
University of Porto
Faculty of Engineering

Patterns and Tools for Improving
Framework Understanding:
a Collaborative Approach

f

Nuno Honório Rodrigues Flores

December 2012

Scientific Supervision by

Doctor Ademar Aguiar, Assistant Professor
Department of Informatics Engineering

In partial fulfillment of requirements for the degree of
Doctor of Philosophy in Informatics Enginnering

by the Doctoral Program in Informatics Engineering

http://www.up.pt
http://www.fe.up.pt
mailto:nuno.flores@fe.up.pt

Contact Information:

Nuno Honório Rodrigues Flores
Faculdade de Engenharia da Universidade do Porto
Departamento de Engenharia Informática

Rua Dr. Roberto Frias, s/n
4200-465 Porto
Portugal

Tel.: +351 22 508 1400
Fax.: +351 22 508 1440
Email: nuno.flores@fe.up.pt
URL: http://www.fe.up.pt/∼nflores

This thesis was typeset on an Apple® MacBook® running Mac OS® X 10.6.4 using the free LATEX typesetting system,
originally developed by Leslie Lamport based on TEX created by Donald Knuth. The body text is set in Latin Modern,
a Computer Modern derived font originally designed by Donald Knuth. Other fonts include Sans and Typewriter from
the Computer Modern family, and Courier, a monospaced font originally designed by Howard Kettler at IBM and later
redrawn by Adrian Frutiger. This colophon has exactly seventy five (75) words, excluding all numbers and symbols.

ISBN 978-972-752-138-8

9 789727 521388

Nuno Honório Rodrigues Flores
Patterns and Tools for Improving Framework Understanding: a Collaborative Approach
Copyright © 2012 by Nuno Honório Rodrigues Flores. All rights reserved.

. . . to my wife, Sara

. . . to my growing family

This page was intentionally left mostly blank.

Abstract

Understanding a piece of software is an important activity of software development, and
one with a big social emphasis. An average software project requires several people to work
together in collaboration. When trying to understand programs, to maintain or evolve
them, developers turn first to the code and, when that fails, to their social network, i.e., the
development team. Nevertheless, it is not easy to go for the team, mainly due to the lack
of expertise awareness (who to ask), wasteful interruptions of the wrong people (unclear
expertise localisation) and unavailability (either due to intrusion or time constraints).

Frameworks proved to be a powerful technique for large-scale reuse, but developers
have to invest considerable effort to understand them. Their design is often very complex
and hard to communicate, turning good quality documentation a crucial part. Producing
such documentation can be costly as it needs to be easy to use, to cover different audiences,
and to present different types of documents using different notations. But even if the
documentation is produced with quality standards, the learners need to acquire knowledge
from it and their cognitive needs must be attended. If the documentation doesn’t help,
or partially helps, how and where does the learner look for the knowledge needed to
understand the framework and solve the task at hand?

In this dissertation, the author pursues solutions to tackle these issues concerning
framework understanding, aiming to answer how can framework understanding be improved
and how can learners help each other without too much effort? The solutions proposed in
this dissertation combine two approaches: best practices and collaborative learning.

Observation and historical analysis show that understanding frameworks typically
encompass a recurrent set of problems. If learners are aware of these obstacles and how to
proceed to overcome them, they will surely accelerate their learning process. Therefore, a
set of proven good solutions to those recurrent problems is presented in the form of patterns.
These best practices aim at answering questions regarding where to start learning, at what
level of abstraction should one go, how to cope with one’s cognitive needs, and how to
keep the knowledge produced. They provide a process of going through the documentation
and, if it proves insufficient, alternative ways to gather information about the framework.
To introduce collaboration into this learning experience, a collaborative environment was

ii abstract

developed – the DRIVER platform.
The DRIVER platform is a collaborative learning environment where framework users

can, in a non-intrusive way, store and share their learning knowledge while following the best
practices of framework understanding (patterns). It provides a framework documentation
repository, mounted on a wiki, where the learning paths (how did one learn) of the
community of learners can be captured, shared, rated, and recommended. Combining
these social activities, the DRIVER platform promotes collaborative learning, mitigating
intrusiveness, unavailability of experts and loss of tacit knowledge.

Empirical evidence of the benefits of the proposed solutions is provided by the results
of a controlled academic quasi-experiment. The experiment took groups of similar MSc
students and measured their performance, effectiveness and framework knowledge intake,
while developing a set of tasks using a new framework.

Shortly, the patterns and tools proposed in this dissertation help on improving frame-
work understanding through best practices and collaborative learning, thus contributing
to bridge the gap between the single learner and the learning community.

Resumo

O desenvolvimento de software tem-se tornado numa atividade com grande índole social,
e onde a compreensão do mesmo é algo de elevada importância. Em média, um projeto
de desenvolvimento de software requere que um conjunto de pessoas colabore entre si
em equipa. Na tentativa de compreender como um determinado software funciona, os
analistas começam por inspecionar o código-fonte e, em caso de insucesso, recorrem à
sua rede social, ou seja, à equipa de desenvolvimento. No entanto, esta tarefa não é fácil,
devido a fatores como: a incerteza sobre quem são os peritos (podendo levar a interrupção
das pessoas erradas) e a falta de disponibilidade desses mesmos peritos.

As frameworks são uma poderosa técnica de reutilização de software em larga-escala,
mas requerem um esforço considerável de aprendizagem. A sua arquitetura, devido à sua
grande complexidade, é difícil de aprender. Desde logo, a documentação existente deve ter
qualidade e ser adequada. Produzir esta documentação torna-se custoso, pois esta terá de
ser de fácil leitura, cobrir diferentes tipos de leitores com diferentes tipos de documentos e
formatos. Mas mesmo que esta documentação tenha a qualidade esperada, terá igualmente
de satisfazer as necessidades cognitivas de aprendizagem dos leitores. De outra forma,
onde irá o leitor obter o conhecimento necessário para compreender a framework e resolver
a tarefa em mãos?

Nesta dissertação, o autor procura soluções que ajudem a atenuar estas questões,
tentando responder à questão: Como melhorar a aprendizagem de frameworks e como
pode haver interajuda entre os intervenientes (pessoas) sem grande esforço?. As soluções
propostas nesta dissertação combinam duas abordagens: boas práticas e aprendizagem
colaborativa.

Estudos sobre a aprendizagem de frameworks indicam que este processo é, tipicamente,
afetado por um conjunto de problemas recorrentes. A perceção e conhecimento prévios
destes obstáculos, e respetivas formas de os ultrapassar, seguramente acelerará o processo
de aprendizagem. Por conseguinte, é apresentado um conjunto de soluções, garantidamente
boas, para resolver estes problemas recorrentes, sob a forma de padrões. Estas boas práticas
abordam questões relativas a: por onde começar, a que nível de abstração aceder, como
abordar as necessidades cognitivas e como preservar o conhecimento. No geral, permitem

iv resumo

guiar o leitor através da documentação e, caso seja insuficiente, propõe formas alternativas
de obter informação sobre a framework. A colaboração neste processo de aprendizagem é
introduzida através de uma plataforma denominada DRIVER.

A plataforma DRIVER é um ambiente de aprendizagem colaborativo, que permite
aos utilizadores de frameworks, de uma forma pouco intrusiva, o registo e a partilha
do conhecimento gerado durante a aprendizagem, tendo esta sido guiada pelas boas
práticas. É composta de um repositório de documentos sobre a framework, apresentados
numa wiki e onde os passos de aprendizagem (learning paths) de cada individuo são
capturados, partilhados, avaliados e recomendados pela comunidade de utilizadores. A
combinação destas atividades, comuns hoje em dia na web social, fomenta a colaboração
na aprendizagem, atenuando fatores como a intrusão/interrupção, falta de disponibilidade
e perda de conhecimento intrínseco.

A realização de uma experiência de validação num ambiente académico serviu para
mostrar os benefícios que as soluções apresentadas trazem à aprendizagem de frame-
works, analisando-se o desempenho, objetividade e conhecimento adquirido por grupos de
estudantes.

Os padrões e ferramentas propostos nesta dissertação melhoram a compreensão de
frameworks através da reutilização de boas práticas e através da aprendizagem colaborativa,
aproximando o indivíduo, da comunidade.

Contents

Abstract i

Resumo iii

Preface xv

1 Introduction 1
1.1 Software reuse and frameworks . 2
1.2 Understanding frameworks . 4

1.2.1 Documenting frameworks . 4
1.2.2 When documentation is not enough 6
1.2.3 Grasping the community . 7

1.3 Research goals . 8
1.4 Research strategy . 9
1.5 Expected results . 10
1.6 How to read this dissertation . 12

I State of the art 15

2 Program comprehension 17
2.1 Cognitive theories and models . 18

2.1.1 Concepts . 18
2.1.2 Top-down comprehension strategy 19
2.1.3 Bottom-up comprehension strategy 19
2.1.4 Systematic and opportunistic behaviours 20
2.1.5 Integrated comprehension . 20
2.1.6 Factors affecting comprehension strategies 21

2.2 Program, task and programmers . 22
2.2.1 Program characteristics . 22
2.2.2 Program trends . 22

vi CONTENTS

2.2.3 Task characteristics . 24
2.2.4 Programmer characteristics . 24
2.2.5 Programmer trends . 25

2.3 Tools for program comprehension . 26
2.3.1 Tool requirements studies . 26
2.3.2 Tool requirements . 29
2.3.3 Tool development . 30
2.3.4 Tool trends . 32

2.4 Summary . 35

3 Framework understanding 37
3.1 Studies on framework understanding . 38
3.2 Tools and techniques for framework understanding 43

3.2.1 Cookbooks and recipes . 43
3.2.2 Design artifacts . 44
3.2.3 Pattern languages . 47
3.2.4 Notations and formal languages . 48

3.3 Trends . 49
3.4 Summary . 50

4 Collaborative software development 53
4.1 Groupware . 54
4.2 Computer-supported collaborative work . 55
4.3 Collaborative software engineering . 57

4.3.1 Goals . 58
4.3.2 Characteristics . 59
4.3.3 Tools . 60

4.4 Trends . 63
4.5 Summary . 65

II Problem & Solution 67

5 Research problem and solution 69
5.1 Open issues . 69
5.2 Research questions . 72
5.3 Research focus . 72
5.4 Thesis statement . 73
5.5 Research goals . 75

CONTENTS vii

5.6 Proposed approach . 75
5.6.1 Learning process . 76
5.6.2 Improving the learning process - patterns and tools 77

5.7 Research strategy . 79
5.8 Summary . 80

6 Patterns for understanding frameworks 81
6.1 Why patterns? . 82
6.2 Pattern form . 82
6.3 Patterns overview . 84
6.4 Problems addressed . 85
6.5 Related patterns . 85
6.6 Pattern Selecting a Framework . 87
6.7 Pattern Instantiating a Framework 89
6.8 Pattern Evolving a Framework . 91
6.9 Pattern Drive Your Learning . 93
6.10 Pattern Knowledge-Keeping . 95
6.11 Pattern Understand the Application Domain 98
6.12 Pattern Understand the Architecture 100
6.13 Pattern Understand the Design Internals 102
6.14 Pattern Understand the Source Code 104
6.15 Summary . 107

7 Collaborative learning with DRIVER 109
7.1 What is DRIVER? . 109
7.2 Improving knowledge collaboratively . 110

7.2.1 Going for the crowd . 111
7.2.2 Grasping the collective knowledge 113
7.2.3 Collective knowledge systems . 115

7.3 Collaborative framework learning . 117
7.3.1 Concepts . 117
7.3.2 “Pave the cowpath” revisited . 117
7.3.3 The learning knowledge cycle . 119
7.3.4 Learning knowledge categorisation 121
7.3.5 Collaborative environment requirements 122

7.4 The DRIVER platform . 123
7.4.1 Setting . 123
7.4.2 Components . 125

viii CONTENTS

7.4.3 Usage . 127
7.4.4 Limitations . 134
7.4.5 Towards a collective knowledge system 136

7.5 Other related tools . 137
7.5.1 Environment candidates . 137
7.5.2 Evaluation . 138
7.5.3 Comparing with the candidates . 140
7.5.4 Moving to the web . 141

7.6 Summary . 143

III Validation & Conclusions 145

8 Academic quasi-experiment 147
8.1 Experiment design . 147

8.1.1 Subjects . 148
8.1.2 Framework selection . 150

8.2 Experiment description . 151
8.2.1 Environment . 151
8.2.2 Pre-questionnaires . 153
8.2.3 Treatments . 154
8.2.4 Tasks . 155
8.2.5 Post-questionnaire . 159

8.3 Data Analysis . 159
8.3.1 Statistical relevance . 159
8.3.2 Background . 160
8.3.3 External factors . 163
8.3.4 Overall satisfaction . 166
8.3.5 Development process . 168
8.3.6 Framework knowledge . 169
8.3.7 Objective measurement . 172
8.3.8 Experts group analysis . 175

8.4 Validation threats . 177
8.5 Summary . 179

9 Conclusions 181
9.1 Key contributions . 182
9.2 Future work . 183

9.2.1 Improve and enhance the DRIVER platform 183

CONTENTS ix

9.2.2 Refine and extend the patterns . 184
9.2.3 Further studies . 184

9.3 Final remarks . 185

Appendices 187

A Pre-experiment subject data 189

B Pre-questionnaire A 191

C Pre-questionnaire A answers 193

D Pre-questionnaire B 195

E Pre-questionnaire B answers 199

F Post-questionnaire 201

G Post-Questionnaire answers 205

H Time and effectiveness results 211

Glossary 213

References 215

x CONTENTS

List of Figures

1.1 Activities, artifacts and roles of framework-based application development. 3
1.2 Collaboratively improving activities of framework-based application devel-

opment. 8

2.1 Program comprehension field topics. 18

3.1 Framework understanding topics. 38

4.1 Groupware topics. 57
4.2 Collaborative software engineering aspects. 58
4.3 User-effort collaborative tools categorisation. 61

5.1 Research focus. 72
5.2 Common grounds for the proposed approach. 76
5.3 Framework learning activities and actors. 77
5.4 Supporting steps to improve the learning process. 78

6.1 Framework understanding patterns and their relationships. 84
6.2 Patterns for effectively documenting frameworks 86

7.1 Composing elements of a Collective Knowledge System. 116
7.2 The proposed four-step learning knowledge cycle. 120
7.3 Example of a Framework Overview documentation artifact present in

the wiki. 126
7.4 DRIVER menu when going from not capturing to capturing state. 128
7.5 DRIVER’s learning path trail. 129
7.6 Adding sections to the learning path. 130
7.7 Prune/Graft plug-in user interface. 131
7.8 Prune/Graft plug-in user interface showing the preview pane. 132
7.9 Prune/Graft plug-in user interface showing similar learning paths. 133
7.10 Search plug-in user interface showing search results. 134

xii LIST OF FIGURES

7.11 Hint plug-in user interface showing recommended next steps. 135
7.12 The DRIVER toolset as a Collective Knowledge System. 136
7.13 Candidate environments comparison table 139

8.1 Experiment protocol and phases. 152
8.2 Iteration 1 . 157
8.3 Iteration 2 . 157
8.4 Iteration 3 . 158
8.5 Framework knowledge distances for Baseline (BL) and Experiment Group 1

(EG1). 172
8.6 Framework knowledge distances for Baseline (BL) and Experiment Group

2 (EG2). 173
8.7 Iteration duration overall results. 174
8.8 Iteration duration experts results. 176

List of Tables

8.1 Student grades group statistics. 149
8.2 Baseline vs. Experimental Group 1 Independent Samples Test 150
8.3 Baseline vs. Experimental Group 2 Independent Samples Test 150
8.4 Baseline vs. Experts Independent Samples Test 150
8.5 Background results between BL and EG1 groups 160
8.6 Background results between BL and EG2 groups 161
8.7 External factors results between BL and EG1 groups 164
8.8 External factors results between BL and EG2 groups 164
8.9 Overall satisfaction results between BL and EG1 groups 166
8.10 Overall satisfaction results between BL and EG2 groups 166
8.11 Development process results between BL and EG1 groups 168
8.12 Development process results between BL and EG2 groups 168
8.13 Framework knowledge items categorisation and answers. 170
8.14 Framework knowledge group statistics. 171
8.15 Baseline vs. Experimental Group 1 Independent Samples Test for framework

knowledge . 171
8.16 Baseline vs. Experimental Group 1 Independent Samples Test for Framework

Knowledge . 172
8.17 Deliverables grades . 173
8.18 Framework knowledge acquisition by the Experts group. 176
8.19 Experts group Independent Samples Test for framework knowledge 177

A.1 Student grades for all participating groups. 189

C.1 Pre-experiment questionnaire A results for BL and EG1 groups 193
C.2 Pre-experiment questionnaire A results for BL and EG2 groups 194

E.1 Pre-experiment questionnaire B results for the Experts group 199

G.1 Post-experiment questionnaire results for BL and EG1 groups 205

xiv LIST OF TABLES

G.2 Post-experiment questionnaire results for BL and EG2 groups 206
G.3 Post-experiment questionnaire framework knowledge items results for BL . 206
G.4 Post-experiment questionnaire framework knowledge items results for EG1 207
G.5 Post-experiment questionnaire framework knowledge items results for EG2 208
G.6 Post-experiment questionnaire framework knowledge items results for the

Experts group . 209

H.1 Deliverables grades, with the Experts . 211
H.2 Iteration time results, with the Experts . 212

Preface

I can only show you the door...You’re the one who has to
walk through it...

Morpheus in “The Matrix”

I was ten years of age when my parents presented me with the ZX Spectrum 48K, my first
computer. Not so much for its 23x14cm, 550 grams, rubber keys and rainbow motif, but for
how a small contraption would empower you to create things, it bewildered me. I became
a wizard (i.e. programmer) and I could cast spells (i.e. run programs), summon creatures
(i.e. invoke subroutines) and shape my own world (i.e. develop software). I had my own
building blocks (i.e. programming instructions) just there in my spellbook (i.e. BASIC
manual). I needed nothing more, just imagination, wits and that small contraption. That
day changed my life forever and my fate was sealed: I was going to work on computers
(i.e. be a software engineer).

I came a long way from those early days when I could do everything with just 48K of
memory and a bunch of programming instructions. I soon realize that all things scale and
grow. Fast-forwarding to years later and my definition of building blocks had somewhat1

changed. I wasn’t dealing with simple beginner programs, but with large-scale software
development and high-complexity software components. Nevertheless, the thrill was still
there. I was expressing the same excitement when I first looked at those BASIC commands
that enabled me to play God, when looking at the empowering frameworks provided me,
although now, on a different scale. I felt I had the perfect tool to enable quick and easy
software development.

During my time in the industry, I soon realized that developing software had that
boring part of having to tackle with the same common problems2 over and over again. I
found myself extracting and refactoring chunks of code to create my own personal library
of reusable code, predicting I would probably need it later on. Frameworks did this for
me, without any effort. Great! Henceforth, I came in contact with several frameworks,
1 clearly, an understatement
2 all applications have GUIs, CRUD data storages, and so on...

xvi preface

from generic to domain-specific, and every time, I had to spent a certain amount of time
trying to use them properly. Reusing software became my scaffold for development.

Then design patterns stepped in. And I was equally dazzled. Not only we were reusing
software, but software solutions and experience. The potential was enormous and so was
my interest in the subject. Soon, I was developing my MSc research work in reverse
engineering and recovery of design pattern instances in frameworks [Flo06]. I was poised
to improve the learning curve of frameworks and help developers using them. By the end
of my MSc, I was content with my results, but there was still something missing.

I needed to dig deeper, start at the beginning, and go to the core of the problem. As
such, I delved into the realms of program comprehension. Understanding a framework
starts at understanding programs. Programs are understood by humans, so one must
be aware of the human cognitive processes behind it. Quickly, my research acquired an
anthropological/sociological flavor to it, which it did not displease me. By this time, the
social/Web 2.0 phenomenon was booming and, somehow, it struck a chord as it began
contaminating my mind with lots of interesting concepts and ideas.

It wasn’t until I came before James Surowiecky’s book wisdom of crowds, that the
path of my research became clear. This book was truly an inspiration for me and it cleared
my mind of the doubts I had on how to proceed. It had strong assumptions of empirical
knowledge, supported by documented case-studies, about how the whole is better than
the sum of its parts and how collective intelligence can and will play an important role
when making decisions and analyzing options. His claims were so clear to me that I knew
I needed to pursue that line of thinking.

So the questions popped: How can we help potential framework users to learn a
framework effectively? And, moreover, how can we make them help each other without
too much effort? As the reader will realize throughout this dissertation, these were the
starting points of my research. Software is developed in teams, in communities. Don’t
these groups have in them what it takes to improve learning? I believe so. They just need
support and awareness of their ability, and to be nurtured to do so. Learning (in the sense
of knowledge transfer) is not straightforward and depends on a bunch of things: People,
goals, time, etc. We learn better when someone teaches us, so this work is based on a “Let
me show you how I did it” philosophy (thus the preamble).

Throughout all the years it took me to undertake this endeavor, a noble group of
people stood by me, helping, supporting and encouraging my work. To all of them, I
am deeply grateful. At the top of this group, undoubtedly, is my colleague, friend and
supervisor Ademar Aguiar. His stimulus, enthusiasm, patience and clever guidance were of
vital importance. He stroke a perfect balance between giving me autonomy and pushing
me forward when the need arose. Thank you Ademar.

xvii

I would like to endorse my thanks to both professors Eugénio Oliveira and Augusto de
Sousa, of the Doctoral Program in Informatics Engineering (ProDEI) for all the support
provided and to thank Paris Avgeriou and Isabel Ramos for their halfway steering. I must
also extend my gratitude to the Department of Informatics Engineering (DEI) where I’ve
been lecturing since 2005, most especially to the head of the department, Prof. Raul
Vidal, for his undeniable support and charismatic influence throughout my entire academic
career.

A special thanks to my PhD collegues Hugo Ferreira (your LATEXtemplates were very
useful) and Filipe Correia (always inquisitive) with whom I had the pleasure to debate,
travel, brainstorm and laugh in numerous occasions. Thank you also to my research and
work colleagues, Ana Paiva and João Pascoal Faria for their promptly availability and
support. A very special thanks goes to Diana Soares, to whom I, most humbly, confer the
title of “Javascript guru” and that proved vital to alleviate constraining problems while
tackling with web technologies.

Thanks to both my close friends, Plácido, César, Helder, Ana, Rita and Sofia, for
their companionship, and to my everlasting music buddies, Daniel Pereira, Gonçalo Cruz,
Raquel Ferreira e João Conceição, a deep-felted thanks for all the concerts we did together
and, hopefully, will keep doing. Arrefole forever!

Always there for me were my parents, Eugénio and Elvira and my sister Raquel
whose reliability and love are eternal. I would also like to express my gratitude to my
sisters-in-law, Ju and Inês, for their constant support.

My final thanks goes to my companion for life, Sara, to whom I dedicate this work.

Porto, Portugal
December 2011

xviii preface

Chapter 1

Introduction

1.1 Software reuse and frameworks 2
1.2 Understanding frameworks . 4
1.3 Research goals . 8
1.4 Research strategy . 9
1.5 Expected results . 10
1.6 How to read this dissertation 12

The demand for software has been progressively increasing almost since it became
present in our daily lives. Productivity leverage comes, not so much from writing code faster,
but writing less code, while keeping high quality levels. Research showed that software
reuse is the (only) realistic approach capable of bringing out the gains of productivity and
quality the software industry needs [MMM95].

Frameworks are a powerful technique for large-scale reuse that helps developers to
improve quality and to reduce costs and time-to-market. However, before being able to reuse
a framework effectively, developers have to invest considerable effort on understanding
it. Especially for first time users, frameworks can become difficult to learn, mainly
because its design is often very complex and hard to communicate, due to its abstractness,
incompleteness, superfluous flexibility, and obscurity.

Regardless, as software systems evolve in size and complexity, frameworks are becoming
increasingly more important in many kinds of applications, in different technologies (object-
orientation and recently aspect-orientation too), in new domains, and in different contexts:
industry, academia, and single organisations.

Understanding a piece of software is an important activity of software development,
with an increasing social emphasis. Advances in global software development are leading
to teams continuously becoming more and more distributed. A software development

2 introduction

project requires people to collaborate. Trends toward distributed development, extensible
IDEs, and social software, influence makers of development tools to consider how to better
assist the social aspects of development.

Can developers collaborate to help each other learning how to use a framework? How
can we use this socialising trend in software development to improve framework learning
and diminish its usage overhead? This dissertation tries to tackle these issues, first, through
observation and establishment of recurrent good practices in understanding a framework in
general, and second, supporting the collaboration of developers in specific learning needs.

This chapter gives a general introduction to the overall dissertation. It starts by
contextualising the reader to the subject of frameworks and software reuse, raising issues
regarding the understanding of frameworks and the problems that still affect framework
users. It moves to state the research questions and goals that stood at the base of the
presented work, overviewing how these were pursued and how the answers (to the research
questions) were collected.

1.1 Software reuse and frameworks
The introduction of reuse in a software development process implies splitting the traditional
software life cycle into two interrelated cycles: one focused on developing reusable
assets, and another focused on searching and reusing reusable assets already
developed [Agu03].

A framework is a reusable design together with an implementation. It consists of a
collection of cooperating classes, both abstract and concrete, which embodies an abstract
design for solutions to problems in an application domain [JF88][Deu89][FS97].

In the particular case of framework-based application development, the traditional
life cycle can be organised in: a framework development life cycle devoted to building
frameworks, corresponding to the abstraction phase of software reuse; and an application
development life cycle (also known as framework usage) devoted to developing applica-
tions based on frameworks, corresponding to the selection, specialisation, and integration
phases of software reuse.

