeforeWH. The idea is to search in the bodies of the
object’s class and its superclasses because the code implementing the call is likely
to be found there. These queries can potentially miss patterns (false negatives) lo-
cated in helper classes whose code is located outside the class of the object (nested
and anonymous classes are included in the search). Also, the queries can incorrectly
identify patterns (false positives) in the superclasses. This happens when the call
resides in the bodies of methods that get overridden and which are not reached by
a super call.

The query isBeforeWH relies on the information about method callback se-
quence of the framework. The callback sequence information is necessary because
the control flow graph of a class implementing callback methods is potentially com-

63

posed of disjoint graphs for each callback method, unless the callback methods call
each other, which is not common. This query will miss a pattern if at least one of
the two method calls to be matched is in the control flow of a callback method, but
not directly in the body of that method.

Another group of queries rely on static type binding information: getCalls-

Rec and getRetTypesWS. The former uses the type binding of the receiver of a
method call to determine if it matches the specified type, while the latter uses the
type binding of the return statements of a method. These queries can generate
false negatives when the binding points to a type that is more general than the
actual type of the returned object. The query getRetTypesWS will also return an
inappropriate type if (i) the object to be returned is assigned to a variable with
more general type than the object’s type and the variable is returned or (ii) the
object is returned by a method called from the return statement with more general
return type than the object’s type.

The query argIsThis considers the arguments of two method calls as being the
same object only if they employ the this keyword. This approximation misses all
other cases where the methods are called with the same object as argument, such
as when the argument is a private field of the class.

The queries getAssgnNew and getAssgnNull only match patterns in which the
right-hand side of a field assignment is the new expression or the null literal,
respectively. These queries will miss patterns when the field is assigned with a
variable which had previously been assigned the result of a constructor call or
null, respectively. In these cases, dataflow graph traversal is necessary.

4.5 Results of Phase 2: Evaluation of the Simple

Code Queries

4.5.1 Precision & recall

Tables 4.11, 4.12, and 4.13 present values Af , Df , Mf , Rf , and Pf for every code
query used for the retrieval of instances of the feature f . In the columns Af , the
number between parenthesis denotes the number of features not counted as false
negatives because they are dynamic.

The column Query Type contains names of code queries used for retrieving
patterns of the given type. The queries for structural patterns are omitted for
brevity, which results in the empty cells in the tables. Obviously, these queries
are precise and complete implementations of the corresponding mapping types.
For behavioural patterns, we provide queries that were used by the prototypes
to approximate the corresponding mapping types. If a query retrieved less than
100% of patterns, we include manually computed data for the proposed query
refinements in the subsequent rows. The cases in which the refined queries were

64

needed to match missed patterns can be visually recognized by looking at cells in
the column Af that span multiple rows (6 cases). The column, Rf , contains the
recall calculated according to the equation 4.4. The last column, Pf , contains the
precision calculated according to the equation 4.3. Except for three features which
have a single false positive each, the precision is always 100% and we did not include
it in the tables. In Section 4.5.2 we describe the refined queries and the data is
discussed in Section 4.5.3.

4.5.2 The Refined Code Queries

In Tables 4.3-4.8, the queries not marked with an asterisk represent refinements
over the marked queries. We present the refined code queries because we use them
as a point of reference in Tables 4.11-4.13, that is, we measure false negatives with
respect to the number of patterns matched by the best refined code query. In
Section 4.3.4 we defined Af as the number of all patterns in the code that satisfy
the mapping definition and that can be determined statically, meaning the number
of patterns that can be retrieved by the best available code query. Since the refined
code queries were not implemented, we computed the values of manually.

The queries getCallsCF and isBeforeCF refine getCallsWH and isBeforeWH,
respectively, by correctly considering the set of available methods in an object of
that class and by analyzing the call graph of this object. They will therefore ignore
method calls found in methods that get overridden and are not reachable, and will
detect method calls in helper classes.

Some refined queries traverse the dataflow graph backwards, beginning at a par-
ticular use of a variable, to determine its most specific type. Queries getCallsRecTI
and getRetTypesMST refine getCallsRec and getRetTypesWS, respectively, be-
cause using the most specific type information for the method call receiver or the
return expression potentially matches additional patterns. The query argIsPrv-

FieldAO improves argIsThis. It determines whether the only field assignment
occurred before the first method call. This query is motivated by a very com-
mon programming pattern, whereby an instance of a helper class is created and
assigned to a private field and then used as a parameter of service method calls.
These queries will lead to false negatives in cases where patterns cannot be traced
back to field initializations, a constructor, or a callback method, for which the
precedence is known.

The refinement of getArgValLC is achieved by incrementally employing more
powerful static analyses. The query getArgValCP also considers only constants
when determining the argument value, but it uses interprocedural constant propa-
gation to match additional patterns. The query getArgValPE goes beyond constant
propagation and uses partial evaluation to determine argument values. Partial
evaluation is an optimization technique in which the program is evaluated before
runtime based on the statically available values. For example, partial evaluation
may perform operations such as string concatenation for statically known strings,

65

loop unrolling for loops with statically known bounds, and retrieving values from
static array initializers.

4.5.3 Interpretation of the data

We discuss the data presented in Tables 4.11-4.13, each table separately. We focus
on the highlighted cells.

Surprisingly, for all features except three, and for the code queries used in the
prototypes the precision turned out to be 100%. Precision is influenced by the
number of false positives. By checking all features in the retrieved models we
concluded that only three were false positives. As discussed in Section 4.4, all of
the code queries can potentially return false positives. Therefore, finding only three
false positives in the models for the analyzed applications only means that these
particular applications were written in a way that the queries did not return many
false positives. In the following description we comment on the highlighted cells of
Tables 4.11-4.13.

FSML Feature Query Type Af Qf Mf Rf Pf

[0..*] Applet 71 71 0 100 100
![1] extendsApplet 71 71 0 100 100
[0..*] showsStatus getCallsRec 39 39 0 100 100

[0..1] message
getArgValLC 23(16) 17 6 73.91 100
getArgValCP 18 5 78.26 100
getArgValPE 23 0 100 100

[0..1] listensToMouse 23 23 0 100 100
![1] implementsMouseListener 23 23 0 100 100
![1] registers getCallsRec 23 23 0 100 100
[1] deregisters getCallsRec 10 10 0 100 100

[1] deregistersSameObject argIsThis 10 10 0 100 100
[1] registersBeforeDeregisters isBeforeWH 10 10 0 100 100

[0..*] thread 32 32 0 100 100
![1] typedThread 32 32 0 100 100
[1] initializesThread getAssgnNew 30 30 0 100 100
[1] nullifiesThread getAssgnNull 17 17 0 100 100

[0..*] parameter
getCallsRec 153 148 5 96.73 100
getCallsRecTI 153 0 100 100

[0..1] name
getArgValLC 217(11) 132 85 60.82 100
getArgValCP 196 21 90.32 100
getArgValPE 217 0 100 100

Table 4.11: Statistics for framework-specific models retrieved using Applet FSML

Table 4.11. The feature message. The six values missed by the first query
were neither string literals nor static final variables. One more value could be
retrieved by constant propagation and all remaining values could be retrieved by
partial evaluation (string concatenation). For 16 method calls, values of arguments
were not retrieved because they cannot be determined statically. We did not count
these values as false negatives.

The features deregistersSameObject and registersBeforeDeregisters. In
all 10 cases, both the registration and deregistration calls used the literal this as
an argument, and all registration and deregistration calls were located in the init

66

and destroy methods, respectively. Both methods are callback methods and init

is called before destroy.

The feature thread. 32 fields of type Thread were found. The reason why only
30 fields are initialized is that two applets declared two fields which were never
used. Also, we did not find any false negatives for the queries getAssgnNew and
getAssgnNull, meaning that in all cases the right hand side of a field assignment
was a constructor call or the literal null.

The feature parameter. The five missed calls were located in the constructor of
a helper class and the constructor’s parameter applet was the receiver of the calls.
The helper class is instantiated twice by the applet and the literal this is used as
a parameter to the constructor. Therefore, the query getCallsRecTI would infer
that the applet is, in fact, the receiver of the five method calls.

The feature name. The 85 missed parameter names can be retrieved using con-
stant propagation and loop unrolling. For three instances of the feature parameter,
a call to getParameter was placed in a helper method, which was then called 64
times with static values. Traversal of the dataflow graph with the distance of at
most two method calls was necessary to reach the static values. Therefore using the
query getArgValCP reduced the number of false negatives to 21. Using the query
getArgValPE further eliminates all remaining false negatives as follows. For two
instances of the feature parameter, a call to getParameter was placed in a loop
with a statically known loop count. For the first instance, the static values of the
method call parameter were constructed by appending the loop count variable to a
constant string and loop unrolling would yield four values. For the second instance,
the static values were retrieved from a static array using the loop count variable as
index. Again, loop unrolling would yield additional 17 values. For 11 features, the
static value cannot be determined and these are not false negatives.

FSML Feature Query Type Af Qf Mf Rf Pf

[0..*] Action 93 93 0 100 100
![1] extendsAction 93 93 0 100 100

[0..1]extendsDispatchAction 47 47 0 100 100
[0..*] actionMethod 124 124 0 100 100

[0..1]overridesExecute 42 42 0 100 100
[0..*] forwardImpl getCallsWH 212 212 0 100 100

[1] name getArgValLC 211(1) 211 0 100 100

Table 4.12: Statistics for framework-specific models retrieved using Struts FSML

Table 4.12. The feature name. In the three sample applications, the develop-
ers used either string literals or public static final fields as arguments of the
method call. The reason is that the names used as parameters of the findForward

method calls must match the names of forward declarations in Struts’ XML config-
uration file. The single value that was not retrieved comes from a HTTP request
and we did not count it as a false negative.

Table 4.13. The concept SelectionListener. The eight workbench parts are
selection listeners. In particular, one is a global selection listener, six are global
post selection listeners, and one is a specific selection listener.

67

FSML Feature Query Type Af Qf Mf Rf Pf

[0..*] Part 88 88 0 100 100
![1] implementsIView/IEditorPart 88 88 0 100 100

[0..*] SelectionProvider 1 1 0 100 100
![1] implementsISelectionProvider 1 1 0 100 100
[1] registers getCallsWH 1 1 0 100 100

[0..*] SelectionListener 8 8 0 100 100
![1] implementsISelectionListener 8 8 0 100 100
[0..1] globalSelectionListener getCallsWH 1 1 0 100 100

[1] deregisters getCallsWH 1 1 0 100 100
[1] deregistersSameObject argIsThis 1 1 0 100 100

[1] registersBeforeDeregisters isBeforeWH 1 1 0 100 100
[0..1] globalPostSelectionListener getCallsWH 6 6 0 100 100

[1] deregisters getCallsWH 6 6 0 100 100
[1] deregistersSameObject argIsThis 6 6 0 100 100

[1] registersBeforeDeregisters isBeforeWH 4(2) 4 0 100 100
[0..*] specificSelectionListener getCallsWH 1 1 0 100 100
![1] registrationPartId getArgValLC 1 1 0 100 100
[1] deregisters getCallsWH 1 1 0 100 100

[1] deregistrationPartId getArgValLC 1 1 0 100 100
[1] deregistersSameObject argIsThis 1 1 0 100 100

[1] registersBeforeDeregisters isBeforeWH 0(1) 0 0 100 100
[0..*] PartListener 10 10 0 100 100
![1] implementsIPartListener 10 10 0 100 100
[1] registers getCallsWH 10 10 0 100 100
[1] deregisters getCallsWH 9 10 0 100 90

[1] deregistersSameObject
argIsThis 16 10 6 62.5 100
argIsPrvFieldAO 16 0 100 100

[1] registersBeforeDeregisters
isBeforeWH 15 10 6 66.66 90
isBeforeCF 15 0 100 100

[0..*] AdapterProvider 44 44 0 100 100
![1] providesAdapter 44 44 0 100 100

![1..*] adapters
getRetTypesWS 190 132 59 69.47 100
getRetTypesMST 190 0 100 100

[0..*] AdapterRequestor 22 22 0 100 100
![1..*] requestsAdapter getCallsWH 68 69 0 100 98

[1] adapter getArgValLC 62 62 0 100 100

Table 4.13: Statistics for a framework-specific model retrieved using WPI FSML

The features deregistersSameObject. All patterns were matched because the
literal this was used in both the registration and deregistration calls.

The features registersBeforeDeregisters (of selection listeners). The three
patterns not matched by the query (2 for post selection listeners and one for specific
selection listener) are not false negatives because the order of method calls cannot
be determined statically: the registration and the deregistration calls are invoked
from the UI actions.

The concept PartListener. The feature deregisters. The query matched one
pattern more than there actually are in the control flow of the part. This is the one
false positive because the matched method call resided in an overridden method
which was not called using super and dynamic method dispatch always invokes the
overriding method instead.

The features deregistersSameObject and registersBeforeDeregisters. All
part listeners inherit behaviour from an abstract view, where the literal this is used
in the registration and the deregistration. Both calls occur in the createPartCont-
rol and dispose methods, which are callback methods. Except for one case,

68

both calls are not false positives because all part listeners delegate to super in
createPartControl and dispose methods, which they override. However, be-
cause one deregistration method call is a false positive, this translates to a false
positive for the query isBeforeWH because it employs the same approximation as
the query getCallsWH.

Six of the part listeners inherit additional registration and deregistration calls
from another abstract view, which registers and deregisters an instance of a helper
part listener. The instance of the helper listener is stored in a private field and is
assigned only once before the registration. The registration occurs in the cflow of
createPartControl and the deregistration occurs in the cflow of dispose but not
in their bodies, which is why the pattern was missed by beforeWH.

The concept AdapterProvider. The feature adapters. The 59 patterns missed
by the query getRetTypesWS can be divided into two categories: i) the return state-
ment delegates to a factory method and ii) the return statement returns a variable.
In the first category, the factory method’s return type is more general then the
type of the returned object. In the second category, the type of the variable is more
general than the type of the returned object assigned to the variable. The query
getRetTypesMST captures all patterns by analyzing the dataflow of the returned
object, beginning at the return statement, and inferring the most specific type of
the object. In ten cases the exact type could not be found because of polymorphic
calls (in most of these cases, the type of the receiver was an interface).

The concept AdapterRequestor. The features requestsAdapter and adap-

terType. The seven adapter requestors inherit the adapter request call from an
abstract multi-page editor class, where the editor simply delegates the call to a
page with an active editor. The argument value cannot be statically determined
and we did not count these cases as false negatives. The only one false positive is
because an editor overrides a method from the abstract superclass that contains
the adapter request call and does not call super.

It is important to note that even if a value of an argument of a method call can-
not be statically determined, a framework-specific model still provides traceability
to the method call. In the case of the Struts FSML, where retrieving the names
of forwards is critical for referential integrity checking with the XML configuration
file, the results show that such values are statically available in the code.

Finally, the weighted average recall for queries that missed patterns is 82% for
getArgValueLC, 82% for argIsThis, 76% for isBeforeWH, and 98% for getCallsRec,
which shows that even such simple queries provide very high recall. An exception
here is the query getRetTypesWS with recall 69%. However, we counted a false
negative if the query returned a more general type than the actual type of the re-
turned object, which, in all cases, was an interface. Even returning a more general
type provides far more information than the return type of the method (Object
in the case of getAdapter()) and, in fact, is sufficient for WPI FSML because
workbench parts usually request an adapter implementing a certain interface. The
weighted average precision for queries that incorrectly identified patterns is 96%

69

for isBeforeWH and 99% for getCallsWH.

4.5.4 Conclusion for phases 1 and 2

In summary, in the first two phases of the study we identified the types of structural
and behavioural patterns that the features of the three exemplar FSMLs correspond
to and we provided a precise definition of behavioural patterns using meta point-
cuts. We showed how knowledge about a framework, such as the order of callbacks,
can be leveraged for the retrieval of behavioural patterns, such as callsTo, before,
and argSameObj, which is undecidable in the general case. Also, we provided em-
pirical evidence that by leveraging framework knowledge and concentrating on the
framework boundary simple static analyses are sufficient for retrieving framework-
specific models, without requiring whole-program analysis. The average recall for
all simple queries for behavioural patterns was 88% and the precision was 99%. We
proposed refined versions of the code queries that would achieve 100% precision and
recall for the sample applications (cf. Tables 4.3-4.8, queries not marked with ’*’).
We also observed that the results are dependent on the fact that the application
code was written in a simple form, often simulating framework-provided examples
by following the Monkey see, monkey do rule [49]. Consequently, we concluded
that analyzing a larger sample of applications was needed in order to see whether
this observation would hold more generally or whether it was just a property of the
code we analyzed so far.

4.6 Results of Phase 3: Implementation and Eval-

uation of the Refined Code Queries

4.6.1 Static analysis services used by the code queries

The implementation of the refined code queries, as recommended in the previous
section, requires four basic services: type hierarchy, call graph, dataflow graph, and
most-specific-type inference. As argued in Section 4.2, building complete type hier-
archy, call graph, and dataflow graph for framework-based applications is infeasible
and, as shown in Section 4.5, not necessary. Therefore, we implemented these
services in an incremental and on-demand form that allows the code queries to ob-
tain the necessary information as they execute. This way, and by focusing on the
framework boundary, we avoid the complete analysis of both the application and
the framework and yet we are still able to retrieve patterns with higher precision
and recall than in Phase 2.

70

Type hierarchy

Type hierarchy is the most basic service that is used by code queries and other
services. In our implementation, the service is provided by an incremental type
hierarchy manager, which manages a single and shared type hierarchy cache. The
manager provides the following query functions:

• supertype and subtype hierarchy computation and traversal for a type,

• improved support for nested and anonymous classes as compared to the de-
fault JDT’s implementation, and

• checking whether a given type is assignment compatible with another type.

Call graph

The call graph service is provided by a configurable incremental call graph manager.
Its design has been influenced by the observation, confirmed by the results of the
second phase of the study, that method calls related to the given class usually reside
in the bodies of classes within the supertype hierarchy of the given class, including
nested and anonymous classes.

The query functions provided by the call graph manager are context sensitive
in order to more precisely support the analysis of dynamic (polymorphic) method
calls. We refer to the class for which the analysis is performed as the context class.
After adding the context class to the call graph manager, the manager builds an
explicit call graph starting from all declared and inherited methods of the context
class, which we refer to as available methods. Edges are created for each method or
constructor call in the available methods. Therefore, the analysis is control-flow-
insensitive.

Based on the precomputed call graph, the manager provides the following query
functions:

• determining the method in the hierarchy that will be executed when a dy-
namic method call targets the context class,

• checking whether there exists a path between two given methods in the call
graph,

• checking whether a given method is reachable from any available method of
a given context class, and

• retrieving all possible implementations of a given method in the hierarchy of
the context class.

71

The call graph manager supports different modes of operation, which are con-
figured by flags set before the analysis. The different modes influence the size and
the precision of the call graph and the time required to query it.

• The flag hierarchical. This flag specifies that all method calls whose targets
can be statically determined are included as edges in the graph. This set
includes calls to static methods, even if outside the hierarchy of the context
class, and calls to super and constructor calls. Moreover, the call graph
includes dynamic calls within the hierarchy of the context class since the
exact target method can be determined given a context type. Dynamic calls
outside the hierarchy are ignored and, therefore, this call graph does not
produce any false positives.

• The flag precise. A superset of the hierarchical call graph, the precise call
graph additionally includes dynamic calls to methods outside the context
hierarchy, provided that there is a single concrete implementation of the target
method in the system. This flag is the default used in all experiments in Phase
3. This call graph also yields no false positives.

• The flag full. This flag augments the precise call graph by including an
edge in the graph for each possible implementation of the target method of
a dynamic call outside the context hierarchy. Since all possible paths in the
system are included this graph has no false negatives, but will potentially
include false positives.

The mode severely impacts (i) the call graph’s size and (ii) the precision, recall,
and efficiency of the queries to the call graph. The hierarchical call graph limits
the path search scope to the context hierarchy and can therefore answer queries
much faster than the full call graph. The precise call graph increases the precision
at the cost of efficiency. The full call graph excels in recall, but at the price of less
precision and efficiency.

Dataflow graph

The dataflow graph service is implemented as a set of recursive query functions
and is used by the code queries for the argVal pattern type. In other words, the
dataflow graph is not represented explicitly as the call graph, but rather exists as
traversals implemented by the functions. The objective of the argVal pattern type
is to match all static values of an argument of a method call. During static analysis,
we can only match the potential values of the given expression since there may be
many execution paths at run-time. Consequently, the dataflow service is control
flow-insensitive: when looking for static values, we consider variable initializers and
all assignments, even if the assignments are in alternative control flows. We also do
not perform reachability analysis. As a result, the possible false positives include
(i) values used in variable initializers, but overridden by an assignment prior to

72

the use of the variable; (ii) values used in assignments in unreachable code; and
(iii) values assigned after the use of the variable. We, however, think that those
situations are rare in real code. We provide some evidence supporting that claim
in the next section.

The analysis is implemented as a set of query functions, each for a different kind
of code elements. We refer to the function that processes expressions as the base
function. The functions delegate to each other, which implements the traversal.
The functions return a set of values. The analysis proceeds as follows, depending
on the kind of the code element being processed.

• The base function, which processes an expression, returns a static value if the
expression is a literal or a final variable. Otherwise, the function delegates to
an appropriate function depending on the kind of the expression.

• The function for a variable uses the base function to process the expressions
that are used in the variable’s initializer and at the right hand side of all
assignments to that variable.

• The function for a conditional expression in the form a ? b : c uses the
base function to process the expressions b and c.

• The function for a parenthetical expression in the form (a) uses the base
function to process the expression a.

• The function for a cast expression in the form (T) a uses the base function
to process the expression a.

• The function for a method or constructor parameter uses the base function
to process the expressions used as the right hand side of all assignments
to the parameter in the body of the method. Next, the function locates
calls to the method or the constructor and uses the base function to process
the expressions of arguments of the calls that correspond to the analyzed
parameter.

• The function for an array access uses the base function to process expressions
in the cells of the array’s initializer. If an index used in the array access is
unknown statically, the function processes all cells of the given array dimen-
sion.

• The function for a method call first resolves the target method declaration
using the call graph manager and delegates to the following function to process
the method declaration.

• The function for a method declaration uses the base function to process ex-
pressions used in all return statements.

73

Most-specific-type inference

The most-specific-type inference service is implemented as a set of recursive query
functions and is used by the code queries for the retTypes pattern type. The
service is also used by the code queries for the callsTo and callsReceived to
infer the type of the method call’s receiver. The service is implemented similarly
to the dataflow graph service.

Depending on the kind of the code element, the analysis proceeds as follows.
Again, we refer to the function that processes expressions as the base function.
Each of the functions below returns a set of most-specific types. The types do not
have to be assignment compatible to each other; the returned types only have to
be assignment compatible with the static type of the code element passed to the
function.

• The base function, which processes an expression, returns the most-specific
type if the expression is a class instance creation. If the class instance cre-
ation statement creates an anonymous subclass, the supertype is returned.
Otherwise, the function delegates to an appropriate function depending on
the kind of the expression.

• The function for a variable uses the base function to process the expressions
which are used in the variable’s initializer and the right hand side of all
assignments.

• The function for a conditional expression in the form a ? b : c uses the
base function to process the expressions b and c.

• The function for a parenthetical expression in the form (a) uses the base
function to process the expression a.

• The function for a cast expression in the form (T) a uses the base function
to process the expression a; returns T if the base function returned a more
general type then T for the expression a.