Although the activities of framework development and application development are
often separate and assigned to different teams, the knowledge to be shared between them
is large, as the design of a framework for a domain requires considerable past experience
in designing applications for that domain. In application development, frameworks act
as generative artifacts as they are used as a foundation for several applications of the
framework’s domain. This contrasts with the traditional way of developing applications,
where each application is developed from scratch.

software reuse and frameworks 3

The most distinctive difference between the traditional and the framework-based
development of applications is the need to map the structure of the problem to be solved
onto the structure of the framework, thereby forcing the application to reuse the design of
the framework. The positive side of this is that we don’t need to design the application
from scratch. But, on the other hand, before starting application development, we need
to understand the framework design, a task that sometimes can be very difficult and
time-consuming, especially if the framework is large or complex, and is not appropriately
accompanied with good documentation or training material.

Domain

Applications

Documentation

refining

documenting

evolving

designing and
implementing

applying

framework
developer

application
developer

Framework

understanding

understanding

artifact activity role role-assignment

Figure 1.1: Activities, artifacts and roles of framework-based application development (extracted
from [Agu03]).

Figure 1.1 shows a simplified view of framework-based application development that
relates the artifacts, activities, and roles most relevant for the context of framework
understanding. Because understanding frameworks is of major importance for application
developers, in the figure, the activity is assigned exclusively to that role, but in fact, it
can be also relevant for framework selectors, original framework developers (especially of
large frameworks), framework maintainers, and developers of other frameworks, although
not with the same degree of importance.

Although some of the problems here addressed could also be common to large or
complex software systems, frameworks are specifically designed to be easy to reuse, thus
adding special needs from the point of view of learning and understanding.

4 introduction

1.2 Understanding frameworks
A statement by Grady Booch says that [Boo94]:

“the most profoundly elegant framework will never be reused unless the cost of
understanding it and then using its abstractions is lower than the programmer’s
perceived cost of writing them from scratch.”

Understandability comes as a key requirement for the effective reusability of frameworks.
The easier it is to understand the framework, the easier it would be to reuse it. Briefly, a
framework is hard to understand due to a set of design aspects, the same that convey it
its power [But98]:

• the design is very abstract, to factor out commonality;

• the design is incomplete, requiring additional classes to create a working application;

• the design provides more flexibility than the strictly needed by the application at
hand;

• and the design is obscure, in the sense that it hides existing dependencies and
interactions between classes.

All these aspects inherently make framework design hard to communicate. Therefore,
there should be an increasing concern in accompanying the framework with suitable
documentation.

1.2.1 Documenting frameworks

Good quality documentation is crucial for the effective reuse of object-oriented frame-
works [Agu03]. Without a clear, complete and precise documentation describing how to
use the framework, how it is designed, and how it works, the framework will be particularly
hard to understand and nearly impossible to use by software engineers not initially involved
in its design.

But simple, complete, and easy-to-use documentation can be seen as the ACID1 test
for the quality of a framework. To be complete, the overall documentation of a framework
usually combines a lot of information that must be produced, organised, and maintained
consistent. The documentation must describe the application domain covered by the
framework, its purpose, how-to-use it, how it works, and to provide details about its
internal design, which globally may involve a large diversity of contents, and many different
ways of presenting them [BKM00].
1 standing for atomicity, consistency, isolation, durability.

understanding frameworks 5

The inherent complexity of framework documentation is mainly due to the following
requirements:

• Different audiences. Framework actors range from developers, to users, to selec-
tors, each with specific needs regarding the kind of information, abstraction level
and level of focus.

• Different types of documents. Covering different levels of abstraction, presented
using multiple views, as to fulfil the different audiences’ requirements.

• Different notations. Combining free text, source code, and, formal specifications,
it is convenient to provide a suitable mix of contents, throughly cross-referenced and
navigable.

• Easy-to-use. Simple, minimalist, and declutered documentation that goes right to
the point, is not easy to produce.

As a result of this complexity of requirements, the cost of producing good framework
documentation, especially without well-defined methods and tools, can be very high, and
even worst, it can be risky. For all these reasons, framework documentation is one of
the most important activities in framework development, although its importance is not
always recognised.

An approach to deal with this problem has been proposed by Aguiar [Agu03], who
suggested a minimalist approach to framework documentation. It covered the overall
documentation process, from the creation and integration of contents till the publishing
and presentation, by focusing on minimising the obtrusiveness to the learner of training
material, and offering the minimal amount of information that the learner needs to get
the task done. This minimalist approach encompasses (i) a documentation model to
organise the contents required to produce a minimalist framework manual along a virtual
layered documentation space, (ii) a process which defines roles, techniques and activities
involved in the production of minimalist framework manuals, and (iii) a specific set of
tools, convenient to be adopted in a wide range of software development environments.

This approach deals with producing suitable documentation without too much effort.
But there is still the process of acquiring the knowledge from the produced contents, that
is, using that documentation to learn about the framework. The knowledge is there, but
there is still no learning process that supports the effective retrieving of that knowledge.
A process that suits the specific needs of the learner, and goes beyond just reading and
navigating through the documentation.

6 introduction

1.2.2 When documentation is not enough

Frameworks are complex, so there needs to be documentation. The effort of producing
information capable of covering all the afore-mentioned needs, produces a set of heteroge-
nous, semi-structured, specialised, documentation artifacts. These documents need to be
handled by the framework user, when trying to learn the framework.

Learning about a framework is a process that can be characterised according to a series
of interdependent aspects:

• Goal. What is the role of the framework learner (user, developer, evolver, selector,
etc.) and what does she want to do with the framework? Is she selecting, instantiating
or evolving a framework?

• Cognitive needs. What is the cognitive profile [FS05] of the framework learner?
Is she a global or a sequencial learner? Does she prefer a more visual or verbal infor-
mation format? Would she go for a top-down or bottom-up approach? Furthermore,
what does she need to know to be able to solve her problem? What are the cognitive
steps she needs to take to satisfy her knowledge craving?

• Abstraction level. Depending on the learning goal, the learner may be required
to navigate up or down the levels of abstraction present in the framework, trying to
collect and assemble the knowledge needed to solve her problem.

• Knowledge availability. Does the documentation has all the information the
learner needs? Is the documentation complete? Is it up-to-date? Where can the
learner get more information, besides the documentation?

Documentation provides knowledge vessels, suitable to hold the knowledge about the
framework, and to communicate it effectively. But they hardly induce the process behind
learning about a framework, so the learner will have to find her own way through the
documentation, while constructing her own mental model. Not so much a strenuous
task, yet the problem relies in cases where the documentation is unsuitable or incomplete,
making the process longer and harder.

Explicitly providing guidance to the process of learning about a framework could help
mitigate the effort the learner spends. She would know where to start learning, what
artifacts to look for (regarding her specific learning needs) and ways to construct her
mental model in a more focused and direct way, without having to wander through the
documentation trying to figure out where the relevant, useful knowledge might be. This
process should not be a prescriptive, script-like formula that is recurrently applied, but a
series of related patterns or best practices that have, provenly, lead to satisfying results

understanding frameworks 7

and that can be adapted to the context at hand. Often, stating the (not so) obvious helps
focusing the learner.

But even with a process behind learning a framework, the documentation and the
framework itself may not be sufficient to provide solutions in a time-effective way. The
effort investment becomes so great, that it may be simpler, and quicker, asking another
framework learner for help. The communication is better, more focused and more effective
than going through the documentation.

1.2.3 Grasping the community

Software development is a highly social activity. More and more, teams are distributed in
space and time, and projects are inherently cooperative, providing the development of a
shared understanding over the problem domain. Knowledge flows throughout the team, as
the social-technical gap is lessened, with more tools and techniques emerging to support
this collaborative software development.

People learn by reading source-code, documentation and asking questions to their peers.
The quality of the software to be developed is determined not only by the sum of each
developer’s knowledge, but also by the social relationships of developers that impact the
sharing of knowledge during the development process [NYY06].

Learning about a framework fits the same scenario and can, thus, be improved by
resorting to the knowledge and aid of the team of developers. But, is that knowledge
within our grasp?

Teams are composed of people and humans are slow and error-prone. Moreover, (natu-
ral) language is expressive but ambiguous, memory skips details, and teams rotate making
it hard to keep track of everybody. The generated knowledge, if not harnessed at its best, is,
eventually, lost. Observed obstacles in this knowledge safe-keeping are [NYY06][LVD03]:

• Availability. Not only it maybe difficult to know whom to ask, but most of the
time the knowledgeable colleague is not accessible or available to help (task and
time constraints).

• Intrusion. If helping means interrupting one’s work, then it becomes intrusive and
developers tend to give it a negative connotation. Interrupted developers lose track
of parts of their mental model, resulting in laborious reconstruction or bugs and
discouraging more frequent interruptions.

• Tacit knowledge. Developers spend vast amounts of time gathering precious,
demonstrably useful information, but rarely record it for future developers. Keeping
this information in their heads, renders it useless for helping other developers, unless
it is shared.

8 introduction

• Selfish ownership. Most common in expert developers, there is an intrinsic sense
of knowledge ownership that leads to a reluctance in sharing their expertise with
others, fearing to loose their own status-keeping leverage.

With these issues in mind, the author believes that a collaborative learning environment
will help mitigate these aspects and promote the collaboration between learners. The idea
is to enhance the framework user’s (a.k.a. application developer) activities with a strong
contribution from the community of developers that share the same problems, issues and
solutions, as seen in Figure 1.2. Rather than providing a forum or a Q&A service, this
collaborative environment builds on learning knowledge, that is, the steps the learner
took (while going through the documentation) that enabled her to build a solution to her
problem.

Applications

Documentation

documenting

applying

application
developer

Framework

understanding

understanding

artifact activity role role-assignment

collaboratively

Community of
developers

Figure 1.2: Collaboratively improving activities of framework-based application development,
acknowledging the community of developers as a strongly contributive entity.

1.3 Research goals
Considering all that has been addressed, hitherto, this dissertation aims at providing
contribution to the body of knowledge in software engineering, in concrete, framework
understanding.

The main research goal is to improve framework learning by: (i) guiding learn-
ers on following best practices for framework understanding, supporting its

research strategy 9

specific process and (ii) providing tools that assist framework understanding, de-
vising a collaborative environment that enables developers to share their learning strategies
and allowing these to be captured and harnessed in a non-intrusive way.

These research goals are further detailed and explained in Chapter 5 (p. 69).

1.4 Research strategy
Software engineering is still maturing as a research area. Software development has specific
characteristics that suggests its own research paradigm, combining aspects from other
disciplines: it is a human creative phenomenon; software projects are costly and usually
have long cycle times; it is difficult to control all relevant parameters; technology changes
very frequently, so old knowledge becomes obsolete fast; it is difficult to replicate studies;
and there are few common ground theories.

A categorization proposed at Dagstuhl workshop [THP92], groups research methods in
four general categories, quoted from Zelkowitz and Wallace [ZW98]:

• Scientific method. “Scientists develop a theory to explain a phenomenon; they
propose a hypothesis and then test alternative variations of the hypothesis. As they
do so, they collect data to verify or refute the claims of the hypothesis.”

• Engineering method. “Engineers develop and test a solution to a hypothesis.
Based upon the results of the test, they improve the solution until it requires no
further improvement.”

• Empirical method. “A statistical method is proposed as a means to validate a
given hypothesis. Unlike the scientific method, there may not be a formal model or
theory describing the hypothesis. Data is collected to verify the hypothesis.”

• Analytical method. “A formal theory is developed, and results derived from that
theory can be compared with empirical observations.”

These categories apply to science in general. Effective experimentation in software
engineering requires more specific approaches. Software engineering research comprises
computer science issues, human issues and organisational issues. It is thus often convenient
to use combinations of research approaches both from computer science and social sciences.
The taxonomy described by Zelkowitz and Wallace [ZW98] identifies twelve different types
of experimental approaches for software engineering, grouped into three broad categories:

• Observational methods. “An observational method collects relevant data as a
project develops. There is relatively little control over the development process other

10 introduction

than through using the new technology that is being studied”. There are four types:
project monitoring, case study, assertion, and field study.

• Historical methods. “A historical method collects data from projects that have
already been completed. The data already exist; it is only necessary to analyse what
has already been collected”. There are four methods: literature search, legacy data,
lessons learned, and static analysis.

• Controlled methods. “A controlled method provides multiple instances of an
observation for statistical validity of the results. This method is the classical method of
experimental design in other scientific disciplines”. There are four types of controlled
methods: replicated experiment, synthetic environment experiment, dynamic analysis,
and simulation.

The best combination of methods to use in a concrete research approach is strongly
dependent on the specific characteristics of the research study to perform, viz. its
purpose, environment and resources. Hereafter, the research methods referred will use this
terminology. Further description of each method can be found in [ZW98].

Based on the expected results and contributions of the work presented in this disser-
tation, the research strategy comprised a mix of observational and historical methods
(case and field studies, literature search, and lessons learned) to substantiate the patterns
contribution (Chapter 6, p. 81) and a controlled replicated experiment to complement
it and provide evidence of the remaining contributions (Chapter 7, p. 109). A detailed
rational of the methods is presented in Chapter 5 (p. 69).

1.5 Expected results
The expected outcomes of this thesis are the following contributions to the body of
knowledge in software engineering:

1. Elicitation of the best practices of framework understanding, documented
in a pattern form. Developers continually tackle with understanding problems,
whenever they need to use a new framework or, again, recall how to use an already
known, but dormant, framework. Through observation and experience, recurrently
applied practices that lead to good results can be identified in the framework under-
standing process. Harnessing these best practices into an effective communication
format (patterns), enables future framework learners to improve their learning pro-
cess by accessing and reusing the experience and expertise of former framework
learners. These patterns are not a recipe for success, but an important tool that

expected results 11

guides novice learners in the right direction. This contribution can be seen in detail
in Chapter 6 (p. 81).

2. Definition of a collaborative framework learning process. Teams of devel-
opers collaborate. This collaboration generates knowledge, much of which is not
captured and recorded for future use. New learners could benefit from the knowledge
that previous learners generated when trying to understand a specific framework. In a
collaborative, socially imbued setting, a non-intrusive, harnessing knowledge process,
that enables the community to share and improve this knowledge, could nurture this
learning collaboration and richly enhance the learning experience. Details on this
contribution are present in Chapter 7 (p. 109).

3. Development of tools that support the defined collaborative framework
learning process. Learners gain in collaborating. The issue lies, not so much
in collaborating, but, in allowing collaboration to occur progressively without too
much effort. If, collaterally, collaborating brings interruption, intrusion and entropy
to development, then, it is abandoned. Therefore, there should be a set of tools
that support the collaborative learning process so that it can occur seamlessly and
naturally fitted into the development environment, without changing (to an extent)
the developers’ working habits. This contribution is further detailed in Chapter 7 (p.
109).

4. Design of a repeatable experimental package to conduct further studies.
The apparent benefits of both patterns and collaborative learning process need to be
validated and observed in the real world. Consequently, a (quasi-)experiment in a
controlled academic experimental environment will be conducted, where the study
of groups of undergraduate students that engaged in learning a new framework are
expected to provide evidence that the proposed contributions helps learners and
improve the learning process. This (quasi-)experiment is designed as an experimental
package, to be performed in different locations, and by different researchers, in
order to enhance the ability to integrate the results obtained and allow further
meta-analysis on them. This contribution is detailed in Chapter 8 (p. 147).

12 introduction

1.6 How to read this dissertation
The remaining of this dissertation is logically organized into three parts, with the following
overall structure:

Part 1: State of the art. The first part reviews the most important concepts and
issues relevant to the thesis:

• Chapter 2, “Program comprehension” (p. 17), provides an extensive literature review
on the field of program comprehension, its concepts, theories, models and supporting
tools.

• Chapter 3, “Framework understanding” (p. 37), provides a state-of-the-art overview
on framework understanding, a sub-topic of program comprehension, focusing the
scope of research.

• Chapter 4, “Collaborative software development” (p. 53), focus on the fields of
Groupware and Computer-Supported Collaborative Work, converging into the Col-
laborative Software Engineering research area, as an auxiliary field to the research
work presented in this dissertation.

Part 2: Problem & solution. The second part states the problem researched and
the proposed solution:

• Chapter 5, “Research problem and solution” (p. 69), lays both the fundamental
and specific research questions in scope for this thesis, and overviews the proposed
solution.

• Chapter 6, “Patterns for understanding frameworks ” (p. 81), presents an unified
set of patterns (best practices) for framework understanding.

• Chapter 7, “Collaborative learning with DRIVER” (p. 109), presents the imple-
mented platform to support the collaboratively learning of frameworks.

Part 3: Validation & conclusions. The third part presents a (quasi-)experiment
for the validation of the thesis and the conclusions of the dissertation:

• Chapter 8, “Academic quasi-experiment” (p. 147), addresses validation issues through
a controlled experimental environment.

• Chapter 9, “Conclusions” (p. 181), drafts the main conclusions of this dissertation,
and points to further work.

how to read this dissertation 13

For a comprehensive understanding of this dissertation, all the parts should be read in
the same order as they are presented. Those already familiar with program comprehension
and frameworks, who only want to get a fast but detailed impression of the work, may
skip the first part, and go directly to Chapter 5 (p. 69).

Some typographical conventions are used to improve the readability of this document.
Pattern names always appear in SmallCase style. Relevant concepts are usually in-
troduced in italics. Book titles and acronyms are type-faced in allcaps. References
and citations appear inside [square brackets] and in highlight color — when viewing this
document in a computer, these will also act as hyperlinks.

14 introduction

Part I

State of the art

Chapter 2

Program comprehension

2.1 Cognitive theories and models 18
2.2 Program, task and programmers 22
2.3 Tools for program comprehension 26
2.4 Summary . 35

Program comprehension research can be characterised by both the theories that provide
rich explanations about how programmers comprehend software as well as the tools that
are used to assist in comprehension tasks.

Ever since the time of the first software engineering workshop [NAT68], challenges in
understanding programs became ever present. As such, the field of program comprehension
has evolved considerably as a research discipline. The main goal of the community is to
build an understanding of these challenges, with the ultimate objective of developing more
effective tools and methods that support them [Sto05].

This research has been rich and diversified, with various shifts in paradigms and research
cultures during the last decades. A plethora of differences in program characteristics,
programmer skills, and software tasks have led to many diverse theories, research methods
and tools.

Consequently, there is, today, a wide variety of theories that provide rich explanations
of how programmers understand programs and can provide advice on how program
comprehension tools and methods may be improved.

This section presents an overview of existing comprehension theories, models and
methods, as a way to set the wider boundaries of the research work presented in this
dissertation. Figure 2.1 gives an overall depiction of the main topics.

18 program comprehension

Program Comprehension

Cognition Tools

Top-Down
Bottom-Up
Integrated

Opportunistic
Systematic

behaviors

strategies concepts

Mental model
Cognitive model
Programming plans
Beacons

forces

Programs

Task at hand
Programmers

requirements categories

Browsing
Searching

Multiple views
Context-driven

Cognitive support

Extraction
Analysis
Presentation

software visualization reverse engineering

Rigi

Reflection
Bauhaus

SHriMP
Codecrawler

PECAN
VIFOR
Whorf

Hy+
CARE

Imagix 4D
sv3D

How do programmers
understand programs?

Which tools should
be there to assist?

...

...

...

...

Figure 2.1: Overview of the program comprehension key research topics.

2.1 Cognitive theories and models
At its inception, experiments in the field were done without theoretical frameworks to
guide the evaluations, and thus it was not possible to compare validation approaches
[Dét01].

As the lack of theories was being recognised as problematic, methods and theories were
borrowed from other areas of research, such as text comprehension, problem solving and
education. These took the role of building blocks that led to the development of cognitive
theories about how programmers understand programs and ways of building supporting
tools. These theories brought rich explanations of behaviours that would lead to more
efficient processes and methods as well as improved education procedures [Hoh96].

2.1.1 Concepts

A few common concepts incorporate the theories behind program comprehension and that
are present along this chapter and referred throughout this dissertation. These concepts
can be used as nomenclature when describing theories, therefore, for the sake of clarity,
their name1, definition and how they relate is briefly addressed, thus:

• A mental model describes a developer’s mental representation of the program to
1 in italic

cognitive theories and models 19

be understood whereas a cognitive model describes the cognitive processes and
temporary information structures in the programmer’s head that are used to form
the mental model.

• Programming plans are generic fragments of code that represent typical scenarios
in programming. For example, a sorting program will contain a loop, which
compares two numbers in each iteration, or visiting a structure will have a
loop going through all its elements [SE84].

• Beacons are recognisable, familiar features in the code that act as clues to the
presence of certain structures [Bro83].

• Rules of programming discourse capture the conventions of programming, such as
coding standards and algorithm implementations [SE84].

Then there are strategies and behaviours. Strategies describe how a programmer
interacts with the program in order to build her mental model. Behaviours describe how
strategies are applied and how the programmer can shift between them.

2.1.2 Top-down comprehension strategy

Two main theories emerged that support a top-down comprehension strategy.
Brooks [Bro83] suggested that programmers understand a completed program in a

top-down way, where the comprehension process relies on reconstructing knowledge about
the application domain and mapping that to the source code. The process starts with a
hypothesis about the general nature of the program, which is then refined hierarchically,
by forming secondary hypothesis. These are then refined and evaluated in a depth-first
manner, whose verification (or rejection) depends heavily on the absence or presence of
beacons.

Soloway and Ehrlich [SE84] observed that top-down understanding is used when the
code or type of code is familiar. They observed that expert programmers use beacons,
programming plans and rules of programming discourse to decompose goals and plans into
lower-level plans. They noted that delocalised2 (programming) plans complicate program
comprehension.

2.1.3 Bottom-up comprehension strategy

The bottom-up theory of program comprehension proposed by Shneiderman and Mayer
[SM79] assumes that programmers first read code statements and then mentally chunk or
2 Delocalised, meaning, scattered throughout the source code.

20 program comprehension

group these statements into higher-level abstractions. These abstractions (chunks) are
aggregated further until a high-level understanding of the program is attained. They
differentiate between syntactic and semantic knowledge of programs: syntactic knowledge
is language dependent and concerns the statements and basic units in a program; semantic
knowledge is language independent and is built in progressive layers until a mental model
is formed, which describes the application domain.

Similarly, Pennington [Pen87] also observed programmers using a bottom-up strategy
initially gathering statement and control-flow information. The mental model was formed
in two phases: Firstly, these micro-structures (statements, control constructs and relation-
ships) were chunked and cross-referenced by macro-structures (text-structure abstractions)
to form a program model. Subsequently, a situation model was formed, also bottom-up,
using application-domain knowledge to produce a hierarchy of data-flow and functional
abstractions (the program goal hierarchy).

2.1.4 Systematic and opportunistic behaviours

Littman et al [LPLS86] observed that programmers use either: (1) a systematic approach,
reading the code in detail and tracing through control and data-flow, or (2) they use an
as-needed (opportunistic) approach, focusing only on the code related to the task at hand.
Subjects using a systematic behaviour acquired both static knowledge (information about
the structure of the program) and causal knowledge (interactions between components
in the program when it is executed). This enabled them to form a mental model of the
program. However, those using the opportunistic approach only acquired static knowledge
resulting in a weaker mental model of how the program worked. More errors occurred
since the programmers failed to recognize casual interactions between components in the
program.

Soloway et al. [SPL+88] combined these two theories as macro-strategies aimed at
understanding the software at a more global level. In the systematic macro-strategy,
the programmer traces the flow of the whole program and performs simulations as all
of the code and documentation is read. However, this strategy is less feasible for large
programs. In the more commonly used opportunistic macro-strategy, the programmer
looks at only what she thinks is relevant. However, more mistakes could occur since
important interactions might be overlooked.

2.1.5 Integrated comprehension

Von Maryhauser and Vans [vMV95] combined the top-down and bottom-up strategies,
and systematic/opportunistic behaviours into a single metamodel. In their experiments,

cognitive theories and models 21

they observed that some programmers frequently switched between all the approaches.
They formulated an integrated metamodel where understanding is built concurrently at
several levels of abstraction by freely switching between the several types of comprehension
strategies and behaviours.

The model consists of four major components. The first three components describe
the comprehension processes used to create mental representations at various levels of
abstraction and the fourth component describes the knowledge-base needed to perform a
comprehension process:

• The top-down (domain) model is usually invoked and developed using an opportunis-
tic strategy, when the programming language or code is familiar. It incorporates
domain knowledge as a starting point for formulating hypotheses.

• The program model may be invoked when the code and application is completely
unfamiliar. The program model is a control-flow abstraction.

• The situation model describes data-flow and functional abstraction in the program.
It may be developed after partial program model is formed using systematic or
opportunistic strategies.

• The knowledge base consists of information needed to build these three cognitive
models. It represents the programmer’s current knowledge and is used to store new
and inferred knowledge.

2.1.6 Factors affecting comprehension strategies

The general opinion most researchers realise is that certain factors will influence the
comprehension strategy adopted by a programmer [SFM97] [SD96]. These factors also
explain the apparently wide variation in the comprehension strategies discussed in th
previous sections. The variations are primarily due to:

• Differences among programs, such as paradigm, size, syntax, etc.

• The task at hand, whether it’s designing, maintaining, evolving, etc.

• Varied characteristics of programmers, such as experience, skill, creativity, etc.

To evaluate how programmers understand programs, these factors must be considered and
are further explored in sections 2.2.1 (p.22), 2.2.3 (p.24) and 2.2.4 (p.24).

With experience, programmers tend to adopt the most effective strategy for the given
program and task. A change of strategy may be needed because of some anomaly of the
program or the requested task. Program understanding tools should enhance or ease the

22 program comprehension

programmer’s preferred strategies, instead of imposing a fixed strategy which may not
always be suitable.

2.2 Program, task and programmers
Both program and programmer influence a comprehension strategy choice by their inherent
and varied characteristics. Additionally, this choice also depends on the task at hand.
This section debates these issues giving an insight on the subject, available studies and
trends for future research.

2.2.1 Program characteristics

Programs that are carefully designed and well documented will be easier to understand,
change or reuse in the future. Nevertheless, experiments have shown that the choice of
language has an effect on the comprehension processes [Pen87] [PBT97] [CW01]. For
instance, given the nature and syntax of the programming language, COBOL programmers
consistently fared better at answering question related to data-flow than FORTRAN pro-
grammers, while these would fare better at control-flow questions than their counterparts.

Also the paradigm of a programming language is a relevant factor. Object-oriented
(OO) programs, in comparison with procedural programs, are often seen as a more natural
fit to problems in real world because of “is-a” and “is-part-of” relationships in a class
hierarchy and structure. Others, however, argue that objects do not always map easily
to real world problems [Dét01]. In OO programs, abstractions are achieved through
encapsulation and polymorphism. Message passing is used for communication between
class methods and hence programming plans are dispersed (i.e., scattered) throughout
classes.

2.2.2 Program trends

As new techniques and programming paradigms emerge and evolve, the comprehension
process must shift to embrace these changes [Sto05]. New characteristics on both program
and programming approaches seem to produce new trends for comprehension research,
such as:

• Distributed applications. Along with web-based applications, both are becoming
more prevalent with technologies such as .NET, J2EE, and web services (with already
conducted studies of their impact in comprehension [GB04]). One programming
challenge that appeared recently and increased rapidly is the combination of different

program, task and programmers 23

paradigms in distributed applications, e.g., a client side script sends XML to a server
application (which currently evolved to the AJAX [Gar05] technology).

• Higher levels of abstraction. Visual composition languages for business appli-
cations are also increasing. As the level of abstraction increases, comprehension
challenges are shifting from code understanding to more abstract concepts. Model-
driven architectures [OMG10] and adaptive-object modeling [YBJ01] are emerging
concepts that dwell at a higher level of abstraction.

• New programming paradigms. The advent of Aspect-Oriented Programming
(AOP) [KLM+97] and Feature-Oriented Software Development (FOSD) [AK09]
caused some stir in the programming community. AOP introduced aspects as
a construct to manage scattered concerns (delocalized plans) in a program and
have proved to be effective for managing many programming concerns, such as
logging [AG08] and security [SK10]. FOSD arose as paradigm for construction,
customization and synthesis of large-scale software systems, where the concept of
feature serves to describe the commonalities and variabilities of software systems,
covering all the development steps. However, it is not clear how both aspects and
features written by others will improve program understanding, especially in the
long term. Despite some studies [ASFF11] [FKAL09], more empirical work is needed
to validate the assumed benefits of these paradigms [AKT07].

• Improved software engineering practices. The more informed processes that
are used for developing software today will hopefully lead to software that is easier
to comprehend in the future. Component-based software systems are currently
being designed using familiar design patterns [GHJV95] [BMR+96] and other conven-
tions [OMG11] [OMG]. Development processes are more lightweight (agile [BBvB+]),
self-aware (more metrics are collected [McA00]) and self-improving (retrospectives
[DL06]). Future software may have traceability links to requirements and improved
documentation such as formal program specifications [BLS05]. Also, future software
may have autonomic properties [Fua07], where the software self-heals [HOB05] and
adapts as its environment changes – thus in some cases reducing time spent on
maintenance.

• Diverse sources of information. The program comprehension community, until
quite recently, mostly focused on how static and dynamic analysis of source code, in
conjunction with documentation, could facilitate program comprehension. Modern
software integrated development environments, such as the Eclipse Java development
environment [Ecl11], NetBeans [Net], or Visual Studio [Cord], also manage other

24 program comprehension

kinds of information such as bug tracking, test cases, and version control. This
information, combined with human activity information such as emails, instant
messages and relevant social networking data, will be more readily available to
support analysis in program comprehension. Domain information should also be more
accessible due to model-driven development [AK03] and the semantic web [BLHL01].

2.2.3 Task characteristics

Studies related to the impact the task at hand has on program comprehension are focused,
primarily, on interaction history (whether empirically [KM05] [DKCR05] or with analysis
tools [RL07] [SG07]) and performing change or maintenance tasks [KMCA06] [MVS09].
The overall conclusions confirm the impact each type of task have on comprehension [YR11],
and provide guidelines for requirements that assisting tools (further explored in section
2.3.2, p.29) might have to cover, in order to mitigate this impact:

• Development environments should provide visualization tools that aid in the task
process. Without prescribing a workflow, the IDE should present the user with
the information necessary to facilitate the task operation, e.g., a program trace, if
debugging, or a structured-like visualization of the components or files when editing
or navigating.

• Usage patterns (editing, navigating, searching) have been identified and should be
supported (whether through documentation or tools) [ZGH07].

• Task shifting should be supported. Users tend to shift between related tasks which
share similar contexts, as a strategy for a more speedier conclusion of tasks [KM05].

Future research tends to focus mainly on how users cope with tasks in emerging visualization
technologies and how that impacts comprehension and effective task completion.

2.2.4 Programmer characteristics

There are many individual characteristics [PJ05] [Ben05] that will impact how a pro-
grammer tackles a comprehension task. These differences also impact the requirements
for a supporting tool. There is a huge disparity in programmer ability and creativity,
which cannot be measured simply by their experience. The entire environment behind the
comprehension task affects the programmer, where the task complexity, available tools
and time pressure are constraining factors. The way a programmer tackles with each of
these issues, depends not only on experience, but also on personality, state of mind and
motivation.

program, task and programmers 25

In her work, Vessey [Ves85] presents an exploratory study to investigate expert and
novice’s debugging processes. She classified programmers as expert or novice based on
their ability to chunk effectively. She notes that experts used breadth-first approaches and
at the same time were able to adopt a system view of the problem area, whereas novices
used breadth-first and depth-first approaches but were unable to think in system terms.

Détienne [Dét01] also notes that experts make more use of external devices as memory
aids. Experts tend to reason about programs according to both functional and object-
oriented relationships and consider the algorithm, whereas novices tend to focus on objects.

2.2.5 Programmer trends

As with everything else, programmers also adapt and evolve, trying to keep up with the
paradigm shifts and the new trends in their development environment [Sto05]. Relevant
trends are:

• Program comprehension everywhere. The need to use computers and software
is present in our daily life. Programming, and hence program comprehension,
is no longer a niche activity. Scientists and knowledge workers have to use and
customise software to help them do science or other work. Scientists from diverse
fields (medicine, astronomy, economics, etc.), are using and developing sophisticated
software without a formal education in computer science. Consequently, there is a
need for techniques to assist in non-expert and end-user program comprehension.
Fortunately, there is much work on this area, especially at conferences such as
Visual Languages [VLH11] and the PPIG [PPI11] group, where they investigate how
comprehension can be improved through tool support for spreadsheet and other end
user applications.

• Sophisticated users. Currently, advanced visual interfaces are not often used in
development environments. A large concern by many tool designers is that these
advanced visual interfaces require complex user interactions. However, tomorrow’s
programmers will be more familiar with game software, multitouch technologies and
other media that displays information rapidly and requires sophisticated user controls.
Consequently, the next generation of users will have more skill at interpreting
information presented visually and at manipulating and learning how to use complex
controls.

• Globally distributed teams. Advances in communication technologies have
enabled globally distributed collaborations in software development. Distributed
open source development is having an impact on industry. Some notable examples

26 program comprehension

are Linux and Eclipse. Some research has been conducted studying collaborative
processes in open-source projects [MFH02] [GRS04], but more research is needed to
study how distributed collaborations impact comprehension.

2.3 Tools for program comprehension
Understanding a software program is often a difficult process because of missing, in-
consistent, or even too much information. The source code often becomes the only
knowledge source on how the system works. The field of program comprehension research
has resulted in many diverse tools to assist in program comprehension [SS00]. When
developing such tools, experts bring knowledge from other fields of research as Software
Visualisation [Sof11] and Reverse Engineering [WCR11] as means to cover the researched
requirements § 2.3.2 (p. 29). This section provides insight over the studies made to improve
tool development to assist on program comprehension.

2.3.1 Tool requirements studies

Which features should an ideal tool have to efficiently support program comprehension?
Needless to say that these tools will only play a supporting role to other software engineering
tasks, such as design, development, maintenance, and (re)documentation.

There are mainly two ways of conducting studies to discover effective features to
support program comprehension: (1) an empirical approach by observing programmers
trying to understand programs [PSK07] and (2) an approach based on personal experience
and intuition. Given the variability in comprehension settings, both approaches contribute
to answering this complex question. As such, several studies already conducted by several
authors revealed a number of tool requirements, as follows.

Biggerstaff

Biggerstaff [BMW93] notes that one of the main difficulties in understanding comes from
mapping what is in the code to the software requirements – he terms this the concept
“assignment problem”. Although automated techniques can help locate programming
concepts and features, it is challenging to automatically detect human oriented concepts.
The user may need to indicate a starting point and then use slicing techniques to find a
related code. It may also be possible for an intelligent agent (that has domain knowledge)
to scan the code and search for candidate starting points. From his research prototypes,
he found that queries, graphical views and hypertext were important tool features.

tools for program comprehension 27

Maryhauser and Vans

Von Maryhauser and Vans [vMV93], from their research on the Integrated Metamodel,
made an explicit recommendation for tool support for reverse engineering. They determined
basic information needs according to cognitive tasks and suggested the following tool
capabilities to meet those needs:

• Top-down model: online documents with keyword search across documents; pruning
of call tree based on specific categories; smart differencing features; history of browsed
locations; and entity fan-in.

• Situation model: provide a complete list of domain sources including non-code related
sources; and visual representation of major domain functions.

• Program model: Pop-up declarations; online cross-reference reports and function
count.

Singer and Lethbridge

Singer and Lethbridge [SLVA97] also observed the work practices of software engineers.
They explored the activities of a single engineer, a group of engineers, and considered
company-wide tool usage statistics. Their study led to the requirements for a tool that
was implemented and successfully adopted by the company. Specifically they suggested
tool features to support “just-in-time comprehension of source-code”. They noted that
engineers, after working on a specific part of the program, quickly forget details when they
move to a new location. This forces them to rediscover information at a later time. They
suggest that tools need the following features to support rediscovery:

• Search capabilities so that the user can search for code artifacts by name or by
pattern matching.

• Capabilities to display all relevant attributes of the items retrieved as well as
relationships among items.

• Features to keep track of searches and problem-solving sessions, to support the
navigation of a persistent history.

Erdös and Sneed

Erdös and Sneed [ES98] designed a tool to support maintenance following many years
of experience in the maintenance and reengineering industry. They proposed that the
following seven questions needed to be answered, for a programmer to maintain a program
that is only partially understood:

28 program comprehension

• Where is a particular subroutine/procedure invoked?

• What are the arguments and results of a function?

• How does control flow reach a particular location?

• Where is a particular variable set, used or queried?

• Where is a particular variable declared?

• Where is a particular data object accessed?

• What are the inputs and outputs of a module?

Murray and Lethbridge

Murray and Lethbridge [ML05] observed software professionals using a mixed approach,
combining elements from specific methods used in software engineering empirical research
and a sociological qualitative research called “ground theory”. From this approach, they
were able to develop the basis for a theory of the ways people think when explaining and
comprehending software, which they called “cognitive patterns”. These patterns can then
be applied to further empirical observatory studies as a roadmap to capture programmer
behavior.

Zayour

Zayour [ZL00] proposes a methodology for assessing cognitive requirements and adoption
success for reverse engineering tools, from which he concludes five main rules of thumb:

• A clear and realistic definition of the problem space to be targeted is a must.

• Direct observation of the targeted user is required to form a realistic perception of
users problems and tasks.

• Tool designers should document their perception of the user’s problems and tasks.

• When determining the success of a tool, cognitive load is a more important indicator
to measure than elapsed time (because it affects adoptability more).

• Design should be aimed at satisfying cognitive requirements and thus should be
guided by cognitive principles.

tools for program comprehension 29

Work by other authors included recall tests to evaluate the ability to answer questions
regarding a piece of code programmers studied for a limited period of time [Pen87].
Subjective ratings [Shn77] have been used to measure different levels of comprehension.
Additionally, other studies may ask subjects to label or group different code members
based on the similarity of their functionalities [Ris86]. Soloway and Erlich [SE84] asked
programmers to fill blank lines and complete unfinished programs on paper in an unfamiliar
source code without providing specifications about the program’s use or functionality.
Similarly, Bertholf et al. [BS93] asked novice developers to complete incomplete literal
programs on paper. Additional techniques to measure program comprehension involved
completing incomplete call graphs, modifying existing code, report a bug, or separate
source code from two different algorithms [Shn77]. Other studies were conducted and were
already referred to in § 2.2.3 (p. 24).

2.3.2 Tool requirements

From the studies presented and derived from cognitive theories, Storey [Sto05] extracted
and synthesized several tool requirements that still guide tool researchers today:

• Browsing support. The top-down process requires browsing from high-level
abstractions or concepts to lower-level details, taking advantage of beacons in the
code; bottom-up comprehension requires following control-flow and data-flow links,
both novices and experts can benefit from tools that support breadth-first and
depth-first browsing; and the Integrated Metamodel suggests that switching between
top-down and bottom-up browsing should be supported. Flexible browsing support
also will help to offset the challenges from delocalised plans.

• Searching. Tool support is needed when looking for code snippets by analogy and
for iterative searching. Also inquiry episodes should be supported by allowing the
programmer to query on the role of a variable, function, etc.

• Multiple views. Programming environments should provide different ways of
visualising programs. One view could show the message call graph providing insight
into the programming plans, while another view could show a representation of the
classes and relationship between them as an object-centric or data-centric view of the
program. These orthogonal views, if easily accessible, can facilitate comprehension,
especially when combined.

• Context-driven views. The size of the program and other program metrics will
influence which view is the preferred one to show a programmer browsing the code
for the first time. For example, in an object-oriented program, it is usually preferable

30 program comprehension

to show the inheritance hierarchy as the initial view. However, if the inheritance
hierarchy is flat, it may be more appropriate to show a call graph as the default
view.

• Additional cognitive support. Experts need external devices and scratchpads
to support their cognitive tasks, whereas novices need pedagogical support to help
them access information about the programming language and the corresponding
domain.

These requirements serves as basis for assessment of features in existing and future
tools [SCG05] [GCS05]. Existing IDEs such as Eclipse, NetBeans or Visual Studio cover
many of these features, but researchers keep pushing the envelope to improve the existing
tools even further and coming up with new approaches as new needs arise and paradigms
shift.

2.3.3 Tool development

Programming comprehension tools can be roughly grouped into three categories, according
to function [SD96]:

• Extraction tools include parsers and data gathering tools.

• Analysis tools do static and dynamic analysis to support activities such as clustering,
concept assignment, feature identification, transformations, domain analysis, slicing
and metrics calculation.

• Presentation tools include code editors, browsers, hypertext and visualisations.
They are strongly linked to research in software visualisation.

Integrated software development (IDEs) and reverse engineering environments will
usually have some features from each category. The set of features they support is usually
determined by the purpose for the resulting tool or by the focus of the research. As such,
these three categories can be fully incorporated into two major research areas: Software
Visualisation (presentation tools) and Reverse Engineering (extraction and analysis tools),
briefly presented next.

Software visualisation tools

Software visualisation tools and browsing tools provide information that is useful for
program understanding. These tools use graphical and textual representations for the
navigation, analysis and presentation of software information to increase understanding.

tools for program comprehension 31

Mixed results have been reported through the literature on the role of text and graphics
for program comprehension. While Green and Petre [GP92] observed that text was faster
than graphics for experimental program comprehension tasks, Scanlan [Sca89] reported
an improvement using graphical visualisations when comparing textual algorithms and
structured flowcharts. Petre [PBT97] attributes the difficulty in understanding program
visualisations to the fact that graphical representations have fewer navigational cues,
namely secondary notations, when compared to program text: source code implies a serial
inspection strategy. Moreover, she observed that experienced readers tend to use parallel
textual and graphical information whenever available to assist their comprehension process:
they use text as a main source to guide their understanding of graphical representation.

Several software visualisation tools show animations to teach widely used algorithms
and data structures [M.H91] [SBdL92] [SFC94]. Another class of tools shows dynamic
execution of programs for debugging, profiling and for understanding run-time behaviour
[ISO87] [RCWP91]. Other software visualisation tools mainly focus on showing textual
representations, some of which may be pretty printed to increase understanding [ea95]
[HIBK97], use hypertext in an effort to improve navigability [PBT97] and annotations to
communicate semantics [OH03]. Other approaches filter source code presentation, showing
delocalised, related pieces of code in a bind, fluid manner [DSE06].

Many tools present relevant information in the form of a graph where nodes represent
software objects and arcs show the relations between the objects. This method is used by
PECAN [Pen87], Rigi [MK88], VIFOR [RDL90], Whorf [BGS92], CARE [LAD+94], Hy+
[MS95], Imagix4D [Corb] and GSEE [Fav01]. Other tools use additional pretty printing
techniques or other diagrams to show structures or information about the software. For
example, the GRASP tool uses a control structure diagram to display control constructs,
control paths and the overall structure of programming units [SFM97]. More extensive
surveys and analysis on these kind of tools can be found at [BK01] and [Pac05].

Reverse engineering tools

Reverse Engineering focuses on how to extract relevant knowledge from source code and
present it in a way that facilitates comprehension. Several studies conducted in the past
have proposed solutions on how to overcome caveats in the program comprehension process.
As seen in § 2.3.1 (p. 26), Maryhauser and Vans [vMV93], Singer and Lethbridge [SLVA97],
Zayour [ZL00], and others, have given their insight on how to address tool development
for reverse engineering of useful information to assist on program understanding. Wong
[Won00] also discusses reverse engineering tool features. He specifically mentions the
benefits of using a “notebook” to support ongoing comprehension.

Usually, the reverse engineering tools and techniques associated to program compre-

32 program comprehension

hension are bundled into broader development environments where other types of tools
also co-exist.

It is possible to examine each of these environments and to recover the motivation for
the features they provide by tracing back to the cognitive theories. For example, the Rigi
system [MK88] has support for multiple views, cross-referencing, and queries to support
bottom-up comprehension. The Reflection tool [MNS95] has support for the top-down
approach through hypothesis generation and verification. The Bauhaus tool [TKS01]
has features to support clustering (identification of components) and concept analysis.
The SHriMP tool [Sto03] provides navigation support for the Integrated Metamodel, i.e,
frequent switching between strategies. And the Codecrawler tool [LD01] uses visualisation
of metrics to support understanding of an unfamiliar system and to identify bottlenecks
and other architectural features. A more extensive survey of tools that use dynamic
analysis for program comprehension can be found at [CZvD+09].

All these tools combine reverse engineering tasks with software visualisation techniques
to improve program comprehension on different levels of abstraction, gathering information
recovered or simply mined together into user-friendly viewed chunks of valuable data for
the programmer. Similarly to that stated in § 2.3.2 (p. 29), most of these techniques have
been adopted and assimilated into popular IDEs, where the developers can configure their
own programming environment and tailor it to their comprehension needs.

2.3.4 Tool trends

The forthcoming breakthroughs in tool technology seem promising as research and evalu-
ation methods and theories become more relevant to end-users doing programming-like
tasks. Therefore, directions in tool evolution appear to follow several guidelines presented
next [Sto05].

• Faster tooling and integration. The use of frameworks as an underlying technol-
ogy for software tools is leading to faster tool innovations, as less time needs to be
spent reinventing the wheel. A prime example of how frameworks can improve tool
development is the Eclipse platform [Ecl11]. Eclipse was specifically designed with
the goal of creating reusable components, which would be shared across different
tools. Given a suite of tools that all plug in to the same framework, together with a
standard exchange format (such as GXL), researchers will be able to more easily try
different combinations of tools to meet their research needs. This should result in
increased collaborations and more relevant research results. Such integrations will
lead to fewer disruptions for programmers and improve accessibility to repositories
of information related to the software. These include code, documentation, analysis
results, domain information and human activity information.

tools for program comprehension 33

• Recommenders and search. Recommender systems are being proposed to guide
navigation in software spaces. Examples of such systems include Mylar [KM05]
and NavTracks [SES05]. Mylar, (now called MyLyn, and bundled with the Eclipse
Platform) uses a degree of interest model to filter non-relevant files from the file
explorer and other views in Eclipse. NavTracks provides recommendations of which
files are related to the currently selected files. Deline et al. also discuss a system
to improve navigation [DKCR05]. Wiemer et al. improve code recommendation
through collaborative filtering [WKB09].The FEAT tool suggests using concern
graphs (explicitly created by the programmer) to improve navigation efficiency
and enhance comprehension [RM03]. Search technologies, such as Google and
most specifically Codase [Cod], show much promise at improving search for relevant
components, code snippets and related code. The Hipikat tool [CMSB05] recommends
relevant software artifacts based on the developer’s current project context and
development history. The Prospector system recommends relevant code snippets
[MC94]. It combines a search engine with the content assist in Eclipse to help
programmers use complex APIs. All this work shows much promise and it is
expected to improve navigation in large systems while reducing the barriers to reuse
components from large libraries.

• Adaptive Interfaces. Software tools typically have many features, which may be
overwhelming not only for novice users, but also for expert users. This information
overload could be reduced through the use of adaptive interfaces. The idea is
that the user interface can be tailored automatically, i.e., will self-adapt, to suit
different kinds of users and tasks. Adaptive interfaces are now common in Windows
applications such as Word. Eclipse has several novice views (such as Gild [Sto03]
and Penumbra [Pen]) and Visual Studio has the Express configuration for new users.
However, neither of these mainstream tools currently have the ability to adapt nor
even to be easily manually adapted to the continuum of novice to expert users, in
the sense of seamlessly accompanying the user experience progression.

• Visualisations. As already seen in § 2.3.3 (p. 30), these have been subject of
much research over the past years. Many visualisations, and in particular graph-
based visualisations, have been proposed to support comprehensions tasks. Other
examples include Seesoft [BE96], Bloom [Rei01], Landscape views [Pen92], and
sv3D [MFM03]. Graph visualisation is used in many advanced commercial tools
such as Klocwork [Klo], Imagix4D [Ima] and Together [Tog11]. UML diagrams are
also commonplace in mainstream development tools [Ent] [Ecl]. 3D visualisations
are also being explored in tools such as CodeCity [WL07]. One challenge with

34 program comprehension

visualising software is scale and knowing at what level of abstraction details should
be shown, as well as selecting which view to show. Gaucho [OLDR11] allows
the programmer to manipulate code as depictions of object-oriented constructs,
instead of just plain text. More details about the user’s task combined with metrics
describing the program’s characteristics (such as inheritance depth) will improve
how visualisations are currently presented to the user. A recommender system could
suggest relevant views as a starting point. Bull proposes the notion of model-driven
visualisation [BS05]. He suggests creating a tool for tool designers and expert users
that recommends useful views based on characteristics of the model and the data.

• Collaborative support. As software teams increase in size and become more
distributed, collaborative tools to support distributed software development activities
are more crucial. In research, there are several collaborative software engineering
tools being developed such as Jazz and Augur [HCRP04] [FD04]. There are also
some collaborative software engineering tools deployed in the industry, such as
CollabNet [Col], Alfresco [Alf], or Jira [Jir], but they tend to have simple tool
features to support communication and collaboration, such as version control, email
and instant messaging. Current industrial tools lack more advanced collaborative
features such as shared editors [Sub], and research falls short on providing empirical
work to improve these tools. Another area for research that may prove useful is
the use of large screen displays to support co-located comprehension. O’Reilly et
al. [OBM05] propose a war room command console to share visualisations for team
coordination. Guzzi et al. [GHL+11] propose collective code bookmarks, as a
non-intrusive bookmarking tool that facilitates knowledge sharing. There are other
research ideas in the CSCW field that could be applied to program comprehension,
and which overview can be read in Chapter 4 (p. 53).

• Domain and pedagogical support. The need to support domain experts that
lack formal computer science training will necessarily result in more domain-specific
languages and tools. Non-experts will also need more cognitive scaffolding to help
them learn new tools, languages and domains more rapidly. Pedagogical support,
such as providing examples by analogy, will likely be an integral part of the future
software tools. Technologies such as TXL [CDMS02] can play a role in helping a
user see examples of how code constructs in one language would appear in a new
language.

summary 35

2.4 Summary
Program comprehension may come in many ways. Research shows us that understanding
a program relies on a model or process (top-down, bottom-up, systematic, opportunistic,
etc.). This process is chosen or tailored according to three aspects: the programmer,
with its specific characteristics (experience, personal skills, etc.); the program, how it is
presented and how it is structured (object-oriented, functional, aspect-oriented, modular,
etc.); and the task at hand (reuse, maintenance, evolution, etc). The future trends predict
a generalised, sophisticated and distributed comprehension of programs, relying on new
media and the ongoing expansion of the information highways. Program comprehension is
becoming global and collaborative.

Tools try to support the cognitive processes using several approaches. Whether through
reverse engineering or software visualisation techniques, tools provide features that assist
the developer in the understanding process that was chosen. Tools can be categorised in
three major groups of features: extraction, analysis and presentation. One major concern
that tools try to uphold is its flexibility to incorporate several comprehension strategies.
This way, the developer can adapt the tool to her cognitive requirements. Tools are
evolving to incorporate new paradigms and technologies and emphasising pedagogical
concerns and a more effective knowledge transfer.

36 program comprehension

Chapter 3

Framework understanding

3.1 Studies on framework understanding 38
3.2 Tools and techniques for framework understanding 43
3.3 Trends . 49
3.4 Summary . 50

Program comprehension covers a wide range of sub-areas when it comes to comprehend
programs. By programs, we mean software artifacts: constructs built upon source-code.
A framework can be considered one of such artifacts and, due to its importance and
growing adhesion by the software community, became a relevant research topic1. This
topic deals with the issues behind using, implementing and evolving a framework, and the
understanding and learning required to do so.

Object-oriented frameworks are a powerful form of reuse but they can be difficult to
understand and reuse correctly. They are promoted as having the potential to provide the
benefits of large-scale reuse [GHJV95] [BMR+96] [FSJ99]. While practical evidence does
suggest that framework usage can increase reusability and decrease development effort
[MN96], experience has identified a number of issues that hinder framework application
and limit potential benefits [BMMB99]. One of the major challenges is effective framework
understanding – a specialised kind of program comprehension.