• The function for a method or constructor parameter uses the base function
to process the expressions used as the right hand side of all assignments
to the parameter in the body of the method. Next, the function locates
calls to the method or the constructor and uses the base function to process
the expressions of arguments of the calls that correspond to the analyzed
parameter.

• The function for a method call first resolves the target method declaration
using the call graph manager and delegates to the next function to process
the declaration

• The function for a method declaration uses the base function to process ex-
pressions used in all return statements; the function returns the most specific
types of all returned expressions.

74

4.6.2 Implementation of the refined code queries

In this section we briefly describe how the code queries use the services presented
in the previous section.

getCallsCF. First, the query adds the context class to the call graph manager,
which will build its call graph and connect it to the already existing call graphs in
the system. The call graph manager ensures that the call graph is built at most
once for the given class. The query subsequently locates all method calls of the
given signature in a certain configurable search scope (detailed below). The query
then needs to eliminate method calls that are not in the control flow of the context
class. If the query has been configured with a given receiver type, it starts by using
the most-specific-type inference services to eliminate calls whose receiver is not
assignable to the required receiver’s type. Finally, it uses the call graph manager to
eliminate calls that are declared in methods that are not reachable from the context
class.

The search scope determines the places in the system to search for method calls
and it is controlled by a flag.

• The flag hierarchyUnits specifies that the search scope consists of all classes
in the superclass hierarchy of the context class, including the context class,
and all other types declared in compilation units of these classes. This is the
default setting we used in all experiments in Phase 3.

• The flag project specifies that the search scope consists of all classes in the
class path of the analyzed project. In Eclipse, this also includes classes that
belong to all plug-ins from the dependencies of the analyzed plug-in. We used
this flag during the validation to locate false negatives, that is, method calls
that are in the control flow of the context class but are located outside of its
superclass hierarchy.

Using the hierarchyUnits search scope significantly reduces the number of
method calls that need to be checked for reachability from the context class. How-
ever, it introduces false negatives, such as method calls located in helper or utility
classes. Using the project search scope ensures that all potentially reachable method
invocations are checked but it incurs a significant penalty in the time of analysis.

getCallsRecTI. The query first locates all method calls of the given signature in
the entire project. Next, the query eliminates method calls whose receivers are not
assignable to the context class, using the type hierarchy and the most-specific-type
inference services.

getArgValCP & getArgValPE. The query getArgValCP uses the dataflow graph
service to retrieve all expressions with static values that can potentially be the val-
ues of the given argument of the method call. We do not perform partial evaluation.
In Section 4.5.3 when explaining the false negatives for the features message and
name from Table 4.11, we observed that string concatenation and loop unrolling

75

were needed to retrieve certain values (e.g., A[i], where A is an array and i is a for
loop variable). Loop unrolling is no longer necessary because the dataflow graph
service is capable of analyzing arrays and retrieving the entire static content of the
array from its initializer, even if the index variable of an array access is not static.
Cases where some evaluation of expressions, such as, string concatenation and ap-
pending an integer to a string is necessary (e.g., expression "arg" + i, where i is
an integer), remain false negatives because we did not implement partial evaluation
required to compute such values.

argIsPrvFieldAO. In Phase 2, we proposed the query argIsPrvFieldAO, which
returns true if both arguments of the two method calls are either this literals
resolving to the same type or the same private field that is assigned only once
before both calls. In Phase 3, we decided to relax the requirement for the field to
be private. We implemented a new query argIsSameObject which returns true in
the following cases:

• if both arguments are this literals resolving to the same type. The type
resolution is context sensitive, that is, if a literal resides in the context class
or its supertype, the type is resolved to the context class. Otherwise, the
static type binding is used.

• if both arguments are references to the same field regardless of the number of
assignments. No check is performed as to the precedence of assignment with
respect to the calls.

Both queries can return true with full confidence only for the this literals and
for a field if it is private and assigned only in the initializer. In other cases, the
query will still return true, and help the user of the model to understand the code
by providing information about all assigned expressions.

isBeforeCF. The query first checks whether the method calls are in the control
flow of the constructors and methods from the callback sequence. The query returns
true in three cases:

• if the first method call is in the control flow of a constructor and the second
is not,

• both method calls are in the control flow of methods from the callback se-
quence and the method of the first call is before the method of the second
call in the sequence, and

• both method calls reside in the same block and the first one occurs lexically
before the second one.

Note that a false positive is possible when both method calls reside directly in
the then and else branches of an if statement, respectively. In this case the query
returns false to avoid the false positive. In all other cases the query returns false.

76

getRetTypesMST. The query uses the most-specific-type inference service to
retrieve most-specific types of expressions used in return statements of the given
method. The query resolves the type of a returned this literal to the type of the
context class if the literal resides in the superclass hierarchy of the context class,
including the context class. Otherwise, this literals are resolved to the containing
classes, that is, the static type binding is used.

4.6.3 Precision & recall data and interpretation

This section presents the recall data for the refined code queries. The precision was
always 100% and we did not include it in the tables. We provide the interpretation
for the highlighted cells of Tables 4.14-4.16.

Table 4.14 contains data for the models retrieved using the Applet FSML. We
extended the FSML as follows. We added two new types of listeners: key and
mouse motion listeners. We accounted for the possibility of registering multiple
listeners of the same type. We changed the cardinality of the features message and
name to [0..*] since constant propagation may return multiple values for the method
call arguments. We added support for recognizing an alternative way of defining
threads, which is by subclassing the Thread class. In this case, the method run

must be overridden in the subclass.

FSML Feature Query Type Af Qf Mf Rf

[0..*] Applet 84 84 0 100
![1] extendsApplet 84 84 0 100
[0..*] showsStatus getCallsRecTI 39 39 0 100

[0..*] message getArgValCP 31(8) 23 8 74.19
[0..*] registersKeyListener getCallsCF 4 4 0 100
[0..*] registersMouseListener getCallsCF 25 23 2 92

[0..*] deregisters getCallsCF 10 10 0 100
[1] deregistersSameObject argIsSameObject 10 10 0 100

[1] registersBeforeDeregisters isBeforeCF 10 10 0 100
[0..*] registersMouseMotionListener getCallsCF 15 15 0 100

[0..*] deregisters getCallsCF 6 6 0 100
[1] deregistersSameObject argIsSameObject 6 6 0 100

[1] registersBeforeDeregisters isBeforeCF 6 6 0 100
[0..*] thread 34 34 0 100

[1] initializesThread <1-1> 32 32 0 100
[0..1] initializesThreadWithRunnable getAssgnNew 27 27 0 100
[0..1] initializesWithThreadSubclass getAssgnNew 5 5 0 100

[1] overridesRun 5 5 0 100
[1] nullifiesThread getAssgnNull 19 19 0 100

[0..*] parameter getCallsRecTI 173 173 0 100
[0..*] name getArgValCP 263(14) 259 4 98.48

Table 4.14: Statistics for framework-specific models retrieved using Applet FSML

The concept Applet. The feature message. The eight false negatives are due
to string concatenation. For eight method calls the values of the argument are
dynamic.

The feature registersMouseListener. The two missed calls reside in helper
classes.

77

FSML Feature Query Type Af Qf Mf Rf

[0..*] Action 163 163 0 100
![1] extendsAction 163 163 0 100

[0..1]extendsDispatchAction 79 79 0 100
[0..*] actionMethod 181 181 0 100

[0..1]overridesExecute 115 115 0 100
[0..*] forward getCallsCF 376 367 9 97.61

[1] name getArgValCP 363(13) 363 0 100
[0..*] inputForward getCallsCF 9 9 0 100

Table 4.15: Statistics for framework-specific models retrieved using Struts FSML

The feature name. The four false negatives are due to loop unrolling with string
and integer concatenation ("image" + i, where i ranges from 0 to 3). Note the
substantial improvement in recall: 98% as compared to 61% in Phase 2. This
improvement is due to the fact that parameter names are more static because they
are related to the design of an applet and therefore could be retrieved using constant
propagation. In contrast, status messages are more dynamic as they report to the
user some events related to the execution of the applet.

Table 4.15 contains data for the models retrieved using the Struts FSML. We
extended the FSML by adding support for input forwards, i.e., forwards that can
be used to navigate to the forms that provided input for actions. Input forwards
can be used, for example, for returning the user to the form if the form data was
incorrect.

The concept Action. The feature forward. The nine missed method calls reside
is in the Struts method getInputForward(), which provides the input forward
retrieval service. The method first retrieves a name of the forward from the XML
configuration file. Next, the method uses standard getForward method with the
given name. This case well illustrates a flaw in the definition of the callsTo pattern
type. The pattern expression matches all method calls of the given signature in the
control flow of the context class regardless of whether the method calls reside in
the application code or in the framework code. Clearly, in this example, it is not
an action which is using the find forward service, but it is the framework using its
own service to provide the input forward retrieval service. The pattern type should
specify that method calls residing in the framework code should not be matched.
Therefore, the nine missed calls should not be matched for the feature forward (note
that they are not false positives either because they match the pattern expression).

The feature name. The query matched all statically available values. This
confirms the result from Phase 2. However, in nine cases (arguments of nine calls to
getForward in getInputForward method), the values of arguments were dynamic
since they came from the XML configuration file. In four cases, the values of
arguments were dynamic. We did not count these 13 cases as false negatives.

Table 4.16 contains data for the models retrieved using the Workbench Part
Interactions FSML. We extended the FSML as follows. We removed the require-
ment for the providers and listeners to directly implement the interfaces (e.g.,
ISelectionProvider, IPartListener). This way workbench parts can register

78

FSML Feature Query Type Af Qf Mf Rf

[0..*] Part 133 133 0 100
![1] implementsIView/IEditorPart 133 133 0 100

[0..*] SelectionProvider 83 82 1 98.80
![1..*] registers getCallsCF 96 95 1 98.96

[0..*] SelectionListener 19 18 1 94.74
![1] registersA <1-*>

[0..*] globalSelectionListener getCallsCF 8 7 1 87.50
[1..*] deregisters getCallsCF 7 7 0 100
![1] deregistersSameObject argIsSameObject 7 7 0 100

[1] registersBeforeDeregisters isBeforeCF 7 7 0 100
[0..*] globalPostSelectionListener getCallsCF 10 10 0 100

[1..*] deregisters getCallsCF 10 10 0 100
![1] deregistersSameObject argIsThis 10 10 0 100

[1] registersBeforeDeregisters isBeforeCF 7(3) 7 0 100
[0..*] specificSelectionListener getCallsCF 1 1 0 100
![1] registrationPartId getArgValCP 1 1 0 100
[1..*] deregisters getCallsCF 2 2 0 100

[1] deregistrationPartId getArgValCP 2 2 0 100
![1] deregistersSameObject argIsSameObject 2 2 0 100

[1] registersBeforeDeregisters isBeforeCF 0(2) 0 0 100
[0..*] PartListener 63 63 0 100
![1] registersA <1-*>

[0..*] partListener getCallsCF 71 50 21 70.42
[1..*] deregisters getCallsCF 68 49 19 72.06
![1] deregistersSameObject argIsSameObject 49 49 0 100

[1] registersBeforeDeregisters isBeforeCF 48 47 1 97.87
[0..*] partListener2 getCallsCF 26 26 0 100

[1..*] deregisters getCallsCF 29 29 0 100
![1] deregistersSameObject argIsSameObject 29 29 0 100

[1] registersBeforeDeregisters isBeforeCF 23(4) 23 0 100
[0..*] AdapterProvider 68 68 0 100
![1] providesAdapter 68 68 0 100

![1..*] adapters getRetTypesMST 550(67) 548 2 99.64
[0..*] AdapterRequestor 35 22 13 62.86
![1..*] requestsAdapter getCallsCF 141 119 22 84.40

[1] adapter getArgValCP 119 119 0 100

Table 4.16: Statistics for a framework-specific model retrieved using WPI FSML

other classes as providers or listeners. We accounted for the possibility of multiple
registrations and deregistrations. We also added a new type of part listeners.

All missed method calls reside in helper classes. See features registers, deregi-
sters, globalSelectionListener, partListener, partListener2, and requests-

Adapter.

The concept SelectionProvider. 83 workbench parts register a selection provider
as compared to one in Phase 2. The difference is due to the relaxation of the re-
quirement that the part has to implement the ISelectionProvider interface.

The concept SelectionListener. The feature registersBeforeDeregisters,
a subfeature of the feature globalPostSelectionListener. In three cases, the
order cannot be statically determined as it depends on user’s actions.

The feature registersBeforeDeregisters, a subfeature of the feature speci-

ficSelectionListener. In two cases, the order cannot be statically determined
as the registration depends on user’s actions; they are not false negatives.

The concept PartListener. The feature partListener and its subfeature
deregisters. In one case, the method containing a deregistration call gets over-

79

ridden (not a false negative). In two cases, the deregistration method calls are not
in the control flow of the part (not included in Af for the feature deregisters).

The feature registersBeforeDeregisters, a subfeature of partListener2. In
four cases, the order cannot be statically determined. In one case, the deregistration
call is not in the control flow of a callback method because the callback method
is overridden and not called using super. In one case, the deregistration occurs
before registration lexically in the same block. In the last case, the query correctly
returns false and therefore one feature instance less is present in the model. These
cases are not false negatives.

The concept AdapterProvider. The feature adapters. In two cases, the query
returned a more general type than the most-specific-type. In 67 cases the type of
the returned object could not be determined statically; we did not count these cases
as false negatives. Most of them were inherited from framework classes: 48 from
WorkbenchPart, 10 from PageBookView.

The concept AdapterRequestor. The feature requestsAdapter. 19 parts in-
herit six adapter request method calls from AbstractTextEditor (114 instances);
the remaining five requests are different. One missed method call resides in a static
method of a utility class and is used by 16 parts. For the remaining six false
negatives, helper classes are requesting an adapter. Note that since 22 calls are
missed and the feature requestsAdapter is an essential feature of the concept, 13
instances of the concept were also missed (3 out of the 16 parts that use the utility
class also request another adapter and therefore are present).

The feature adapter. We did not count values of arguments of the 22 missed
method calls as false negatives because the query was not executed for these method
calls (cf. the feature requestsAdapter). In all method calls the argument was a
type literal in the form X.class, where X is the type name.

4.6.4 Conclusion for phase 3

In Phase 3 we implemented the refined code queries and evaluated their effective-
ness in terms of precision and recall. In Table 4.17 we provide execution times
and memory consumption for different settings of the search scope and call graph
type. We performed all measurements on an IBM Thinkpad with one Pentium M
1800Mhz and 2Gb RAM running Windows XP. Measurements marked with a star
(*) were taken on a workstation with four processors Xeon 2800Mhz, 2Gb RAM,
on Ubuntu Linux 7.1. We used the second machine because we were able to allo-
cate 1500Mb of heap as compared to the maximum of 1390Mb on the first machine.
Note that the number of processors does not deeply influence performance since our
analysis is single threaded and does not take full advantage of multiple processors.
The columns Applet, Struts, and WPI contain execution times for analysis settings
specified in the column Search scope/call graph. For WPI FSML, the numbers of
features and amount of memory used are also provided. The highlighted row pro-
vides values corresponding to the data presented in Section 4.6.3. The values in

80

parentheses in the column features indicate number of false negatives eliminated
when using a particular setting as compared to the highlighted row. The ± sign in-
dicates that the exact breakout into false negatives and false positives is unknown.
The column memory contains maximum amounts of memory (in megabytes) allo-
cated during the analysis using WPI FSML. We do not provide memory usage for
Applet and Struts FSMLs as the differences are not significant.

Search scope/call graph
Applets Struts WPI
time time time features memory

hierarchyUnits/hierarchical 62s 40s 174s 1842(-98) 600 Mb
hierarchyUnits/precise 205s 61s 484s 1940 900 Mb
project/precise 318s(+2) 67s(+9) 6465s 2004(+64) 1270 Mb

project/full 394s(+2) 71s(+9)
29468s 7560(±5620) 1380 Mb
14848s∗ 7560(±5620) 1390 Mb∗

Table 4.17: Time and memory statistics for various analysis settings. The high-
lighted row contains values corresponding to the data presented in Section 4.6.3.

The search scope has the biggest influence on the number of missed method
calls as all of the missed calls resided in utility or helper classes. However, using
the project as a search scope significantly increases analysis time in WPI because
of the huge number of method calls that need to be checked for reachability from
each context class. For example, in our installation of Eclipse there are 61 selection
provider registrations, 61 selection listener registrations and deregistrations, 188
part listener registrations and deregistrations, and 985 adapter requests. In total,
there are 1295 method calls that need to be checked for reachability for each of
the 133 workbench parts in the analyzed project. Despite the significant cost of
checking all method calls in the entire project, only 57 more features related to
method calls were retrieved.

For the WPI FSML, the analysis using the project/full settings retrieved 5620
additional instances of features as compared to the highlighted row. The majority
of feature instances were false positives; however, we have verified, that 64 of those
were not false positives. We verified only some of the new feature instances at
random and all of them were false positives. As a comparison, a model retrieved
using the project/precise settings contained 1940 feature instances and a model
retrieved using the project/full settings contained 7560 feature instances. We
can conclude that, in the case of WPI FSML, using the full call graph is not feasible
due to the large number of false positives and long analysis time.

As described in Section 4.6.1, the query getArgValCP can have false positives
in certain cases, such as when a variable is assigned after it is used or a value of an
initializer is always overridden by an assignment. Those false positives are possible
since the dataflow graph service is flow insensitive. However, after verifying the
retrieved models we concluded that those cases were not found in the analyzed
code and the query did not have any false positives.

Similarly, none of the other queries returned false positives. The query getCallsCF

eliminated potential false positives by checking reachability. The query argIs-

SameObject matched even if the number of assignments was greater than one and

81

also matched for public or protected fields. There was always a single assignment
with an object and the additional assignments, if any, were always assigning the
null literal. The public and protected fields were only initialized and never as-
signed.

In Section 4.6.3, we observed a flaw in the definition of the callsTo pattern type,
whereby all method calls satisfying a pattern expression are matched, regardless of
their location. As frameworks often use their own services to provide other services,
we recommend restricting the definition of the pattern type to only match method
calls to framework services which do not reside in the framework code. This way,
matching the framework using its own services as being used by the application can
be avoided.

Finally, the weighted average recall for the refined code queries is as follows:
getCallsCF: 91.79%, getCallsRecTI: 100%, getArgValCP: 98.45%, argIsSame-

Object: 100%, isBeforeCF: 98.98%, getRetTypesMST: 99.64%, getAssgnNew: 100%,
getAssgnNull: 100%. The weighted average recall for all the refined code queries
is 96.69%.

4.7 Discussion

4.7.1 Threats to validity

We discuss the limitations of our study in terms of threats to the validity of the ob-
tained results and describe measures undertaken in order to minimize such threats.
We distinguish between internal validity, in which the elements that might com-
promise the design and analysis of the study are discussed, from external validity,
which relates to the extent to which conclusions can be generalized [68].

Internal Validity. The main threat to internal validity is related to the mea-
surement procedures. The queries implemented in the prototypes matched patterns
in the code. There are two situations in which errors in the queries’ implementa-
tions may influence the results: i) a false negative pattern is matched by the query
and ii) a false positive pattern is missed by the query. In the first case, the recall
appears higher than in reality and in the second case the precision appears higher
than in reality. A similar problem can emerge in the determination of the Qf and
Af values for the refined queries in Phase 2, which was performed by manual code
inspection. If patterns were missed, the results would indicate precision and recall
values greater than they really were. In Phase 2, both threats were minimized by
(i) having two of the authors independently collect and compare the data and (ii)
supporting the manual inspection of code with two code query tools: JQuery [35]
and the built-in Eclipse Java Development Tools [40] search. In Phase 3, only one
of the authors verified the data; the author additionally used the project/precise
and project/full analysis settings to locate false negatives.

82

External Validity. Our study involves three input variables: frameworks,
FSMLs, and applications. The way in which instances were selected for these
variables directly affects the external validity of our results.

Frameworks and FSMLs. The construction of an FSML involves selecting and
modeling some concepts in the area of interest. Consequently, the results are re-
stricted not by the frameworks and FSMLs themselves, but by the characteristics
of the chosen concepts, that is, the mapping types used for defining them. For
example, highly dynamic concepts of frameworks such as Java Swing prescribe the
construction of complex object structures, which are difficult to analyze statically.
In the third phase, we extended the FSMLs; however, the extensions did not signifi-
cantly differ from the existing features because they also used the available mapping
types. Therefore, we claim that only instances of the concepts whose correspon-
dence to code patterns can be described using the mapping types presented in this
paper can be extracted from the completion code with high precision and recall.

Applications. The selection of representative applications for each framework
directly influences the results of our study because the precision and recall values
are highly dependent on how the applications use the framework. In order to obtain
results that can be generalized, we chose not only applications that were provided by
the framework developers, but also other applications we obtained from the internet
that meaningfully use the framework (not toy examples). The goal was to reduce
the potential of bias that would come from using only applications that strictly
follow the framework examples. In Phase 3, we analyzed more applications from
different sources in order to provide more supporting evidence. It is important to
note that our sample consisted of applications that use the frameworks directly. We
consider the construction of custom layers on top of a base framework equivalent to
the construction a new framework and therefore new definitions of FSML concepts
would be necessary.

Another threat to external validity is related to the design of the study. An
ideal design would divide the applications into two disjoint sets: a learning set and
a testing set. Such a setup aims at demonstrating that the code queries designed for
the applications from the learning set generalize to different applications from the
testing set. However, the design of our study was different. In Phase 2, there was
no explicit learning set: the code queries were designed based on our experience,
API documentation, and articles with code samples, and the testing set was the
initial set of applications (cf. Section 4.3.2). The learning set in Phase 3 was the
testing set from Phase 2. The testing set in Phase 3 was a substantially extended
version of the testing set from Phase 2 (cf. Section 4.3.3). In particular, we added
new applications for all three frameworks and, additionally, we used version 3.3 of
Eclipse (Europa, 2007) as compared to version 3.2 (Callisto, 2006) used in Phase
2.

The design of our experiment compares to the ideal design as follows. Assuming
that the experience used to define the initial queries corresponds to some implicit
learning set, Phase 2 comes close to the ideal design since the implicit learning set

83

and the testing set were disjoint. In Phase 3, the learning and testing sets were not
disjoint; however, because (i) the testing set was substantially extended, (ii) the
precision was 100% for all applications in the testing set, and (iii) the recall was
very high (weighted average of 96%) for these applications, we conclude that the
refined code queries also worked well for the new applications in the extended testing
set. Furthermore, when manually inspecting the code we did not see a significant
increase of the number of false negatives in the new applications, which would
have indicated that the queries worked well only for the applications that were also
present in the learning set. It is important to note that we did not look at the new
applications added in Phase 3 when designing the refined code queries. Also, the
precision and recall for the new features added in Phase 3 were evaluated using the
extended testing set. Also note that constructing two disjoint sets of applications
for the Eclipse framework is not possible because any set of applications would
always have to include many required plug-ins that are the common dependencies.

4.7.2 Empirical approach to code query refinement

Our results suggest an empirical approach to code query refinement, whereby the
categorization of false negatives and false positives of a given query allows extend-
ing the query such that the false positives from a given category are always missed
and false negatives are retrieved. A good example from our study are queries
isArgPrvFieldAO and isBeforeCF. Our study shows that devising heuristics by
interpreting the data from the analysis of real applications can lead to efficient
approximate code queries that still offer high precision and recall. This approach
is in contrast to the general one, in which the pursuit of soundness and complete-
ness requires using very expensive analyses. The guidelines for developers (e.g.,
the monkey see, monkey do rule [49]) and recent research on design fragments [46]
suggest that developers commonly copy existing examples and utilize common pro-
gramming micropatterns when using frameworks. Therefore, we believe, empirical
query refinement can lead to efficient code queries that provide high precision and
recall when applied to real code.