Over the past twenty years, a large range of candidate documentation techniques has
been proposed to support framework understanding, including design patterns [GHJV95],
pattern languages [Joh92], cookbooks [KP88], hooks [FHLS97], exemplars [GM95] and
minimalist documentation [Agu03].

Still, there was a lack of insight into problems that limit the comprehension and reuse
of software frameworks. There was no true awareness of the impact these techniques
1 As the, henceforth, referred literature will show.

38 framework understanding

had on framework understanding. As such, a few studies were conducted and its results
identified some concerns and basis for future research. The next section will briefly address
some of these studies, and, afterwards, present a brief review of some existing tools and
approaches to aid in framework understanding and reuse. An overall depiction of the main
issues behind framework understanding is shown in Figure 3.1.

Framework Understanding

Cognition Tools

Example-based
Hierarchy--based

Schull et al. Kirk et al.

Mapping
Understanding architecture
Understanding functionality
Understanding interactions

concerns

Methods

Design
Documentation

cookbooks & recipes pattern languages

Design patterns
Metapatterns
Hooks

notations &
formal languages

design artifacts

How do programmers
understand frameworks?

Which tools should
be there to assist?

Architectural primitives
Design fragments

UML-F
FCL

Standards

FSML

Active cookbooks
Smartbooks Specialization patterns

Automated instantiation
Hou et al.

Doc-driven understanding
Peer-assistance (forums)
Functionality-driven learning

Figure 3.1: Overview of the framework understanding research topic.

3.1 Studies on framework understanding
There is a considerable amount of literature about frameworks, but it scarcely deals with
the identification of reuse problems or evaluation of strategies to support and assist the
framework actor (user, developer, evolver). There are tools that address topics under the
realm of framework building, design recovery and documentation, and only a few deal
specifically with framework instantiation. Overall, there is not a clear emphasis or study
of the overall symptoms and problems behind ineffective framework reuse. Nevertheless, a
few studies can be found that deal with these issues.

Johnson

In [Joh97], Jonhson identified three important areas for framework documentation to
address: purpose, how to use, and design. He argued that the purpose of the framework

studies on framework understanding 39

and its constituent parts should be communicated so that developers may select the correct
parts for a task. While knowledge of how those parts are expected to operate allows them
to be employed correctly, a description of the underlying design provides developers with
an understanding of how to adapt and extend the framework in a manner consistent with
the existing structure.

Fayad and Schmidt

In [FSJ99], the authors claimed that different alternatives could improve framework
understandability:

• Refining the framework’s internal design.

• Using methods that can ensure a successful development and usage of frameworks.

• Adhering to standards for framework development, adaptation, and integration.

• Producing comprehensible framework documentation.

These guidelines are mainly preventive and don’t focus on the issue of reusability, posing
merely as general advices. Nevertheless, they can be relevant as rules of thumb for
framework development and maintenance.

Butler, Keller and Milli

In [BKM00], the authors described a taxonomy of framework documentation primitives
that appear to address reusability issues. They described six primitives, which emphasise
the need for information about class interfaces and communication protocols between
classes.

Schull et al.

In [SLB00], Schull et al. presented an evaluation of the role that examples play in framework
reuse. Their study compared two approaches to framework reading and, eventually, its
documentation: example-based approach and hierarchical-based approach. Their results
suggested that examples are an effective learning strategy, especially for those beginning
to learn a framework. They also identified potential problems with an example-based
approach: finding the small pieces of required functionality in larger examples; inconsistent
organisation and structure of examples; and lack of design choice rationale in example
documentation. They also discussed the possibility that developers become too reliant on
examples and do not understand the system at a sufficient level of detail, as to implement
it effectively from scratch, if necessary.

40 framework understanding

Morisio et al.

In [MRS02], Morisio et al. conducted an empirical study in an industrial context on
the production of software using a framework. The objective was to investigate quality
and productivity issues and the effect of learning in framework-based object-oriented
development. They observed higher quality and productivity levels in framework-based
applications, due to "a learning effect, or the improved skill of the programmer in performing
a task, due to repetition of the task over time". Recognising that learning takes a great deal
of time, they distinguished two types of learning: operational, that deals with speeding
up repetitive operations and conceptual, that regards acquiring high-level knowledge.
Framework user’s tend to engage more on the ladder, when compared to non-framework
software development. This consumes more time, but the end result is a more proficient
developer.

Kirk et al.

In [KRW05], Kirk et al. conducted a research, through observation of both novice and
experienced users, where they identified four fundamental problems of framework reuse:

• Mapping identifies the problem on translating an abstract, conceptual solution into a
concrete implementation, which reuses the existing structures within the framework.
Such problems were often expressed as “what should I use to represent...?” or “How
do I express...?”

• Understanding functionality describes problems understanding what specific parts of
the framework actually do. Manifestations of this problem included “How does ...
work?”, “Where ... does happen?” or “Where is ... defined/created/called?”

• Understanding interactions focuses on problems concerning the communication
between classes in the framework (“What happen if ...?” or “Where should I put
...?”). Such problems are significant because of hidden or subtle dependencies within
the framework that may cause failures to occur elsewhere as the result of a wrongly
positioned modification.

• Understanding the framework architecture is the problem of making modifications
without giving appropriate consideration to the high-level architectural qualities of
the framework. Such alterations might have no short-term effects but ultimately
lead to the framework losing its flexibility.

From these problems, the authors experimented applying two known solutions they
deemed the most suited to address these issues: pattern languages and micro-architectures.

studies on framework understanding 41

Their results showed that the pattern language provided some support for mapping
problems, particularly for those with no experience of the framework, by introducing key
framework concepts and providing examples of framework use. However, it was clear that
previous experience dominated the explicit use of the pattern language, as well as being an
inhibitor to other forms of documentation as its immediacy often precludes consideration
of alternative solutions.

Although the micro-architectures, used to help develop an understanding of the key
interactions within the framework, seemed relatively ineffective, it was the authors’ belief
that documentation of this kind is necessary to address these problems in particular.

Studies by Hou

Several studies have been led by Daqing Hou, regarding framework usage and understand-
ing.

In [HWH05], Hou, Wong and Hoover collected and analysed a sample of 300 newsgroup
questions about the Java Swing framework, looking for key insights that might improve a
framework’s design, its tutorials, and programming practice. The main goal was, in the
future, to guide the framework developers in addressing poorly design or badly documented
features or problematic programmer practice. Issues regarding design, documentation and
people were identified:

• Design. Tightly coupled variation points, delocalised concerns, confusing inherited
features and excessive special cases were identified flaws in framework design.

• Documentation. Despite finding some documentation caveats, the authors claim
that "[In terms of comprehending software frameworks]...doc-driven understanding is
more efficient than reverse engineering from source code. Source code should be the
last resort for a programmer to consult; [...] [it] is just too expensive, and needlessly
increases the cost of using a framework."

• People. Forums2, in general, proved to be a good communication media for debugging,
learning about platform bugs and discussing design issues. Moreover, they took on
an educational role, informing programmers that certain tasks required a serious
effort at obtaining a deeper level of understanding of the framework, and not just
quick answering with a solution.

While aiming at helping framework developers and technical writers to uncover and
distill common problems, the study also unveiled issues regarding framework learning and
2 or fora, plural of the latin word forum. In plain English the used form is preferred.

42 framework understanding

understanding: Novice learners rely on the existing documentation first, make a shallow
study using available examples and, in distress, ask for help (forum).

In [Hou08], Hou investigates the effects framework design knowledge [Joh97] has on
example-based framework learning [SLB00]. He studies the effectiveness of framework
learning by augmenting example-based learning with up-front framework design instruction.
Some3 of his conclusions were:

• Previously instructed learners (on the framework design) exhibited stronger ability
in correctly adapting example solutions.

• Initially, novice learners appeared to focus on learning functional aspects of the
framework than non-functional aspects.

• A conservative reuse strategy (strictly cover the requirements) helps novice learners
focus on gaining a comprehensive understanding of the example (used to learn the
framework) rather than being distracted by “nice” features.

In sum, spending some time (up-front) learning about the design of the framework is
beneficial to a more effective framework reuse, impacting on the application of examples,
that should be functionality-driven.

In [HL11], Hou and Li revisit the newsgroups discussions about the Java Swing frame-
work, this time, focusing on API-specific issues. Being APIs different4 from frameworks,
the authors focused mainly in API reuse issues and derived their results into future tool
requirements:

• Better communication. Many novices were not able to ask the proper questions in
natural language, whether using source-code excerpts to demonstrate their problem
proved much efficient.

• Better semantic search. Word-based context-free search engines render too much
irrelevant information, if the learner doesn’t know how to perform the right query.
Retrieval should be more context-oriented and include improved semantics.

• Improved tracking of intermediate results. When searching for web-based solutions,
examples spawned several pages and learners had to spent time organising their
knowledge and keeping track of their own reasoning.

3 Deemed relevant for the scope of this dissertation.
4 Simplistically, the main difference between a framework and an API, is that a framework controls the
execution flow and provides extension points (hooks), whether the API can be just a set of utility
classes.

tools and techniques for framework understanding 43

• IDE-integration. Tools should be close to the developing code, serving as quick
helpers and being aware of the task of the learners as to provide context-oriented
knowledge and advice, whether automatically or on-demand.

All of the issues uncovered by these studies and referred in this section are summarised
and depicted in the left side of Figure 3.1.

3.2 Tools and techniques for framework understanding
As for program comprehension tools § 2.3 (p. 26), the same line of thinking applies for
framework understanding tools. Both subjects share the same problems and trends, yet
some framework specific issues may be addressed when devising aids to framework learning
and understanding.

The past and present research in this topic focuses on issues that range from uncovering
design artifacts to representing processes and behaviours that might help using the frame-
work. Mostly, the proposals converge to producing and enhancing existing documentation
with adequate information that can be mined (design recovery) and represented using
different formats (recipes, cookbooks), languages (patterns, beacons, idioms) and notations
(textual, graphical, UML, formal languages, etc.). Next, a brief summary of these proposals
is presented. The categorisation used emerged from its most relevant technique, yet several
use mixed approaches, combining varied techniques to optimise their results.

3.2.1 Cookbooks and recipes

Humans are good at following step-by-step instructions if the results are guaranteed.
In reusing and instantiating a framework, researchers introduced this prescriptive form
(a metaphor borrowed from the cooking domain) through cookbooks and recipes, as an
attempt to improve instantiation effectiveness.

Cookbooks

Confronting the challenge of communicating how to use the Model-View-Controller frame-
work in Smalltalk-80, Krasner and Pope [KP88] built an 18-page cookbook that explained
the purpose, structure, and implementation of the MVC framework. This cookbook was
designed to be read from beginning to end by programmers and could also be used as a
reference, but every recipe did not follow a consistent structure nor was it suitable for
parsing by automatic tools.

Pree et al. provide a semi-automated tool to assist on framework instantiation, called
active cookbooks [Pre95] [SSP95]. It enabled the user to enact recipe descriptions, providing

44 framework understanding

an interactive interface that would guide her through the instantiation process. Although
being good at providing step-by-step directions, the tool had little flexibility to cope with
variations. Either the user had to follow recipes to the last detail, or not use them at all.

Smarter cookbooks

In [OC99], Ortigosa et al. proposed an improvement over the active cookbook, extending
it with combination of the concept of user-tasks modelling and least commitment planning
methods (Smartbooks). It extends traditional framework documentation with instantiation
rules describing the necessary tasks to be executed in order to specialise the framework.
Using these rules, a tool can be used to generate a sequence of tasks that guide the
application developer through the framework specialisation process. SmartBooks provide
a rule-based, feature-driven, and functionality-oriented system.

The FRamework EDitor / JavaFrames project [MHK+01] [IK02] [JK02] has developed
a language for modelling design patterns and tools that act as smarter cookbooks, guiding
programmers step-by-step to use a framework. As opposed to Smartbooks, this approach
was pattern-based, architecture-driven, and more implementation-oriented. With the 2.0
release of JavaFrames, many of these tools work within the Eclipse IDE. Their language
allows expression of structural constraints and the tool can check their conformance. Code
can be generated that conforms to the patterns definition, optionally including default
implementations of method bodies. Specific patterns can be related to general patterns:
for example, a specific use of the Observer [GHJV95] pattern in a particular framework
can be connected to its general definition.

Due to its prescriptive nature, cookbooks are prone to automation and reliable when
coping with common, very specific, well-defined, well-constrained requirements. Neverthe-
less, they need to provide flexibility and variation through incompleteness, so that the
developer can customise the framework to its own specific needs.

3.2.2 Design artifacts

A major concern in framework learning is the effective communication of design knowledge
as a building block for understanding the internals of the framework. These communication
vessels or artifacts can be initially present in the documentation, or tools can aid in the
recovery of these elements.

Patterns

Ralph Johnson seems to be the first to suggest documenting frameworks using patterns
[Joh92]. He noted that the typical user of framework documentation wants to use the

tools and techniques for framework understanding 45

framework to solve typical problems, but that cookbooks do not help the most advanced
users [Joh97]. Patterns can be used both to describe a framework’s design as well as how
it is commonly used. He argued that the framework documentation should describe the
purpose of the framework, how to use it, and its detailed design. After presenting some
graduate students with his initial set of patterns for HotDraw [Bra95], he realised that a
pattern isolated from examples is hard to comprehend.

Bruch et al. [BSM06] proposed the use of data mining techniques to extract reuse
patterns from existing framework instantiations. Based on these patterns, suggestions about
other relevant parts of the framework are presented to novice users in a context-dependent
manner. They built FrUiT, an Eclipse plug-in that implements the approach and, yet
at an early stage, already presents several benefits: relying on expert-written framework
instantiations, there is no need to create special artifacts such as documentation or code
snippets; using data mining, significant reuse rules are extracted, only concerning how
to use the framework; and the tool makes automatic context search, relieving developers
from explicitly searching for rules.

Hooks

Froehlich et al.’s hooks [FHLS97] focus on documenting the way a framework is used,
not the design of the framework. They are similar in intent to cookbook recipes but are
more structured in their natural language. The elements listed are: name, requirement,
type, area, uses, participants, changes, constraints, and comments. The instructions for
framework users (the changes section) read a bit like pseudo code but are natural languages
and do not appear to be parsable by tools.

Metapatterns

Design patterns themselves can be decomposed into more high-level elements [Pre94].
Pree called these elements metapatterns and catalogued several of them with example
usage. He proposed a simple process for developing frameworks where identified points
of variability are implemented with an appropriate metapattern, enabling the framework
user to provide an appropriate implementation.

From the declarative metaprogramming group from Vrije University, Tourwé and Mens
[Tou02] [TM04] used Pree’s metapatterns to document framework hotspots5 and defined
transformations for each framework and design patterns. Framework instances can be
evolved (or created) by application of the transformations. The tool uses SOUL, a prolog-
like logic language. The validation was done on the HotDraw framework by specifying the
5 Areas of flexibility, where the framework can be configured, or code inserted, to develop the intended
application.

46 framework understanding

metapatterns, patterns and transformations needed. The validation uncovered design flaws
in HotDraw, despite its widespread use, along with some false positives. The declarative
metaprogramming approach to modelling framework hotspots appears to have significant
up-front investment before paying off, in order to provide its guarantees about a correct
use of the framework. It may additionally assume a higher level of accuracy or correctness
in frameworks than will commonly be found in practice. The authors commented that
their approach specifically avoids design patterns in favour of metapatterns because there
could be many design patterns. While this makes their technique generally applicable and
composable, it will be difficult to add pattern-specific semantics and behaviour checking
to their approach.

JFREEDOM [NA05] is a design recovery tool that discovers metapatterns in a frame-
work or software system. It relies on Tourwe’s formal definition of metapatterns and uses
JQuery [Vol06], a logic inference-engine for Eclipse, to search the code for instances of
these metapatterns. It then recommends possible GoF [GHJV95] design pattern instances
based on its found metapatterns. Other design pattern recovery tools exist and a brief
review of each one can be found in [NA05].

Design fragments

Fairbanks et al. [FGS06] presented a pattern language based on the notion of design
fragment. A design fragment is a pattern that encodes a conventional solution to how
a programmer interacts with a framework to accomplish a certain goal. It provides the
programmer with a “smart flashlight” to help her understand the framework, illuminating
only those parts of the framework she needs to tackle to accomplish the task at hand.
They use XML to express these patterns, so that automation tools are a step away. They
have analysed the 20 Java applets provided by Sun and came up with a catalogue of design
fragments, which, evaluated against other 36 applets from the internet, proved that those
design fragments were common and recurrent. Design fragments give programmers imme-
diate benefit through tool-based conformance and long-term benefit through expression of
design intent.

Architectural primitives

Zdun and Avgeriou [ZA05] proposed to remedy the problem of modelling architectural
patterns through identifying and representing a number of architectural primitives that
can act as the participants in the solution that patterns convey. According to the authors,
these “primitives” are the fundamental modelling elements in representing a pattern and
also they are the smallest units that make sense at the architectural level of abstraction
(e.g., specialised components, connectors, ports, interfaces). Their approach relied on the

tools and techniques for framework understanding 47

assumption that architectural patterns contain a number of architectural primitives that
are recurring participants in several other patterns. They chose UML as the preferred
notation to represent the primitives and pretended to formalise the definitions using OCL.

All these design artifacts play their part in clarifying and communicating aspects of
the framework. Their applicability depends on the framework user and his propensity to
like one over the other. Contributing factors are the learning profile and needs, the task at
hand and the available information. None alone can provide all the information necessary
to understand the framework, although through combination and complementarity, they
might prove more effective.

3.2.3 Pattern languages

In [BS00], Brugali et al. stated that:

“A set of patterns for a specific application domain, together with their structuring
principles, becomes a high-level language, called a pattern language [AIS77]. It
represents the essential design knowledge of a specific application domain, i.e., the
experience gained by generations of designers in solving a class of similar problems.”

Moreover, they claimed that not only pattern languages generate frameworks, as these
encompass design patterns that interrelate naturally in the application domain, but also
frameworks support pattern languages because “When a pattern language and a framework
for a specific application domain are available, new applications do not have to be built
from scratch, since the framework provides reusable implementations of each pattern of
the pattern language.”

As already referred in the previous section, the patterns Jonhson [Joh92] suggested
to document a framework are organised in a pattern language. Each pattern describes
a recurrent problem in the domain covered by the framework, and then describes how
to solve that problem. Its main goal is to teach how to use the framework, and then
complement the task-oriented information with explanations about how the framework
works, for those willing to know the details. This technique tries to strike a balance
between prescriptive information (how-to-do) with descriptive information (how-it-works)
as to reach a larger audience of different levels of experience.

Automated instantiation

According to Braga et al., pattern languages can be used to guide the construction [BM02a]
and instantiation [BM03] of frameworks. The development of a pattern language for a
specific domain relies on experience and reverse engineering of existing systems, mining
recurrent problems and their solutions. Constructing a framework based on this pattern

48 framework understanding

language has four main steps [BM02a] [BM02b]: hotspots identification, framework design,
framework implementation, and framework validation. Instantiation is done through a tool
or wizard that relies on the relationship between the pattern language and its associated
framework, using mapping tables that link the patterns to the parts of the framework to
instantiate.

Specialization patterns

In [HK06], Hautamäki et al. proposed a mining process of specialisation patterns of a
framework, based on a goal-oriented approach. Instead of starting from a set of patterns
that describe the usage of the framework, the authors attempted to find, specify and use
the specific specialisation interface (as a set of patterns) that is directly linked to the
assumed goals [And04] of the product developer. Providing a tool-supported setting, they
experimented in an industrial environment, where the results were encouraging, but still
required further studies to draw definite conclusions.

In order to be effective, patterns languages need to fine-tune its patterns to a large,
heterogeneous audience where the experience and goals of the framework users are covered
and its learning needs attended. This balance would always require dynamic adjustment,
or otherwise, to be intentionally set by the user. Therefore, pattern languages need to be
complemented with other techniques for a more effective learning experience.

3.2.4 Notations and formal languages

In order to cope with the specificities of frameworks, several authors have proposed
new notations and formal languages to represent and communicate the mechanisms of
frameworks and the constraints to which the users are bound, in order to understand and
use the framework.

UML-F

A UML profile is a restricted set of UML markup along with new notations and semantics
[FPR01]. Fontoura et al. presented the UML-F profile that provides UML stereotypes
and tags for annotating UML diagrams to encode framework constraints. Methods and
attributes in both framework and user code can be marked up with boxes (grey, white,
half-and-half, and a diagonal slash) that indicate the method/attribute’s participation in
superclass-defined template patterns. A grey-box indicates newly defined or completely
overridden superclass method. A white box indicates inherited and not redefined, a half-
and-half indicates refined but call to super(), and a slashed box indicates an abstract
superclass method. The Fixed, Adapt-static, and Adapt-dyn tags annotate the

trends 49

framework and constrain how users can subclass. Template and Hook tags annotate
framework and user code to document template methods [Pre94]. Stereotypes for Pree’s
metapatterns (like unification and separation variants) are present, as are predefined tags
for the GoF patterns. Recipes for framework use are present in a format very similar to
that of design patterns but there is no explicit representation of the solution versus the
framework. The recipe encodes a list of steps for programmers to perform.

FCL

The Framework Constraint Language (FCL) [HH01] applies the ideas from Richard
Helms object oriented contracts [HHG90] to frameworks. Much like Riehle’s role models
[Rie00], FCLs specify the interface between the framework and the user code such that the
specification describes all legal uses of the framework. The researchers raised the metaphor
of FCL as framework-specific typing rules and validate their approach by applying it to
Microsoft Foundation Classes, historically one of the most widely used frameworks. The
language has a number of built-in predicates and logical operators and is designed to
operate on the parse tree of the user’s code.

FSMLs

The concept of Framework-Specific Modelling Languages (FSMLs) [AC06] was used to
express models showing how framework-provided abstractions are used in framework-based
application code. An FSML is a Domain-Specific Modelling Language [DSM] that is
designed for a specific framework (its base framework). It supports automated round-trip
engineering by mapping the abstract concepts of the framework into concrete completion
code (forward mapping) and showing how to recognise an instance of a concept in the
code (reverse mapping). They validated their approach using Eclipse Workbench API to
demonstrate their agile round-trip engineering process, where the automated steps are
executed on demand and not all together. In practice, the authors state that a single
FSML will typically cover a small area of a framework’s concern, thus multiple FSMLs
will have to be provided to cover an entire framework, raising integration issues.

Again, a summary of the tools and techniques presented throughout this section can
be found in the right side of Figure 3.1.

3.3 Trends
The framework understanding research topic still has room for expansion, and future
work is needed to address existing open issues, besides those shared with the program
comprehension field. Reuse problems must be better addressed by documentation or tool

50 framework understanding

support if frameworks are to be widely adopted. There are still a few significant and
stimulant trends:

• Patterns and Pattern languages. While developing pattern languages for frame-
work documentation [AD11] and instantiation [BM03] [HK06], some issues have to
be addressed such as identifying the expertise necessary to create effective pattern
languages, how to identify the framework domain problems that should be the
basis of patterns in the pattern language, how to best describe patterns, and what
inter-pattern relationships should be included.

• Widen context domain research. There is a clear need to investigate the preva-
lence of framework understanding problems in industrial context frameworks [MRS02]
[HK06]. Industry and academia have to join efforts to ascertain the impact framework
learning problems have in large-scale software development environments, so that
and adequate solution may be searched for.

• Integrated environments. With the advent of pluggable and extensible software
development environments (like Eclipse), tools for assisting on framework understand-
ing tend to be integrated into these self-sustainable platforms [MHK+01] [NA05]
[AC06], producing solutions that are multi-faceted and present different and varied
approaches to accommodate different user needs. The combination and personalisa-
tion of these tools, offer flexibility to adjust the environments to the specific needs
of particular users in particular tasks.

• (un)Shared expertise. A framework has specificities. The community that uses it
(whether a small group or a large, distributed team) handles those specificities in a
common contextualised fashion [Joh92] [GHJV95]. Sharing this knowledge and this
expertise could prove useful, but the means and format by which it is communicated
has to be effective. Not only the artifacts but the process need to convey and support
the cognitive needs of the learners [FS05].

3.4 Summary
Using a framework is advantageous, but learning it might prove difficult. Framework
understanding is program comprehension, nevertheless, it focuses more on framework
specifics. Although the cognitive processes are the same, frameworks are built using
several intermediate constructs (hooks, patterns, components) that, if looked for, may
assist on a quicker and effective learning process. Usually, the knowledge for how to guide
yourself through the framework lies in the documentation. But documentation needs to

summary 51

be updated and its contents need to be suitable for the intended audience. Existing tools
try to produce better documentation, making an effort to capture those constructs and
presenting them in a suitable format. But that might not be enough. Producing effective
documentation takes time which is, often, scarce. Knowledge is lost, mainly because it
is not properly captured and documented. But even if it is documented, how does the
knowledge stand? Is it really effective? There is support for documentation production,
but no support for the process of going through the documentation and learning from it.
There is a “how to read the documentation”, but it is believed that a “how to learn from
the documentation” will further improve framework understanding.

52 framework understanding

Chapter 4

Collaborative software development

4.1 Groupware . 54
4.2 Computer-supported collaborative work 55
4.3 Collaborative software engineering 57
4.4 Trends . 63
4.5 Summary . 65

Presently, software development relies prominently on processes that favor team work.
Software projects usually involve a team or multiple teams that have to work together.
These teams can be composed of a variety of domain-specific experts with different
levels of experience and distinct socio-technical background. Communication is, therefore,
paramount.

Back in the old days, traditional software development approaches grew from the fact
that software development was, mostly, done by one-element teams (the “programmer”)
that resorted to a well-defined process in order to write code or automate a procedure.
But, over time, software grew in size and complexity, and so did the team.