4.7.3 Difficulties of analyzing and understanding framework-
based code

We encountered several challenges during the implementation of the refined code
queries and the execution of the study. In this section, we briefly outline our
findings.

Multiple levels of abstraction. In Eclipse, we saw that some views and
editors have up to eight superclasses, sometimes two or three of them abstract.
Typically, workbench parts also implement multiple interfaces. Parts inherit some
behaviours and override some other behaviours. In the end, it is difficult to under-
stand what exactly the final behaviour of the given class is. For example, in a few

84

cases, we saw that certain classes override a method that contains a deregistration
method call and never call the overridden method using super. Such overrides
effectively remove the implementation of a mandatory feature and result in an API
rule violation. The developers might not have been aware of doing so.

Also, in such deep type hierarchies, the statically known type (that is, the
type binding) of the receiver of a method call is an interface or an abstract class.
Such polymorphic calls are difficult to understand and analyze because any of the
receiver’s type subclasses could potentially be the actual receiver. Often, the actual
type of the receiver cannot be statically determined.

Nested and anonymous classes. The widespread use of nested and anony-
mous classes in frameworks and framework-based applications poses many difficul-
ties for the static analysis of such systems and the verification of the correctness of
the analysis results.

Eclipse’s AbstractTextEditor, for instance, contains 24 nested classes and in-
terfaces. These nested members form inheritance hierarchies of their own, often
implementing interfaces and extending primary classes, or even extending other
nested classes. Since nested classes are allowed to call methods of their outer
classes (provided the nested class is not static) a dynamic method call found inside
a nested class must be analyzed both in terms of the nested class’ own inheritance
hierarchy and in terms of the hierarchy of its outer class because the outer class
could be extended and the target method overridden.

Classes that contain many nested classes also become harder to understand.
AbstractTextEditor has almost 7000 lines of code and many inheritance hier-
archies in the same file. This makes it harder for developers to understand and
extend the code and also hinders the manual verification of the correctness of the
implemented analyses.

In Java, all nested classes, including anonymous classes, get compiled to a sep-
arated class file. While the naming scheme for regular nested classes is trivial,
because they are named entities, compilers often differ in the naming scheme ap-
plied to anonymous classes. Our analysis relies on JDT to parse source or compiled
code and build ASTs. If the compiler with which the anonymous class was compiled
does not use the same naming scheme as JDT, it becomes impossible to analyze
the code because JDT cannot find the corresponding class file.

Another difficulty we encounter relates to the life cycle of such classes. A static
nested class and an anonymous class are very similar to a primary class in that
they have their own life cycles. However, non-static nested classes are bound to
the life cycle of their outer classes. Therefore, for all purposes, we consider nested
classes as part of their outer classes. For example, a method call in the control flow
of the nested class is considered to be also in the control flow of the outer class.
Despite the fact that anonymous classes have their own life cycle we also consider
them as part of the outer class. The rationale is that anonymous classes are usually
created with the sole purpose of implementing a certain type with callback methods
expected by the framework instead of implementing the type directly by the outer

85

class. When the anonymous class executes the behaviours defined in its callback
methods, we consider that it is executing on behalf of its outer class.

Adapter requestor/provider mechanism. The adapter requestor/provider
mechanism is highly flexible as it allows for unplanned interactions in a dynamic
platform such as Eclipse. Adapter providers have no knowledge of who is using the
provided adapters. Also, adapter requestors do not need to know the details about
the provider and can rely solely on the provided adapter. However, understanding
the interactions of this type is non-trivial. The WPI FSML is an attempt to match
the providers with requestors and present the result in the form of a model to
help with understanding of this highly dynamic aspect of the code. Our results
show that such interactions can be discovered automatically with high precision
and recall.

4.8 Conclusion

Framework-specific models describe how framework-provided concepts are instan-
tiated in the application code. Automatic location of concept instances requires
matching structural and behavioural patterns in the code, which can be realized by
code queries. In this chapter we evaluated the precision and recall of simple and
refined code queries that can be used for model retrieval. We provided evidence
that fast retrieval of high-quality models from framework-based application code is
feasible. The average recall of the refined queries for behavioural patterns is 96%
and the precision is 100% for the analysis settings we used in Phase 3. We also
showed that it is possible to achieve greater recall at the expense of analysis time
without sacrificing the precision.

86

Chapter 5

Evaluation of Forward
Engineering

5.1 Introduction

Forward engineering for framework-provided concepts is useful and needed. This
argument is supported by the fact that many frameworks already provide configu-
ration wizards that can be used by application developers to configure commonly
used concepts and generate the initial implementation. In contrast to wizards,
FSMLs usually offer richer variability by covering more concepts variants and im-
plementation alternatives. Furthermore, FSMLs, as described in this thesis, also
support incremental code addition, which amounts to being able to re-run the code
generation with different parameter values on manually customized target code,
which is usually not supported by wizards.

The possible benefits of code generation using FSMLs depend on the level of
expertise of the developer. Developers new to the framework would like to know how
the features can be implemented and they can learn framework completion from the
default code generated for the features (by using the traceability links). They can
also learn about the available implementation variants. Framework experts, on the
other hand, are more interested in the automation aspect of code generation. They
already know how to complete the framework and they are interested in automating
tedious and repeatable tasks. Experts also take advantage of the incremental and
global character of the code generation using FSMLs, since the implementation of
the features can be inserted into existing code and it is usually scattered across the
code.

In this chapter, we present a test we used to verify that the code generated for a
correct model is the correct completion code with respect to the part of the API in
scope of the used FSML. First, we describe code transformations we implemented
for Java in Section 5.2. Next, we present the setup of the test in Section 5.3. We
present and discuss the results in Section 5.4. Finally, we conclude the chapter in
Section 5.5.

87

5.2 Code Transformations for Java

For the purpose of forward engineering we implemented code transformations for
code pattern addition. The presented code transformations were designed to pro-
duce code patterns that will be matched by the corresponding code queries because
the code transformations and the code queries implement two directions of the
bidirectional mapping between the code and the framework-specific model. The
bidirectional mapping is a function, that is, there exist many possible implemen-
tations of a single framework-specific model. For example, if a feature with the
mapping definition <assignableTo: t> is present in a model that indicates that
a certain class directly or indirectly implements/extends the type t. When gen-
erating the code for that same feature, certain decisions have to be made, such
as, whether the type t or one of its subtypes should be used when adding an
extends or implements declaration. Similarly, when generating method calls, a
target method to the body of which the call is to be added has to be specified. In
our implementation, certain decisions have been hard coded in the code transfor-
mations, for example, that the given type is extended/implemented directly for the
assignableTo mapping type. Other decisions can be made by FSML designers by
providing values to some additional parameters as compared to the mapping types
they implement, for example, by specifying a certain method as a target method
for call generation. Those additional parameters, called forward parameters, pro-
vide the detailed information needed for unambiguous code generation. Forward
parameters are summarized in Table A.4.

Often, code transformations read information, such as class and field names,
directly from the model. In these cases, transformation definition explicitly states
that the values of certain parameters are retrieved from subfeatures with certain
mapping types. For example, a class name can be retrieved from the subfeature
with the mapping type className (cf. Table 5.1). Some transformations use the
value of the feature they are executed for, for example, addArgIsVar (cf. Table 5.8).

Code Transformations for Structural Patterns

Tables 5.1-5.8 present code transformations for structural patterns from Table 4.1.
Code transformation addMethod is also used for the mapping type allMethods.

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addClass p addClass: n [in: q] | q=”
creates a compilation unit with a class declaration named n in package q. Retrieves values
of the parameters n and q from subfeatures with mapping types className and qualifier

or fullyQualifiedName

Table 5.1: Code transformation for the class mapping type

88

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addAssignableTo c addAssignableTo: t [concrete: e] | e=true
If t is an interface, adds a c implements t superinterface declaration or adds t to the
existing list of implemented interfaces. If t is a class, adds a c extends t superclass
declaration. If e=true, adds implementations of the unimplemented methods of the su-
perinterface or an abstract superclass

Table 5.2: Code transformation for the assignableTo mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addField c addField: n ofType: t
adds a field declaration in the class c named n of type t. Retrieves values of the parameters
n and t from subfeatures with mapping types fieldName and fieldOfType, respectively

Table 5.3: Code transformation for the field mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addMethod c addMethod: s [name: n]
adds a method declaration of signature s in the class c. If method name n is given,
replaces the name from the signature s with n. If the signature contains * for the method
name, the parameter n is mandatory. Retrieves the value of the parameter n from a
feature with the mapping type methods

Table 5.4: Code transformation for the methods mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgIsThis mc addArgIsThis: i
adds the literal this as the ith argument of the method call mc

Table 5.5: Code transformation for the argIsThis mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgIsField mc addArgIsField: i [sameAs: f]
adds the field f as the ith argument of the method call mc. If f is not specified, retrieves
the name of the field from a subfeature with the mapping type fieldName

Table 5.6: Code transformation for the argIsField mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgIsNew mc addArgIsNew: i signature: s
adds the constructor call of the signature s as the ith argument of the method call mc.
Creates an anonymous subclass if necessary and adds implementation of unimplemented
methods

Table 5.7: Code transformation for the argIsNew mapping type

Code Transformations for Behavioural Patterns

Tables 5.9-5.15 present code transformations for behavioural patterns from Ta-
ble 4.2. There is no code transformation for the mapping type before. It is the
responsibility of the FSML designer to specify target methods such that the first
method call occurs before the second one.

89

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgIsVar mc addArgIsVar: i name:n signature: s
adds a variable called n as the ith argument of the method call mc. Adds the variable
declaration and initializes the variable with a constructor call of the signature s. Retrieves
the value of the parameter n from the feature with the mapping type argIsVar

Table 5.8: Code transformation for the argIsVar mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addCallTo c addCallTo: s [receiverExpr: r] location: l [position: p] | r=”, p=after
creates a method call to a method with the signature s with the receiver expression r in
the method of signature l of the class c at the position p ∈ {before, after}

Table 5.9: Code transformation for the callsTo mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addCallRec c addCallTo: s [receiverExpr: r] location: l [position: p] | r=”, p=after
creates a method call to a method with the signature s with the receiver expression r in
the method of signature l of the class c at the position p ∈ {before, after}

Table 5.10: Code transformation for the callsRec mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgVal mc addArgVal: i [values: v]
adds values of the ith argument of the method call mc. Adds a literal for a single value.
For multiple values create a variable and multiple assignments with values v

Table 5.11: Code transformation for the argVal mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgSameObj c addArgument: i ofCall: mc1 andArg: j ofCall: mc2

adds the literal this that resolves to class c as both the ith argument of the method call
mc1 and the jth argument of the method call mc2

Table 5.12: Code transformation for the argSameObj mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addRetTypes m addReturnStms: c ifkey: i
for each type t from the list of types c adds a return statement to the method m
returning an object of that type. Adds each return statement at the beginning of
the method and preceeds each return statement with an if statement of the form if

(t.class.equals(x))), where t is the type and x is the name of the method’s ith param-
eter.

Table 5.13: Code transformation for the retTypes mapping type

5.3 Setup of the Test

We evaluate forward engineering by verifying that the code generated for a correct
framework-specific model is correct with respect to the fragment of the API in the
scope of the used FSML. Any completion code can be easily checked for correctness
by reverse engineering it and checking constraints on the model. Therefore, we

90

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addAssgnNew
f addAssignedNew[: cc] [initializer: i] [location: l position: p] [subtypeOf: t] | i=false,
p=after
Two variants: (1) adds an assignment to the field f with the constructor call of the
signature cc. (2) adds an assignment to the field f with the constructor call to the
default constructor of a subclass of the type t. Retrieves values of the parameters n and q
from subfeatures with mapping types className and qualifier or fullyQualifiedName.
Regardless of the variant: if i=true, adds the assignment in field’s initializer; otherwise,
adds the assignment in the method l at position p ∈ {before, after}. Creates an anonymous
subclass if necessary and adds implementation of unimplemented methods

Table 5.14: Code transformation for the assgnNew mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addAssgnNull f getAssignedNull location: l [position: p] | p=after
adds an assignment to the field f with the null literal in the method l at position p
∈ {before, after}

Table 5.15: Code transformation for the assgnNull mapping type

can verify whether the forward engineered completion code is correct by reverse
engineering it and comparing the new model with the original model used for for-
ward engineering. If the original model was correct, the reverse engineered model
should be correct as well and it should be semantically equivalent to the original
one. Two identical models are semantically equivalent. Two different models are
semantically equivalent if they contain exactly the same features modulo ordering
and renaming. The original and the reverse engineered models may not be identical
due to the ordering of the generated code patterns which may affect the order of
features in the reverse engineered model.

Unfortunately, verifying the code generated for every possible correct model
that can be expressed using a given FSML is infeasible since the number of all
possible configurations of a feature model can be exponential to the number of fea-
tures. Furthermore, if a feature model contains multiple features with unbounded
cardinality (*), the number of possible configurations is infinite. Instead of verify-
ing the code generated for every possible correct model, we manually build a model
that has a good coverage of possible feature configurations. The latter is possible
since many parts of the feature models of the exemplar FSMLs are independent
and many values, such as class, field, and method names, can be considered as
equivalent since they do not affect the conformance of the code to the framework
API. Therefore, we created a single framework-specific model for each FSML that

• contains every feature of the given FSML at least once,

• covers all possible variants of implementing the concepts at least once in
combinations that are significantly different,

• is correct with respect to the feature model.

The rationale behind such a model is that we want to avoid the combinatorial
explosion when including all variants in all possible combinations and yet we want to

91

include all variants but only in important combinations. We choose the “important
combinations” subjectively based on our knowledge of the language and we cannot
present an exact algorithm. Instead, we present the complete models used in the
test, the justification of their design, and the generated code, so that they can be
judged objectively.

We executed the test for two FSMLs that support code generation for all of
their features, WPI and Applet FSMLs, as follows. First, we created an empty
Java project for Applet FSML and an empty plug-in project that can make UI
contributions for WPI FSML. Next, we reverse engineered each project using the
corresponding FSML. The resulting model for Applet FSML contained only the root
feature that corresponds to the project (Figure 3.5, line 1). The resulting model for
WPI FSML contained the root feature (Figure 3.3, line 1), 4 views, 1 editor, and 2
interactions that are implemented in the framework; we do not include them here
because they do not affect the test in any way.

Next, we built the model as described above. We created 2 applets: Applet1

(cf. Figure D.1) and Applet2 (cf. Figure D.2), each with different kinds of listen-
ers and threads. We created 3 views and 3 editors: View1 (cf. Figure D.3), View2
(cf. Figure D.4), View3 (cf. Figure D.5), Editor1 (cf. Figure D.6), Editor2 (cf. Fig-
ure D.7), Editor3 (cf. Figure D.8), each with different kinds of selection providers
and selection and part listeners. Only View3 and Editor3 are adapter providers
and only View3 is an adapter requestor; the reason is to avoid unnecessary rep-
etition. Also, we excluded one combination of features that is not excluded by
the metamodel. The features partListener and partListener2 cannot be added
simultaneously because the argument of the two generated method calls (this)
would have ambiguous type: IPartListener and IPartListener2, where the lat-
ter extends the former. In practice, only one type of the part listeners should be
used at the same time. The reason why we do not forbid registering both types
of part listener at the same time is because often a field is registered as a part lis-
tener of one type in example applications instead of the literal this. This variant
with a field cannot be specified in the model using WPI FSML because the code
transformation addArgSameObj does not offer an appropriate forward parameter.
There is no such problem for selection listeners and View1 registers all three kinds
of listeners at the same time.

The left column of the Figures D.1-D.8 contains a framework-specific model
created using the given FSML. The model is legal with respect to the FSML’s
metamodel. For brevity, we removed cardinality [1] of each feature instance, feature
groups, and missing features. Grouped features retained their original indentation
after the removal of feature groups, i.e., they are indented twice with respect to
their parent features.

Finally, we generated the code and reverse engineered it to obtain the new model
and we compared the new model with the original model used for code generation.

92

5.4 Results and Discussion

The right column of Figures D.1-D.8 presents the code generated using the FSMLs.
We compacted the code by removing some empty lines, collapsing empty method
bodies, and replacing implementations of interface methods and abstract superclass
methods with “. . . ”.

For Applet FSML the reverse engineered model was identical with the original
model. For WPI FSML, the new model was different from the original model in
two ways. First, reverse engineering matched new behaviour inherited by View3

from PageBookView and by Editor3 from MultiPageEditorPart super classes:
the class PageBookView registers a part listener and a selection provider; the class
MultiPageEditorPart registers a selection provider. Second, the order of the fea-
tures adapters (Figure 3.3, line 65) was reversed since the return statements are
inserted at the beginning of the method body. The reverse engineered model was
correct and equivalent to the original one except for the new behaviour inherited
from the super classes.

In one case, the generated code contained a compile error: in Editor3 the
generated method createPartControl overrode the final method from the super
class MultiPageEditorPart. In this case, the developer has to manually move
statements from the body of the generated method to another method, for example,
addPages. Supporting alternative target methods for all mapping types that can
override methods remains future work.

Therefore, we can conclude that, with the exception described above, the code
generated for a correct framework-specific model used in the test is the correct
completion code with respect to the API covered by both FSMLs used in the test.

Code transformations encode two kinds of knowledge: programming language’s
syntax and semantics as well as programming micropatterns. In the first category,
code transformations perform certain actions stipulated by the syntax and seman-
tics of the programming language, such as, adding import declarations, adding
methods required by super interfaces and abstract super classes, adding calls to
super when overriding methods, adding return statements if necessary, including
returning a value of the super method calls, adding super interface declarations
when the literal this is used as an argument of method calls of the given type, and
declaring a variable before its use.

The programming micropatterns implemented by the code transformations in-
clude creating anonymous sub types and implementing their methods, assigning
fields in initializers, adding target methods for inserting method calls, and sur-
rounding multiple return statements with appropriate if statements to prevent
unreachability.

On top of these two generic kinds of knowledge, an FSML formalizes frame-
work API knowledge by combining many features that are implemented by code
transformations into higher-level abstractions. Framework-specific knowledge is

93

also used in setting the parameters of mapping definitions of features, such as, type
names, method call signatures, and method call receiver’s expressions. Forward
engineering using FSMLs works because code transformations automate common
implementation tasks that application developers perform when implementing in-
stances of framework-provided concepts. Additionally, the structure of an FSML
and the ordering of features enable FSML developer to control the order of code
transformation executions and to ensure that certain code patterns are produced
before others are, as needed. To summarize, the metamodel of an FSML can be seen
as a compositional definition of a larger code transformation and the rules of meta-
model interpretation and definitions of code transformations give the semantics of
that transformation.

5.4.1 Threats to validity

In this section we discuss threats to internal and external validity of the evaluation.

Internal validity

The main threat to internal validity is the method of construction of the model
used in the test, whereby, some combinations of features that could expose more
compilation errors or incorrect API usage were not included.

To minimize this threat, but also avoid combinatorial explosion, we excluded
only combinations of features that were redundant, that is, the generated code
would be identical to the code already generated elsewhere. For example, Applet1
has all listeners that register the literal this and all variants of threads that use
a field. There is no need to include the same features in Applet2, instead we
include all listeners that register a field, one more variant of a thread with a field
and all variants of single task thread. Also, Applet2 has two instances of the
features showStatus and parameter with single values, whereas, Applet1 has single
instance of each of these features with two values each. It is not necessary to include
three or more instances of these features nor is it necessary to include three or more
values for each feature since the code will simply be repeated (this could be proven
by induction). By the same reasoning, it is sufficient to include instances of the
features AdapterProvider and AdapterRequestor only in Editor3 and View3:
including them elsewhere would simply duplicate the same code.

External validity

External validity is concerned with the generalization of the result, that is, how
would this result generalize to other FSMLs.

In this test we only verified code transformations of mapping types related to
Java that were used in the two FSMLs. Any other FSML with a correct metamodel

94

using the same mapping types should be capable of producing correct completion
code under the condition that the code transformations satisfy the particular re-
quirements of that FSML. As we have already shown in Chapter 3, mapping types,
code queries, and code transformations constantly evolve to satisfy new require-
ments. We provided examples of such evolution. FSML engineering is an iterative
process and the evaluation of forward engineering must be repeated for each lan-
guage in the transition phase. However, in this chapter, we provided evidence that
at least for two example languages forward engineering works and we designed a
test that can be used for the evaluation of forward engineering for other FSMLs.

5.5 Conclusion

In this chapter we presented a test we performed to evaluate the correctness of the
code generated using Applet and WPI FSMLs. We also described code transfor-
mations that were executed in the test. The results show that the code generated
for different but valid combinations of features is correct with respect to the part
of the API covered by an FSML. We discussed the results of the test as well as
threats to its validity. The design of the test can be reused for the evaluation of
forward engineering for other FSMLs.

95

Chapter 6

Evaluation of Round-Trip
Engineering

6.1 Introduction

FSMLs can provide support for developers during the evolution of the completion
code. The most basic support can be provided through the comparison of models
reverse engineered at different times in the application’s life cycle. The comparison
of two models categorizes features into unchanged, added, removed, and modified
as shown in Table 2.6. A feature is modified if its value has changed or any of
its subfeatures were added, removed, or modified. The results of such comparison
can be used for detecting both expected and unexpected changes of the completion
code. For example, a designer may seek confirmation that their design expressed
in a framework-specific model is still implemented in the current code and none
of the features have been accidentally removed. A more advanced support can be
provided through round-trip engineering in which both the model and the code can
be independently modified and synchronized on demand using incremental updates.
In round-trip engineering, conflicts can occur if incompatible changes are made in
the model and in the code (cf. Table 2.6, rows 6, 7, 9, and 12); such conflicts can be
automatically or manually resolved. Round-trip engineering can be useful if certain
changes can be made more easily or more succinctly way in either the model or in
the code and the developers can choose where to make the changes.

In this chapter we report on two tests we performed to evaluate round-trip
engineering capability of two FSMLs: Applet and WPI. In particular, we verified
that the code created incrementally in multiple iterations is equivalent to the code
created during forward engineering and that the model created incrementally in
multiple iterations is equivalent to the model created during reverse engineering.
Because only a few code transformations used in the two FSMLs support code
pattern modification and none of them support pattern removal, the test is limited
to the addition of new features to the existing model and code. Supporting pattern
modification and refactoring as well as safe pattern removal is very difficult and we

96

consider it future work. First, we present the setup of the test in Section 6.2. We
present and discuss the results in Section 6.3. Finally, we conclude the chapter in
Section 6.4.

6.2 Setup of the Tests

Each test involved multiple iterations of round-trip engineering as described in
Figure 2.9 in Section 2.5.3. In both tests we used the same models and code we
used in the evaluation of forward engineering. The first test verified whether the
code created through multiple, incremental code pattern additions is equivalent
to the code created in forward engineering. We performed the test as follows.
First, we started with the model and an empty project as described in Section 5.3.
Next, we performed the iterations. In each iteration, we first executed reverse
engineering and comparison as shown in Figure 2.9. The result of the comparison,
the synchronization states, describe that some features were added to the asserted
model (cf. Table 2.6, row 10) and that some features were unchanged (cf. row
1). Next, we chose a feature that should be added to the code by making the
reconciliation decision enforce for that feature; we chose features in the depth-first
order. The chosen feature’s parent should have had already been created in the code
(its synchronization state should be modified in A (cf. row 5)). We also made the
decision enforce for all of the chosen feature’s essential and key subfeatures We left
the mandatory and optional subfeatures (adding missing mandatory features in next
iterations illustrates fixing incorrect code). For all remaining features we made the
decision ignore. At the end of the iteration we executed automatic reconciliation
which in turn executed code transformations for the features with the decision
enforce. We iterated until all features had the synchronization state consistent.
Finally, we compared the resulting code with the code generated during forward
engineering.

The second test verified whether the model created through multiple, incremen-
tal updates is equivalent to the model created in reverse engineering. We performed
the test as follows. First, we started with the generated code and empty model.
Next, we performed the iterations. In each iteration, we first executed reverse engi-
neering and comparison as shown in Figure 2.9. The result of the comparison, the
synchronization states, describe that some features were added to the completion
code (cf. Table 2.6, row 13) and that some features were unchanged (cf. row 1).
Next, we chose a feature that should be added to the model by making the recon-
ciliation decision update for that feature; we chose features in the depth-first order.
The chosen feature’s parent should have had already been added to the model (its
synchronization state should be modified in I (cf. row 4)). We also made the
decision update for all of the chosen feature’s essential and key subfeatures. We
left the mandatory and optional subfeatures (adding missing mandatory features
in next iterations illustrates recognizing that incorrect code has been fixed). For
all remaining features we made the decision ignore. At the end of the iteration

97

we executed automatic reconciliation which in turn executed model update for the
features with the decision update. We iterated until all features had the synchro-
nization state consistent. Finally, we compared the resulting model with the model
created during reverse engineering.

The exact execution trace of both tests is presented in Appendix E. In each
iteration we tried to reconcile as few features as possible (and maximize the number
of iterations) to simulate a step by step evolution of the model and the code.

In the evaluation of forward engineering, we used a single model that contained
important combinations of features in order to avoid combinatorial explosion related
to huge number of possible models that can be expressed using an FSML. Round-
trip engineering adds to that complexity: for every model or code, the features can
be propagated in many different sequences. The order in which the features can be
propagated is a partial order because parent features must always be propagated
before subfeatures, essential and key subfeatures must always be propagated with
their parent feature, and for some features in different places in the hierarchy the
order does not matter. In this test, we choose a particular linear order of feature
propagation out of all linear orders that satisfy the partial order imposed by the
FSML’s metamodel. We discuss this issue in threats to validity in Section 6.3.3.

6.3 Results and Discussion

6.3.1 Results of test 1

For Applet and WPI FSMLs the code created using round-trip engineering was
equivalent with the code created using forward engineering, except for a few ad-
ditional empty lines created during round-trip engineering. Below, we describe
interesting issues encountered during the test for both FSMLs. All iteration num-
bers refer to line numbers of the execution trace in Appendix E.

Iteration 4. Iteration 23. Cannot add each instance of the features message

and name individually. This is a limitation of our implementation in which a list
of instances of these features in internally represented as a single instance with
multiple values.

Iteration 70. Adding selection provider for View3 requires manual conflict reso-
lution because the super class PageBookView also registers a selection provider. We
first enforce the feature registers from the model while ignoring the features from
the code. Next, we update the model with the features implementing the inherited
behaviour. At this point, the model and the code are fully consistent.

Iteration 73. The super class PageBookView already registers a part listener of
this type and therefore the features have the synchronization state added consis-
tently (cf. Table 2.6, row 3) and no reconciliation is necessary. Adding new code
to View3 for a part listener requires making a copy of the feature registers and

98

enforcing it, which we did to obtain the code similar to the one produced in forward
engineering.

Iteration 74. After enforcing the features in this iteration and reverse engineering
and comparison, we saw that the order of the features adapter was reversed. We
reversed the features in the model to establish full consistency.

Iteration 94. The super class MultiPageEditorPart already registers a selection
provider of this type and therefore the features have the synchronization state added
consistently (cf. Table 2.6, row 3) and no reconciliation is necessary. Adding new
code to Editor3 for a selection provider requires making a copy of the feature
registers and enforcing it, which we did to obtain the code similar to the one
produced in forward engineering.

Iteration 98. The same as Iteration 74.

We also found out that we were unable to split the addition of part listeners
(Iterations 60, 67, 73, 84, 91, and 97) into two iterations because the generated method
call addPartListener(null) was ambiguous and could not be reverse engineered
in the next iteration. The ambiguity results in a compile error because the com-
piler is unable to resolve method binding for the call (there are two possible target
methods). To fix the problem, the argument of the method call should be cast
either to IPartListener or IPartListener2, which requires adding a new for-
ward parameter to the code transformations for the mapping types callsTo and
callsRec.

6.3.2 Results of test 2

For Applet and WPI FSMLs the model created using round-trip engineering was
equivalent with the model created using reverse engineering. It is important to note
that we were able to update the model in more iterations as compared to the first
test. For example, we could split iterations for part listeners into two iterations.
The reason is that it is enough for the features added in a single iteration to be
matched with that same features from the code in the next iteration, that is, the
keys of the features added to the asserted model must be the same as the keys of the
corresponding features in the implementation model. In other words, when selecting
features for an iteration, their keys must not change. Otherwise, the features will
not be considered as corresponding during comparison in the next iteration.

6.3.3 Threats to validity

In this section we discuss threats to internal and external validity of the evaluation.

99

Internal validity

The main threat to internal validity is that we did not perform feature addition in
all possible orders that satisfy the partial order imposed by the FSML’s metamodel.
However, performing the test for all linear orders that satisfy the partial order is
infeasible even when the test is fully automated since the number of all orders is
extremely high (exponential).

In our FSMLs, however, many features are independent and they can be added
in any order. Where the order matters, it has been made explicit by appropriate
feature nesting and the ordering of essential features. Essential features must be
all propagated together and they always are propagated according to their order
specified in the FSML’s metamodel. Sometimes the order is enforced by code
transformations, for example, a variable is declared before it is used. For all other
features the order does not matter. For example, it does not matter in which order
the fields are created for threads or in which order listeners are registered. Note
that, in general, in Java the order of fields actually matters but only if some fields
are used in initializers of other field, they must be declared beforehand; we do not
have such cases in our FSMLs.

Another threat to internal validity is related to the fact that we did not perform
the tests on example applications, such that on those used in the evaluation of
reverse engineering. In the tests for forward engineering, the result is predictable
because the code is always created from scratch. Round-trip engineering must, on
the other hand, work with any code, regardless if it was created manually or by
code transformations executed previously.

However, any example application contains framework-completion code that
conforms to the framework’s API, for example, it implements framework-provided
interfaces and overrides framework-provided methods. The mapping definitions
of an FSML rely on the existence of those framework-provided patterns in the
application code and code transformations create the patterns they require if they
are missing. Therefore, we expect round-trip engineering to work the same way
in real-life applications. We also assume, that the applications use the framework
directly; we consider custom layers built on top of frameworks as new frameworks
that require new FSMLs.

Possible problems we anticipate are name and type conflicts. For example,
generating a field with an existing name would create a compilation error if the
existing field had a different type (if it had the same type, the new field would
not have been added because it would have matched a feature!). In some cases,
code transformations generate unique identifiers, such as, in the case of the code
transformation addArgVal, which declares a variable and multiple assignments to
that variable. That transformation generates the name of the variable by appending
consecutive integers to the name of the feature for which it is executed, if the same
name already exists. A thorough study of possible conflicts that can occur in
round-trip engineering of existing applications remains future work.

100

External validity

External validity is concerned with the generalization of the result, that is, how
would this result generalize to other FSMLs.

Similarly to the evaluation of forward engineering, we verified only code trans-
formations of mapping types related to Java that were used in the two FSMLs.
Round-trip engineering should also work for other FSMLs using the same code
transformations and with correct metamodels. In this chapter, we provided evi-
dence that at least for two example languages round-trip engineering works and we
designed a test that can be used for the evaluation of round-trip engineering for
other FSMLs. Such a test should be performed in the transition phase of FSML
development.

6.4 Conclusion

In this chapter we presented a test we performed to evaluate the correctness of the
code and the model created using round-trip engineering. The test was limited to
feature addition only. Both the code and the model were equivalent to the code
created using forward engineering and the model created using reverse engineering,
respectively. We performed the test for the same model and code as used in Chap-
ter 6 and for a particular sequence of feature propagation. We discussed the threats
to internal and external validity of such evaluation. Finally, the design of the test
can be reused for the evaluation of round-trip engineering for other FSMLs.

101

Chapter 7

Evaluation of the Method

The presented method was extracted post mortem from our experience with engi-
neering four exemplar FSMLs. Since the languages were not yet released to users,
we cannot directly evaluate the degree in which the languages satisfy the use cases
they were designed for and whether they achieve the value proposition. Such an
evaluation would require significant effort. First, a direct evaluation would require
gathering a user community and conducting exploratory studies by collecting users’
feedback. Second, we focused our attention on the abstract syntax and semantics
of the languages and we did not consider concrete syntax, which is an important
factor in user studies since the quality of the user interface greatly influences us-
ability of a modeling language and its adaptability by the end-users. We leave such
an evaluation for future work. Instead, we evaluate the method and the exem-
plar languages, both quantitatively by using indirect measures and qualitatively by
analysing threats to validity.

7.1 Evaluation of the Exemplar Languages

Since the method was designed based on the analysis of the exemplar languages,
the quality of the languages impacts the quality of the method. In this section we
evaluate to what degree the languages satisfy the use cases they were designed for.

7.1.1 Framework API understanding

Although only one of the exemplar languages (Applet FSML) was designed with
this use case in mind, we think that FSMLs can be useful for learning framework
concepts. The feature models are an explicit and concise summary of an aspect of
the framework in scope of an FSML. Table 3.3 in Section 3.2 illustrates the way
in which the information required to understand the FSML concepts is distributed
across a variety of knowledge sources. The table shows that gaining understanding
of the features requires referring to multiple sources and, therefore, it requires

102

significant effort on the part of the framework users. The users could learn the
framework API by studying feature models and mapping definitions. Furthermore,
augmenting features with information about the sources of knowledge from which
the feature originated would allow the users to easily locate relevant fragments of
documentation.

7.1.2 Completion code understanding and analysis

Based on the mapping definitions, a concrete mapping between features in a given
feature configuration and patterns in given completion code can be established.
Such a mapping, often referred to as traceability links, can be used by application
developers to navigate from features to the implementation of the features and
vice versa. The experimental evaluation of the quality of the retrieved models
presented in Chapter 4 revealed 96% recall and 100% precision for behavioural code
patterns. Since queries for structural patterns do not employ any approximations
the precision and recall are 100% [13]. This result allows application developers to
use the extracted framework-specific models with high confidence and easily locate
code patterns using traceability links.

The model provides an alternative to code decomposition of the concept in-
stance, in which all features are presented together in a single hierarchy. In contrast,
code patterns corresponding to features are usually scattered across the applica-
tion’s code. The more the code patterns are scattered in the code, the greater the
benefit of providing a model and traceability from the model to the code patterns.

In order to quantify the degree in which features from our exemplar FSMLs are
scattered in the completion code, we measured the distribution of the matched code
patterns over components and operations according to two metrics: concern dif-
fusion over components (CDC) and concern diffusion over operations (CDO) [47].
In our case, the components are Java classes and XML documents, the operations
are methods and XML elements, and the concerns are Java applets, Struts actions
and forms, and Eclipse views and editors.

The metric CDC indicates the number of different components that the patterns
implementing features of a concept instance (concern) are located in. Similarly,
the metric CDO indicates the number of different operations that the patterns
implementing features of a concept instance are located in. Note that some patterns,
such as fields or superclass declarations, are not located in operations.

We extended the FSML infrastructure to automatically compute the values of
these two metrics during reverse engineering. We reverse engineered a substantial
number of concept instances: 76 Java applets, 158 Struts forms and actions, and
133 Eclipse views and editors. We list the applications used in Appendix C.

103

Table 7.1: Concern diffusion over components (CDC)
Components 1 2 3 4 5 6 7 8 9 10 11 12 14

WPI
Concerns 39 20 22 13 17 3 4 5 4 1 1 1 3
Percentage 29.3% 15.0% 16.5% 9.8% 12.8% 2.3% 3.0% 3.8% 3.0% 0.8% 0.8% 0.8% 2.3%

Struts
Concerns 62 84 4 1 6

- - - - - - - - -
Percentage 39.5% 53.5% 2.5% 0.6% 3.8%

Applet
Concerns 66 10

- - - - - - - - - - -
Percentage 89% 11%

Table 7.2: Concern diffusion over operations (CDO)
Operations 1 2 3 4 5 6 7 8 9 10 13

WPI
Concerns 19 15 11 4 4 2

- -
1

-
1

Percentage 33.33% 26.32% 19.30% 7.02% 7.02% 3.51% 1.75% 1.75%

Struts
Concerns 53 5 25 8 9 9 4 3 1 2

-
Percentage 44.5% 4.2% 21% 6.7% 7.6% 7.6% 3.4% 2.5% 0.8% 1.7%

Applet
Concerns 19 15 11 4 4 2

- -
1

-
1

Percentage 33.3% 26.3% 19.3% 7% 7% 3.5% 1.8% 1.8%

104

Tables 7.1 and 7.2 present the distribution of concept instances over the given
number of components and operations, respectively. Scattering over components
depends much on the framework. 70% of Eclipse views and editors are implemented
in two or more components and 55% of them in three or more components. The
reasons include deep type hierarchies and the use of an XML configuration file.

In Struts, where only 7% of actions and forms are implemented in three or more
components, type hierarchies are typically shallow but an XML configuration file
is also used.

Java Applet is a very simple framework and hence applets are typically well
modularized in one or two classes. Note that the Applet FSML does not sup-
port applet declarations on HTML pages, in which case applet features would be
scattered over an additional component.

Looking at concern diffusion over operations, we can see that over 55% of con-
cerns are implemented in two or more operations. The data supports our hypothesis
that the code patterns implementing the features are typically scattered over the
completion code and therefore the models provide an alternative to code decompo-
sition of concept instances.

7.1.3 Completion code generation and evolution

In Chapters 5 and 6 we evaluated forward and round-trip engineering for Applet and
WPI FSMLs. The evaluation confirmed the feasibility of forward and round-trip
engineering using the two FSMLs and it presented the tests that can be used for the
evaluation of other FSMLs. The evaluation of forward engineering showed that the
completion code generated for a correct model is correct with respect to the API
in scope of the FSML used in the test. The evaluation of round-trip engineering
showed that the completion code created in multiple iterations is equivalent to
the code generated in forward engineering and that the model created in multiple
iterations is equivalent to the model created using reverse engineering.

FSMLs can also provide support when an API changes and the code has to be
migrated to the new version of the API. In this case, an FSML can be extended
with the new features and old features could be marked as deprecated. We added
one such feature to the WPI FSML (Figure 3.3, line 22) as an example. After reverse
engineering, the developers can see instances of deprecated features that need to be
migrated. An automated refactoring could be devised to support such a migration.

Migration between two different, but conceptually similar, frameworks can also
be supported. An example is semi-automated completion code migration from
Apache Struts to Java Server Faces (JSF) framework [26]. In this example, the
original code is first reverse engineered using the first version of the Struts FSML.
Next, a specialized migration code generator is used to produce JSF compliant
completion code. The code generator is guided by the model and it is capable
of migrating not only the completion code but also the bodies of actions. The

105

automatic migration was demonstrated by migrating a real-world Struts-based ap-
plication with 20 KLOC of Java to JSF.

7.2 Threats to Validity

We discuss the threats to external validity of the presented FSML engineering
method. External validity is related to the extent in which the method can be
applied to engineering new FSMLs for other frameworks.

The method is dependent on the approach to specification and implementation
of FSMLs detailed in Chapter 2 rather than the particular generic infrastructure
implementing it. Creating feature models, mapping definitions, mapping types,
and code queries and transformations is an integral part of the method.

The applicability of the method is limited by the ability to model the concepts
of frameworks using feature modeling and to specify the semantics of features us-
ing mapping definitions. As we indicated in Section 2.2, cardinality-based feature
modeling with reference attributes and inheritance is a powerful concept modeling
formalism whose expressiveness is comparable to class modeling and context-free
grammars, which are typically used for modeling the abstract syntax of languages.
Therefore cardinality-based feature modeling is appropriate for modeling framework
concepts to the same degree as the other formalisms.

The semantics of features can be specified using the reusable set of mapping
types we created and used in the exemplar languages. The set of mapping types
defines a set of possible concepts that can be modeled because the concepts are
inherently characterized by their features that correspond to code patterns. The
set of mapping types we defined can be used to model a great variety of framework
concepts, such as more static (structural) and more dynamic (behavioural) concepts
as well as concepts spanning different artifact types (Java and XML). The current
mapping types do not support concepts that are instantiated in the completion
code by building complex object structures, such as graphical user interface (GUI)
concepts. Implementation of code queries for matching such complex behavioural
patterns requires sophisticated static analyses such as context- and flow-sensitive
data flow analysis and points-to analysis. However, the method is not limited to
this particular set of mapping types and new mapping types can be defined as
needed. Also, the use of the context mechanism, which requires certain kind of
feature nesting, for the retrieval of the values of dynamic parameters is voluntary:
explicit paths can always be used.

Support for new programming languages, including both statically typed lan-
guages, such as C++ or C#, and dynamic languages, such as Ruby and JavaScript,
can be added by defining new mapping types and implementing new mapping in-
terpreters (that is code queries and transformations). Different language features,
such as, multiple inheritance in C++, partial classes in C#, and automatic typing

106

in functional languages, require specialized mapping types and code queries imple-
menting them. Code queries would require new static analysis services, such as,
type inference for dynamically typed languages. Although we did not consider other
languages than Java and XML, we think that existing work on static analyses can
be leveraged for designing code queries for other languages and the study presented
in Chapter 4 can be used for evaluating their effectiveness.

The degree to which FSMLs can achieve the value proposition and support the
required use cases depends on the quality of the implementation of code queries
and code transformations that implement mapping types used in the language. For
example, a hypothetical mapping type could define a correspondence to the termi-
nation property of a program, determination of which is, in general, undecidable.
Therefore, the possible support of the use cases is limited to the availability of code
queries and transformations and the precision and recall of the approximations they
may employ.

The ultimate confirmation of value proposition being delivered can be obtained
from actual application developers. Although we have not performed any exper-
iments or case studies involving real application developers, we have tested the
ability of the FSMLs to support reverse engineering and migration on real-world
applications. The forward engineering and round-trip engineering capabilities went
through tests described in Chapters 5 and 6. Still, we believe that the impact of
the feedback from FSML users on the method will be mostly related to refinement
and fine-tuning of the individual activities and steps since all the main FSML def-
inition artifacts, such as feature models; mapping types and definition; and code
queries and transformations, need to be developed. User studies involving FSML
application and FSML engineering are future work.

A potential threat is that the selection of frameworks used to create the ex-
emplar FSMLs is not representative. The threat is addressed by the fact that
the selected frameworks cover a range of basic framework properties relevant to
FSML development. The selected frameworks cover up to two different artifact
types. As argued above, supporting additional artifact types is not a limitation
of this method. Another characteristic is whether a framework provides most of
the functionality needed by an application or only a small part. The first kind of
frameworks can be supported by full code generation, whereas the latter requires
incremental code addition. Although we considered only frameworks in the latter
category, full code generation is a special, simpler case of incremental code addition,
so the method should be applicable to the first category, too. A major characteris-
tic of a framework is whether it supports concept instantiation by subclassing and
implementing interfaces or by instantiating objects and wiring them. All the con-
sidered frameworks fall in the first category. Handling the frameworks of the second
category is likely to be challenging since less static structure will be available in the
completion code. Applying the FSML approach to such frameworks is future work.
Still the selected frameworks are widely used and representative of a large class of
frameworks.

107

Framework-specific models expressed using the exemplar FSMLs are at a rela-
tively low level of abstraction, which ensures certain stability needed for round-trip
engineering. Defining mapping types that significantly raise the level of abstrac-
tion may limit the possibility of implementing effective and stable code queries and
transformations, which, in turn, may limit support for certain use cases. We leave
the method for engineering code queries and code transformations that support
certain use cases for feature work.

Therefore, we think that the presented method for engineering FSMLs is general
but limited to the expressiveness of feature models and the availability of mapping
types and the code queries and transformations implementing them.

Because the method was created post-mortem we do not claim its completeness
and usefulness; rather, the value of the method lies in the fact that it represents
our experience and the results of the analysis of exemplar FSMLs.

The evaluation of the method’s completeness and usefulness would require per-
forming an experiment in which subjects without prior FSML engineering experi-
ence apply the method and evaluate its utility. We leave such evaluation for future
work.

108

Chapter 8

Related Work

In this chapter we describe related works grouped in the following categories.

8.1 Framework Instantiation

Early approaches to supporting framework instantiation focused on providing API
documentation in the form of a cookbook [70] that outlined development tasks and
steps supplemented with code examples. Pree et al. showed how cookbooks can be
made active and how development steps can automated [80]. Ortigosa et al. went
even further by using intelligent agent technology that interactively guides the user
in making subsequent implementation choices from the recipe [76].

In 1992, Johnson proposed documenting frameworks using patterns [60] that
describe common usages of the framework. Such patterns describe the purpose and
the design of a framework, and ways of using it.

Fontoura et al. proposed using a special profile of the UML language for repre-
senting framework’s API called UML-F [48]. The profile defines annotations that
can be placed on API elements to indicate their function, such as variable to in-
dicate that the annotated method must be implemented or extensible to indicate
that the annotated class may be extended. The users specialize a UML-F model
to produce the design of their application and a supporting tool transforms the
model into the code. The supporting tool is a wizard and it cannot be used for
maintaining the consistency between the model and the code that is supported by
round-trip engineering using FSMLs.

Hakala et al. proposed a pattern-based approach to generating task-driven pro-
gramming environments for frameworks [51]. In this approach, specialization pat-
terns are used to describe extension points of frameworks. Specialization patterns
can be thought of as instances of more general design patterns. A specialized tool
called FRamework EDitor (FRED) is used by application developers in the pro-
cess of casting, that is, instantiating the given specialization pattern in the code.

109

FRED supports iterative and incremental casting which reflects the natural way
programmers work.

Tourwe, in his Ph.D. thesis [92], proposed documenting framework’s design us-
ing design patterns and then using such documentation to provide active support
in framework-based software evolution. After manually identifying design pattern
instances used in the framework, the tool can support framework evolution and
instantiation related to these pattern instances. In particular, the tool can create
subclasses of framework API classes and add empty method declarations in the ap-
plication code to support framework instantiation. Application developers invoke
code transformation for a given design pattern instance they wish to implement
and the tool asks the developers to provide implementation for the created method
bodies. The FSML approach is different by offering a conceptual view of the API
rather than presenting the design of a framework as instances of design patterns.
Similarly to the Tourwe’s approach where the design pattern instances have to be
manually identified, an FSML has to be manually built. Using FSMLs, the devel-
opers first configure a concept they wish to implement by selecting features and
providing values of feature attributes and, later, they execute code transformations
for the selected features in forward or round-trip engineering. The code transforma-
tions in FSMLs are not limited to creating classes and methods only but they can
create any code patterns, including method calls, field assignments, and XML dec-
larations. Tourwe argues that there is value in application developers knowing what
design patterns were used in the design of the framework. However, the developers
are not provided with the rationale for choosing to implement a particular pattern
instance. In other words, for a complex framework, how do developers decide which
pattern to implement? This problem is tackled in the FSML approach, whereby
the developers are offered a choice of features that the application can implement
and the configuration is guided by the feature and feature group cardinality con-
straints. Additional constraints allow verifying whether the feature configuration
satisfies API constraints not captured by the hierarchy and cardinality constraints.