The switch from a process-centric activity to a more human-centric activity started
in 1971, when Weinberg [Wei98] reengineered the software development process from a
“people empowering point of view”. This theory gained momentum and points of view
shifted. Process designers began to look at software development in different ways, and
started to be concerned with the ways software developers work together. Research fields
such as Groupware and Computer-Supported Collaborative Work (CSCW) rose to address
collaboration supported by software. The Collaborative Software Engineering field deals
with collaboration within software development. The next sections address these research
areas in further detail.

54 collaborative software development

4.1 Groupware
The term “groupware” dates back to 1978 when Peter and Trudy Johnson-Lenz defined it
as [JLJL90]:

“intentional group processes plus software to support them.”

This definition, however, was not widely accepted as it narrowed the scope of group work
to a set of processes.

Another attempt to provide a definition came from Johansen [Joh88]:

“Groupware... a generic term for specialised computer aids that are designed
for the use of collaborative work groups. Typically, these groups are small project-
oriented teams that have important task and tight deadlines. Groupware can involve
software, hardware, services, and/or group process support”.

Again, this definition was non-consensual, as it would exclude categories of products that
were not designed specifically for supporting work groups, like email or shared databases.
Moreover, it focuses on small teams, which is restrictive.

To broaden the scope, Ellis et al. [EGR93] proposed to define groupware as:

“computer-based systems that support groups of people engaged in a common task
(or goal) and that provide an interface to a shared environment.”

Although less restrictive, this definition was considered too broad. Despite excluding
multi-user systems (such as time-sharing systems where users don’t share the same goal),
it would include shared database systems. Many argued that these systems cannot be
considered groupware because they provide the illusion that every user has independent
access, alas, they are not “group-aware.”

In general, as Grudin pointed out in [Gru94], groupware means different things to
different people. According to Nunamaker et al. [NBM95], groupware is defined as

“any technology specifically used to make a group more productive.”

Coleman stated [Col95],

“Groupware is an umbrella term for the technologies that support person-to-
person collaboration; groupware can be anything from email to electronic meeting
systems to workflow.”

These definitions although quite broad captured almost all the products and projects that
were identified as groupware.

All the above definitions share a common point: the notion of group work. Groupware
is designed to support teams of people working together, focusing on software technology

computer-supported collaborative work 55

from human – computer to human – human interaction. Human interactions have three
key elements: communication, collaboration and coordination. The goal of groupware is
to assist groups in communicating, in collaborating and in coordinating their activities
[EGR93], and it has been addressing these issues for years.

The fact that most early groupware tools failed to be widely adopted made clear the
need for a better understanding of how groups of people work together [TN99]. A new
research area emerged called: “Computer-Supported Collaborative Work”.

4.2 Computer-supported collaborative work
Irene Greif (MIT) and Paul Cashman (DEC) coined the term CSCW, during a workshop
in 1984 [Gre88]. Since then, this new field attracted a lot of interest. Amongst the various
definitions, Wilson’s seems to have captured the scope of CSCW [Wil91]:

“CSCW [is] a generic term, which combines the understanding of the way people
work in groups with the enabling technologies of computer networking, and associated
hardware, software, services and techniques.”

Greenberg [Gre91] added:

“CSCW is the scientific discipline that motivates and validates groupware design.
It is the study and theory of how people work together, and how computer and related
technologies affect group behaviour. CSCW collects researchers from a variety of spe-
cialisations – computer science, cognitive science, psychology, sociology, anthropology,
ethnography, management, and information systems – each contributing a different
perspective and methodology for acquiring knowledge of groups and for suggesting
how the group’s work could be supported.”

CSCW improved the understanding of groups and clarified that their relationships
are not based only on communication, collaboration and co-ordination, as pointed out by
Kling [Kli91]:

“In practice, many working relationships can be multivalent with and mix ele-
ments of co-operation, conflict, conviviality, competition, collaboration, commitment,
caution, control, coercion, co-ordination and combat.”

In [Ack00], Ackerman described CSCW’s main intellectual contribution as the effort to
close the social-technical gap between what we know we must support socially and what
we can support technically. He states that systems lack nuance, flexibility and ambiguity,
clearly properties inherent to human activity. Therefore, the social aspects must be taken
into account when designing systems for these to be increasingly effective.

56 collaborative software development

CSCW researchers that design and build systems try to address core concepts in novel
ways. These concepts have largely been derived through the analysis of systems designed
by researchers in the CSCW community, or through studies of existing systems, where the
most addressed are:

• Awareness. Individuals working together need to be able to gain some level of
shared knowledge about each other’s activities [DB92].

• Articulation work. Cooperating individuals must somehow be able to partition
work into units, divide it amongst themselves and, after the work is performed,
reintegrate it [SB92].

• Appropriation (or tailorability). How an individual or group adapts a technology
to their own particular situation; the technology may appropriate in a manner
completely unintended by the designers [Dou03].

However, the complexity of the domain makes it difficult to produce conclusive results.
The success of CSCW systems depends heavily on the social context in which occurs,
that it’s quite hard to generalise. Consequently, newly designed CSCW systems, based
on previous successes, may not be appropriate in other apparently similar contexts for a
variety of reasons that are nearly impossible to identify a priori [Gru88].

In [RSVW94], Weber et al. contributed with a taxonomy that defines and describes
criteria for identifying CSCW systems and serves as a basis for defining their requirements.
The criteria are divided into three major groups:

• Application. From an application viewpoint, certain tasks are generically present
in many scenarios, from general-purpose tasks such as brainstorming, note taking
and shared agenda features, to more dedicated domains where there is the need
for tailored tools. To the user, a CSCW system appears complete only when both
specialised and generic tools are integrated.

• Functional. A CSCW system relates functional features with the social aspects of
teamwork. Each functionality has an impact on the work behaviour and efficiency
of the entire group using the system. Issues such as interaction, coordination,
distribution, user-specific reactions, visualisation and data hiding must be taken
into consideration. However, the psychological, social, and cultural processes active
within groups of collaborators are the real keys to the acceptance and success of
CSCW Systems.

• Technical. This criteria comprises hardware, software and network support. It
divides the architecture of a CSCW system into four categories of classes or features:

collaborative software engineering 57

sa
m

e
pl

ac
e

di
ffe

re
nt

 p
la

ce

same time different time

Time/Space
Groupware Matrix

re
m

ot
e

co
lo

ca
te

d

synchoronous asynchronous

Face to face interactions
decision rooms, single display
groupware, shared table, wall

displays, roomware, ...

Continuous task
team rooms, large public display,

shift work groupware, project
management, ...

Remote interactions
video conferencing, instant

messaging, chats/MUDs/virtual
worlds, shared screens, multi-user

editors, ...

Communication + coordination
email, bulletin boards, blogs,

asynchronous conferencing, group
calendars, workflow, version control,

wikis, ...

Figure 4.1: Groupware matrix (adopted from [Joh88] [ea95]).

(1) input, (2) output, (3) application, and (4) data. Each can be centralised or
replicated.

For all of these groups, concerns such as flexibility, transparency, collaboration and
sharing are addressed, and guidelines for supporting them are presented.

Another approach to conceptualising groupware and a CSCW system, states that its
context can be considered along two dimensions: first, whether collaboration is co-located
or geographically distributed, and second, whether individuals collaborate synchronously
(same time) or asynchronously (not depending on others to be around at the same time).
This approach can be seen in Figure 4.1 and was first introduced by Johansen [Joh88] in
1988, also appearing in [ea95].

The CSCW domains of application are quite a few, nevertheless, most of the research
has converged to the design of collaborative tools that are build in order to assist software
development.

4.3 Collaborative software engineering
Software engineering projects are inherently cooperative, requiring many software engineers
to coordinate their efforts to produce a large software system. As such, this effort
encompasses the development of a shared understanding surrounding multiple artifacts,

58 collaborative software development

each embodying its own model, over the entire development process. Figure 4.2 depicts
that effective communication and awareness are crosscutting concerns across, not only the
phases of software development but its models, process and infrastructure.

Models

Process

Infrastructure

Co
mm

uni
cat
ion

Aw
are
nes

s Requirements
Implementation

Testing

Architecture
Design

phases

Figure 4.2: Collaborative software engineering aspects.

Collaboration techniques in software engineering have evolved to address our limitations:
people are slow and error-prone, especially when working at high-levels of abstraction;
our natural language is expressive but ambiguous; our memory skips the details of large
projects and we can’t keep track of what everyone is doing [End95].

4.3.1 Goals

In his seminal paper, Whitehead [Whi07] outlines the goals that collaborative software
engineering pursues:

• Establish project scope. Engineers must work with the users and stakeholders
of a software project to describe what it should do at both a high level, and at the
level of detailed requirements. How this collaboration takes place can have profound
impact on a project, ranging from the up-front negotiation of the waterfall model, to
the iterative style of evolutionary prototyping [LB03].

• Architectural and design convergence. System architects and designers must
negotiate, create alliances, and engage domain experts to ensure convergence on a
single system architecture and design [Gri99].

collaborative software engineering 59

• Dependency management and reduction. This encompasses a wide range of
collaborative activities, including typical management of subdividing work into
tasks, ordering them, monitoring, assessing, and controlling the plan of activities
[MC94]. An important mechanism for managing dependencies is to reduce them
where possible, thereby reducing the need for collaboration. Defining per-developer
workspaces helps reducing dependencies in development time.

• Error handling. Errors and ambiguities exist in all software artifacts, and many
approaches have been developed to find and record them. Collaborative techniques
such as inspections, reviews, beta testing and bug tracking assist on mitigating these
problems and tracking the quality of the software.

• Record organizational memory. In long running projects, people may come
and go. Collaboration is, in part, recording what people know, so that project
participants can learn this knowledge now, and in the future [Ack00]. SCM1 change
logs are one form of organisational memory in software projects, as are project
repositories of documentation. Process models also record organisational memory,
describing best practices for how to develop software.

4.3.2 Characteristics

Additionally, the same author [Whi07] states that software engineering collaboration can
be characterised according to two aspects:

• structured vs unstructured. Collaboration in software engineering can be un-
structured, where occasional and sporadic informal conversations occur concerning a
piece of software anywhere in the project’s lifecycle. It can also be structured, where
the focus goes to various formal and semi-formal artifacts (requirement specifications,
architecture diagrams, UML diagrams, source-code, bug reports, etc).

• artifact-based vs model-based. Software engineering collaboration can thus be
understood as artifact-based (as stated in the previous aspect), or model-based
collaboration, where the focus of activity is on the production of new models, the
creation of shared meaning around the models, and elimination of error and ambiguity
within the models. Without the structure and semantics provided by the model, it
would be more difficult to recognise differences in understanding among collaborators.

1 Software Configuration Management.

60 collaborative software development

4.3.3 Tools

There is already a myriad of tools that support collaboration in software engineering. The
following researchers proposed a categorization of these tools, upon a detailed survey:

Booch and Brown

Booch and Brown [BB03] defined the concept of Collaborative Development Environment
(CDE) as: “a virtual space where the stakeholders of a project - even separate by time and
space - can meet, share, brainstorm, discuss, reason about, negotiate, record, and generally
labor together to carry out some task, most often to create some useful artifact and its
supporting objects”. Examples of such systems are GENESIS and OPHELIA [BNR+03],
and CHIME [DK99]. The authors surveyed a series of collaborative sites (what they call
Web-based CDEs) categorised according to they application domain, e.g., non-software
domains, asset management, information services, infrastructure, community and software
development. They organised the CDE features in three groups: coordination, collaboration
and community building and proposed a conceptual model for software development-specific
CDEs composed of three layers: project workspace, team tools and development resources.

Sarma

Sarma [Sar05] presented an extensive survey on collaborative tools for Software Engineering,
where she categorised tools from the perspective of user effort, i.e., time expended in
setting up the tools, monitoring the tools and interpreting the information from the tools.
She proposed a classification framework in the form of a pyramid of five vertical layers
and three horizontal strands. The five layers in the pyramid are: (1) functional, (2)
defined, (3) proactive, (4) passive, and (5) seamless. Tools that are at a higher layer in
the pyramid provide more sophisticated automated support, thereby reducing the user
effort in collaborating. Each level, thus, represents an improvement in the way a user is
supported in their day-to-day collaborative activities. The three strands in the pyramid
are: communication, artifact management, and task management. These three dimensions
are critical needs crosscutting all aspects of collaboration. This categorisation pyramid
can be seen in Figure 4.3.

Whitehead

Whitehead [Whi07] categorised collaborative tools into four groups:

• Model-based collaboration tools. Software engineering involves the creation
of multiple artifacts, covering all the phases of development and ranging from

collaborative software engineering 61

Functional

Defined

Proactive

Passive

Seamless

Communication Artifact
Management

Task
Management

Continuous coordination, collaborative architecture,
seamless development environments

Passive awareness of
development activities

and developers, manage
information overload

Advanced conflict
detection

Collocation benefits
to distributed
development

Instant Messaging,
monitoring changes

to artifacts
Fine grained versioning,

conflict resolution

Organizational memory,
knowledge acquisition

and dissemination,
social navigation

Communication archival
along with artifacts

Parallel development,
roles and access rights

Prescribed and defined
coordination support

Asynchronous
communication

Access to common set of artifacts,
isolated workspaces and version control

Task allocation and
assignment

Collaborative development enviroments,
collaborative architectures

Awareness tools, collocation benefits
(screen sharing, war rooms, tangible

UIs), event notification services,
social callgraphs

Advanced SCM functionality (merging),
Instant messaging, visualization

systems, recommendation systems,
GDSS

Workflow, SCM (optimistic),
process environments, MUDs,

bugtrackers

Email, SCM (pessimistic),
basic project management
tools, bugtrackers

Research areas focused on capabilities at
a particular layer :

Figure 4.3: User-effort collaborative tools categorisation pyramid (adapted from [Sar05]).

the end product to all the models, diagrams, specifications and source-code. Due
to its specific semantics, creating these artifacts becomes a collaborative activity,
supported by an already developed range of tools. These include collaborative
requirements tools [BE98] [Cora], collaborative UML diagram creation [CLNC01]
[Cre11], software configuration management systems and bug tracking systems
[Bug] [Tra]. The focus on model-oriented collaboration embedded within a larger
process is what distinguishes collaboration research in software engineering from
broader collaboration research, which tends to address artifact-neutral coordination
technologies and toolkits.

• Process centred collaboration. A software process model structures steps, roles
and artifacts to create during software development. Process modelling and enact-
ment systems have been created to help manage the entire lifecycle, supporting
managers and developers in assignment of work, monitoring current progress, and
improving processes [BT96] [LOJW98]. Typically, engineers manage the project
as its goes, reacting when needed, thus reducing the initial coordination overhead.
Overtime, experience dictates that coordination time still must decrease, through in-
creasing predictability and defining points of collaboration. Process centred software
development environments have facilities for writing software process models in a
process modelling language, then executing these models in the context of the envi-

62 collaborative software development

ronment. Some examples of such systems are Arcadia [Kad92], Oz [BS94], Marvel
[BSKH92], ConversationBuilder [KTC+92], and Endeavours [BT96]. In the commer-
cial sphere, there are many examples of project management software, including
Microsoft Project [Corc], Rational Method Composer [Core] and BaseCamp [Bas].

• Collaboration awareness. Software engineering is a human-driven and human-
intensive activity where most medium- to large-scale projects involve multiple software
developers that may or may not be co-located. In recent years, there has been much
work in developing collaborative development environments [BB03] that provide
support for coordination and communication during software development [HCRP04].
Seesoft [ESJ92], Palantir [SNvdH], Lighthouse [dSCdW+06] and Jazz [HCRP04] are
but a few. A more extensive survey can be found at [Sar05]. A key issue in any
collaborative tool is awareness, or “knowing what is going on” [End95]. More
precisely, awareness is “an understanding of the activities of others, which provides
a context for [one’s] own activity” [DB92]. Awareness encompasses knowing who
else is working on the project, what they are doing, which artifacts they are or
were manipulating, and how their work may impact other work. In distributed
collaborative work, maintaining awareness is considerably more difficult.

• Collaboration infrastructure. Various infrastructure technologies make it pos-
sible for engineers to work collaboratively. Tool integration, in the form of data
integration (ensuring that tools can exchange data) and control integration (ensuring
that tools are aware of activities of other tools and can take action based on that
knowledge) make it possible for tools to coordinate their work. For example, nowa-
days, most IDEs know when a source-file is saved after editing and store it on a central
repository (data integration) or SCM, then automatically call the proper compiler
(control integration). Tools like Eclipse, Visual Studio, Marvel, DropBox [Dro11]
and WebDAV [Dus03] already implement these behaviours, bringing a sustainable
collaboration between engineers and theirs development tasks.

Teixeira

Teixeira [Tei09] surveyed existing collaboration tools according to three criteria: Collabora-
tion, sub-divided into Awareness (team, context and resources), Communication (reaching
peers) and Collective Knowledge (tagging, ranking, polls); Integration, application-oriented
(plug-ins) or data-oriented (importing/exporting); and Other characteristics, e.g., licensing,
supporting languages, etc. His analysis covered a wide range of tools from bug tracking,
construction, design, engineering management and requirements elicitation. He then

trends 63

proposed a integrated web environment with a pre-selected set of features supporting
collaboration between developers, as means to cover all the stages of software development.

4.4 Trends
As the research continues, both groupware and CSCW fields still face challenges. The
current trends evolve mostly in the following directions:

• Mobile technologies. With the emergence of new mobile technologies and the
increasing connectivity users enjoy, the importance of having light, easy-to-use and
accessible groupware features is growing.

• Web 2.0. With the advent of concepts of the so-called second-generation web or
“Web 2.0”, collaboration and contextual-connectivity become even more present in
our day-to-day activities. From blogs to wikis, social software is booming and its
capabilities should be harnessed to improve group work.

• Strong commercial interest. Major commercial competitors such as Microsoft,
Google, IBM, amongst others, are releasing solutions into the market at an increasing
rate. This must come as an incentive to continue researching into these ever-increasing
fields of interest.

• Delocalisation of groups. Teams and groups are becoming more and more
delocalised. Work stops at one side of the planet and starts contiguously on the
other side. Communication and synchronism become critical for a adequate and
effective flow of work.

Specifically regarding collaboration in software engineering, research directions tend to
address the following topics:

• Web and desktop integration. The migration of development tools to the web
is increasing, now that the user interface is becoming more sophisticated (with
technologies such as AJAX, Javascript and HTML 5.0) and the processing power of
browsers is higher. UML and source code editing are no longer relegated only to
desktop applications, whereas in the past, the web could not support such features.
Despite this trend, there is a longstanding practice surrounding the use of integrated
development environments (Visual Studio, Eclipse, Netbeans, etc.), which are not
going to be displaced by completely web-based environments. Instead, future projects
are likely to adopt a mixture of web-based and desktop tools, for which interfacing
open standards between the desktop IDE’s and the web-based services should be

64 collaborative software development

created. Although not an easy task, these open standards would allow a more
seamless interaction with the complex information a software project creates.

• Broader participation in the development process. Contrary to current
habits, software customers should be engaged during the entire development process,
allowing a more actively assurance that their requirements are met. A participatory
development model would allow customers a better tailoring of the software to their
needs, balancing the source-code availability for refining by the customer. The trend
towards providing support for distributed development teams in a wide range of
development tools makes a broader engagement possible. Open source SCM tools
like Subversion, as well as web-based requirements tools and problem tracking tools
make it possible to coordinate globally distributed teams.

• Capturing rational argumentation. One of the strongest design criteria used in
software engineering is design for change. This inherently involves making predictions
about the future, having multiple engineers arguing over current facts and future
potentials. Since only one vision of the system’s model will prevail, the process of
architecture and design is simultaneously cooperative and competitive. Providing
collaborative tools to support engineers in the recording and visualisation of archi-
tecture and design argumentation structures would do a better job of capturing the
nuances and tradeoffs involved in creating large systems. They would also better
convey the assumptions that went into a particular decision, making it easier for
succeeding engineers to know when they can safely change a system’s design.

• Using novel communication and presence technologies. Software engineers
tend to integrate new communication technologies into their development processes.
Email, instant messaging and web-based applications are very commonly used in
today’s projects to coordinate work and be aware of whether other developers are
currently active (present). Moreover, networked collaborative 3D game worlds are
such an emerging technology that spawned “software immersion environments”.
Second Life [Sec] is an example of using such a 3D world to develop software, as their
team uses its own platform to do so. There is a range of research issues inherent to
the use of 3D virtual environments as a collaboration infrastructure, for example,
how to synchronise physical and virtual worlds. It is still unclear if the benefits
exceed the costs.

• Improved assessment of collaboration technology. Assessing the impact of
the introduction of new technology into a project is difficult, and usually subjective.
Without the uncovering of the pros and cons of specific collaboration tools (already

summary 65

introduced into the development process), forward progress in the field of software
collaboration support tools is hard to measure. Developing improved methods for
assessing the impact of collaboration tools would boost research in these areas by
increasing confidence in positive results, and making it easier to convince teams to
adopt new technologies.

4.5 Summary
Software development has always been about collaborating. Developing software has
scarcely been an individual task. There has always been a team of developers for the
software that really mattered. This team needed to work together and coordinate their
efforts to develop the final product. Despite each developer having its own environment
with some shared tools, the team would have to communicate physically and discuss most
of the work outside the development environment, through meetings, casual conversations
or other communication media.

Collaborative environments begin to support the social aspects of software development.
With the advent of the Web 2.0 and the evolution of communication technologies, the
software development teams are becoming more and more distributed. The development
paradigm of the whole team in one physical space is fading with time. So far, collaborative
development environments have been concerned with suitable presentation, seamless
integration of tools and reliability of results. Only recently did the need for supporting the
social aspects of software development became an issue. There was a need to bring the
outside [the development environment] communication into the development environment,
as a means to enable the needed collaboration between team members. Now, there is a
real opportunity to harness knowledge that, otherwise, would be kept in people’s heads
and that would, usually, have a lifespan of only a few minutes during a conversation.

Learning can be collaborative, if you have the time. How many times does a developer
asks for help from other team members? Well, the answer would be: it depends. But
there is no doubt it would be more than once. When learning or understanding software,
a developer often asks for help from his colleagues. Equally often, alas: his colleagues
are not available; he forgets what he was told a few days back and asks again; he might
address the wrong person to help him and so on. This becomes intrusive, especially if his
colleagues don’t have the time (which is common) to deal with his distress. He should
be able to learn by himself, without bothering his colleagues too much. A collaborative
software development environment should provide support for learning without too much
intrusion and allow a satisfying degree of autonomy to learning developers.

66 collaborative software development

Part II

Problem & Solution

Chapter 5

Research problem and solution

5.1 Open issues . 69
5.2 Research questions . 72
5.3 Research focus . 72
5.4 Thesis statement . 73
5.5 Research goals . 75
5.6 Proposed approach . 75
5.7 Research strategy . 79
5.8 Summary . 80

Program Comprehension deals with understanding programs and software artifacts.
Framework Understanding focuses on a specific kind of software artifact: a framework.
This understanding is often made resorting only to information on the artifact itself and
accompanying documentation. More and more, software is developed collaboratively. Can
this “collaboration” help in framework understanding?

In this chapter, several open research issues are raised focusing on framework under-
standing and the benefits collaboration can bring in improving the framework learning
process. The underlying research questions and thesis statement are presented and ex-
plained, as well as the proposed solution approach. Finally, the research and validation
strategies are debated as the baseline to pursue empirical studies and underline the need
to design controlled experiments as repeatable packages for independent validation.

5.1 Open issues
From the state-of-the-art review presented in the previous chapters, a number of open
research issues arise. An insight of the most relevant ones follows, intended to focus the

70 research problem and solution

scope of the work presented in this dissertation:

• Frameworks are often hard to understand and use. The difficulty in under-
standing frameworks is a serious inhibitor of effective framework reuse. This is
mainly due to framework design being, frequently, very complex, and thus hard to
communicate: (1) very abstract, to factor out commonality; (2) incomplete, requiring
additional classes to create a working application; (3) more flexible than needed
by the application at hand; (4) obscure, in the sense that it usually hides existing
dependencies and interactions between classes [But98]. The learning curve becomes
steep, requiring a considerable amount of effort to understand and learn how to use
a framework (see Section 1.2, p. 4).

• Good framework documentation is hard to produce and is often outdated.
Good documentation significantly improves the process of learning and understanding
new frameworks. This documentation should be easy to use, support different
audiences and provide multiple views through different types of documents and
notations. The difficulty of producing contents for these requirements may hinder
its applicability and demotes its importance within the development process. Most
commonly during maintenance or evolution phases, documentation is used to assist
on these tasks but its update is often discarded or neglected (see Section 1.2.1, p. 4).

• Programmers (both experts and novices) recurrently tackle with under-
standing problems. Every time a software developer needs to reuse a piece of code,
whether it’s a snippet, class, library or framework, she goes over the entire cognitive
process of analysing, understanding and capturing the relevant information she needs.
Depending on the purpose of the task at hand (learning, teaching, communicating,
using), the format (quality, clarity, structure, abstraction level, etc.) of the code (seen
on Section 2.2.1, p. 22), and the experience (expert or novice) of the programmer
(seen on Section 2.2.4, p. 24), the understanding process may go through various
approaches (top-down, bottom-up, etc., seen on Section 2.1, p. 18), not always
leading to the desired outcome in a straight forward manner. Choosing the adequate
understanding process should not be difficult, and changing from one to another
should be feasible without too much overhead.

• Different tools provide sparse results with variable quality. By itself, each
of these tools (seen on Section 2.3, p. 26) has its own problems and limitations, thus
producing quality-questionable results. For instance, many of the problems design
recovery (reverse engineering) tools have, tend to converge to selection of results
(elimination of false positives) and semantic overlapping (same result can have several

open issues 71

meanings) [Flo06]. With such discrepancy amongst results, it becomes difficult to
ascertain tool efficiency and compare results regarding precision and recall.

• The process of understanding a framework is not properly dealt with.
The palette of tools available (seen on Section 3.2, p. 43) to the framework learner
scarcely deals with specific aspects of framework understanding. Without questioning
its local and highly focused solutions, each tool aids in a specific aspect, whether
capturing high-level design artifacts, browsing the code for hot-spots, or helping on
producing sustainable output formats. Alas, the framework user has to navigate
through a plethora of tools trying to figure out where the relevant information might
be.

• Collective knowledge of the development team is often not harnessed at
its best. Software development is a highly social process. It has been perceived
that, when trying to understand a piece of code, developers turn first to the code
itself and, when that fails, to their social network, that is, the team or community of
developers [LVD03]. This behaviour, not only happens during code understanding,
but also throughout the whole understanding process. Nevertheless, it is not easy
to go for the team [NYY06]. Firstly, it is not clear who to address for clarification,
for there is a lack of awareness of what other members of the team are doing or
how do they relate to the work done. Secondly, the fields of expertise are not clear
or stated, leading to wasteful interruptions of the wrong people. Thirdly and most
often, the team or the experts are not available for consulting or rebuke their fellow
colleagues due to interruption. Interrupted developers lose track of parts of their
mental model, resulting in laborious reconstruction or bugs and discouraging more
frequent interruptions (See Section 1.2.3, p. 7).

• Intrinsic developers’ knowledge is not captured and shared as effectively
as it could be. Developers go to great lengths to create and maintain rich mental
models of design and code that are rarely permanently recorded. Very often, devel-
opers, without referencing written material, can talk in detail about their product’s
architecture, how the architecture is implemented, who owns what parts, the history
of the code, to-dos, wish-lists, and meta-information about the code. For the most
part this knowledge is never written down, except in transient forms such as sketches
on a whiteboard. The bottom-line problem here is that “Lots of [useful] information
is kept in peoples’ heads” [LVD03]. Without capturing, storing and sharing this
information, it eventually decays and becomes useless.

72 research problem and solution

5.2 Research questions
From the aforementioned open research issues, a few research questions revolve around a
major question that is considered central to the presented research work: How to improve
framework understanding?. Those questions are listed next.

• What are the actual goals of the framework learner? Where does she start? What
does she look for?

• Are there typical and repeated behaviours, that learners apply when trying to learn
how to use a framework?

• How can fellow learners help each other without too much effort?

• How can collaboration help in improving framework understanding?

• How can tools assist and support the learning process?

• What is missing from existing development environments to assist on framework
understanding?

5.3 Research focus
The research work presented in this dissertation covers subjects from all of the fields and
topics described in the earlier chapters (Chapters 2, 3 and 4). For clarity on the domain
areas and focusing of the research, Figure 5.1 depicts the main target where the results of
the work are expected to bring the most contribution.

theories
tools

Program
Comprehension

Framework
Understanding

Groupware
& CSCW

Collaborative
Software

Engineering

Figure 5.1: Research domains where the presented work focuses. The coloured, filled circle
represents the area the work most contributes to.

thesis statement 73

5.4 Thesis statement
Based on the research challenges presented (sections 5.1 and 5.2) and the state-of-the-art
review (Chapters 2, 3 and 4), the author states that:

“Providing a collaborative environment that supports the best practices of frame-
work understanding will allow framework learners, both experts and novices, to
produce and share relevant knowledge, thus improving their learning process and
their effectiveness on framework reuse.”

This statement uses terms whose meaning may not be consensual, and therefore lead
to questions that deserve further discussion:

• What is meant by “best practices”?

To put is shortly: proven good recurrent solutions to recurrent problems, also known
as, patterns. These can be identified by studying and observing the process of
understanding a framework. A proper way to communicate best practices to others
is using patterns [AIS77]. These best practices are presented and further detailed in
Chapter 6 (p. 81).

• How does one “support the best practices”?

Typically, framework learners and users aren’t explicitly aware of these best practices,
specially novices. “Support” means promoting its use, without much effort. The
collaborative environment enables this in two ways: (i) Presenting them in a proper
format (patterns), easy to understand and apply1 and (ii) providing a way to
collaboratively allow learners to guide each other through successfully taken paths
to a solution (Chapter 7, p. 109).

• Who are the novice and the expert framework learners?

Any developer who wishes to use (select, instantiate, evolve, etc.) the framework and
has little or no knowledge of the framework is considered a novice learner. Through
framework usage, gradually, this novice learner will become more proficient with the
framework and will attain the expert status. When, exactly, this status is achieved
is fuzzy. It is always a relative measurement, where someone is an expert when
compared to someone else. Therefore, and for the purpose of this dissertation, what
differentiates a novice from an expert is the usage gap of the framework, that is, the
time difference each one had, dealing2 with the framework. For validation purposes,

1 applying here doesn’t mean automatically or prescriptively. The way patterns are applied depends on
the learner’s interpretation of the pattern’s descriptive guidelines.

2 assumes weekly iterations where valuable deliverables are implemented using the framework.

74 research problem and solution

it is assumed a minimum gap of 3 months (see section 8.1.1, p. 148, for further
details).

• What is meant by “produce and share relevant knowledge” ?

Instead of “relevant knowledge”, one should read “relevant learning knowledge”. The
purpose is not to produce knowledge on how to use the framework3, but on how
we learn how to use the framework. What steps did the learner take to build her
mental model of the solution to her specific problem? Which artifacts did the learner
interact with and how did she get there? This (intrinsic) knowledge is, usually, not
captured and lost. The collaborative environment provides a tool to enable this
capturing and sharing of this knowledge in a non-intrusive way, that is, without
preempting the learner’s working context.

• What is meant by “learning process” and how does one measures “im-
provement”?

This covers the whole cognitive process of searching for a satisfying answer to a
problem or question the learner has about the framework. As seen in the literature
review (Chapters 2 and 3), this process can go through several strategies (section
2.1, p. 18) conditioned by several aspects (cognition characteristics and needs, seen
on sections 2.2.1, p. 22 and 2.2.4, p. 24). The metrics for improvement can be both
objective (time, cognitive load, i.e., amount of acquired knowledge) or subjective
(personal satisfaction, tool usage).

• How is effectiveness measured?

Effectively (re-)using a framework can be measured by verifying if the purpose (by
which the framework was used) was satisfied. The intention is to prove that, not only
the reuse tasks led to satisfying deliverables in terms of requirements, but also in a
shorter time, when compared to undertaking the same tasks without the proposed
collaborative environment.

The original thesis statement can be decomposed in the following hypothesis, as a more
objective means to validate the author’s assumptions:

• H1: Providing novice framework learners with the best practices of framework
understanding, not only reduces the time they need to reuse the framework, but
increases their knowledge of the framework.

3 Although the collaborative environment in itself allows for this to be recorded and shared, if the learner
so wishes.

research goals 75

• H2: Providing novice framework learners with collaborative tools to guide them
through the process of framework understanding, not only improves the time they
take to reuse the framework, but increases their knowledge of the framework.

• H3: Providing expert framework learners with best practices, supported by collabo-
rative tools to guide them through the process of framework understanding, increases
their knowledge intake of the framework, without penalising their time effectiveness.

5.5 Research goals
This dissertation aims at contributing to the body of knowledge in software engineering.
Concretely, it strives to improve framework learning for both novice and expert developers,
by enabling them to share their expertise and allowing the intrinsic learning knowledge to
be captured and harnessed in a non-intrusive way. This will be achieved in two ways:

1. By guiding learners on following best practices for framework understand-
ing. Learning how to use a framework is a recurrent task in a software developer’s
life. Providing them with a proven set of best practices (patterns) will shorten their
learning curve and improve their learning outcome.

2. By laying grounds for the development of tools to support framework
understanding through a collaborative environment. Devising a collaborative
environment suitable for framework learning, that supports the learning process.
Also, providing a subset of tools that aid in the capture, storage, sharing, ranking,
presentation, and recommendation of acquired learning knowledge.

5.6 Proposed approach
For pursuit of the defined research goals, a solution approach was devised. As such, and
according to the author,

The (framework) learner is usually engaged in a (learning) process composed of
a series of activities. This process has best practices (patterns) that can be followed
to improve its outcome. These practices could be actively applied and improved
having tools to support them.

This statement provides the common grounds for the solution proposed by this disser-
tation, which are depicted in Figure 5.2 and further detailed next.

76 research problem and solution

Process

Best
Practices

Tools

Figure 5.2: Common grounds for the proposed approach.

5.6.1 Learning process

In a broad sense, while learning about a framework, a developer’s activities may fall into
three interaction categories:

• Code. That, ideally, should suffice to answer all our questions. Too bad it takes too
long to do that. What we need to know is not explicitly in front of us. Furthermore,
frameworks make it particularly difficult to find what we need to know. As an
example, recovering design knowledge implicitly present in the code is a recurring
practice to help clarify the framework’s structure and purpose. The issues dwell
on what kind of design artifacts, to what kind of audience, and how to store and
present them, so that they become useful.

• Documentation. When the developer wants to learn how to use a framework (or
any reusable software artifact, for that matter), she goes for the documentation, if
it exists. But, is there always documentation? And is that documentation clear,
well-suited and complete? Does it have all the answers? There are known ways of
producing good documentation for frameworks [But98][BKM00][Agu03]. The issue
is nurturing the developers to easily produce and access that documentation, even
during the learning process.

• Social network. When all else fails, the developer loses her self-sufficiency as a
learner and resorts to her contacts, meaning, strong candidates to bear knowledge
that might help her. Call it team, peers, social network, buddies or any other term,
there is knowledge that one can’t find anywhere else but on people’s minds. It is
called intrinsic or tacit knowledge. Getting this knowledge should not be intrusive,
in the sense that it should not disrupt the normal working activities and habits.
There should be ways of harnessing this knowledge without such disruption.

proposed approach 77

framework
knowledge

social network documentation &
models

code
(framework+apps)

reading

share

rate/improve

producing

visualization

knowledge recovery

framework
learner

Figure 5.3: Framework learning activities and actors.

In short (see Figure 5.3), a framework learner looks at the code, reads the documentation,
visualises information and asks her colleagues for help, as going through a learning process
of understanding how to use the framework.

5.6.2 Improving the learning process - patterns and tools

As a support for the activities taken during the learning process, the author proposes
to help the learner in two ways: (1) Providing a “guide” or “map” of the best way to
undertake those activities and (2) allowing the learner to tap into the knowledge of the
learning community through the use of appropriate tools. Both strategies are integrated
into a collaborative, shared data-driven environment where the learner can perform her
learning activities (Figure 5.3), supported by these enhancements.

Patterns

To provide the so-called “guide” or “map”, there is, associated with the learning process,
a series of good practices on how to deal with each stage of the learning process that the
author captured into patterns. These patterns are further detailed in Chapter 6 (p. 81).

(Collaborative) Tools

Depending on several factors (learner’s experience, existing artifacts, learning goal, etc.)
the learning process to undertake may resort to different practices and paths. What works
for some, might not work for others, and may even vary between frameworks. Novices and
experts will take different paths.

78 research problem and solution

Yet, in a truly collaborative environment, where, at first, there is no distinction between
who is expert and who is novice, sharing experiences and advising the global community
proves useful [Sur04]. The importance given to an advice or counsel is measured by its
actual applicability. You become experienced and expert by giving valid and helpful
feedback into the community.

By supporting this sharing of knowledge, the learners may benefit from their collective
intelligence, thus improving their own learning processes. Therefore, the supporting tools
should be prepared to capture this learning knowledge (detailed in section 7.3, p. 117),
share it and assist other learners in their tasks.

In practice, the author intends to develop a (small) set of tools integrated in an existing
collaborative environment, that will support the capture and sharing of the learning process
and will enable the rating and recommendation of directions to take when trying to reach
similar learning goals. This overall supporting process is depicted on Figure 5.4.

Capture

Filter/Store

Share/Rate

Recommend

Figure 5.4: Supporting steps to improve the learning process.

The purpose will be to capture the learning steps (based on best practices) taken by
the learner. Whether she looks at the code first, goes for documentation, explores certain
artifacts, and recovers others, until she reaches a satisfying conclusion.

This path taken is then recorded, stored and shared. Sharing means that other learners
may reuse it or get assistance through it to guide them on their own learning path. If the
shared knowledge really helped them, then they should rate it accordingly. As the collected
knowledge keeps improving (through sharing, usage and rating), the best learning strategies
will be recommended to recurrent learners and, hopefully, improving their learning process.
This process and how it is supported by the tools is further detailed in Chapter 7 (p. 109).

research strategy 79

5.7 Research strategy
In order to pursue a scientific validation of the aforementioned thesis, it is necessary to
adequately define the experimental protocols which assess these claims in a rigorous and
sound way.

Understanding the way software engineers build and maintain complex and evolving
software systems, requires researchers to focus beyond the tools and methodologies; they
need to delve into their social surroundings and cognitive processes, which encompass
individuals, teams, and organisations. In this sense, research in software engineering
is regarded as inherently coupled with human activity, where the value of generated
knowledge is directly linked with the methods by which it was obtained.

Because the application of reductionism to assess the practice of software engineering,
particularly in field research, is very complex (if not unsuitable), the author claims that
the presented research is to be aligned with a pragmatistic view of truth, valuing acquired
practical knowledge. Consequently, the author chose to use whatever methods seemed
more appropriate to prove — or at least improve our knowledge about — the questions
here raised.

As such, in the author’s understanding, the most suitable way of validating the thesis
would be to rely on empirical studies and controlled (quasi-)experiments to provide
evidence that sustain the validity of the hypothesis here stated. Discussion on guidelines
for performing and reporting empirical studies have been recently approached by the
works of Shull et al. [SSS07] and Kitchenham et al. [KAKB+08]. The typical tasks and
deliverables of a common experimental software engineering process can be found in
[GA07].

Formally, a systematic scientific approach based on this assumption, requires the use
of mixed methods. As such, observational and historical methods were used to gather
knowledge that supported the set of patterns contribution (Chapter 6, p. 81) and a
controlled replicated experiment (Chapter 8, p. 147) was conducted to complement it and
to provide evidence to support the remaining contributions (Chapter 7, p. 109).

Due to the effort required, and the operational difficulties of conducting such experi-
ments in the field of software engineering, it was decided to conduct an experiment in an
academic controlled setting. This experiment studies intermediate-experienced developers
in understanding a framework, collecting time and knowledge acquisition metrics and
comparing results from different set-up learning environments. The detailed experiment
protocol and results can be seen in Chapter 8 (p. 147).

The independent experimental validation of claims is not as common in Software
Engineering as in other, more matured, sciences. Hence, the author stresses the need
to build reusable experimental packages that support the validation of each claim by

80 research problem and solution

independent groups. Therefore, the (quasi-)experiment was designed as an experimental
package, to be performed in different locations, and lead by different researchers, in order
to enhance the ability to integrate the results obtained and allow further meta-analysis on
them.

5.8 Summary
Despite advances in framework understanding, there are still issues and challenges in
this domain of research, viz. (i) framework documentation is often incomplete, (ii)
learners keep tackling with understanding a framework without supporting guidance and
(iii) collaboration in learning is not properly supported. In what concerns the current
research, two main goals were identified: (i) guiding learners on following best practices
for framework understanding, providing them with a set of instructive patterns and (ii)
devising a collaborative learning process and its respective supporting tools, all integrated
in a collaborative environment. Aligned to a pragmatist view of truth, valuing acquired
practical knowledge, the author proposes to validate the proposed goals through the
usage of mixed methods, amongst which are (i) observational and historical methods
for the contribution regarding the set of patterns and (ii) controlled (quasi-)experiments,
performed in academic contexts, for the remaining contributions.

Chapter 6

Patterns for understanding frameworks

6.1 Why patterns? . 82
6.2 Pattern form . 82
6.3 Patterns overview . 84
6.4 Problems addressed . 85
6.5 Related patterns . 85
6.6 Pattern Selecting a Framework 87
6.7 Pattern Instantiating a Framework 89
6.8 Pattern Evolving a Framework 91
6.9 Pattern Drive Your Learning 93
6.10 Pattern Knowledge-Keeping 95
6.11 Pattern Understand the Application Domain 98
6.12 Pattern Understand the Architecture 100
6.13 Pattern Understand the Design Internals 102
6.14 Pattern Understand the Source Code 104
6.15 Summary . 107

This chapter focuses on the first objective of this dissertation, namely to improve
framework learning by guiding learners on following the best practices of
framework understanding. This is achieved by providing learners with a set of patterns
that communicates these best practices. Its goal is to help users become aware of the
problems that they will typically face when starting to learn and understand frameworks.
These patterns are targeted for framework learners, especially novices. The patterns were
mined from existing literature, lessons learned, and expertise on using frameworks, based
on previous studies and literature reviews.

82 patterns for understanding frameworks

6.1 Why patterns?
The concepts of pattern and pattern language were introduced in the software community
by the influence of Christopher Alexander’s work, an architect who wrote extensively on pat-
terns found in the architecture of houses, buildings and communities [AIS77][Ale79][Lea94].

Patterns help to abstract the design process and to reduce the complexity of software
because they specify abstractions at a higher level than single classes and objects. This
higher-level is usually referred to as the pattern level. They represent useful mental building
blocks for dealing with specific problems of software development.

The opening of the third volume of the book on pattern languages of program
design [MRB97] starts with the following sentence: “What’s new here is that there’s
nothing new here”. This single assertion characterises the epistemological nature of
patterns, in what concerns its methodology and goals; patterns result from the observation,
analysis and formalisation of empirical knowledge in search for stronger invariants, allowing
rational choices and uncovering newer abstractions. A pattern should not report on surface
properties but rather capture hidden structure at a suitably general level. A comprehensive
discussion on the epistemology of patterns and pattern languages can be found in a recent
work by Kohls and Panke [KP09], where the authors state that

The argument that there is “nothing new” in a pattern must be rejected; otherwise
there would be nothing new to physics either, since physical objects and the laws of
physics have been around before[...].

Coplien states in his book software patterns [Cop96] that

[...]the most important patterns capture important structures, practices, and
techniques that are key competencies in a given field, but which are not yet widely
known.

Although applied to software frameworks, the patterns presented in this chapter don’t
address software design per-se but the process of understanding software, prior to the
respective design activities. They deal with the cognitive-oriented procedures that build
a mental model of the framework thus allowing its usage, that is, going into the specific
details of the framework and effectively use it. As such, the patterns’ instructive nature
provide a suitable format to communicate the empirical knowledge they bear.

6.2 Pattern form
The patterns community have been experimenting with several structures of the pattern
description. There is the original structure that has been defined by Alexander et al. in

pattern form 83

their book a pattern language: towns, buildings, construction [AIS77], and is
commonly known as the Alexanderian Pattern Form (apf). Then, there is the seminal
work of Gamma et al. [GHJV95] where a different format was used specifically tailored
for the area of software design, commonly known as the Gang of Four format (gof).
Both have benefits and liabilities: the apf is implicitly structured, and results in a fluid,
narrative-like text, persuading the reader to identify herself with the pattern; the gof
form poses a more methodological partitioning with several explicit subsections.

Analysing both approaches, the presented patterns adopt the form: Name-Context-
Problem-Solution-Consequences [AIS77], with a few additions. A brief description of each
section follows:

1. Name. The name of the pattern should be adequate to transmit the metaphor
behind the solution.

2. Context. An introductory paragraph that describes the scenario in which the
problem recurrently occurs.

3. Problem. This section starts by describing the empirical background of the pattern,
and the range of different ways the problem can be manifested. It ends with an
emphasised statement of the essence of the problem.

4. Forces. This section describes the set of forces, that is, aspects that should be
weighted and balanced in order to achieve a good solution.

5. Solution. This section starts with an emphasised headline, which describes the
concrete actions necessary to solve the stated problem. It then elaborates on the
solution, describing the steps it takes to implement it and, if applicable, admissible
variations.

6. Consequences. Applying a pattern generates a resulting context, where the resolu-
tion of the forces now poses benefits and liabilities.

7. Rationale. This section provides an explanation of the basis and fundamental
reasons behind the solution.

8. See also. A pattern is a pattern because there is empirical evidence for its validity.
This section gives reading directions to further cases where the pattern can be
observed.

84 patterns for understanding frameworks

6.3 Patterns overview
Before going into the details of each pattern, here is a brief overview of the pattern set
with each pattern’s intent, and a map (Figure 6.1) showing their relationships.

Understand the
application domain

Understand the
architecture

Details
the architecture

Understand the
design internals

Focus on
the hot-spots

Understand the
source code

Implementation
details

Selecting a
framework

Instantiating a
framework

Evolving a
framework

Drive your
learning

Knowledge
-keeping

preserve your
knowlegde

Captures the
high-level design

Captures context

Captures intermediate
design concepts

How to choose
a framework ?

Usually
precedes

preserve your
knowlegde

preserve your
knowlegde

preserve your
knowlegde

What is the
domain scope?

What are the
main

components?

How is it
implemented?

How is the
flexibility

supported ?

How to use
the framework?

How to evolve
the framework?

Benefits from
experience of

Figure 6.1: Framework understanding patterns and their relationships.

• Selecting a framework. This pattern allows deciding whether or not to select a
framework, after evaluating its appropriateness for an intended application domain.

• Instantiating a framework. This pattern shows how to learn about instantiating
a framework in order to implement an application.

• Evolving a framework. This pattern shows which steps should be taken to
learn how to evolve a framework.

• Drive your learning. This pattern shows how to plan your learning process
throughout the task of understanding a framework.

• Knowledge-keeping. This pattern shows how to preserve the acquired knowledge
about a framework.

• Understand the application domain. This pattern guides the learner in how
to know what is the application domain covered by the framework.

• Understand the architecture. This pattern shows the learner how to find
architectural knowledge about the framework.

problems addressed 85

• Understand the design internals. This pattern tells the learner how to look
for knowledge about the design internals of the framework.

• Understand the source code. This pattern helps on identifying, in the source
code, where are the important parts that enable the developer to implement the
application.

When referring to a related pattern within this set, its name will appear in Smallcaps,
otherwise it will appear in Smallcaps Italicised font if it’s an “outside” pattern,
together with the proper reference. The reader should take notice that these patterns
are intended to have an autonomous existence outside the contents of this dissertation as
part of an independent patterns catalogue. As such, despite references to other sections of
this document being present in the pattern contents, it should be assumed that these are
not present in the aforementioned catalogue, thus the referred sections being, somewhat,
re-explained and re-written in the pattern.

6.4 Problems addressed
The problems addressed by the patterns are basically raised by the following questions:

• What do I need to understand about the framework to accomplish my task? What
kind of knowledge do I need? More concrete or abstract? At code level, design level,
documentation level?

• How can I acquire the knowledge I need? Which learning strategy should I adopt?
Which one is better for my specific needs?

• Which kind(s) of tools can I use to gather, organise, explore and preserve the
knowledge I value most?

According to [But98], framework reuse can be divided into categories according to the
re-user’s interests, whether a framework selector, an application developer, a framework
maintainer, or a developer of other frameworks. These categories range from selecting,
instantiating, flexing, composing, evolving and mining a framework. For the scope of
the patterns presented in this chapter, only the most commonly used will be addressed:
selecting, instantiating and evolving.

6.5 Related patterns
The presented set of patterns has a close relationship with another pattern set, namely
patterns for effectively documenting frameworks [AD11]. These patterns aim

86 patterns for understanding frameworks

at helping developers becoming aware of the typical problems they face when documenting
object-oriented frameworks. They describe a path commonly followed when documenting
a framework, although its strict following from start to end is not mandatory in order to
achieve effective results.

In fact, many frameworks are not documented as extensively as suggested by the
patterns, due to different kinds of usage (whether its a white-box or black-box frame-
work [FSJ99]) and different balancing of tradeoffs between cost, quality, detail, and
complexity. One of the goals of the patterns is precisely to expose such tradeoffs, and
to provide practical guidelines on how to balance them to find the best combination of
documents to the specific context at hand.

According to the nature of the problems addressed, the patterns are organised in
process patterns related with the process of cost-effectively documenting frameworks (how
to do it? which activities, roles and tools are needed?) and artifact patterns (which kind of
documents to produce? what should they include? how to relate them?). Artifact patterns
address problems related with the documentation itself, here seen as an autonomous and
tangible product, independent of the process used to create it. They provide guidance on
choosing the kind of documents to produce, how to relate them, and what to include. The
patterns presented in this chapter relates closely to the artifact patterns, referring them
often throughout its description, and whose general overview can be seen in Figure 6.2.

Documentation
 Roadmap

Framework
Overview

Cookbook
and Recipes

Graded
Examples

Customization
Points

Design
Internals

where to start?

first recipe

how-to's

uses

illustrate

how it works?

Figure 6.2: Patterns for effectively documenting frameworks (Adapted from [AD11]).

Together with Roberts, Johnson provides a pattern language that deals with "evolving
frameworks" [RJ97] and how to develop a framework. This pattern language elaborates
on the common path a framework takes to become viable, i.e., suitable for developing

pattern selecting a framework 87

applications. This pattern language is related to the Evolving a Framework pattern
§ 6.8 (p. 91) as it deeply explores the issues around framework evolution.

6.6 Pattern Selecting a Framework

You are someone (manager, project leader, developer) who is responsible for finding a
solution for an application development project in a certain domain. You are about to
select a framework that can help you to solve your problem.

Problem

Framework selection consists of deciding whether or not to reuse a framework, while
evaluating its appropriateness for an intended application in a specific domain.

What do you need to learn about a framework in order to select it effectively?

Forces

• Effort. You don’t want to spend too much time learning what you need to know to
effectively decide if a framework is selectable.

• Certainty/Sureness. You need to be sure that the framework you’re about to
select covers, not only your application domain, but also all of your specific needs.

• Documentation. The existing documentation may not give the necessary insight
into the applicability of the framework.

• Complexity. The more complex a framework is, the harder it is to understand.

Solution

Start by quickly understanding the framework under consideration. Look for
a short description of the framework’s purpose, the domain covered, and an
explanation of its most important features, preferably illustrated with exam-
ples.

In order to ascertain if a specific framework covers your domain requirements, you need
to Understand the Application Domain in a clear way, i.e., the domain covered by
the framework, and the range of solutions for which the framework was designed and is
applicable.