A newer approach proposed encoding common framework API engagement pat-
terns as design fragments [46]. Such a design fragment has a name, a goal that can
be accomplished by implementing it, a description of classes, methods, fields, and
method and constructor calls, that need to be created to accomplish the goal, and
a description of the relevant parts of the framework’s API. Similarly to FSMLs, de-
sign fragments exist separately from the code. Developers choose a design fragment
they wish to implement and manually bind it to their code. After the initial bind-
ing, the tool checks whether the required code elements were created and bound
and reports violations. The developers continue creating code elements and binding
them to the roles of a design fragment until all constraints are satisfied. In FSMLs,
the binding of feature instances to the code patterns is established automatically
during reverse engineering which discovers concept instances implemented in the
code. After reverse engineering, the extracted framework-specific model can be
checked for API constraint violations and missing features can be automatically
added to the code using round-trip engineering. Furthermore, through variability

110

mechanisms, FSMLs can encode many alternative ways of implementing a single
concept, each of which would require a separate design fragment.

Hou and Hoover presented an approach to checking structural constraints of ap-
plications using structural constraint language (SCL) [55]. SCL, previously known
as framework constraint language (FCL) in Hou’s Ph.D. thesis [56], can be used
to encode API and other constraints and check them at compile time. The ap-
proach has been demonstrated on C++ and Java frameworks. In addition to typ-
ical program structure queries, SCL offers simple control-flow and data-flow-based
constructs. Many of the API constraints present in the exemplar FSMLs could be
written as SCL constraints.

8.2 Reverse Engineering

Chikofsky and Cross II defined reverse engineering as “the process of analyzing a
subject system to a) identify the system’s components and their interrelationships
and b) create representations of the system in another form or at a higher level of
abstraction” [27].

Leveraging domain knowledge in program understanding. The idea
of using domain knowledge in program understanding is not new. DeBaud et al.
presented two case studies in 1994 that explore the relationship between domain
analysis and reverse engineering [36]. The first study uses an object-oriented frame-
work as a source of the domain knowledge; that is “the domain description can give
the reverse engineer a set of expected constructs to look for in the code”. The stud-
ies were performed manually by the authors. In comparison, in FSMLs the domain
knowledge is embodied in the metamodel. The metamodel is directly interpreted
during reverse engineering, which is an automatic process.

Later, Rugaber reported on a variety of case studies conducted to evaluate dif-
ferent domain knowledge representation approaches in the context of program un-
derstanding: predicate logic, algebraic specifications, frame-based knowledge rep-
resentation, entity-relationship models, static object models, and object-oriented
frameworks [84]. In contrast, in this paper we show that representing domain
knowledge as FSMLs allows performing reverse engineering automatically.

General Design & Architecture Recovery. The main difference between
the general design and architecture recovery tools and a framework-specific ap-
proach is that the latter heavily relies on the framework knowledge, which, on the
one hand, allows the retrieval of meaningful and precise models, but, on the other
hand, requires designing an FSML for each framework. A detailed comparison be-
tween framework-specific and general-purpose design retrieval remains future work.

Generic code query tools. Current generic code query tools for Java, such as
JQuery [35], JTL [29], and CodeQuest [50] cannot query for the kinds of behavioural
patterns required for the retrieval of framework-specific models. In particular, the

111

dynamic pattern types presented in Table 4.2 cannot be retrieved. Another differ-
ence is that generic code query tools usually build a complete database of facts about
the queried program, which, as shown in Section 4.2 is not necessary. The only types
of patterns that such tools could provide without incurring a prohibitive increase
in the size of the fact database are patterns matched by the queries getArgValLC,
getAssgnNull, and getAssgnNew.

Static analysis frameworks. Static analyzers, such as SOOT [93] usually
build a complete control flow graph of the application, which is a prerequisite for
many other static analyses. However, as discussed in Section 4.2, the analysis of
framework-based applications must be performed on-demand and in the presence
of incomplete programs. The following two works deal with the static analysis of
framework-based code. Component Level Dataflow Analysis [83] is an approach to
the analysis of a program in the presence of large libraries, where only the program
is analyzed and the analysis relies on the availability of summary information about
the library or framework. Zhang et al. [96] propose an algorithm for computing a
call graph of an application in the presence of callback methods.

It is also important to note that our code queries are capable of analysing OSGi
framework’s bundles. OSGi [77] is a component framework and bundles are a kind
of components. Eclipse is build on top of OSGi and Eclipse plug-ins are OSGi
bundles. OSGi provides an advanced dependency mechanism in which bundles can
specify exact versions of other bundles they depend on. The OSGi dependency
mechanism is independent of the regular Java classpath mechanism and therefore
special support is required.

Aspect Weaving Optimization. An active research topic in the aspect-
oriented programming community is the optimization of the run-time performance
of aspect-oriented programs by removing unnecessary run-time checks, e.g., [21].
Such optimization techniques perform static analysis to determine whether certain
shadows will always or never be executed when the given pointcut matches. Un-
fortunately, such analyses tend to require the complete control flow graph of the
application and thus are not applicable in the context of FSMLs for the reasons
discussed in Section 4.2. Therefore, while advances in weaving optimization could
be leveraged in FSMLs, currently the only feasible solution is to use approximations
in the form of code queries. We do, however, believe that the techniques used in
dynamic pointcut weaving optimization could also be used to design code queries
that provide the highest precision and recall.

8.3 Forward Engineering

Chikofsky and Cross II defined forward engineering as “the traditional process
of moving from high-level abstractions and logical, implementation-independent
designs to the physical implementation of a system” [27].

112

Template-based code generators. The most prevalent method of code gen-
eration in the industry today is template-based code generation in which the tem-
plate is an incomplete target code with placeholders for the missing code. Complete
target code is generated during the process of template expansion which is usually
guided by a model. Template expansion fills the placeholders with the missing code
based on the data from the model.

There are many examples of template-based code generator frameworks for dif-
ferent programming languages and many examples of using them for the genera-
tion of framework-based applications. Among most popular are code generators for
Sun’s Enterprise Java Beans framework, different Web Services frameworks, and
many databases. References to many of them can be found on Code Generation
Network [28].

However, the common problem with template-based code generation is sup-
porting incremental code updates and preserving developer’s customizations. Some
template-based code generators, for example oAW [75], simply replace the entire
target code during each generation. Other, such as JET [43], support different
forms of protected regions and use merging to combine the old and the new code.
A protected region is a place in the code designated by the user that should not be
overridden by the code generator. Also, template-based code generators impose a
very rigid structure on the generated code and only preserving the structure of the
template enables subsequent code update during regeneration.

In contrast to the template-based approach, forward engineering in FSMLs is
transformation-based and it has several advantages and disadvantages. The biggest
advantage is that the transformation-based approach is incremental in nature: each
code transformation is applied to the current code, regardless if the code was cre-
ated by a previous code transformation or if it was written manually. In a composi-
tional approach, such as FSMLs, larger code transformations are built by composing
smaller ones. Transformation-based approach also supports integration of multi-
ple code generators that modify the same code which is very difficult to achieve in
template-based approach because of the rigid structure of the generated code. Also,
code transformations in FSMLs implement common implementation steps and are
reusable. Code templates, on the other hand, are usually much larger in scope
and very rarely can be reused. Finally, incremental code transformations enable
round-trip engineering (cf. Chapter 6) which is difficult to achieve in general when
using code templates. The biggest disadvantage is that the implementation of code
transformations is difficult and complete working applications most likely cannot
be generated this way. We feel that a hybrid approach would work best in practice.

Authoring Refactorings. In our implementation, the code transformations
are Java programs that manipulate the abstract syntax tree of a program using the
API of Eclipse Java Development Tools [40]. An interesting approach to authoring
code transformations is JunGL [94], a functional language for writing control-flow-
based refactorings (e.g., extract method) for C#. Later, JunGL has been extended
and applied for writing type-based refactorings (e.g., extract interface) [79]. One

113

of the great difficulties in building incremental code transformations is the ability
to analyze the existing control and dataflow of the transformed program and seam-
lessly integrate the changes. JunGL provides such facilities in the form of program
path queries which enable writing code transformations that are semantics preserv-
ing (refactorings). We think that JunGL would be very useful in implementing
code transformations for FSMLs.

8.4 Round-Trip Engineering

Heterogeneous Synchronization. Round-trip engineering using FSMLs is a
special case of the more general problem of heterogeneous synchronization, that
is, propagation of changes among the artifacts of different types to establish or
maintain a certain relation among the artifacts. We characterized round-trip en-
gineering in FSMLs as bidirectional, fully-incremental, many-to-one, using artifact
translation, homogeneous artifact comparison and reconciliation with choice, and
update translation with choice [11]. The artifact translation operator translates
the code into a framework-specific model (reverse engineering). The homogeneous
artifact comparison and reconciliation with choice operator compares the asserted,
implementation, and last-reconciled models (hence homogeneous). In FSMLs, the
reconciliation is guided by the user who makes reconciliation decisions (hence the
choice). The update translation with choice operator translates changes in the
model to the changes of the code (code transformations). Finally, it is bidirectional
and fully-incremental because both the model and the code are updated incremen-
tally. It is important to note that the relation between the model and the code in
FSMLs is a function because there are many different codes that have the same
model. Therefore, the only place where the comparison and reconciliation is feasible
is on the model side; comparing different versions of the code would be extremely
difficult. We described many dimensions of heterogeneous synchronization and we
presented sixteen concrete synchronizers and examples for some of them in the
tutorial [11].

Evaluation of round-trip engineering. We are not aware of other works
that evaluated round-trip engineering capabilities of other approaches. Many com-
mercial UML modeling tools support round-trip engineering; however, we are not
aware of any evidence of its usefulness and correctness.

8.5 Reengineering

Chikofsky and Cross II defined reengineering as “the examination and alteration of a
subject system to reconstitute it in a new form and the subsequent implementation
of the new form” [27].

We can categorize different reengineering approaches as generic and platform-
specific. Generic approaches are applicable to any software system implemented

114

in the supported programming language(es), for example, code refactorings that
change the structure of the code while preserving its semantics [74]. Platform-
specific approaches are only applicable to systems implemented on top of the sup-
ported platform. The second category is related to FSMLs and round-trip engi-
neering can be seen as a form of reengineering. Another form of reengineering is
migration to a different version of the same platform or to a different platform.

Reengineering of COBOL applications whose interactive part was implemented
using Customer Information Control System (CICS) [85] is an example of generic
reengineering. CICS is a transaction server and offers a specialized macro language
for writing transactions which are then translated into the base language, e.g.,
COBOL, and then called by CICS in response to events (similarly to framework’s
callbacks). In [85] authors present a reengineering solution which removes the use
of certain problematic constructs of CICS language that are translated into go

to statements making the resulting program unstructured. The removal of such
constructs improves the structure of the program without changing its behaviour.

Migration of WEB applications to new web platforms is an example of platform-
specific reengineering. We already mentioned migration from Struts to Java Server
Faces using FSMLs as an example [26]. Another example is ajaxification, that is,
migration of multi-page web applications to Asynchronous JavaScript and XML
model (AJAX) [73]. In AJAX model, a web application is displayed on a sin-
gle page whose parts can be reloaded individually instead of reloading the entire
page. To help with such a migration, authors propose first reverse engineering a
multi-page web application into a navigation model and later clustering pages with
similar URLs that could be included on a single page. Finally, the resulting single
page UI model would be translated into an implementation for a particular AJAX
framework.

8.6 FSML Engineering Method

Engineering domain-specific languages for APIs.

The idea of designing modeling languages for frameworks is not new. Roberts
and Johnson proposed in 1996 that language tools, such as visual builders, should
be the last stage of the evolution of a black-box framework [82]. They did not,
however, present a systematic approach to building and implementing the languages
embodied in such tools as the method presented in this thesis.

Bravenboer and Visser present MetaBorg [25], a method for embedding DSLs
into general-purpose languages. A program expressed using an embedded DSL is
included inside the program in a host language and, during the assimilation phase,
it is translated into completion code for the API. In contrast, a model created
using an FSML is external to the program in a host language. Code generation
in MetaBorg is localized, that is, it replaces the embedded DSL program, whereas
code generation in FSMLs has global and incremental character. Furthermore,

115

assimilation is performed during compilation and the developer is not intended to
customize the generated code. In FSMLs, the generated code is integrated into the
source code and it is intended to be customized.

Engineering domain-specific languages in general

In their 2005 survey [72], Mernik et al. distinguish the following domain-specific
language (DSL) development phases: decision, analysis, design, implementation,
and deployment. The survey includes the creation of a “user friendly” notation for
an existing library or a framework as a possible motivation for the creation of a DSL
in the decision phase. In the analysis phase, informal or formal domain analysis
is performed to capture domain concepts by using implicit and explicit sources of
knowledge, that include documentation, experience, and example code. Feature-
oriented domain analysis (FODA) [61], which uses feature modeling, is included as
a possible analysis method. The authors further state that no clear guidelines exist
as to how a language could be designed from the results of the domain analysis.
In our method, a basic feature-oriented domain analysis is refined to produce the
entire definition and implementation of an FSML. Furthermore, our method gives
specific guidelines how the concepts and features are obtained, scoped, structured,
and mapped to code.

Kelly and Tolvanen present a process for designing domain-specific modeling
languages (DSMLs) for 100% code generation [63]. They assume the existence
of a domain framework and give general guidelines for building and adopting a
DSML for that framework. They also assume that the framework is mature and
complete such that the code generated for a model will never have to be manually
modified. Furthermore, the modeling language concepts and elements of a DSML
are requirements-level whereas the features of FSMLs are design-level.

Domain analysis techniques. Diaz and Arango [81] and Czarnecki and Eise-
necker [30, ch. 2] surveyed numerous domain analysis techniques. Also, Czarnecki
and Eisenecker give general guidelines for feature modeling [30, ch. 4] and com-
pare different approaches to conceptual modeling [30, Apdx A]. These techniques
and guidelines are, however, general-purpose whereas the method in this thesis is
tailored for domain analysis of framework API concepts.

Attribute Grammars. Attribute grammars were first invented by Knuth to
declaratively specify the computation of values of attributes contained by nodes of
a tree [69]. The primary application of attribute grammars is specification of the
computation of attribute values for nodes of an abstract syntax tree (AST) of a
program. The computation of the values of attributes is specified using attribute
equations and it can be carried out automatically after first determining the order
of evaluation that respects dependencies between the equations.

FSMLs are similar to attribute grammars in that a metamodel of an FSML
is also a declarative specification of computation over an abstract syntax tree of
a model (i.e., feature configuration). The similarity is most visible in forward
engineering, whereby the computation is the execution of code transformations
for the nodes of the AST. Also, code patterns that feature instances correspond

116

to can be viewed as analogous to the values of attributes, that is, a treceability
link to a code pattern can be thought of as a special traceability attribute of a
feature. In forward engineering, code patterns are created for certain features (e.g.,
a class) and then used by code transformations for other features (e.g., adding a
field to the previously created class). In reverse engineering, existing code patterns
are matched in the code for certain features (e.g., a class) and then used by code
queries for matching code patterns for other features (e.g., matching fields of a
given type in the previously matched class).

The context mechanism used in FSMLs is similar to the INCLUDING construct
from the LIGA system [62], which allows accessing an attribute from the closest
ancestor node that has that attribute defined (context mechanism allows accessing
a code pattern of the given type from the ancestor feature instance).

Currently, FSMLs employ a very primitive evaluation scheme, whereby the or-
der of evaluation is predetermined by the hierarchy and ordering of features in the
metamodel. Although, such a restriction imposes a certain structure of an FSML’s
metamodel, we did not find it too restrictive. We think, however, that FSMLs
could benefit from the advanced attribute grammar evaluation approaches, such
as remote attribute grammars [24], which allow remote access to the values of at-
tributes of other nodes and provide algorithms for automatic scheduling of grammar
evaluation.

117

Chapter 9

Conclusion

9.1 Summary of Contributions

In this thesis we presented a point of view that the existing support for application
developers can be significantly improved by taking a language-oriented perspective
on framework API. We presented framework-specific modeling languages (FSMLs)
that formalize abstractions and rules of framework’s application programming in-
terfaces (APIs) and can express models of how applications use an API.

The language-oriented perspective means that API of a framework implicitly
defines a domain-specific language. FSMLs formalize concepts of that language.
Formalization is based on two assumptions: 1) API concepts can be modeled using
feature models, and 2) an application consists of structural and behavioural code
patterns that implement the features. We showed using numerous examples of
concepts from four different frameworks that these were valid assumptions.

The view of an application as a composite code pattern was critical for be-
ing able to define different kinds of feature-to-code-pattern correspondences called
mapping types. The set of mapping types and code queries and transformations im-
plementing them is an important contribution as it enables round-trip engineering.
We showed that the mapping types are generic (parameterized) and reusable.

Another important contribution is demonstration that a single language meta-
model can be used for many different use cases. The metamodel can be interpreted
manually in framework API understanding or automatically in reverse, forward,
and round-trip engineering, as well as, in migration. We presented the metamodel
interpretation algorithms.

We presented a method for engineering FSMLs that was extracted post mortem
from the experience of building four such languages. The method is driven by the
use cases that the FSMLs under development are to support. We presented the
use cases, the overall process, and its instantiation for each language. The pre-
sentation focused on providing concrete examples for engineering steps, outcomes,
and challenges. It also provides strategies for making engineering decisions. The

118

method represents a necessary step in the maturation of the FSML concept. We are
not aware of any systematic approach to defining framework-provided concepts for
the purpose of reverse, forward, and round-trip engineering other than the FSML
approach presented in this thesis.

We evaluated the reverse engineering capability of three languages and the for-
ward and round-trip engineering capabilities of two languages. The evaluation
shows that these use cases can be performed using FSMLs. The tests we designed
can be reused for the evaluation of these capabilities for other FSMLs.

Although, we did not directly evaluate the method and the exemplar languages
in user studies, we provided some evidence of their usefulness using indirect mea-
sures. We showed that framework-specific models can be extracted from the appli-
cation code with high recall and precision. We also showed that the models provide
an alternative to code decomposition, that is, the features of a concept are pre-
sented together and the code patterns implementing them are typically scattered.
We showed that the correct completion code can be created in forward engineering
and we showed the correctness of round-trip engineering for two FSMLs.

The results presented in this thesis may impact the way framework APIs are
constructed and documented. Taking a language-oriented perspective on frame-
work APIs brings many benefits, such as formalization and automation. The need
for FSMLs arises due to the inability of the programming language to adequately
express API rules and constraints. Our hope is that programming languages will
eventually evolve and become more suitable for API construction so that API rules
will be checked by the compiler. However, until that happens FSMLs can provide
support for the developers in the many ways described in this thesis and, hopefully,
be an inspiration for programming language designers.

9.2 Limitations and Future Work

There are many possible directions for future work. Some of these were already
mentioned in previous chapters; here we only mention directions for future work
not included elsewhere.

One important area is the formalization of the FSML concept and the investi-
gation if its properties. Such a formalization would offer deeper insights and would
allow us to describe all components of FSMLs and the generic FSML infrastructure
more precisely. In particular, three areas would benefit from formalization: FSML
semantics, code queries and transformation, and round-trip engineering. Formaliza-
tion of the semantic function and the semantic domain would provide justification
for the design of the metamodel interpretation algorithms presented informally in
Section 2.5 which, we think, implement such a function. Note that the notion
of mapping type needs to be formalized as part of the semantics. Formalization
of code queries and transformations is necessary to better understand the rules of
their composition, such as, pre and post conditions. Code query and transformation

119

composition is important since the metamodel of an FSML can be understood as
a compositional definition of a code query in reverse engineering and a code trans-
formation in forward engineering. Formalization of round-trip engineering would
provide insights to the properties of the approach, such as, what are exactly the
conditions of reconciliation and what are the limitations of instance identification.

Application of FSMLs in practice is needed to ultimately confirm the usefulness
and value of the concept. To that end, more languages should be built to address
current problems with a few widely used frameworks, a user community should
be established, and the effectiveness of FSMLs should be evaluated. Interesting
studies can be performed by collecting and analyzing user survey data.

Another future work area related to the previous one is the creation of effective
concrete syntax for FSMLs which is a prerequisite for any studies involving users.
The creation of the concrete syntax should be driven by the kinds of concepts, for
example, component-oriented or connector-oriented concepts require a lines and
boxes type of interface or setting multiple related feature attributes requires a form
interface. The concrete syntax should leverage results related to supporting feature
model configuration, constraint propagation, and supporting different configuration
interfaces, such as tree view and configuration wizards [7, 33, 34].

Application of the FSML engineering method in practice is needed to evaluate
its usefulness and completeness. To that end, we envision conducting an experi-
mental evaluation in which subjects apply the method to a well defined part of a
framework’s API, using provided documentation and example applications. Also,
the FSML metamodeling tools would have to be developed to the degree that they
are usable for the subjects. The tools should provide support for feature modeling,
creating mapping definitions for mapping types implemented in the pluggable map-
ping interpreters, and development-time metamodel correctness checking (syntax
and well typedness, cf. Section 2.5).

Through their support for round-trip engineering, many FSMLs can potentially
be easily used in conjunction on the single code base. In general, language com-
position in still an open problem; however, we think FSMLs could be composed
because the integration occurs in the completion code and each FSML covers a
particular area of concern of the code. An example target scenario would involve
developing a few FSMLs for the Eclipse Workbench framework, in addition to the
WPI FSML, and evaluating possible interactions that can occur between the parts
of the code related to different FSMLs.

120

APPENDICES

121

Appendix A

Mapping types, Constraints, and
Forward parameters

Tables A.1-A.3 present descriptions of mapping types used in mapping definitions of
features not related to Java. Mapping types for structural and behavioural patterns
in Java were presented in Tables 4.1-4.2. These tables contain all mapping types
used in all exemplars. Additionally, Table A.4 presents constraints and parameters
used in forward engineering.