However, knowing the purpose of the framework is not always enough to ensure that this
framework may meet all the problems. It can be important to go deeper to Understand

88 patterns for understanding frameworks

the Architecture, Understand the Design Internals, or Understand the
Source Code, until being sure of the framework’s appropriateness for the problem at
hand.

To be more effective, you may want to Drive Your Learning according to your
experience and specific requirements.

Consequences

• Cost-effectiveness. You quickly gain insight into the scope of the framework and
its coverage of your specific needs. Going into detail gives you more accurate hints
on how the framework is built and addresses your problems.

• Narrow knowledge. Yes, it solves your specific problems, but that doesn’t give
you a whole grasp over what other specific problems it might address. Further
investigation might be needed when new contextual-related problems arise.

Rationale

When using frameworks, one of the key decisions that need to be made is whether or
not the framework fits the application. Since frameworks can be complex, gaining a
deep understanding of the framework (in order to make that decision) often requires the
time-consuming process of, actually, using the framework. Capturing information about
the applicable domain of the framework proves easier to decide [FHLS00]. Limitations
and design trade-offs about the framework can help to show for what the framework can
and can’t be used. There will always be a degree of uncertainty, but that can be mitigated
by existing documentation. Moreover, the potential user will often perform experiments
to increase his understanding of the framework and to evaluate its appropriateness to the
new application requirements.

See also

In [TW07], Andrew Turner and Chao Wang had to evaluate a set of existing AJAX
frameworks to select the most suited for their requirements. Their process relied on
ascertaining that all the frameworks could cover their specific domain and high-level
requirements. They had to dig deeper into the framework internals and even develop some
prototypes to test if the framework could address and solve their specific issues.

In [APP04], Ahamed et al. proposed and applied a criteria for ascertaining the
suitability of a framework to a specific project. It relied on a set of areas to inspect,
starting with the intended domain and evolving into detailed issues like the presence of
design patterns and lower-level concerns such as error handling and degree of coupling.

pattern instantiating a framework 89

They then applied their criteria to characterise an existing framework for a transaction
processing system implementation called jPOS ISO 8583, to see if it was suitable for
selection.

6.7 Pattern Instantiating a Framework

You have been given, or previously selected, a framework to build a solution for a specific
problem. You are now about to instantiate the framework in order to implement the
intended functionalities and build your application.

Problem

Framework instantiation usually consists on deducing, designing and implementing
application-specific extensions to the framework. Despite knowing which extensions
the framework requires, it is hard to understand where to “plug” those extensions in the
framework.

What do you need to learn about a framework in order to instantiate it quickly?

Forces

• Documentation. Tutorial documentation can help you to walkthrough the initial
contact with the framework and to acquire knowledge about the framework’s entry
points.

• Effort. You don’t want to spend too much time learning what you need to know to
instantiate the framework.

• Learner’s experience. If you are already acquainted with the framework, you try
to find similar areas of flexibility where to customise the framework. A novice learner
will look for representative examples that might give her a hint of where to start
poking the code for those flexibility areas.

• Complexity. Complexity may not mean “difficult to use”, but surely means “difficult
to learn”. Issues like indirection, abstraction and obscurity give the framework its
power but also hinder its ability to be learnt and understood.

Solution

Find the areas of the framework that can be adapted for reuse by looking at
the existing documentation and instantiation examples to clarify how to use
those areas.

90 patterns for understanding frameworks

Look at the documentation and find the Customisation Points [AD06b] where
framework instantiation is supported. In addition, look also into some Graded Examples
[AD06a] that explain how to use the framework to implement more common functionalities.
The customisation of a framework is usually possible through sub-classing of framework
abstract classes and/or composition of concrete classes. Understanding how these classes
relate and interoperate is crucial to be able to use them properly.

If you’re dealing with a white-box framework, it is important to further Understand
the Architecture and to Understand the Design Internals. Only then can you
start to Understand the Source Code and effectively start reusing the framework.

To be more effective, you may want to Drive Your Learning according to your
experience and specific requirements.

Consequences

• Framework know-how. You gain knowledge on how to instantiate the framework,
progressively increasing your expertise and being able to incrementally build your
application.

• Blind trust. Using a framework means trusting in code you have never seen.
So if the framework is poorly built or has features that it publicizes but are not
implemented or don’t work well, your solution may suffer with it. It’s not uncommon
to see frameworks whose internal code is not available for debugging or modification,
therefore you can’t correct or improve the framework’s internal code.

Rationale

Framework instantiation into domain-specific application takes place at points of predefined
refinement called hotspots [Pre94]. Thus knowing where they are, when and how to use
these points leads to an effective framework instantiation. Moreover, one of the best ways
to start learning a framework is by example [FSJ99], specially for novices. Most frameworks
come with a set of examples that you can study, and those that don’t come with examples
are pretty hard to learn. Examples are concrete, thus easier to understand than the
framework as a whole. Frameworks are easier to learn if they have good documentation.

See also

In [FHLS97], Froelich et al. § 3.2.2 (p. 45) resort to a Hooks-model to describe the
framework customisation points and use it to instantiate the SEAF (Size Engineering
Application Framework). Their approach is similar to this as it relies on documentation

pattern evolving a framework 91

describing the customisation points (hooks) and uses it to know where to instantiate the
framework.

In [FPR01], Fontoura et al. § 3.2.4 (p. 48) presents the UML-F profile that provides
UML stereotypes and tags for annotating UML diagrams to encode framework constraints.
Amongst other tags, Template and Hook tags annotate framework and user code to
document template methods. Stereotypes for Pree’s metapatterns § 3.2.2 (p. 45) are
present (like unification and separation variants), as are predefined tags for the GoF
patterns. Recipes for framework use are present in a format very similar to that of design
patterns but there is no explicit representation of the solution versus the framework. The
recipe encodes a list of steps for programmer to perform.

6.8 Pattern Evolving a Framework

You are a software engineer who is responsible for the maintenance and evolution of a
framework. Your task may be to evolve the framework to support new requirements, to
refactor its design, or to correct errors, while preserving its backward compatibility.

Problem

To evolve a framework means understanding where the evolution will take place within
the framework and to which extent do you need to go in learning about it. You need to
know what elements to evolve and its impact on the framework as a whole.

What do you need to learn to evolve a framework?

Forces

• Documentation. The documentation is almost always descriptive, which is not
good for framework evolvers, because original framework designers can’t predict how
the framework might be extended in the future through additional flexibility on
existing hotspots, or in additional hotspots.

• Maintenance expertise. It is expected that the framework maintainers are both
domain experts and software design experts.

• Evolution task. Your task may be adding new functionalities or improving existing
ones, correcting errors or refactoring the design. Different information needs arise
according to the task at hand.

• Tools. There might be the need to recover lost design information that is important
to the evolution task. Existing reverse engineering tools may prove useful.

92 patterns for understanding frameworks

Solution

Look at the architecture of the framework and understand how it is built and
how it meets its purpose. Gain further insight of its components by looking
at the design internals and areas of flexibility and treat each variability issue
separately.

Have a good Understanding of The Architecture and its rationale, in order
to avoid the architectural drift problem [CHSV97], commonly consequential of poor
framework evolution. Understanding The Design Internals and Understanding
The Application Domain helps at keeping the evolution process in perspective. Look at
the Customisation Points [AD06b] that support the flexibility offered by the framework
and plan you evolution tasks.

To be more effective, you may want to Drive Your Learning according to your
experience and specific requirements.

Consequences

• Evolution expertise. You gain enough insight to adequately address your evolution
tasks. Be alert to issues regarding delta analysis, architectural drifts, version
proliferation and over-featuring [CHSV97].

• Ignorant surgery. Evolving parts of the framework means understanding its
interaction with its other parts. Sometimes, focusing too much on the problem at
hand may cause what is called “ignorant surgery” [RCM04]. Inadequate investigation
prior to performing a change task limits the understanding of the existing design of a
system. The evolver performs a change in a single location in the code that is better
understood, but which may lead to unforeseen effects throughout the framework as
its dependencies aren’t properly identified and taken into account.

Rationale

The need to evolve a framework usually arises during any of the following situations:
(1) new domain concepts need to be incorporated into the framework, (2) reducing the
complexity of the framework through re-design and (3) initial design issues that were
neglected need to be addressed [CHSV97]. The evolution process usually involves the
execution of two tasks: restructure (refactoring) and extension. In order to restructure it
properly, the developer must be aware of all the repercussions and dependencies of the
components or customisation areas she intends to extend or alter. Another concern is
application compatibility. Backward compatibility testing should be performed, so that the
framework can remain compatible with earlier developed applications. A faulty evolution

pattern drive your learning 93

process may change the way the framework is supposed to be used, closing otherwise
opened customisation points. By understanding how the framework is supposed to be
used will enable the developer to maintain its interface coherent, without too much effort.

See also

As referred in section 6.5 (p. 85), Roberts and Johnson [RJ97] present a pattern language
for evolving frameworks where they show that there is need for the understanding of
different levels of detail concerning the framework components.

In [CFL06], Cortés et al. present a tool to support framework evolution tasks, namely
refactoring and extension. They propose to automate certain kinds of refactoring tasks and
applying extension rules based on Pree’s meta-patterns § 3.2.2 (p. 45), which implement
variation points as a combination of template and hook methods.

6.9 Pattern Drive Your Learning

You are about to learn a framework in order to reuse it. You have your understanding
goals, but no process of learning to guide you through.

Problem

Upon defining your learning goal, you need to start learning. Knowing what to learn is
as important as reaching those goals through an effective learning process. Adopting a
learning strategy is, therefore, essential. But what strategy is more suitable?

How do you define the most effective process for your learning needs?

Forces

• Top-down vs. bottom-up. A top-down approach will start at a higher-level
progressing downwards, giving a good overview with little effort but poor details. A
bottom-up approach starts at a low-level progressing upwards, giving good detail
with little effort, but hindering awareness of the global impact of changes.

• Learner’s experience. Your experience with the framework can affect you learning
strategy, when choosing where to start and how to proceed.

• Learning style. You may be a more “global”, “reflective” learner or you may
possess a more “sequential”, “active” learning behaviour [FS05].

94 patterns for understanding frameworks

• Documentation. Depending on the existing documentation artifacts, the learner
will have to adapt his learning strategy to better fill in her knowledge gaps. For
example, if high-level artifacts are well documented but the lower-level ones lack the
necessary detail, the learner will have to dig out those details by herself.

Solution

Start learning the framework at an abstraction level (entry point) you feel com-
fortable with. Progressively, converge towards the understanding level that
gives you increasing knowledge intake, navigating up or down the abstraction
levels whenever needed.

An entry point is selected according to your experience level and learning style. A more
experienced developer tends to adopt a more top-down approach (start at the top, under-
stand the high level concepts), whereas a novice developer will go for a more bottom-up
approach (start at the bottom, understand the low level concepts)[SMV06][KRW05][SLB00].
Remember you can start at any abstraction level.

Regarding style, a “global”, “reflective” [FS88] learner will start at a higher level of
abstraction (domain or architecture) and will “top-down” gradually into the framework,
because she needs the big picture first. A “sequential”, more “active” learner will start at
a lower level (usually poking at the source code), try things out and “bottom-up” into the
framework, gathering bits and pieces to form her mental model. Then, change directions,
that is, swap strategies, as needed. This is beneficial to reduce cognitive overload and
focus on the goal.

Look at the Documentation Roadmap [AD05a] and choose the documentation
artifacts that may better assist you on your understanding tasks, namely Framework
Overview, Graded Examples, Customisation Points, Design Internals and
Cookbook & Recipes [AD05a][AD06a][AD06b].

Consequences

• Methodical approach. A methodical investigation proves more effective than a
chaotic one [SLB00][Hou08]. By defining a course of action the chances of reaching
an answer faster, increase.

• Personalised cognitive process. Navigate freely along the abstraction levels until
you feel satisfied with the things you’ve learned. Your mental model will progressively
increase throughout task execution.

pattern knowledge-keeping 95

Rationale

As seen on section 2.1 (p. 18), many researchers have studied how programmers understand
programs through observation and experimentation [Sto05][SFM97]. This research has
resulted in the development of several cognitive theories to describe the comprehension
process. These range from a bottom-up § 2.1.3 (p. 19) or top-down § 2.1.2 (p. 19) strategies
with opportunistic or systematic § 2.1.4 (p. 20) behaviours converging into an integrated
model that combines all of these § 2.1.5 (p. 20). This integrated model would serve a wider
range of learners, as it would give the learner the option of choosing the most effective
learning strategy. All of these cognitive models use existing knowledge together with the
code and documentation to create a mental representation of the program.

See also

In [SLB00], Schull et al. § 3.1 (p. 39) perform a study about reading techniques while
learning about a framework and divide them into two categories: hierarchy (of framework
design components)-based and example-based. While experienced learners mostly use
the former, the latter gains the preference of the most novice learners. Nevertheless, one
important conclusion of the study is that the learning process should not be strict and
allow the learner to freely choose the way she feels more comfortable with, thus potentially
achieving the better results faster.

In [RCM04], an exploratory study was performed on how developers investigate source-
code in order to perform a change task. One of the major results of that study was that a
methodical investigation of the code of a system was more effective than an opportunistic
approach. Nevertheless, this theory does not imply that a purely systematic approach
to program investigation is the most effective. Successful subjects also exhibited some
opportunistic behaviour.

6.10 Pattern Knowledge-Keeping

You want to keep what you have learned while understanding the framework. You want to
be able to use that knowledge in the future so that you don’t have to do it all over again.
Also, you want it to be fit for other framework users.

Problem

Learning how to use a framework means finding, browsing, using and building understand-
ing knowledge. Reusing the knowledge in future learning tasks is as useful as reusing
design and code. Developers go to great lengths to create and maintain rich mental models

96 patterns for understanding frameworks

of code that are rarely permanently recorded [LVD03]. Preserving this knowledge for later
use is, therefore, of utter importance.

How to adequately preserve the acquired learning knowledge?

Forces

• Existing Documentation. Adopting existing documentation artifacts as templates
to harbour new knowledge depends on its availability, easiness of use and quality of
its contents.

• Intrinsic knowledge. Much relevant information is kept in the minds of experts
that have used the framework. This knowledge decays with time and never becomes
useful to others but the expert himself. Sharing this knowledge is important, but
might be expensive to experts as it causes interruption and can be time-consuming.

• Tools. Documentation generation tools, using recovery and extraction techniques,
might be used to generate several specific kinds of views and formats over the
information about the framework.

• Motivation. Producing documentation can be tiresome and boring. The long-term
cost-benefit is often overlooked, thus affecting the motivation to spend time and
resources producing documentation.

• Maintenance. Documentation quickly becomes outdated. Therefore, it should be
easy to maintain, or else it will rapidly loose its value.

Solution

Use documentation methodologies and tools to produce documentation arti-
facts and store them in an open, shared, collaborative environment where the
information can be accessed and evolved over time.

Choose the documentation artifacts that most adequately register the knowledge you’ve
acquired, namely Framework Overview, Graded Examples, Customization
Points, Design Internals and Cookbook & Recipes [AD05a][AD06a][AD06b].

Consequences

• Shared knowledge base. The learning knowledge is shared through the community
of learners, from experts to novices, all being able to use and improve it according
to their needs.

pattern knowledge-keeping 97

• Collaborative effort. By opening the knowledge to the community, its quality
improves from the constant revision and maintenance by a heterogeneous group of
learners.

Rationale

Good quality documentation is crucial for the effective reuse of object-oriented frameworks.
Without a clear, complete and precise documentation describing how to use the framework,
how it is designed, and how it works, the framework will be particularly hard to understand
and nearly impossible to use by software engineers not initially involved in its design.

Documenting a framework is not trivial § 1.2.1 (p. 4). Producing framework docu-
mentation needs to address several issues ranging from contents consistency to contents
organisation. Using framework documentation also poses a problem where issues like
understandability, searchability, and effectiveness need to be adequately addressed [Agu03].

Adopting known documentation artifacts [AD05a][AD06a][AD06b], specific to our
learning task, to store our understanding knowledge helps to lessen the burden of recording
our findings. If that knowledge is then shared with a community of other fellow users, that
burden can be even less as the other contributors also share the responsibility of keeping
the information up-to-date.

The “community” factor also contributes to the refining and quality increase of the
documentation as factors like diversity, independence, decentralisation and aggregation
[Sur04] will mitigate quality issues like accommodating different audiences, having different
views over the information or even the lack of standards.

See also

In [Agu03], a minimalist approach to framework documentation is proposed. It presents
an extensible documentation infrastructure based on the WikiWikiWeb concept and XML
technology. It provides several document templates and a simple cooperative web-based
environment to produce and use minimalist framework documentation. The proposed
approach covers the overall documentation process, from the creation and integration of
contents till the publishing and presentation. It encompasses a documentation model, a
process and a set of supporting tools.

In [WBWW90], Wirfs-Brock et al. introduce CRC cards as a simple design alternative
that can be quickly applied to any object-oriented project. The short learning curve
makes this responsibility driven design approach a natural choice for small projects. CRC
cards are also highly effective as a front end to other design methods. The same authors
created CRC card models of high-level framework abstractions (as an overview) seconded

98 patterns for understanding frameworks

by illustrative sequence diagrams of the collaborations and relationships between the
framework components.

6.11 Pattern Understand the Application Domain

You have a framework you want to use, but you don’t know its general purpose or if it
covers your application domain.

Problem

You need to be sure that the framework answers your functional and domain requirements.
Not only the general purpose of the framework must be clear but also its reach and the
assurance that it covers, if not all, the required problem domain areas and constraints of
the application to develop.

How do you learn what is the purpose of the framework and the domain scope it
covers?

Forces

• Learner’s domain knowledge. The easiness of finding where the domain concepts
are present, and which areas relate to those domains, strongly depend on the learner’s
knowledge about the application domain. Metaphor and technical jargon may be
useful to track down and identify hints on component names that might relate to
domain concepts.

• Expert domain knowledge availability. If an expert on the application domain
is available for consult, it should speed up domain knowledge acquisition and promote
a domain-driven analysis of the framework.

• Documentation. The documentation should give ideas on how the domain is
mapped onto the framework. It could contain a brief description of the framework
and its main purpose and concepts.

Solution

Identify the general purpose of the framework and its application domain by
browsing the existing documentation and capture the main domain concepts,
how they relate, and how the framework addresses them.

A Framework Overview [AD05a] is a good way to do so and Graded Examples
[AD06a] provide detail on how the main features can be implemented.

pattern understand the application domain 99

Find the framework top components (abstractions) and their metaphor (names and
designations) and Understand the Architecture of how they are related to cover
the domain concepts.

Preserve all the information gathered, adopting a Knowledge-Keeping strategy.

Consequences

• Broadness. Viewing the framework at this level enables the learner to know the
general purpose of the framework and its overall domain applicability.

• Shallowness. Without going into more detail it is sometimes difficult, if not
impossible, to ascertain if a certain functionality or technology is covered by the
framework. As such, one needs to dig deeper and try to Understand the Design
Internals in order to understand how some pieces fit in together, because the
system requirements need detailed specifications of certain functionalities.

Rationale

When you know nothing about a framework, usually you try to see what the framework
is for. You look for the title, a paragraph, maybe the name of the components. These
elements are usually on the documentation that accompanies the framework, whether is a
specific document, website or other kind. When trying to find out its purpose, you look
for keywords or something that will shed some light about the domain concepts of the
framework. Is it about graphics? Is it about networks? Is it general-purpose? What are
the concepts it encompasses and how? Only after you’ve acquired this information you
start looking for other details.

See also

In [APP04], the process of determining a framework’s suitability to a problem domain
starts with the domain analysis activity. This activity has several non-contiguous steps to
reach a domain model, where existing documentation (when this documentation is not
available for the framework itself, they resort to examining documentation belonging to
existing applications developed using that framework) is reviewed and domain experts are
consulted. Also existing standards for the domain are studied. The result of the activity is
a domain analysis model containing the requirements of the domain, the domain concepts
and the relationships between concepts.

100 patterns for understanding frameworks

6.12 Pattern Understand the Architecture

You are using a framework and you want to know if its architecture is compatible with your
application needs. You want to understand how the framework elements are structured
and how they relate.

Problem

Using or evolving a framework impacts the framework as a whole. The awareness of the
full implications of any change to the framework requires a sound notion of the framework’s
architecture and how its elements, which map the domain concepts, relate with one another.
You need to understand its architecture.

How do you learn about the framework’s architecture, its components and internal
relationships?

Forces

• Framework maturity. A mature framework is likely to be better structured, being
easier to identify its main architectural elements.

• Documentation. If there exists documentation that explains the overall architec-
ture, it can be a great understanding aid.

• Tools. These can complement the lack of overview documentation, by reverse-
engineering the architectural information.

Solution

Look into the documentation or any existing reverse-engineered design infor-
mation and search for instances of architectural patterns [BMR+96]. Usually
present in a more mature framework, these can indicate its main architectural
style.

Browse through the Design Internals [AD06b] to identify the main architectural
concepts and its relationships. If you need more detail, look for architectural primi-
tives § 3.2.2 (p. 46). These can give an incremental view of the overall architecture by
identifying interfacing ports between framework components and later, by aggregation,
lead to defining a known architectural pattern or structure.

Preserve all the information gathered, adopting a Knowledge-Keeping strategy.

pattern understand the architecture 101

Consequences

• High-level awareness. There is an awareness of all the framework internal com-
ponents and how they relate. You can piece together all the framework’s parts to
see if it fits your application needs.

• Shallowness. Despite being comprehensive, there is no grasp of how the components
that relate to each other, interoperate, or how they function internally. You need
to further Understand the Design Internals, to be able to know more about
their behaviour.

Rationale

A framework is an architectural abstraction. An architectural abstraction identifies and
names a composition of elements with a certain structure and functionality. This facilitates
communication about designs. A framework provides a set of abstractions that are useful
when discussing and describing a domain [JN99]. When a white-box framework is used, it
is necessary to understand the concepts and architectural style of the framework in order
to develop applications that conform to the framework. Many errors can be avoided and
the application can be constructed more efficiently if the framework user understands its
strategies and styles. In a mature framework, during its design, a suitable architectural
style was adopted and usually these are known domain-specific architectural patterns.

See also

In [SG96], Shaw and Garlan, first introduce the notion of software architectural styles as
a family of systems in terms of a pattern or structural organisation. More specifically, it
determines the vocabulary of components and connectors that can be used in instances of
that style, together with a set of constraints on how they can be combined.

In [BMR+96], Buschmann et al. presents a pattern catalogue of architectural styles
based on the work of Shaw and Garlan and introduces a software design classification
system consisting of architectural patterns, design patterns and idioms, covering different
perspectives and different abstraction levels.

In [ZA05], Zdun and Avgeriou § 3.2.2 (p. 46) propose to remedy the problem of modeling
architectural patterns through identifying and representing a number of “architectural
primitives” that can act as the participants in the solution that patterns convey. According
to the authors, these “primitives” are the fundamental modelling elements in representing
a pattern and also they are the smallest units that make sense at the architectural level of
abstraction (e.g., specialised components, connectors, ports, interfaces). Their approach

102 patterns for understanding frameworks

relies on the assumption that architectural patterns contain a number of architectural
primitives that are recurring participants in several other patterns.

6.13 Pattern Understand the Design Internals

You want to use the framework to solve a specific problem. You need to know how the
framework can be used to implement a specific solution to that problem.

Problem

To effectively use a framework, its flexibility and reuse points reside mostly at an interme-
diate design level. Due to its complexity, it is not clear where those points are and how
they are used to implement the solution. Therefore, understanding the design internals is
essential to find those flexibility points.

How do you understand the design internals of a framework?

Forces

• Design complexity. A framework design is, by nature, complex. Most of its
complexity can be found at a level of design where, usually, design patterns are used.

• Inheritance vs. composition. Design variations for the same problem may prove
to be a hindrance because they obfuscate the identification of existing solutions as
they seem dissimilar.

• Documentation. Depending on the existing documentation, one may find bits and
pieces of information about how design solutions were implemented to solve specific
domain problems.

• Tools. Reverse engineering and software visualisation tools that aid in identifying
known design structures and patterns may save time and give a different view over
the whole or part of the framework’s design.

Solution

Go through the Design Internals [AD06b] documentation, or browse the ex-
isting classes, and identify the concept classes and their interactions.

Look for instances of known design patterns. Design patterns [GHJV95] are often used
as building blocks for frameworks, because they introduce the flexibility it needs. The
more mature a framework is, the more design patterns will it encompass. Design patterns

pattern understand the design internals 103

aggregate these “hot spots” or Customisation Points [AD06b]: areas of flexibility we
can “hook” [FHLS97] into and take full advantage of the framework’s reusability.

Preserve all the information gathered, adopting a Knowledge-Keeping strategy.

Consequences

• Framework internal mechanisms. You gain knowledge about how the framework
provides the flexibility for adapting its semi-implementation to develop an application.
You acquired most of the information to adapt the framework to your needs.

• Still at a design level. Understanding is kept at a design level. Adapting means
implementing, and implementing means coding. You need therefore to Understand
the Source Code.

Rationale

Generally, template methods are used to implement the frozen spots of a framework, and
hook methods are used to implement the hot spots. The frozen spots are aspects that are
invariant along several applications in a domain, possibly representing abstract behaviour,
generic flow of control, or common object relationships. The hot spots of a framework
are aspects of a domain that vary among applications and thus must be kept flexible and
customisable.

The difficulty of good framework design resides exactly on the identification of the
appropriate hot spots that provide the best level of flexibility required by framework users.
More hot spots means more flexibility, but results in a framework more difficult to design
and use, so somewhere in between resides a balanced design.

Frameworks are designed and implemented to fully exploit the use of dynamically
bound methods. Template and hook methods [Pre94][GHJV95] are two kinds of meth-
ods extensively used in the implementation of frameworks, conferring its flexibility and
adaptability.