Table A.1: Mapping types for structural code patterns for plugin.xml
Structural Pat-
tern Expression

Structural Element(s) Matched

p viewPartId: c
matches a value of the partId XML attribute of the view declaration corresponding
to the class c in the plugin.xml file in the plug-in project p

p editorPartId: c
matches a value of the partId XML attribute of the editor declaration corresponding
to the class c in the plugin.xml file in the plug-in project p

p contributor: c
matches a value of the contributor XML attribute of the editor declaration corre-
sponding to the class c in the plugin.xml file in the plug-in project p

Table A.2: Mapping types for structural code patterns for XML
Structural Pat-
tern Expression

Structural Element(s) Matched

p xmlDocument: h matches a XML document at path h in project p

d xmlElement: n matches a root XML element with the name n of the XML document d
e xmlElements: p matches a XML elements at path p relative to XML element e

e xmlAttribute[: n]
matches a value of XML attribute called e of the XML element e. The parameter n
is optional: the name of the feature is used in its absence

e xmlElementValue matches a value of the XML element e

122

Table A.3: Constraints
Structural Pat-
tern Expression

Structural Element(s) Matched

where: f contains: g true if the value of the feature f contains the value of the feature g
where: f equalsTo: g true if the value of the feature f is the same as the value of the feature g

valueEqualsTo: f
value: v

true if the value of the feature f is the same as the value v

andParentIs: f true if the the parent of the reference value is feature f
valueOf: f class: p matches the value of the feature f which is the parent of feature p
constraint: f im-
plies: g

false if the feature f is present and the feature g is missing. True otherwise (implica-
tion)

Table A.4: Constraints and parameters for forward engineering
Constraint Meaning

subsumedBy: f
specifies that the code transformation for a feature should not be executed if the
feature f is present

Parameter Meaning

initializer: i
parameter i specifies whether a field assignment should be created in the field’s ini-
tializer

location: s
specifies that the code should be inserted in the body of the method with the signature
s

position: p
parameter p specifies whether the code should be inserted at the beginning (p=before)
or at the end (p=after) of the method’s body

receiverExpr: e specifies the expression e that should be inserted as a receiver of a method call

123

Appendix B

Applications Used in the Third
Phase of the Evaluation of
Reverse Engineering

B.1 Eclipse

We created a single plug-in which depends on 227 plug-ins from our custom Eclipse
Europa installation. Here we list only the main features: Eclipse 3.3.2, Ant 1.7,
EMF 2.3, Help 3.3.2, JDT 3.3.2, Jsch 0.1.31, PDE 3.3.2, Team 3.3.2, WST Common
2.0.2, IBM ICU 3.6.1, TeXlipse 1.2.1, JUnit 3.8.2, GEF 3.3.2, Jetty 5.1.11, Jasper
5.5.17, Lucene 1.9.1, ASTView 1.1.3, JEView 1.0.4.

B.2 Struts

The set applications used in the study consists of 6 applications.

• 2 example Struts applications shipped with the framework: Cookbook and
Mailreader 1.3.8;

• 1 large, open-source, production quality application: Apache Roller Weblog-
ger 3.1; and

• 3 small, open-source applications: Ajax Chat 1.2, Beer4all, and Pools 2.5.

B.3 Applets

The set of applets used in the study consists of 84 applets. The applets are divided
in a few groups.

124

• 20 applets examples shipped with Suns JDK;

• 51 applets obtained from the internet by George Fairbanks and used in
his study of design fragments: ANButton, Antacross, AquaApplet, Blink-
ingHelloWorld2, BrokeredChat, Bsom1,ButtonTest, Client, ConsultOMatic,
ContextTestExecutor, Demographics, DotProduct, Envelope, ErrorMessage,
Fireworks, FormelnApplet, GammaButton, Geometry, HelloTcl, HitMeter,
HmFetcher, Iagttager, InspectClient3, JScriptExample, KeyboardAndFocus-
Demo, LinProg, MarchingAnts, MouseDemo, MyApplet, MyApplet, Nick-
Cam, ScatterPlotApplet, Scope, SilentThreat, SimplePong, SimpleSunAp-
plet, SmtpApp, SuperApplet, SwatchITime, hyperbolic.Test, TetrisApp, URL-
ExampleApplet, ungrateful.Ungrateful, ungrateful.OutPanel, UrcrcCalendar,
VeChat, notprolog.WPrologGUI, notprolog.WProlog, WebStart, YmpyraAp-
pletti, CaMK;

• 8 applets by R. Bowles: Bioquiz, Calculator, Crystal, Frogs, LightRays, Man-
del, Mastermind, Starscape; and

• 5 applets from three open-source project (SourceForge): JugglingLab (3 ap-
plets), snirc 1.0 (1 applet: Chat), sudoku (1 applet: Main).

125

Appendix C

Applications Used in the
Computation of the CDC and
CDO Metrics

C.1 Eclipse

We created a single plug-in which depends on 227 plug-ins from our custom Eclipse
Europa installation. Here we list only the main features: Eclipse 3.3.2, Ant 1.7,
EMF 2.3, Help 3.3.2, JDT 3.3.2, Jsch 0.1.31, PDE 3.3.2, Team 3.3.2, WST Common
2.0.2, IBM ICU 3.6.1, TeXlipse 1.2.1, JUnit 3.8.2, GEF 3.3.2, Jetty 5.1.11, Jasper
5.5.17, Lucene 1.9.1, ASTView 1.1.3, JEView 1.0.4.

C.2 Struts

The set applications used in the study consists of 3 applications: 2 example Struts
applications shipped with the framework: Cookbook and Mailreader 1.3.8 and 1
large, open-source, production quality application: Apache Roller Weblogger 3.1.

C.3 Applets

The set of applets used in the study consists of 76 applets. The applets are divided
in a two groups.

Sun. 20 applets examples shipped with the Java Development Kit.

Internet. 53 applet projects (56 applets) obtained from the internet by George
Fairbanks and used in his study of design fragments [46]: ANButton, Antacross,

126

AquaApplet, BlinkingHelloWorld2, BrokeredChat, Bsom1, ButtonTest, Client, Con-
sultOMatic, ContextTestExecutor, Demographics, DotProduct, Envelope, ErrorMes-
sage, Fireworks, FormelnApplet, GammaButton, Geometry, HelloTcl, HitMeter,
HmFetcher, Iagttager, InspectClient3, JScriptExample, KeyboardAndFocusDemo,
LinProg, MarchingAnts, MouseDemo, MyApplet, MyApplet, NickCam, Scatter-
PlotApplet, Scope, SilentThreat, SimplePong, SimpleSunApplet, SmtpApp, Super-
Applet, SwatchITime, hyperbolic.Test, TetrisApp, URLExampleApplet, ungrate-
ful.Ungrateful, ungrateful.OutPanel, UrcrcCalendar, VeChat, notprolog.WPrologGUI,
notprolog.WProlog, WebStart, YmpyraAppletti, CaMK.

127

Appendix D

Models Used in the Evaluation of
Forward and Round-trip
Engineering

In this Appendix we present the models and the code used in the tests presented
in Chapters 5 and 6.

128

Applet

name (’Applet1’)
extendsApplet

overridesLifecycleMethods

init
start
paint
stop

destroy

showsStatus
message (’status1’)

message (’status2’)
registersMouseListener

this
implementsMouseListener

deregisters

this
registersMouseMotionListener

this
implementsMouseMotionListener

deregisters

this
registersKeyListener

this
implementsKeyListener

deregisters

this

Thread

thread (’threadThis’)
typedThread

InitializesThread

initializesThreadWithRunnable

this
implementsRunnable

nullifiesThread

Thread

thread (’threadField’)
typedThread

InitializesThread

initializesThreadWithRunnable

runnableField
typedRunnable

name (’threadFieldRunnable’)

initialized

nullifiesThread

Thread
thread (’threadHelper’)
typedThread

InitializesThread

initializesThreadWithRunnable
helper

nullifiesThread

Thread

thread (’threadVariable’)
typedThread

InitializesThread

initializesThreadWithRunnable

variable (’runnableVariable’)

nullifiesThread
parameter

name (’param1’)

name (’param2’)
providesParameterInfo

providesInfoForParameters

import java.applet.Applet;

import java.awt.Graphics;

import java.awt.event.MouseListener;

import java.awt.event.MouseMotionListener;

import java.awt.event.KeyListener;

public class Applet1 extends Applet implements MouseListener,

MouseMotionListener, KeyListener, Runnable {

public Thread threadThis;

public Thread threadField;

public Runnable threadFieldRunnable = new Runnable() {
...

};
public Thread threadHelper;

public Thread threadVariable;

public void init() {

super.init();
String message0 = "status1";

message0 = "status2";

showStatus(message0);

addMouseListener(this);

addMouseMotionListener(this);
addKeyListener(this);

threadThis = new Thread(this);

threadField = new Thread(threadFieldRunnable);
threadHelper = new Thread(new Runnable() {

...

});

Runnable runnableVariable = new Runnable() {
...

};

threadVariable = new Thread(runnableVariable);
String name0 = "param1";

name0 = "param2";

getParameter(name0);

}

public void start() {

super.start();

}

public void paint(Graphics graphics) {}

public void stop() {

super.stop();

}

public void destroy() {

super.destroy();

removeMouseListener(this);

removeMouseMotionListener(this);
removeKeyListener(this);

threadThis = null;

threadField = null;
threadHelper = null;

threadVariable = null;

}

public String[][] getParameterInfo() {

return super.getParameterInfo();

}

}

Figure D.1: A model and the code generated using Applet FSML (Applet1)

129

Applet

name (’Applet2’)
extendsApplet

extendsJApplet

overridesLifecycleMethods

init
destroy

showsStatus
message (’status1’)

showsStatus
message (’status2’)

registersMouseListener

mouseListenerField

listenerField (’mListener’)
typedMouseListener

initialized
deregisters

field
registersMouseMotionListener

mouseMotionListenerField

listenerField (’mMotionListener’)
typedMouseMotionListener

initialized
deregisters

field
registersKeyListener

keyListenerField

listenerField (’keyListener’)
typedKeyListener

initialized
deregisters

field

Thread
thread (’threadMyThread’)
typedThread

InitializesThread

initializesWithThreadSubclass
name (’Applet2$MyThread’)

overridesRun

extendsThread

nullifiesThread
singleTaskThread

runnable
singleTaskThread

runnableField
typedRunnable

name (’singleTaskThreadRunnable’)

initialized
parameter

name (’param1’)
parameter

name (’param2’)
providesParameterInfo

providesInfoForParameters

import javax.swing.JApplet;

import java.awt.event.MouseListener;

import java.awt.event.MouseMotionListener;

import java.awt.event.KeyListener;

public class Applet2 extends JApplet {

public MouseListener mouseListener = new MouseListener() {
...

};
public MouseMotionListener mouseMotionListener = new

MouseMotionListener() {...

};
public KeyListener keyListener = new KeyListener() {

...

};
public Thread threadMyThread = new MyThread();

public Runnable singleTaskThreadRunnable = new Runnable() {
...

};

public void init() {

showStatus("status1");

showStatus("status2");

addMouseListener(mouseListener);

addMouseMotionListener(mouseMotionListener);
addKeyListener(keyListener);

new Thread(new Runnable() {
...

});
new Thread(singleTaskThreadRunnable);

getParameter("param1");

getParameter("param2");

}

public void destroy() {

removeMouseListener(mouseListener);

removeMouseMotionListener(mouseMotionListener);
removeKeyListener(keyListener);
threadMyThread = null;

}

class MyThread extends Thread {

public void run() {}

}

public String[][] getParameterInfo() {

return null;

}
...

}

Figure D.2: A model and the code generated using Applet FSML (Applet2)

130

ViewPart

name (’View1’)
package (’parts’)
implementsIViewPart

SelectionProvider
provider (View1)
registers

registersThis

implementsISelectionProvider

SelectionListener

listener (View1)
registersAs

globalSelectionListener

deregisters

deregistersSameObject

registersBeforeDeregisters

globalPostSelectionListener

deregisters

deregistersSameObject

registersBeforeDeregisters

specificSelectionListener

registrationPartId (’View2.ID’)
deregisters

deregistrationPartId (’View2.ID’)
deregistersSameObject

registersBeforeDeregisters

PartListener

listener (View1)
registersAPartListener

registers

deregisters

deregistersSameObject

registersBeforeDeregisters

package parts;

import org.eclipse.ui.IViewPart;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.jface.viewers.ISelectionProvider;

import org.eclipse.ui.ISelectionListener;

import org.eclipse.ui.IPartListener;

public class View1 implements IViewPart, ISelectionProvider,

ISelectionListener, IPartListener {

public void createPartControl(Composite composite) {

getSite().setSelectionProvider(this);

getSite().getPage().addSelectionListener(this);

getSite().getPage().addPostSelectionListener(this);

getSite().getPage().addSelectionListener("View2.ID", this);

getSite().getPage().addPartListener(this);

}

public void dispose() {

getSite().getPage().removeSelectionListener(this);

getSite().getPage().removePostSelectionListener(this);
getSite().getPage().removeSelectionListener("View2.ID",

this);
getSite().getPage().removePartListener(this);

}
...

}

Figure D.3: A model and the code generated using WPI FSML (View1)

ViewPart

name (’View2’)
package (’parts’)

partId (’View2.ID’)
implementsIViewPart

extendsViewPart

SelectionProvider
provider (View2)
registers

registersHelper

SelectionListener

listener (View2)
registersAs

globalPostSelectionListener

deregisters

deregistersSameObject

registersBeforeDeregisters

PartListener

listener (View2)
registersAPartListener

registers2

deregisters

deregistersSameObject

registersBeforeDeregisters

package parts;

import org.eclipse.ui.part.ViewPart;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.jface.viewers.ISelectionProvider;

import org.eclipse.ui.ISelectionListener;

import org.eclipse.ui.IPartListener2;

public class View2 extends ViewPart implements

ISelectionListener, IPartListener2 {

public void createPartControl(Composite composite) {

getSite().setSelectionProvider(new ISelectionProvider() {
...

});
getSite().getPage().addPostSelectionListener(this);

getSite().getPage().addPartListener(this);

}
public void dispose() {

getSite().getPage().removePostSelectionListener(this);

getSite().getPage().removePartListener(this);

}
...

}

Figure D.4: A model and the code generated using WPI FSML (View2)

131

ViewPart

name (’View3’)
package (’parts’)
implementsIViewPart

extendsViewPart
extendsPageBookView

SelectionProvider
provider (View3)
registers

registersVariable (’selectionProviderVar’)

SelectionListener

listener (View3)
registersAs

specificSelectionListener

registrationPartId (’View2.ID’)
deregisters

deregistrationPartId (’View2.ID’)
deregistersSameObject

registersBeforeDeregisters

PartListener

listener (View3)
registersAPartListener

registers

deregisters

deregistersSameObject

registersBeforeDeregisters

AdapterProvider

provider (View3)
providesAdapter

adapters (’IContentProvider’)

adapters (’ILabelProvider’)
AdapterRequestor

requestor (View3)
requestsAdapter

adapter (’IContentProvider’)
requestsAdapter

adapter (’ILabelProvider’)

package parts;

import org.eclipse.ui.part.PageBookView;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.jface.viewers.ISelectionProvider;

import org.eclipse.ui.ISelectionListener;

import org.eclipse.ui.IPartListener;

import org.eclipse.jface.viewers.IContentProvider;

import org.eclipse.jface.viewers.ILabelProvider;

import org.eclipse.ui.IWorkbenchPart;

public class View3 extends PageBookView implements ISelectionListener, IPartListener {

public void createPartControl(Composite composite) {

super.createPartControl(composite);

ISelectionProvider selectionProviderVar = new ISelectionProvider() {
...

};
getSite().setSelectionProvider(selectionProviderVar);

getSite().getPage().addSelectionListener("View2.ID", this);

getSite().getPage().addPartListener(this);

}

public void dispose() {

super.dispose();

getSite().getPage().removeSelectionListener("View2.ID", this);

getSite().getPage().removePartListener(this);

}

public Object getAdapter(Class aClass) {

if (ILabelProvider.class.equals(aClass))

return new ILabelProvider() {
...

};
if (IContentProvider.class.equals(aClass))

return new IContentProvider() {
...

};
return super.getAdapter(aClass);

}

public void requestAdapters(IWorkbenchPart iWorkbenchPart) {

iWorkbenchPart.getAdapter(IContentProvider.class);

iWorkbenchPart.getAdapter(ILabelProvider.class);

}
...

}

Figure D.5: A model and the code generated using WPI FSML (View3)

132

EditorPart

name (’Editor1’)
package (’parts’)
implementsIEditorPart

SelectionProvider
provider (Editor1)
registers

registersField

field (’selectionProviderFld’)
typedISelectionProvider

initialized

SelectionListener

listener (Editor1)
registersAs

globalSelectionListener

deregisters

deregistersSameObject

registersBeforeDeregisters

PartListener

listener (Editor1)
registersAPartListener

registers2

deregisters

deregistersSameObject

registersBeforeDeregisters

package parts;

import org.eclipse.ui.IEditorPart;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.jface.viewers.ISelectionProvider;

import org.eclipse.ui.ISelectionListener;

import org.eclipse.ui.IPartListener2;

public class Editor1 implements IEditorPart, ISelectionListener,

IPartListener2 {

public ISelectionProvider selectionProviderFld = new

ISelectionProvider() {...

};

public void createPartControl(Composite composite) {

getSite().setSelectionProvider(selectionProviderFld);

getSite().getPage().addSelectionListener(this);

getSite().getPage().addPartListener(this);

}

public void dispose() {

getSite().getPage().removeSelectionListener(this);

getSite().getPage().removePartListener(this);

}
...

}

Figure D.6: A model and the code generated using WPI FSML (Editor1)

EditorPart

name (’Editor2’)
package (’parts’)
implementsIEditorPart

extendsEditorPart

SelectionProvider
provider (Editor2)
registers

registersThis

implementsISelectionProvider

SelectionListener

listener (Editor2)
registersAs

globalPostSelectionListener

deregisters

deregistersSameObject

registersBeforeDeregisters

PartListener

listener (Editor2)
registersAPartListener

registers

deregisters

deregistersSameObject

registersBeforeDeregisters

package parts;

import org.eclipse.ui.part.EditorPart;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.jface.viewers.ISelectionProvider;

import org.eclipse.ui.ISelectionListener;

import org.eclipse.ui.IPartListener;

public class Editor2 extends EditorPart implements

ISelectionProvider, ISelectionListener, IPartListener {

public void createPartControl(Composite composite) {

getSite().setSelectionProvider(this);

getSite().getPage().addPostSelectionListener(this);

getSite().getPage().addPartListener(this);

}

public void dispose() {

getSite().getPage().removePostSelectionListener(this);

getSite().getPage().removePartListener(this);

}
...

}

Figure D.7: A model and the code generated using WPI FSML (Editor2)

133

EditorPart

name (’Editor3’)
package (’parts’)
implementsIEditorPart

extendsEditorPart
extendsMultiPageEditorPart

SelectionProvider
provider (Editor3)
registers

registersHelper

SelectionListener

listener (Editor3)
registersAs

specificSelectionListener

registrationPartId (’View2.ID’)
deregisters

deregistrationPartId (’View2.ID’)
deregistersSameObject

registersBeforeDeregisters

PartListener

listener (Editor3)
registersAPartListener

registers2

deregisters

deregistersSameObject

registersBeforeDeregisters

AdapterProvider

provider (Editor3)
providesAdapter

adapters (’IContentProvider’)

adapters (’ILabelProvider’)

package parts;

import org.eclipse.ui.part.MultiPageEditorPart;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.jface.viewers.ISelectionProvider;

import org.eclipse.ui.ISelectionListener;

import org.eclipse.ui.IPartListener2;

import org.eclipse.jface.viewers.IContentProvider;

import org.eclipse.jface.viewers.ILabelProvider;

public class Editor3 extends MultiPageEditorPart implements ISelectionListener, IPartListener2 {

public void createPartControl(Composite composite) {

super.createPartControl(composite);

getSite().setSelectionProvider(new ISelectionProvider() {
...

});
getSite().getPage().addSelectionListener("View2.ID", this);

getSite().getPage().addPartListener(this);

}

public void dispose() {

super.dispose();

getSite().getPage().removeSelectionListener("View2.ID", this);

getSite().getPage().removePartListener(this);

}

public Object getAdapter(Class aClass) {

if (ILabelProvider.class.equals(aClass))

return new ILabelProvider() {
...

};
if (IContentProvider.class.equals(aClass))

return new IContentProvider() {
...

};
return super.getAdapter(aClass);

}
...

}

Figure D.8: A model and the code generated using WPI FSML (Editor3)

134

Appendix E

Traces of the Execution of the
Tests in the Evaluation of
Round-trip Engineering

In this Appendix we present the trace of execution of the tests presented in Chap-
ter 6. Each line of the trace is a sequence of features surrounded in parentheses
that were processed in a single iteration. We used line numbers to refer to the
iterations.

1 (Applet, name (’Applet1’), extendsApplet),

2 (overridesLifecycleMethods, init),

3 (start, paint, stop, destroy),

4 (showsStatus, message (’status1’), message (’status2’)),

5 (registersMouseListener, this, implementsMouseListener),

6 (deregisters, this),

7 (registersMouseMotionListener, this, implementsMouseMotionListener),

8 (deregisters, this),

9 (registersKeyListener, this, implementsKeyListener),

10 (deregisters, this),

11 (Thread, thread (’threadThis’), typedThread, InitializesThread, initializesThreadWithRunnable),

12 (this, implementsRunnable),

13 (nullifiesThread),
14 (Thread, thread (’threadField’), typedThread, InitializesThread, initializesThreadWithRunnable),

15 (runnableField, typedRunnable, name (’threadFieldRunnable’), initialized),

16 (nullifiesThread),
17 (Thread, thread (’threadHelper’), typedThread, InitializesThread, initializesThreadWithRunnable),

18 (helper),

19 (nullifiesThread),
20 (Thread, thread (’threadVariable’), typedThread, InitializesThread, initializesThreadWithRunnable),

21 (variable (’runnableVariable’)),
22 (nullifiesThread),
23 (parameter, name (’param1’), name (’param2’)),

24 (providesParameterInfo),

26 (Applet, name (’Applet2’), extendsApplet, extendsJApplet),

27 (overridesLifecycleMethods, init, destroy),

28 (showsStatus, message (’status1’)),

29 (showsStatus, message (’status2’)),

30 (registersMouseListener, mouseListenerField, listenerField (’mListener’), typedMouseListener),

31 (initialized),
32 (deregisters, field),

33
(registersMouseMotionListener, mouseMotionListenerField, listenerField (’mMotionListener’),

typedMouseMotionListener),

135

34 (initialized),
35 (deregisters, field),

36 (registersKeyListener, keyListenerField, listenerField (’keyListener’), typedKeyListener),

37 (initialized),
38 (deregisters, field),

39
(Thread, thread (’threadMyThread’), typedThread, InitializesThread, initializesWithThreadSubclass,

name (’Applet2$MyThread’), extendsThread),
40 (overridesRun),
41 (nullifiesThread),
42 (singleTaskThread),

43 (runnable),
44 (singleTaskThread),

45 (runnableField, typedRunnable, name (’singleTaskThreadRunnable’)),

46 (initialized),
47 (parameter, name (’param1’)),

48 (parameter, name (’param2’)),

49 (providesParameterInfo),

51 (ViewPart, name (’View1’), package (’parts’), implementsIViewPart),

52 (SelectionProvider, provider (View1), registers),

53 (registersThis, implementsISelectionProvider),

54 (SelectionListener, listener (View1), registersAs, globalSelectionListener),

55 (deregisters, deregistersSameObject),

56 (globalPostSelectionListener),

57 (deregisters, deregistersSameObject),

58 (specificSelectionListener, registrationPartId (’View2.ID’)),

59 (deregisters, deregistrationPartId (’View2.ID’), deregistersSameObject),

60
(PartListener, listener (View1), registersAPartListener, registers, deregisters,

deregistersSameObject),

62
(ViewPart, name (’View2’), package (’parts’), partId (’View2.ID’), implementsIViewPart,

extendsViewPart),
63 (SelectionProvider, provider (View2), registers),

64 (registersHelper),

65 (SelectionListener, listener (View2), registersAs, globalPostSelectionListener),

66 (deregisters, deregistersSameObject),

67
(PartListener, listener (View2), registersAPartListener, registers2, deregisters,

deregistersSameObject),

69
(ViewPart, name (’View3’), package (’parts’), implementsIViewPart, extendsViewPart,

extendsPageBookView),
70 (SelectionProvider, provider (View3), registers, registersVariable (’selectionProviderVar’)),

71
(SelectionListener, listener (View3), registersAs, specificSelectionListener, registrationPartId

(’View2.ID’)),
72 (deregisters, deregistrationPartId (’View2.ID’), deregistersSameObject),

73
(PartListener, listener (View3), registersAPartListener, registers, deregisters,

deregistersSameObject),

74
(AdapterProvider, provider (View3), providesAdapter, adapters (’IContentProvider’), adapters

(’ILabelProvider’)),
75 (AdapterRequestor, requestor (View3), requestsAdapter, adapter (’IContentProvider’),

76 (requestsAdapter, adapter (’ILabelProvider’)),

78 (EditorPart, name (’Editor1’), package (’parts’), implementsIEditorPart),

79 (SelectionProvider, provider (Editor1), registers),

80 (registersField, field (’selectionProviderFld’), typedISelectionProvider),

81 (initialized),
82 (SelectionListener, listener (Editor1), registersAs, globalSelectionListener),

83 (deregisters, deregistersSameObject),

84
(PartListener, listener (Editor1), registersAPartListener, registers2, deregisters,

deregistersSameObject),

86 (EditorPart, name (’Editor2’), package (’parts’), implementsIEditorPart, extendsEditorPart),

87 (SelectionProvider, provider (Editor2), registers),

88 (registersThis, implementsISelectionProvider),

89 (SelectionListener, listener (Editor2), registersAs, globalPostSelectionListener),

90 (deregisters, deregistersSameObject),

91
(PartListener, listener (Editor2), registersAPartListener, registers, deregisters,

deregistersSameObject),

93
(EditorPart, name (’Editor3’), package (’parts’), implementsIEditorPart, extendsEditorPart,

extendsMultiPageEditorPart),
94 (SelectionProvider, provider (Editor3), registers, registersHelper),

136

95
(SelectionListener, listener (Editor3), registersAs, specificSelectionListener, registrationPartId

(’View2.ID’)),
96 (deregisters, deregistrationPartId (’View2.ID’), deregistersSameObject)),

97
(PartListener, listener (Editor3), registersAPartListener, registers2, deregisters,

deregistersSameObject),

98
(AdapterProvider, provider (Editor3), providesAdapter, adapters (’IContentProvider’), adapters

(’ILabelProvider’))

137

Appendix F

Complete Metamodels of the
Exemplar FSMLs

We present full metamodels of the exemplar FSMLs in the following sections. We
removed some information related to the implementation the metamodels and trans-
formed them for better presentation. The metamodels retain the key information.
We removed the qualifiers of all types, also those used in method signatures. For ex-
ample, java.lang.String became String. The mapping definitions are presented
according to mapping types from Tables 4.1-4.2 and A.1-A.3. The metamodels
also contain some additional parameters needed for code generation described in
Table A.4.

138

F.1 Metamodel of WPI FSML

1 [1..1] WorkbenchPartInteractions <project>

2 [1..1] project <projectName>

3 [0..*] Part <class>
4 ![1..1] name (String) <className>

5 [0..1] package (String) <qualifier>

6 [0..1] local <isLocal>
7 [0..*] ViewPart -|> Part
8 [0..1] partId (String) <viewPartId>

9 ![1..1] implementsIViewPart <assignableTo: ’IViewPart’ concrete: true> <subsumedBy: extendsViewPart/ >

10 [0..1] extendsViewPart <assignableTo: ’ViewPart’> <subsumedBy: extendsPageBookView>

11 [0..1] extendsPageBookView <assignableTo: ’PageBookView’>

12 [0..*] EditorPart -|> Part
13 [0..1] partId (String) <editorPartId>

14 [0..1] contributor <class>
15 ![1..1] contributor (String) <editorContributor> <fullyQualifiedName>

16 [1..1] extendsEditorActionBarContributor <assignableTo: ’EditorActionBarContributor’> <subsumedBy: extendsMultiPageEditorActionBarContributor>

17 [0..1] extendsMultiPageEditorActionBarContributor <assignableTo: ’MultiPageEditorActionBarContributor’>

18
[1..1] multiPageEditorAndContributor <constraint ../../extendsEditorPart/extendsMultiPageEditorPart implies: ../extendsEditorActionBarContri-

butor/extendsMultiPageEditorActionBarContributor>
19 ![1..1] implementsIEditorPart <assignableTo: ’IEditorPart’ concrete: true> <subsumedBy: extendsEditorPart/>

20 [0..1] extendsEditorPart <assignableTo: ’EditorPart’> <subsumedBy: extendsMultiPageEditorPart>

21 [0..1] extendsMultiPageEditorPart <assignableTo: ’MultiPageEditorPart’>

22 [0..0] extendsMultiPageEditor <assignableTo: ’MultiPageEditor’> <deprecated>

23 [0..*] SelectionProvider <class>
24 ![1..1] provider (Part) <baseConcept>

25
![1..*] registers <callsTo: ’void IWorkbenchSite.setSelectionProvider(ISelectionProvider)’ receiverExpr: ’getSite()’ location: ’void createPart-

Control(Composite)’ position: ’after’>
26 <1-1>
27 [0..1] registersThis <argumentIsThis: 1>

28 [1..1] implementsISelectionProvider <assignableTo: ’ISelectionProvider’>

29 [0..1] registersHelper <argumentIsNew: 1 signature: ’void ISelectionProvider()’>

30 [0..1] registersVariable <argumentIsVariable: 1 signature: ’void ISelectionProvider()’>

31 [0..1] registersField <argumentIsField: 1>

32 [1..1] field (String) <fieldName>

33 [1..1] typedISelectionProvider <typedWith: ’ISelectionProvider’>

34 [1..1] initialized <assignedWithNew: ’void ISelectionProvider()’ initializer: true>

35 [0..*] SelectionListener <class>
36 ![1..1] listener (Part) <baseConcept>

37 ![1..1] registersAs

38 !<1-3>

39
[0..*] globalSelectionListener <callsTo: ’void ISelectionService.addSelectionListener(ISelectionListener)’ receiverExpr: ’getSite().-

getPage()’ position: ’after’ location: ’void createPartControl(Composite)’>

139

40
[1..*] deregisters <callsTo: ’void ISelectionService.removeSelectionListener(ISelectionListener)’ receiverExpr: ’getSite().getPage()’

location: ’void dispose()’ position: ’after’>
41 ![1..1] deregistersSameObject <argument: 1 ofCall: ../ sameAsArg: 1 ofMethodCall: ../../>

42 [1..1] registersBeforeDeregisters <methodCall call: ../../../ before: ../../ givenCallbackSeq: ’init createPartControl dispose’>

43
[0..*] globalPostSelectionListener <callsTo: ’void ISelectionService.addPostSelectionListener(ISelectionListener)’ receiverExpr: ’getSite().-

getPage()’ position: ’after’ location: ’void createPartControl(Composite)’>

44
[1..*] deregisters <callsTo: ’void ISelectionService.removePostSelectionListener(ISelectionListener)’ receiverExpr: ’getSite().getPage()’

location: ’void dispose()’ position: ’after’>
45 ![1..1] deregistersSameObject <argument: 1 ofCall: ../ sameAsArg: 1 ofMethodCall: ../../>

46 [1..1] registersBeforeDeregisters <methodCall call: ../../../ before: ../../ givenCallbackSeq: ’init createPartControl dispose’>

47
[0..*] specificSelectionListener <callsTo: ’void ISelectionService.addSelectionListener(String, ISelectionListener)’ receiverExpr:

’getSite().getPage()’ position: ’after’ location: ’void createPartControl(Composite)’>
48 ![1..1] registrationPartId (String) <valueOfArg: 1>

49 [1..1] provider (Part) <where attribute: partId equalsTo: ../registrationPartId>

50 [0..1] providerName

51
[1..*] deregisters <callsTo: ’void ISelectionService.removeSelectionListener(String, ISelectionListener)’ receiverExpr:

’getSite().getPage()’ location: ’void dispose()’ position: ’after’>
52 ![1..1] deregistrationPartId (String) <valueOfArg: 1> <valueEqualsTo attribute: ../../registrationPartId>

53 ![1..1] deregistersSameObject <argument: 2 ofCall: ../ sameAsArg: 2 ofMethodCall: ../../>

54 [1..1] registersBeforeDeregisters <methodCall call: ../../../ before: ../../ givenCallbackSeq: ’init createPartControl dispose’>

55 [0..*] PartListener <class>
56 ![1..1] listener (Part) <baseConcept>

57 ![1..1] registersAPartListener

58 !<1-2>

59
[0..*] registers <callsTo: ’void IPartService.addPartListener(IPartListener)’ position: ’after’ receiverExpr: ’getSite().getPage()’ location:

’void createPartControl(Composite)’>

60
[1..*] deregisters <callsTo: ’void IPartService.removePartListener(IPartListener)’ receiverExpr: ’getSite().getPage()’ location: ’void

dispose()’ position: ’after’>
61 ![1..1] deregistersSameObject <argument: 1 ofCall: ../ sameAsArg: 1 ofMethodCall: ../../>

62 [1..1] registersBeforeDeregisters <methodCall call: ../../../ before: ../../ givenCallbackSeq: ’init createPartControl dispose’>

63
[0..*] registers2 <callsTo: ’void IPartService.addPartListener(IPartListener2)’ position: ’after’ receiverExpr: ’getSite().getPage()’

location: ’void createPartControl(Composite)’>

64
[1..*] deregisters <callsTo: ’void IPartService.removePartListener(IPartListener2)’ receiverExpr: ’getSite().getPage()’ location: ’void

dispose()’ position: ’after’>
65 ![1..1] deregistersSameObject <argument: 1 ofCall: ../ sameAsArg: 1 ofMethodCall: ../../>

66 [1..1] registersBeforeDeregisters <methodCall call: ../../../ before: ../../ givenCallbackSeq: ’init createPartControl dispose’>

67 [0..*] AdapterProvider <class>

68 ![1..1] provider (Part) <baseConcept>

69 ![1..1] providesAdapter <allMethods: ’Object getAdapter(Class)’>

70 ![1..*] adapters (String) <returnedObjectTypes ifkey: 1>

71 [0..*] AdapterRequestor <class>

72 ![1..1] requestor (Part) <baseConcept>

73
![1..*] requestsAdapter <callsTo: ’Object IAdaptable.getAdapter(Class)’ receiver: ’IWorkbenchPart’ position: ’after’ location: ’void requestAdap-

ters(IWorkbenchPart)’ receiverExpr: ’iWorkbenchPart’>
74 [1..1] adapter (String) <valueOfArg: 1>

75 [0..*] adapterProvider (AdapterProvider) <where attribute: providesAdapter/adapters contains: ../adapter>

140

F.2 Metamodel of Struts FSML

1 [1..1] StrutsApplication <project>

2 ![1..1] name (String) <projectName>

3 [1..1] StrutsConfig <xmlDocument: ’/WEB-INF/struts-config.xml’> <xmlElement name: ’struts-config’>

4 [0..*] FormDecl <xmlElements: ’form-beans/form-bean’> <xmlElement>
5 [1..1] name (String) <xmlAttribute>

6 [1..1] formType (String) <xmlAttribute: ’type’>

7 [0..1] isDynaActionForm <valueEqualsTo attribute: ../formType value: ’DynaActionForm’>

8 [0..*] formProperty <xmlElements: ’form-property’> <xmlElement>

9 [1..1] name (String) <xmlAttribute>

10 [0..1] type (String) <xmlAttribute>

11 [0..*] ForwardDecl <xmlElements: ’global-forwards/forward’> <xmlElement>

12 [1..1] name (String) <xmlAttribute>

13 [0..1] path (String) <xmlAttribute>

14 [1..1] target (ActionDecl) <where attribute: path equalsTo: ../path>

15 [0..*] ActionDecl <xmlElements: ’action-mappings/action’> <xmlElement>

16 [1..1] path (String) <xmlAttribute>

17 [0..1] name (String) <xmlAttribute>

18 [0..1] type (String) <xmlAttribute>

19 [1..1] actionImpl (ActionImpl) <where attribute: qualifiedName equalsTo: ../type>

20 [0..*] forwards <xmlElements: ’forward’> <xmlElement>
21 [1..1] name (String) <xmlAttribute>

22 [0..1] path (String) <xmlAttribute>

23 [1..1] target (ActionDecl) <where attribute: path equalsTo: ../path>

24 [0..1] input (String) <xmlAttribute>

25 [0..*] FormImpl <class>

26 ![1..1] name (String) <className>

27 [0..1] package (String) <qualifier>

28 [1..1] qualifiedName (String)

29 [0..1] local <isLocal>
30 ![1..1] extendsActionForm <assignableTo: ’ActionForm’> <subsumedBy: extendsDynaActionForm>

31 [0..1] extendsDynaActionForm <assignableTo: ’DynaActionForm’>

32 [0..*] ActionImpl <class>

33 ![1..1] name (String) <className>

34 [0..1] package (String) <qualifier>

35 [1..1] qualifiedName (String)

36 [0..1] local <isLocal>
37 ![1..1] extendsAction <assignableTo: ’Action’> <subsumedBy: extendsDispatchAction>

38 [0..1] extendsDispatchAction <assignableTo: ’DispatchAction’>

39 [0..*] actionMethod (String) <methods: ’ActionForward *(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse)’>

40 [0..1] overridesExecute <methods: ’ActionForward execute(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse)’>

41 [0..*] forwards <callsTo: ’ActionForward ActionMapping.findForward(String)’>

141

42 [1..1] name (String) <valueOfArg: 1>

43 [1..1] forward
44 <1-2>
45 [0..1] localForward (ForwardDecl) <where attribute: name equalsTo: ../../name> <and attribute: ../type equalsTo: ../../../qualifiedName>

46 [0..1] globalForward (ForwardDecl) <where attribute: name equalsTo: ../../name> <andParentIs instanceOf: ’StrutsConfig’>

47 [0..*] inputForwards <callsTo: ’ActionForward ActionMapping.getInputForward()’>

48 [1..1] name (String) <valueOf attribute: input class: ’ActionDecl’> <where attribute: type equalsTo: ../../qualifiedName>

F.3 Metamodel of Applet FSML

1 AppletModel <project>

2 [0..*] Applet <class>

3 [1..1] name (String) <fullyQualifiedName>

4 ![1..1] extendsApplet <assignableTo: ’Applet’ local: true> <subsumedBy: extendsJApplet>

5 [0..1] extendsJApplet <assignableTo: ’JApplet’>

6 [0..1] overridesLifecycleMethods

7 !<1-5>
8 [0..1] init <methods: ’void init()’>
9 [0..1] start <methods: ’void start()’>

10 [0..1] paint <methods: ’void paint(Graphics)’>

11 [0..1] stop <methods: ’void stop()’>

12 [0..1] destroy <methods: ’void destroy()’>

13 [0..*] showsStatus <callsReceived: ’void Applet.showStatus(String)’ location: ’void init()’ position: ’after’>

14 [0..*] message (String) <valueOfArg: 1>

15 [0..*] registersMouseListener <callsTo: ’void Component.addMouseListener(MouseListener)’ position: ’after’ location: ’void init()’>

16 !<1-1>
17 [0..1] this <argumentIsThis: 1>

18 [1..1] implementsMouseListener <assignableTo: ’MouseListener’>

19 [1..1] deregisters <callsTo: ’void Component.removeMouseListener(MouseListener)’ location: ’void destroy()’>

20 ![1..1] this <argumentIsThis: 1>

21 [0..1] mouseListenerField <argumentIsField: 1> <field>

22 [1..1] listenerField (String) <fieldName>

23 [1..1] typedMouseListener <fieldOfType: ’MouseListener’>

24 [1..1] initialized <assignedNew: ’void MouseListener()’ initializer: true>

25 [1..1] deregisters <callsTo: ’void Component.removeMouseListener(MouseListener)’ location: ’void destroy()’>

26 ![1..1] field <argumentIsField: 1 sameAs: ../../listenerField>

27
[0..*] registersMouseMotionListener <callsTo: ’void Component.addMouseMotionListener(MouseMotionListener)’ position: ’after’ location: ’void

init()’>
28 !<1-1>
29 [0..1] this <argumentIsThis: 1>

30 [1..1] implementsMouseMotionListener <assignableTo: ’MouseMotionListener’>

31 [1..1] deregisters <callsTo: ’void Component.removeMouseMotionListener(MouseMotionListener)’ location: ’void destroy()’>

142

32 ![1..1] this <argumentIsThis: 1>

33 [0..1] mouseMotionListenerField <argumentIsField: 1> <field>

34 [1..1] listenerField (String) <fieldName>

35 [1..1] typedMouseMotionListener <fieldOfType: ’MouseMotionListener’>

36 [1..1] initialized <assignedNew: ’void MouseMotionListener()’ initializer: true>

37 [1..1] deregisters <callsTo: ’void Component.removeMouseMotionListener(MouseMotionListener)’ location: ’void destroy()’>

38 ![1..1] field <argumentIsField: 1 sameAs: ../../listenerField>

39 [0..*] registersKeyListener <callsTo: ’void Component.addKeyListener(KeyListener)’ position: ’after’ location: ’void init()’>

40 !<1-1>
41 [0..1] this <argumentIsThis: 1>

42 [1..1] implementsKeyListener <assignableTo: ’KeyListener’>

43 [1..1] deregisters <callsTo: ’void Component.removeKeyListener(KeyListener)’ location: ’void destroy()’>

44 ![1..1] this <argumentIsThis: 1>

45 [0..1] keyListenerField <argumentIsField: 1> <field>

46 [1..1] listenerField (String) <fieldName>

47 [1..1] typedKeyListener <fieldOfType: ’KeyListener’>

48 [1..1] initialized <assignedNew: ’void KeyListener()’ initializer: true>

49 [1..1] deregisters <callsTo: ’void Component.removeKeyListener(KeyListener)’ location: ’void destroy()’>

50 ![1..1] field <argumentIsField: 1 sameAs: ../../listenerField>

51 [0..*] Thread <field>
52 [1..1] thread (String) <fieldName>

53 ![1..1] typedThread <fieldOfType: ’Thread’>

54 [1..1] InitializesThread
55 !<1-1>
56 [0..1] initializesThreadWithRunnable <assignedNew: ’void Thread(Runnable)’ position: ’after’ location: ’void init()’>

57 <1-1>
58 [0..1] this <argumentIsThis: 1>

59 [1..1] implementsRunnable <assignableTo: ’Runnable’>

60 [0..1] helper <argumentIsNew: 1 signature: ’void Runnable()’>

61 [0..1] variable (String) <argumentIsVariable: 1 signature: ’void Runnable()’>

62 [0..1] runnableField <argumentIsField: 1> <field>

63 [1..1] typedRunnable <fieldOfType: ’Runnable’>

64 [1..1] name (String) <fieldName>

65 [1..1] initialized <assignedNew: ’void Runnable()’ initializer: true>

66 [0..1] initializesWithThreadSubclass <assignedNew initializer: true subtypeOf: ’Thread’> <class>

67 [1..1] name (String) <fieldType> <fullyQualifiedName>

68 [1..1] overridesRun <methods: ’void run()’>
69 [1..1] extendsThread <assignableTo: ’Thread’>

70 [1..1] nullifiesThread <assignedNull location: ’void destroy()’ position: ’after’>

71 [0..*] singleTaskThread <callsTo: ’void Thread(Runnable)’ position: ’after’ location: ’void init()’ statement: true>

72 <1-1>
73 [0..1] runnable <argumentIsNew: 1 signature: ’void Runnable()’>

74 [0..1] runnableField <argumentIsField: 1> <field>

75 [1..1] typedRunnable <fieldOfType: ’Runnable’>

143

76 [1..1] name (String) <fieldName>

77 [1..1] initialized <assignedNew: ’void Runnable()’ initializer: true>

78 [0..*] parameter <callsReceived: ’String Applet.getParameter(String)’ location: ’void init()’>

79 [0..*] name <valueOfArg: 1>

80 [0..1] providesParameterInfo <methods: ’String[][] getParameterInfo()’>

81 [1..1] providesInfoForParameters <constraint: ../parameter implies: ../providesParameterInfo>

F.4 Metamodel of EJB FSML

1 EJBProject <project>

2 [0..1] InformationFromAnnotations
3 [0..*] BusinessInterface <class>
4 [1..1] interfaceName (String) <fullyQualifiedName>

5 [0..*] DerivedLocalInterface -|> BusinessInterface
6 [0..*] DerivedRemoteInterface -|> BusinessInterface
7 [0..*] ExplicitLocalInterface -|> BusinessInterface

8 ![1..1] localAnnotation <annotatedWith: ’Local’> <annotation>
9 ![1..1] isMarker <hasNoAttribute>

10 [0..*] ExplicitRemoteInterface -|> BusinessInterface

11 ![1..1] remoteAnnotation <annotatedWith: ’Remote’> <annotation>
12 ![1..1] isMarker <hasNoAttribute>
13 [0..*] EJBClass <class>
14 [1..1] className (String) <fullyQualifiedName>

15 [0..*] FieldAnnotatedWithEJB <field>
16 [1..1] fieldName (String) <fieldName>

17 ![1..1] EJBInterfaceAnnotation <annotatedWith: ’EJB’> <annotation>
18 [0..1] name (String) <attribute: ’name’>

19 [0..1] mappedName (String) <attribute: ’mappedName’>

20 [0..1] description (String) <attribute: ’description’>

21 [0..1] beanName (String) <attribute: ’beanName’>

22 [0..1] beanInterface (String) <attribute: ’beanInterface’>

23 [0..*] MethodAnnotatedWithEJB <method>
24 [1..1] methodName (String) <methodName>

25 ![1..1] EJBInterfaceAnnotation <annotatedWith: ’EJB’> <annotation>
26 [0..1] name (String) <attribute: ’name’>

27 [0..1] mappedName (String) <attribute: ’mappedName’>

28 [0..1] description (String) <attribute: ’description’>

29 [0..1] beanName (String) <attribute: ’beanName’>

30 [0..1] beanInterface (String) <attribute: ’beanInterface’>

31 [0..*] SessionBean -|> EJBClass
32 [0..1] localInterfaceSpecification <annotatedWith: ’Local’> <annotation>

144

33 ![1..*] localInterfaces <attribute: ’value’>
34 [1..1] interfaceName (String) <fullyQualifiedName>

35 [0..1] remoteInterfaceSpecification <annotatedWith: ’Remote’> <annotation>

36 ![1..*] remoteInterfaces <attribute: ’value’>
37 [1..1] interfaceName (String) <fullyQualifiedName>

38 [0..*] implementedLocalInterface <ImplementsExplicitLocalInterface>

39 [0..*] implementedRemoteInterface <ImplementsExplicitRemoteInterface>

40 [0..*] explicitLocalInterface <where attribute: interfaceName in: ../implementedLocalInterface>

41 [0..*] explicitRemoteInterface <where attribute: interfaceName in: ../implementedRemoteInterface>

42 [0..*] StatelessEJB -|> SessionBean
43 ![1..1] statelessAnnotation <annotatedWith: ’Stateless’> <annotation>
44 [0..1] name (String) <attribute: ’name’>

45 [0..1] mappedName (String) <attribute: ’mappedName’>

46 [0..1] description (String) <attribute: ’description’>

47 [0..*] StatefulEJB -|> SessionBean
48 ![1..1] statefulAnnotation <annotatedWith: ’Stateful’> <annotation>
49 [0..1] name (String) <attribute: ’name’>

50 [0..1] mappedName (String) <attribute: ’mappedName’>

51 [0..1] description (String) <attribute: ’description’>

52 [0..*] MessageDrivenEJB -|> EJBClass

53 ![1..1] messageDrivenAnnotation <annotatedWith: ’MessageDriven’> <annotation>

54 [0..1] name (String) <attribute: ’name’>

55 [0..1] mappedName (String) <attribute: ’mappedName’>

56 [0..1] description (String) <attribute: ’description’>

57 [0..*] Entity -|> EJBClass

58 ![1..1] entityAnnotation <annotatedWith: ’Entity’> <annotation>

59 [0..1] name (String) <attribute: ’name’>

60 [0..1] InformationFromDeploymentDescriptor <xmlDocument: ’/META-INF/ejb-jar.xml’> <xmlElement name: ’ejb-jar’>

61 [0..*] DDSessionBean -|> DDBean <xmlElements: ’enterprise-beans/session’>

62 [0..*] DDNoTypeSessionBean -|> DDSessionBean <xmlElements: ’enterprise-beans/session’>

63 ![1..1] noSessionTypeElement <noXMLElement: ’session-type’>

64 [0..*] DDStatefulEJB -|> DDSessionBean <xmlElements: ’enterprise-beans/session’>

65 ![1..1] sessionType <xmlElements: ’session-type’> <xmlElement>

66 ![1..1] isStatefulSessionType <xmlElementValueEqualsString StringToSearchFor: ’Stateful’>

67 [0..*] DDStatelessEJB -|> DDSessionBean <xmlElements: ’enterprise-beans/session’>

68 ![1..1] sessionType <xmlElements: ’session-type’> <xmlElement>

69 ![1..1] isStatelessSessionType <xmlElementValueEqualsString StringToSearchFor: ’Stateless’>

70 [0..*] entityBeans <xmlElements: ’enterprise-beans/entity’>

71 [0..*] messageDrivenBeans <xmlElements: ’enterprise-beans/message-driven’>

72 DDBean <xmlElement>
73 [1..1] ejbName <xmlElements: ’ejb-name’> <xmlElement>

74 [1..1] ejbName (String) <xmlElementValue>

75 [0..1] ejbClass <xmlElements: ’ejb-class’> <xmlElement>

76 [1..1] ejbClass (String) <xmlElementValue>

145

77 [0..1] mappedName <xmlElements: ’mapped-name’> <xmlElement>

78 [1..1] mappedName (String) <xmlElementValue>

79 [0..1] description <xmlElements: ’description’> <xmlElement>

80 [1..1] description (String) <xmlElementValue>

146

References

[1] Struts applications project. http://sourceforge.net/projects/struts/.
56

[2] Enterprise JavaBeans deployment descriptor schema, May 2006. http://

java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd. 37

[3] Struts 1.35 dtd, July 2006. http://struts.apache.org/1.3.5/dtds/

struts-config_1_3.dtd. 37

[4] Spring Framework Manual, 2008. http://www.springframework.org/. 54

[5] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Ondr̂ej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sit-
tampalam, and Julian Tibble. Adding trace matching with free variables to
AspectJ. SIGPLAN Not., 40(10):345–364, 2005. 60

[6] Michal Antkiewicz. Round-trip engineering of framework-based software using
framework-specific modeling languages. In ASE, pages 323–326, 2006. 5

[7] Michal Antkiewicz and Krzysztof Czarnecki. FeaturePlugin: feature modeling
plug-in for eclipse. In Eclipse Technology eXchange Workshop, pages 67–72,
2004. 120

[8] Michal Antkiewicz and Krzysztof Czarnecki. Eclipse workbench part inter-
action fsml. Technical Report 2006-09, ECE, U. of Waterloo, 2006. http:

//gp.uwaterloo.ca/tr/2006-antkiewicz-wpi.pdf. 5

[9] Michal Antkiewicz and Krzysztof Czarnecki. Framework-specific modeling lan-
guages with round-trip engineering. In MoDELS, volume 4199 of LNCS, pages
692–706, 2006. 2, 5, 24

[10] Michal Antkiewicz and Krzysztof Czarnecki. Framework-specific modeling lan-
guages; examples and algorithms. Technical Report 2007-18, ECE, U. of Wa-
terloo, 2007. v, 5, 27

[11] Michal Antkiewicz and Krzysztof Czarnecki. Design space of heterogeneous
synchronization. In GTTSE, 2008. 25, 114

147

http://sourceforge.net/projects/struts/
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd
http://struts.apache.org/1.3.5/dtds/struts-config_1_3.dtd
http://struts.apache.org/1.3.5/dtds/struts-config_1_3.dtd
http://www.springframework.org/
http://gp.uwaterloo.ca/tr/2006-antkiewicz-wpi.pdf
http://gp.uwaterloo.ca/tr/2006-antkiewicz-wpi.pdf

[12] Michal Antkiewicz, Krzysztof Czarnecki, and Matthew Stephan. Engineer-
ing of framework-specific modeling languages. Transactions on Software
Engineering, 2008. Special Issue on Software Language Engineering. Sub-
mitted for review. Available from http://swen.uwaterloo.ca/~mantkiew/

2009-antkiewicz-engineering-fsmls.pdf. v

[13] Michal Antkiewicz, Thiago Tonelli Bartolomei, and Krzysztof Czarnecki. Au-
tomatic extraction of framework-specific models from framework-based appli-
cation code. In ASE, pages 214–223, 2007. 5, 15, 19, 49, 51, 52, 58, 59,
103

[14] Michal Antkiewicz, Thiago Tonelli Bartolomei, and Krzysztof Czarnecki.
Fast extraction of high-quality framework-specific models from applica-
tion code. Journal of Automated Software Engineering, 2008. Spe-
cial Issue – Best Papers of ASE 2007. Accepted and recommended
for publication. Available from http://swen.uwaterloo.ca/~mantkiew/

2008-antkiewicz-fast-extraction.pdf. v

[15] Apache Software Foundation. Roller Weblogger 3.0. http://

rollerweblogger.org/. 55

[16] Apache Software Foundation. Struts User’s Guide. http://struts.apache.

org/1.3.8/index.html. 52, 54, 55

[17] Apache Software Foundation. A Walking Tour of the Struts Mail-
Reader Demonstration Application. http://svn.apache.org/viewvc/

struts/struts1/trunk/apps/mailreader/src/main/webapp/tour.html?

revision=481833. 37

[18] Apache Software Foundation. Struts 1.35 User Guide, jul 2006. http://

struts.apache.org/1.3.5/userGuide/introduction.html. 37

[19] Apache Software Foundation. Struts Javadoc, 2006. http://struts.apache.
org/1.3.5/apidocs/index.html. 37

[20] Timo Asikainen, Tomi Mannisto, and Timo Soininen. A unified conceptual
foundation for feature modelling. In SPLC, pages 31–40, 2006. 12

[21] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,
Jennifer Lhoták, Ondr̂ej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sit-
tampalam, and Julian Tibble. Optimising AspectJ. In PLDI, pages 117–128,
2005. 112

[22] Don Batory. Feature models, grammars, and propositional formulas. Technical
Report TR-05-14, University of Texas at Austin, 2005. 14

[23] J. Bosch, P. Molin, M. Mattsson, and P.O. Bengtsson. Framework - problems
and experiences. In M. Fayad, D. Schmidt, and R. Johnson, editors, Building
Application Frameworks. John Wiley, 1999. 6

148

http://swen.uwaterloo.ca/~mantkiew/2009-antkiewicz-engineering-fsmls.pdf
http://swen.uwaterloo.ca/~mantkiew/2009-antkiewicz-engineering-fsmls.pdf
http://swen.uwaterloo.ca/~mantkiew/2008-antkiewicz-fast-extraction.pdf
http://swen.uwaterloo.ca/~mantkiew/2008-antkiewicz-fast-extraction.pdf
http://rollerweblogger.org/
http://rollerweblogger.org/
http://struts.apache.org/1.3.8/index.html
http://struts.apache.org/1.3.8/index.html
http://svn.apache.org/viewvc/struts/struts1/trunk/apps/mailreader/src/main/webapp/tour.html?revision=481833
http://svn.apache.org/viewvc/struts/struts1/trunk/apps/mailreader/src/main/webapp/tour.html?revision=481833
http://svn.apache.org/viewvc/struts/struts1/trunk/apps/mailreader/src/main/webapp/tour.html?revision=481833
http://struts.apache.org/1.3.5/userGuide/introduction.html
http://struts.apache.org/1.3.5/userGuide/introduction.html
http://struts.apache.org/1.3.5/apidocs/index.html
http://struts.apache.org/1.3.5/apidocs/index.html

[24] John Tang Boyland. Remote attribute grammars. J. ACM, 52(4):627–687,
2005. 117

[25] Martin Bravenboer and Eelco Visser. Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions. In OOP-
SLA, pages 365–383, 2004. 115

[26] Aseem Paul Cheema. Struts2JSF - framework migration in J2EE using
Framework-Specific Modeling Languages. Master’s thesis, University of Wa-
terloo, 2007. http://hdl.handle.net/10012/3031. 36, 105, 115

[27] E.J. Chikofsky and J.H. Cross II. Reverse engineering and design recovery: a
taxonomy. Software, IEEE, 7(1):13–17, 1990. 111, 112, 114

[28] Code Generation Network. CodeGeneration.net. http://www.

codegeneration.net. 113

[29] Tal Cohen, Joseph (Yossi) Gil, and Itay Maman. JTL: the Java tools language.
In OOPSLA, pages 89–108, 2006. 111

[30] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming:
methods, tools, and applications. Addison-Wesley Publishing Co., 2000. 2,
7, 116

[31] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing
cardinality-based feature models and their specialization. Software Process
Improvement and Practice, 10(1), 2005. Special issue on Software Variability:
Process and Management. 11, 14

[32] Krzysztof Czarnecki, Chang Hwan Peter Kim, and Karl Trygve Kalleberg.
Feature models are views on ontologies. In SPLC, pages 41–51, 2006. 14

[33] Krzysztof Czarnecki and Peter Kim. Cardinality-based feature modeling and
constraints: A progress report. In Proceedings of the International Workshop
on Software Factories, OOPSLA, 2005. 11, 12, 120

[34] Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and logics:
there and back again. In SPLC, pages 23–34, 2007. 14, 120

[35] Kris De Volder. JQuery: A generic code browser with a declarative config-
uration language. In PADL, volume 3819 of LNCS, pages 88–102, 2006. 82,
111

[36] Jean-Marc DeBaud, Bijith Moopen, and Spencer Rugaber. Domain analysis
and reverse engineering. In ICSM, pages 326–335, 1994. 111

[37] Linda DeMichiel. EJB Core Contracts and Requirements. Sun Microsystems,
Inc., May 2006. 37

149

http://hdl.handle.net/10012/3031
http://www.codegeneration.net
http://www.codegeneration.net

[38] Bill Dudney, Stephen Asbury, Joseph Krozak, and Kevin Wittkopf. J2EE
AntiPatterns. Wiley, August 2003. 34

[39] Eclipse Foundation. Eclipse documentation - Version 3.3: Edi-
tors. http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.
platform.doc.isv/guide/editors.htm. 37

[40] Eclipse Foundation. Java Development Tools. http://www.eclipse.org/

jdt/. 28, 82, 113

[41] Eclipse Foundation. Plug-in Development Environment. http://www.

eclipse.org/pde/. 29

[42] Eclipse Foundation. Web Tools Platform. http://www.eclipse.org/

webtools/. 29

[43] Eclipse Foundation. Java Emitter Templates Component, 2007. http://www.
eclipse.org/modeling/m2t/?project=jet. 113

[44] Eclipse Foundation. Javadoc for Package org.eclipse.ui.part, 2007. http:

//help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.

doc.isv/reference/api/org/eclipse/ui/part/package-summary.html.
37

[45] EJB 3.0 Expert Group. JSR 220: Enterprise JavaBeansTM,Version 3.0, 2006.
http://java.sun.com/products/ejb. 54

[46] George Fairbanks, David Garlan, and William Scherlis. Design fragments make
using frameworks easier. In OOPSLA, pages 75–88, 2006. 33, 55, 84, 110, 126

[47] Eduardo Figueiredo, Claudio Sant’Anna, Alessandro Garcia, Thiago Tonelli
Bartolomei, Walter Cazzola, and Alessandro Marchetto. On the Maintainabil-
ity of Aspect-Oriented Software: A Concern-Oriented Measurement Frame-
work. In CSMR, 2008. 103

[48] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. Uml-f: A modeling
language for object-oriented frameworks. In ECOOP, pages 63–82, 2000. 109

[49] Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Patterns,
and Plugins. Addison-Wesley, 2003. 70, 84

[50] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. CodeQuest: scalable
source code queries with datalog. In ECOOP, volume 4067 of LNCS, pages
2–27, 2006. 111

[51] Markku Hakala, Juha Hautamäki, Kai Koskimies, Jukka Paakki, Antti Vilja-
maa, and Jukka Viljamaa. Generating application development environments
for java frameworks. volume 2186 of LNCS, pages 163–176, 2001. 109

150

http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/editors.htm
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/editors.htm
http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://www.eclipse.org/pde/
http://www.eclipse.org/pde/
http://www.eclipse.org/webtools/
http://www.eclipse.org/webtools/
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=jet
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ui/part/package-summary.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ui/part/package-summary.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ui/part/package-summary.html
http://java.sun.com/products/ejb

[52] David Harel and Bernhard Rumpe. Meaningful modeling: What’s the seman-
tics of ”semantics”? Computer, 37(10):64–72, 2004. 15

[53] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In AOSD, pages
26–35, 2004. 59

[54] Marc R. Hoffmann. Eclipse Workbench: Using the Selec-
tion Service, April 2006. http://www.eclipse.org/articles/

Article-WorkbenchSelections/article.html. 37

[55] D. Hou and H.J. Hoover. Using scl to specify and check design intent in source
code. Software Engineering, IEEE Transactions on, 32(6):404–423, June 2006.
111

[56] Daqing Hou. FCL: Automatically Detecting Structural Errors in Framework-
Based Development. PhD thesis, University of Alberta, 2004. 111

[57] Daqing Hou, Kenny Wong, and H. James Hoover. What can programmer
questions tell us about frameworks? In IWPC, pages 87–96, 2005. 6

[58] Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified software
development process. Addison-Wesley Longman Publishing Co., Inc., 1999. 3,
31

[59] Eric Jendrock, Jennifer Ball, Debbie Carson, Ian Evans, Scott Fordin, and
Kim Haase. The Java EE 5 Tutorial. Sun Microsystems, Inc., September 2007.
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html. 37

[60] Ralph E. Johnson. Documenting frameworks using patterns. pages 63–76,
1992. 109

[61] Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer Peter-
son. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report CMU/SEI-90TR -21, Software Engineering Institute, Carnegie Mellon
University, 1990. 2, 7, 116

[62] U. Kastens, U. Kastens, W. M. Waite, and W. M. Waite. Modularity and
reusability in attribute grammars. Acta Informatica, 31:601–627, 1994. 117

[63] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. Wiley-IEEE Computer Society Press, 2008. 116

[64] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffry Palm, and
William G. Griswold. An overview of AspectJ. In ECOOP, pages 327–355,
2001. 60

[65] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In ECOOP, pages 220–242, 1997. 59

151

http://www.eclipse.org/articles/Article-WorkbenchSelections/article.html
http://www.eclipse.org/articles/Article-WorkbenchSelections/article.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

[66] Chang Hwan Peter Kim. On the relationship between feature models and
ontologies. Master’s thesis, University of Waterloo, 2006. Available at http:

//gsd.uwaterloo.ca/2006/05/11/peter-kims-masc-thesis/. 14

[67] D. Kirk, M. Roper, and M. Wood. Identifying and addressing problems in
framework reuse. In IWPC, pages 77–86, 2005. 6

[68] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W.
Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Prelim-
inary guidelines for empirical research in software engineering. IEEE Trans.
Softw. Eng., 28(8):721–734, 2002. 82

[69] Donald E. Knuth. Semantics of context-free languages. Theory of Computing
Systems, 2(2):127–145, 1968. 116

[70] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-
view controller user interface paradigm in smalltalk-80. J. Object Oriented
Program., 1(3):26–49, 1988. 109

[71] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pointcut in aspect-
oriented programming. In APLAS, volume 2895 of LNCS, pages 105–121,
2003. 60

[72] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Comput. Surv., 37(4):316–344, 2005.
116

[73] Ali Mesbah and Arie van Deursen. Migrating multi-page web applications to
single-page ajax interfaces. CSMR, pages 181–190, 2007. 115

[74] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, 1993. 115

[75] openArchitectureWare.org. openArchitectureWare. http://www.

openarchitectureware.org. 113

[76] Alvaro Ortigosa and Marcelo Campo. Smartbooks: A step beyond active-
cookbooks to aid in framework instantiation. In TOOLS, page 131, 1999. 109

[77] OSGi Alliance. OSGi Service Platform, Core Specification, Release 4, Version
4.1, 2007. http://www.osgi.org/Specifications. 28, 112

[78] Chinmay Pandit. Make your Eclipse applications richer with view linking,
2005. http://www-128.ibm.com/developerworks/opensource/library/

os-ecllink/. 37, 52, 55

[79] Arnaud Payement. Type-based refactoring using JunGL. Master’s thesis,
Oxford University, 2006. 113

152

http://gsd.uwaterloo.ca/2006/05/11/peter-kims-masc-thesis/
http://gsd.uwaterloo.ca/2006/05/11/peter-kims-masc-thesis/
http://www.openarchitectureware.org
http://www.openarchitectureware.org
http://www.osgi.org/Specifications
http://www-128.ibm.com/developerworks/opensource/library/os-ecllink/
http://www-128.ibm.com/developerworks/opensource/library/os-ecllink/

[80] Wolfgang Pree, Gustav Pomberger, Albert Schappert, and Peter Sommerlad.
Active guidance of framework development. Software - Concepts and Tools,
3(16), 1995. 109

[81] Ruben Prieto-Diaz and G. Arango. Domain Analysis and Software Systems
Modeling. IEEE Computer Society Press, 1991. 116

[82] Don Roberts and Ralph Johnson. Evolving frameworks: A pattern language
for developing object-oriented frameworks. In PLoP, 1996. 115

[83] Atanas Rountev, Scott Kagan, and Thomas J. Marlowe. Interprocedural
dataflow analysis in the presence of large libraries. In CC, volume 3923 of
LNCS, pages 2–16, 2006. 112

[84] Spencer Rugaber. The use of domain knowledge in program understanding.
Annals of Software Engineering, 9(1-4):143–192, 2000. 111

[85] A. Sellink, H. Sneed, and C. Verhoef. Restructuring of COBOL/CICS legacy
systems. CSMR, pages 72–82, 1999. 115

[86] Dave Springgay. Creating an Eclipse View, November 2001. http://www.

eclipse.org/articles/viewArticle/ViewArticle2.html. 37

[87] Sun Microsystems. Java Server Faces. http://java.sun.com/javaee/

javaserverfaces/. 54

[88] Sun Microsystems. Java Tutorials, Lesson: Applets. http://java.sun.com/

docs/books/tutorial/deployment/applet/index.html. 52, 54

[89] Sun Microsystems, Inc. JavaTM Platform Enterprise Edition, v 5.0 API Spec-
ifications, 2007. http://java.sun.com/javaee/5/docs/api/. 37

[90] Sun Microsystems, Inc. Lesson: Applets, February 2008. http://java.sun.

com/docs/books/tutorial/deployment/applet/index.html. 10, 37

[91] Sun Microsystems, Inc. Processes and Threads, February 2008.
http://java.sun.com/docs/books/tutorial/essential/concurrency/

procthread.html. 37

[92] Tom Tourwé. Automated Support for Framework-Based Software Evolution.
PhD thesis, Vrije Universiteit Brussel, 2002. 110

[93] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice
Pominville, and Vijay Sundaresan. Optimizing java bytecode using the soot
framework: is it feasible? In CC, pages 18–34, 2000. 112

[94] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. JunGL: a scripting
language for refactoring. In ICSE, pages 172–181, 2006. 113

153

http://www.eclipse.org/articles/viewArticle/ViewArticle2.html
http://www.eclipse.org/articles/viewArticle/ViewArticle2.html
http://java.sun.com/javaee/javaserverfaces/
http://java.sun.com/javaee/javaserverfaces/
http://java.sun.com/docs/books/tutorial/deployment/applet/index.html
http://java.sun.com/docs/books/tutorial/deployment/applet/index.html
http://java.sun.com/javaee/5/docs/api/
http://java.sun.com/docs/books/tutorial/deployment/applet/index.html
http://java.sun.com/docs/books/tutorial/deployment/applet/index.html
http://java.sun.com/docs/books/tutorial/essential/concurrency/procthread.html
http://java.sun.com/docs/books/tutorial/essential/concurrency/procthread.html

[95] Christopher Welty and Nicola Guarino. Supporting ontological analysis of
taxonomic relationships. Data Knowl. Eng., 39(1):51–74, 2001. 13

[96] Weilei Zhang and Barbara G. Ryder. Constructing accurate application call
graphs for Java to model library callbacks. In SCAM, pages 63–74, 2006. 112

154

	List of Tables
	List of Figures
	Introduction
	Contributions

	Framework-Specific Modeling Languages
	Overview
	Feature Models of Abstract Syntax
	Mapping Definitions
	Code Queries and Transformations
	Metamodel Interpretation Algorithms
	Forward engineering
	Reverse engineering
	Round-trip engineering

	The Generic FSML Infrastructure
	Summary

	Method for Engineering FSMLs
	Overview
	Inception
	Elaboration
	Construction
	Transition
	Summary

	Evaluation of Reverse Engineering
	Introduction
	Challenges of Statically Analyzing Completion Code
	Setup of the Study
	Setup of phase 1
	Setup of phase 2
	Setup of phase 3
	Data collection process

	Results of Phase 1: Code Patterns & Code Queries
	Results of Phase 2: Evaluation of the Simple Code Queries
	Precision & recall
	The Refined Code Queries
	Interpretation of the data
	Conclusion for phases 1 and 2

	Results of Phase 3: the Refined Code Queries
	Static analysis services used by the code queries
	Implementation of the refined code queries
	Precision & recall data and interpretation
	Conclusion for phase 3

	Discussion
	Threats to validity
	Empirical approach to code query refinement
	Difficulties of analyzing and understanding framework-based code

	Conclusion

	Evaluation of Forward Engineering
	Introduction
	Code Transformations for Java
	Setup of the Test
	Results and Discussion
	Threats to validity

	Conclusion

	Evaluation of Round-Trip Engineering
	Introduction
	Setup of the Tests
	Results and Discussion
	Results of test 1
	Results of test 2
	Threats to validity

	Conclusion

	Evaluation of the Method
	Evaluation of the Exemplar Languages
	Framework API understanding
	Completion code understanding and analysis
	Completion code generation and evolution

	Threats to Validity

	Related Work
	Framework Instantiation
	Reverse Engineering
	Forward Engineering
	Round-Trip Engineering
	Reengineering
	FSML Engineering Method

	Conclusion
	Summary of Contributions
	Limitations and Future Work

	APPENDICES
	Mapping types, Constraints, and Forward parameters
	Applications Used in the Third Phase of the Evaluation of Reverse Engineering
	Eclipse
	Struts
	Applets

	Applications Used in the Computation of the CDC and CDO Metrics
	Eclipse
	Struts
	Applets

	Models Used in the Evaluation of Forward and Round-trip Engineering
	Traces of the Execution of the Tests in the Evaluation of Round-trip Engineering
	Complete Metamodels of the Exemplar FSMLs
	Metamodel of WPI FSML
	Metamodel of Struts FSML
	Metamodel of Applet FSML
	Metamodel of EJB FSML

	References