In [Pre94], several ways of composing template and hook classes are identified, and
presented under the form of a set of patterns, globally called meta-patterns. Meta-patterns
§ 3.2.2 (p. 45) categorise and describe the essential constructs of a framework, on a
meta-level. Design patterns provide proven solutions to recurrent design problems and
are extremely useful to design object-oriented frameworks. The motivation for using
meta-patterns is to provide a means to categorise and describe design patterns on a
meta-level, and to support framework construction. Therefore, design patterns become
the building blocks of frameworks.

104 patterns for understanding frameworks

Design patterns can be used as inspiration when looking for flexible hot-spots within
a framework. A framework that contains design patterns can be understood in terms of
these; therefore when adapting a framework, users can perceive the specific adaptation
steps (sub-classing or configuring framework classes) as adaptations of small wholes –
the involved design patterns – instead of making new atoms (classes). Users see their
adaptations in a perspective larger than that of a single class [JN99].

See also

In [BSM06], Bruch et al. § 3.2.2 (p. 44) propose the use of data mining techniques to
extract reuse patterns from existing framework instantiations. Based on these patterns,
suggestions about other relevant parts of the framework are presented to novice users in a
context-dependent manner.

In [FGS06], Fairbanks et al. present a pattern language based on the notion of design
fragment § 3.2.2 (p. 46). A design fragment is a pattern that encodes a conventional
solution to how a programmer interacts with a framework to accomplish a certain goal. It
provides the programmer with a “smart flashlight” to help her understand the framework,
illuminating only those parts of the framework she needs to understand for the task at hand.
Design fragments give programmers an immediate benefit through tool-based conformance
and long-term benefit through expression of design intent.

6.14 Pattern Understand the Source Code

You are to code your solution using the framework.

Problem

To actually use a framework you have to code. Therefore, understanding the framework’s
source code is mandatory. But a framework is not a common piece of code: it has no clear
entry point and there isn’t a “main” method from where to start understanding the flow
of control. Its hotspots are scattered across the code and the way to use them may not be
straightforward.

What to look for to understand the source-code and plug-in your solution?

Forces

• Hollywood principle. Your code will have to be inserted at a specific location
that the framework will eventually call and execute. It might not be straightforward
how, where and when, that calling will take place.

pattern understand the source code 105

• Language familiarity. If you are not familiarised with the programming language
in which the framework is built, you’re going to take more time to understand the
code.

• Task-orientation. To be cost-effective, learners tend to focus on the task at hand,
and to find the quickest way to solve their immediate problem.

• Code Annotations. Code annotations and inline documentation can give helpful
insight on a certain code fragment was implemented or served a purpose.

• Documentation. Usually, the framework comes with examples on how to quick
start or how to quickly address initial problems. These can be extremely helpful as
they show how to begin and force you to try to understand how the system works.

Solution

Browse the documentation for examples on how to address the task at hand.
Identify where in the code you will have to add your own, suitable for your
specific task.

Usually, the framework comes with a Cookbook & Recipes [AD05a] on how to
solve common problems the framework addresses. These show you how to begin coding
and enable you to understand how the overall system works.

If no documentation is present, try to look for beacons and idioms1 § 2.1.1 (p. 18)
that might hint to the execution starting point(s) of the framework (Control classes and
“main” methods, where the flow of control may start) and track down the flow of control.
Idioms are coding patterns that are used to solve recurrent problems (You use a loop to
iterate over an array, etc.). Beacons are fragments of code that may resemble algorithm
techniques or coding strategies to known problems. Classifying and chunking code into
these concepts might prove useful to increase code granularity search.

Identify your insertion or extension points as you go along and preserve all the
information gathered, by adopting a Knowledge-Keeping strategy.

Consequences

• Missing the whole picture. At such a low-level, the learner has local expertise
but might overlook more global side effects of code insertion or modification. A
broader notion of what is happening might be necessary, so you might need to
Understand the Design Internals to gain further awareness.

1 Also called programming plans.

106 patterns for understanding frameworks

Rationale

Prior to performing a software modification task, developers must inevitably investigate
the code of the target system, in order to find and understand the code related to the
change. With frameworks, this theory applies. If we assume that the way a developer
investigates a program influences the success of the modification task, then ensuring that
developers effectively investigate the code of the system can yield important benefits. This
leads a decrease in the cost of performing software changes and an increase in the quality
of the change.

In general, developers should: (1) follow a general plan when investigating a program,
(2) perform focused searches in the context of this plan, and (3) keep some form of record
of their findings.

Documentation here is crucial. Not only should there be some sort of guide for browsing
the code, but also examples of how to address the most common problems. Going through
these examples would be a valuable assisted first “dive” into the framework code and would
help emerge the control-flow mechanism of the framework and the way it is supposed to
be used.

See also

In [SMV06], Sillito et al. performed a study where they observed developers trying to
understand a system in order to perform a change task. They harvested and identified
44 different kinds of questions developers ask during that process and divided them into
four categories. These categories were based on how deep into the source code (graph)
the developer had to go to acquire the information needed for answering a given question:
(1) finding the initial focus points, (2) building on those points, (3) understanding the
sub-graph of dependencies over those points, (4) and dependencies over such sub-graphs.

In [RCM04], Robillard et al. conducted another study where they observed successful
and unsuccessful developers while performing a software evolution task. They came up
with a theory of program investigation effectiveness in the form of a series of observations
and associated hypotheses. Overall, they found that successful developers exhibited a
highly methodical approach to program investigation, where they identified the high-level
structures and planned the changes to be made, without forcefully spending more time
than a more opportunistic approach.

summary 107

6.15 Summary
In this chapter, a set of patterns for understanding frameworks was presented. These
enclose the solutions to the main problems that occur when learning about a framework.
The format by which the patterns are presented instruct the learner on how to cope with the
main difficulties and how to proceed according to her specific needs and constraints. Every
pattern builds on top of empirical knowledge captured through observation, experience
and existing literature as a means to communicate the invariant aspects of the solutions
in this domain of study. These patterns have already been presented and evaluated by the
patterns community and their feedback incorporated [FA08].

108 patterns for understanding frameworks

Chapter 7

Collaborative learning with DRIVER

7.1 What is DRIVER? . 109
7.2 Improving knowledge collaboratively 110
7.3 Collaborative framework learning 117
7.4 The DRIVER platform . 123
7.5 Other related tools . 137
7.6 Summary . 143

This chapter focuses on the second objective of this dissertation, which is to improve
framework learning by laying grounds for the development of collaborative
tools to support framework understanding. This is achieved by providing learners
with a collaborative environment that supports the learning process, named DRIVER.
This setting includes a (sub-)set of tools that enables capture, storage, sharing, rating and
recommendation of learning knowledge, namely learning paths. This toolset is built upon a
wiki that provides documentation artifacts about the framework and which configuration
allows knowledge acquisition in several ways. The extensible nature of the wiki presents the
tools as a set of plug-ins, enabling extensibility and further additions, laying grounds for
future improvements of the collaborative environment. This chapter starts by presenting
the DRIVER platform, the theoretical grounds behind its conception, progressing to an
overview of its main features and concluding with a comparison with other related tools.

7.1 What is DRIVER?
DRIVER is a platform that enables framework users to effectively learn how to use a
framework in a collaborative, user-friendly, knowledge-intensive environment. It promotes
social learning within a community of framework users, with different levels of experience,

110 collaborative learning with driver

motivated with finding answers to their problems and sharing them for the benefit of
all. Its architecture relies on the notion of Collective Knowledge System § 7.2.3 (p. 115),
supporting knowledge quality evolution through social interaction. Its features include:

• Collective knowledge management. The learning knowledge is captured and
maintained by the community in a non-intrusive way. Learners can search and rate
available knowledge and get recommendations on the best course of action (see
section 7.4.2, p. 125).

• Best practices support. The patterns presented in Chapter 6 are present and can
be consulted for guidance.

• Collaborative documentation. The framework documentation artifacts are avail-
able for editing and updating by the community of learners (see section 7.4.1, p.
123).

• Social Classification. Tagging and folksonomies are at the basis of the learning
knowledge classification (see section 7.3.4, p. 121).

• Extensibility. The platform is open for extension to accommodate new features
that might appear in the future.

These features cover a set of requirements § 7.3.5 (p. 122) that derived from further
research on collective intelligence and collaborative learning. The following sections describe,
in some extent1, how this research progressed until reaching the devised solution.

7.2 Improving knowledge collaboratively
Software development is a knowledge-intensive activity [P.N99]. Developers become
learners (thus, knowledge acquisitors) when they need to locate potentially relevant source
code and understand how to modify it to solve the task at hand.

Software development is also a social activity [NK02]. The activity is carried out by a
group of developers, forming a community and engaging in collective creative knowledge
work [NOY00]. It is a social activity mediated through artifacts, which are, primarily, source
code and documents. Although sharing knowledge and information within a community
of developers being indispensable, the primary means for developers to obtain knowledge
is not through communicating with their peers, but through artifacts. Developers invest
great effort recovering implicit knowledge by exploring code and documents. If this fails,
1 Although suitable for Chapter 4, the author felt that these sections would be more relevant here, to
keep the reader focused

improving knowledge collaboratively 111

they turn to their social network [LVD03]. But how can the community provide what the
artifacts couldn’t? And if it can, how does it translates to useful, relevant knowledge to
solve the task at hand? Can we trust others, just because we have no other choice?

This section tries to answer these questions by progressively focusing the reader into
the issues of collaboratively (in a community) acquiring the knowledge the developer needs
and ultimately reaching the proposed collaborative solution.

7.2.1 Going for the crowd

In his book, wisdom of the crowds: why the many are smarter than the
few and how collective wisdom shapes business, economies, societies and
nations [Sur04], James Surowiecky presents an extensive analysis on how knowledge
and reasoning in a group of people provide better results, on average, than an informed,
expert individual. He hypothesises that people should act collectively to make decisions
and to solve problems in matters of general interest (to the community). He states
that, despite unawareness of it, “we are collectively smart” and intellectual superior to
the isolated individual. When dealing with groups of people, there are concerns, not
only regarding size and uniformity, but cognition, coordination and cooperation of the
individuals. Nevertheless, “groups do not need to be dominated by exceptionally intelligent
people in order to be smart”, performing better at deciding between possible solutions
than coming up with them.

He then presents the four pillars that sustain the wisdom of the crowd: diversity,
independence, decentralisation and aggregation. These are further detailed next.

Diversity

The best collective decisions come from disagreement. In a diverse group, each person
should have some private information, even it’s just an eccentric interpretation of the
known facts, to add perspective that would otherwise be absent. Diversity proves easier
for individuals to say what they really think, consequently generating lots of losers
(alternatives). Large collectives have the inherent ability to recognise these losers quickly
and kill them off.

Independence

It may come as a paradox, but each member of the group should act as independently as
possible. They should be free from the influence of others, as people’s opinions should
not be determined by the opinions of those around them. This generates new, unfamiliar,

112 collaborative learning with driver

ungeneralised data and keeps mistakes uncorrelated. Nevertheless, there are hindrances to
this independence that arise from our own fabric as persons in a group:

• Social Proof. We are social beings, who most of the times think that “if everybody
is doing it, there must be a good reason.” In group behaviour, when things are
uncertain, the best thing to do is just to follow along. This is also called herding:
sticking with the crowd and failing small, rather than trying to innovate and run
the risk of failing big. As reputation goes, it is better to fail conventionally then to
succeed unconventionally.

• Information Cascade. This phenomenon happens while making decisions based
on bad judgment (one thinks is right) from who came before. This spawns a sequence
of uninformed choices, so that collectively the group ends up making a bad decision.
This is not always bad, if all other members are good judgers and spot the occurrence.

• Imitation. Most of the time, as a rational response to our cognitive limits, we
piggyback on the wisdom of others and, most of the time, it works. But it shouldn’t be
a slavish imitation, where blind mimicry hurts the group. It should be an intelligent
imitation that, if used well, is an effective and powerful tool to spread good ideas
fast. Having a wide array of options and information, and the willingness to put
their own judgment ahead of the group’s, are requisites for this kind of imitation.
This can break negative cascades by consciously identifying bad choices.

Independence can be enforced and promoted by making sure, as much as possible, that
decisions are made simultaneously (or very close) rather that sequentially, making people
pay much less attention to what everyone else is saying. By keeping the ties loose, making
groups ranging across hierarchies and exposing individuals to as many diverse sources of
information as possible, independence can be maintained.

Decentralization

People are able to specialise and draw on local knowledge. Decentralisation fosters (and is
fed by) specialisation, increasing the scope and diversity of the opinions and information
in the system. The closer to a problem, the more likely a good solution spawns, although
there is no guarantee all information reaches everyone. Also it allows for tacit knowledge
input. This is a very valuable knowledge, yet it is knowledge a person knows because
they’ve been there, but they can really explain or communicate. Individual knowledge
remains resolutely specific and local, but becomes globally and collectively useful.

improving knowledge collaboratively 113

Aggregation

Somehow, there must be a mechanism to compute, aggregate and broadcast the private
judgments into a collective decision. These mechanisms need to be available to all
the members, even unreliably assuring that the information reaches its destination (the
member might ignore that knowledge). If this is some kind of whiteboard or global, sharable,
communication infra-structure, that is not important as long as it serves its purpose.

Resorting to a wise crowd, or community, to solve problems can be advantageous. But
how do we ask the community for help and effectively capture its answers, i.e., knowledge?
Even if the community is only composed of experts, can we effectively tap into their
collective knowledge? How do we acquire that knowledge?

7.2.2 Grasping the collective knowledge

Effectively capturing expertise from several heterogenous sources in a social environment
is the goal of the Collaborative Knowledge Acquisition field of study, a spin-off of the
Knowledge Acquisition domain. A succinct description is presented next.

Knowledge acquisition

The Knowledge Acquisition (KA) field deals with the process of extracting, structuring,
and organising knowledge from human experts so that the problem-solving expertise can
be captured and transformed into a computer-readable form. This captured knowledge
forms the basis for the reasoning process of an expert system and has three main concerns:
(i) involvement of appropriate human experts, (ii) proper knowledge elicitation techniques
and (iii) a structured acquisition approach [Wat86][Lio92b]. The term comes from the field
of Expert Systems as the task of gathering the required knowledge from human experts,
turning it into a computable form and fuelling the expert system. KA is a complex task
with several identified issues that capturing techniques should address [Lio92b] [MD85]:

• Most (but not all) knowledge is in the heads of experts. Capturing and
sharing this knowledge increases its already high value, although it should be shared
in such a way to allow non-experts to understand it.

• Experts have vast amounts of knowledge. It is therefore important to focus
on the essential knowledge.

• Each expert doesn’t know everything. Knowledge should be gathered and
collated from different experts, and these should be allowed to interact.

114 collaborative learning with driver

• Experts have a lot of tacit knowledge. An expert knows more than he/she can
account for. Besides being hard (or nearly impossible) to describe, tacit knowledge
is also hard to capture.

• Experts are very busy and valuable people. Capturing techniques should take
experts off the job for short periods of time, ideally, never, if they were seamlessly
integrated into their working environment.

• Knowledge has a “shelf life”. Knowledge evolves. Experts find new knowledge.
Therefore knowledge should be maintained and validated throughout time.

As such, KA is a difficult and time-consuming process that frequently creates a
bottleneck for building expert systems. It is possible, applying the right tools and
methodologies, to improve and mitigate this bottleneck.

In [Cor89], Cordingley provides a survey of knowledge acquisition methods and pro-
cedures, with suggestions about in which circumstances different methods are useful.
These methods range from informal techniques such as user observation through common
social science methods (interviews, questionnaires, and discourse analysis) to more formal
techniques used in KA for expert systems. The reason for so many techniques lies in the
fact that there are many different types of knowledge possessed by experts, and different
techniques are required to access the different types of knowledge. This is referred to
as the Differential Access Hypothesis [And04], and has been shown experimentally to
have supporting evidence. Most recently, new developments in methodologies [SAA+00],
the emergence of ontologies, improved software tools, and the expansion of knowledge
management [Dav98] beyond that of expert systems have brought new insights into KA.

Collaborative knowledge acquisition: abandoning the useless

Knowledge acquisition in a social environment shares the same issues as seen earlier.
Additionally, the developer has to rely on distributed knowledge resources (artifacts and
people) where not everyone is an expert. This becomes even worse if the community scope
goes beyond the team of developers and extends to the web, where other developers may
have the answer for a specific problem regarding a well-known shared software artifact,
API or framework.

The quality of the retrieved knowledge is evaluated by the behaviour of the community
towards that knowledge. If it is useful, it is used, if not, it is abandoned. One way of
capturing this behaviour is to give the community ways of expressing their intent, whether
through rating or commenting. Otherwise, there are ways of implicitly capturing the com-
munity behaviour, like page hits2 or social bookmarking. This is known as Collaborative
2 The number of web users that visit that page.

improving knowledge collaboratively 115

Knowledge Acquisition [Lio92a], as it gathers information from several heterogeneous
sources, such is the morphology of the Internet.

Systems that enable this kind of knowledge acquisition are denominated Collective
Knowledge Systems, as described in the next section. The collaborative environment and
toolset proposed by this dissertation can be characterised as such a system.

7.2.3 Collective knowledge systems

In [Gru07], Tom Gruber states that:

The web, as a community, is not yet a “collective” intelligence, rather a “collected”
intelligence. This comes from the fact that there is no new level of understanding.
User-generated content is being shared, gathered and collected in domain-specific sites.
We can find what things are more popular or what are the current fads. However,
while popularity is one measure of quality, it is not a measure of veracity. Mass
authoring is not the same thing as mass authority.

This classification of collected vs. collective intelligence of the web renders a
definition of what a Collective Knowledge System can be and its key properties are
summarised below:

• User-generated content. The bulk of the information is provided by humans
participating in a social process. A traditional database or expert system, in contrast,
gets the bulk of its information from a systematic data gathering or knowledge
modelling process.

• Human-machine synergy. The combination of human and machine provides a
capacity to provide useful information that could not be obtained otherwise. These
systems provide more domain coverage, diversity of perspective, and sheer volume of
information than what it could be achieved by searching official literature or talking
to experts.

• Increasing returns with scale. As more people contribute, the system becomes
more useful. The system of rewards that attracts contributors and the computation
over their contributions is stable as the volume increases. In contrast, a text corpus
and simple keyword search engine does not get more useful when the volume of content
overwhelms the value of keywords to discriminate among documents. Similarly, if
the reward system encourages fraud or fails to bubble up the best quality content,
the system will get less useful as it grows.

• Emergent knowledge. The system enables computation and inference over the
collected information, leading to answers, discoveries, or other results that are not

116 collaborative learning with driver

found in the human contributions. This fourth property is what differentiates a
collective from a collected knowledge system.

Conveying these key properties, a Collective Knowledge System can be composed of
the following elements, depicted in Figure 7.1:

• Community of motivated people with problems and solutions. These con-
tributors share their expertise and knowledge on the specific domain.

• Larger population of intelligent people with similar problems. Who actively
search for personalised solutions to their problems.

• Computer mediated social communication. Whether through tagging, blog-
ging or commenting, the social process is augmented and nurtured.

• Semi-structured information repository. Acting like a storage facility for a
more long-term memory and where the solutions are collected and shared.

• Socially clustered data knowledge-base. Where the solutions are catalogued
and clustered according to the social interaction and multidimensional analysis.

• Faceted search engine. So that the solutions seekers can look for personalised
solutions, through contextual browsing.

• Recommendation engine. To keep the users in perspective and assisting in
obtaining more rapid and effective answers to their specific issues.

community of
motivated people
with problems and

solutions

larger population of
intelligent people

with similar problems

faceted search
engine

recommendation
engine

computer mediated
social communication
(sharing ,tagging, blogging,
commenting, discussing)

semi-structured
information
repository

Socially clustered
data

(text, tags, metadata...)

Figure 7.1: Composing elements of a Collective Knowledge System (adapted from [Gru07]).

collaborative framework learning 117

It might be relevant to say that not all of these elements need to be present for a
system to be considered of Collective Knowledge. At least, the knowledge quality evolution
through social interaction and its access need to be enforced.

7.3 Collaborative framework learning
It is the author’s belief that a framework learner may benefit from such a system, as a
means to improve the effectiveness of the learning process. This is achieved by providing
the learner with a constantly improving source of knowledge built by a community of
learners with the same needs and expectations.

This section focus on the framework learning context, presenting the proposed sup-
porting process, its concepts, phases and tool requirements.

7.3.1 Concepts

For the sake of clarity, the meaning of learner, artifact and knowledge-base is explained to
prevent misinterpretations when reading the remainder of this section.

• Learner. Any framework user, developer or evolver that needs to acquire knowledge
about the framework.

• Artifact. For the context at hand, this means any documentation artifact available
to the learner and present in the proposed collaborative environment. Is is assumed
that there is a framework documentation artifacts repository (FDAR) present for
consultation by the learner.

• Knowledge-base. This regards the storing facility of the collaboratively generated
learning knowledge. Despite referencing the FDAR, it is a different data-source.

7.3.2 “Pave the cowpath” revisited

The idea behind the proposed collaborative approach evolved from what is commonly
known as “pave the cowpath”.

The expression has its origin in a poem written by american Sam Walter Foss (1858-
1911) called “The Calf-Path” [Fos]. The poem tells the story of a strained calf, lost in the
woods, who, when returning home, “made a trail all bent askew, a crooked trail, as all
calves do”. That trail kept being followed by beasts and humans until today, currently
being the main streets of a metropolis. The moral is that “[..] men are prone to go it
blind, along the calf-paths of the mind, and work away from sun to sun, to do what other

118 collaborative learning with driver

men have done.” This poem serves as criticism to the lazy, narrow-minded men that
mindlessly follow pre-defined paths without questioning its effectiveness or usefulness.
Another similar allegory is the Cage of Monkeys.3 This poem is popularly attributed to
the streets of Boston, given their peculiar layout.

Of course, this connotation has issues. Its common knowledge that cattle are actually
pretty good at finding the path of least resistance, which is, often the best route for a
road. But let’s transpose this concept to the context at hand.

“Smart cows, collective herd”

Cows walk with their heads down, are beasts of habit and usually move in herds. But a
solitary cow is, usually, smarter than the bunch as it can’t rely on the group to reach her
goal, whether reaching a pasture or returning home. In fact, they have a good sense of
direction and can quickly retrace their steps back to the herd or to the point of origin.
The herd factor is simply a matter of blind trust. Smarter cows keep their head up and
introduce independence to the herd, making it more wise, and question the effectiveness
of the trail they take.

Transposing to the collaborative framework learning context, all cows (framework
learners) are smart. Therefore, the cowpath becomes the steps the learners took to
reach a solution. The problem is that there is no stepping on the grass, that is, those
steps aren’t being recorded. Most probably, the next learner that undertakes the same
steps will not be aware of a pathway forming. By paving that pathway, it becomes easier
for future learners to quickly reach the same solution. This pathway is called learning
path.

Providing framework learners (smart cows) with learning paths (paved cowpaths),
improves their learning experience by focusing of the relevant knowledge (steps) other
learners (collective herd) already have. This allows for a quicker, more effective knowledge
transmission, in the sense that it provides the learner with directions on which artifacts to
look at and in what order.
3 Imagine a cage full of monkeys where a ladder is the only way to reach a banana bunch. Every time
a monkey tries to climb the ladder, the keeper showers all the monkeys with a hose of ice-cold water.
This happens until all monkeys stop trying to climb the ladder to try to reach the bananas. Then a
monkey is replaced by a new one. The new monkey, naturally, tries to climb the ladder but all other
monkeys stop him by, savagely, beating him up. Every time the new monkey attempts to climb the
ladder, the beating ensues. He eventually gives up. Then another monkey is replaced and the pattern
repeats itself. Eventually, all hosed monkeys are replaced by new ones (that never knew of the hosing)
yet the beating pattern continues, without apparent logical reason but “instated traditional behaviour”,
thus the expression “monkey see, monkey do.”

collaborative framework learning 119

Pavement decays

If a road is not used and maintained, its pavement breaches, erodes and decays, making it
harder to use. It might be because there is a better road than this one. This is also true
with learning paths. The quality of the learning paths is maintained by the community of
learners. The most useful and effective learning paths are prone to evaluation and rated
accordingly. This rating indexes the learning paths, so that the most used and approved
by the community of learners are presented first. It follows the If it is useful, it is used, if
not, it is abandoned rule seen previously § 7.2.2 (p. 114).

7.3.3 The learning knowledge cycle

Putting it simply, the author believes that providing a learner with the steps others
(learners) took to solve their problems, can improve the learning experience and produce
better and quicker outcomes. The motto is: Show me how you learnt it. This section details
the four-step learning knowledge cycle (Figure 7.2) the proposed collaborative approach
defines as a means to support the previously stated. The goal is to non-intrusively capture
the learning steps a framework user takes, store it in a shareable knowledge-base, where
other users can access it. This knowledge relies on the community’s potential to maintain
its relevance and quality, by rating it and allowing the system to recommend possible
next steps that aid on the learning task. The four steps are detailed next.

Capture

This is the first step of the learning cycle. Here the learner begins her learning quest to
find knowledge that might solve her problem. The trail of steps is captured as she browses
through the artifacts, trying to find the relevant knowledge that might help her. This step
ends when she is satisfied with her findings.

Filter/Store

On the second step, the learner looks at her captured learning path and clears the weeds,
that is, improves it. This is done by trimming off those steps that, despite taken, didn’t
lead to the required knowledge. Seldom a novice learner takes a straight route to the
knowledge she needs, unless in cases where she is already strongly familiar with the artifacts
and needs little or no assistance to reach her answer (she would, by then, be considered an
expert). This step allows for the improvement of the captured learning path, as to prevent
other learners from running in circles or hitting dead-ends. Afterwards, the pruned and
grafted learning path is stored in a knowledge-base.

120 collaborative learning with driver

➔ ➔

Learning
Knowledge-

Base

☹
☺
☺
☺
☹

✗
✗

✗

➔

Capture

Filter/Store

Share/Rate

Recommend

Figure 7.2: The proposed four-step learning knowledge cycle.

Share/Rate

The third step regards the sharing and rating of the learning paths stored in the knowledge-
base. The learners access the knowledge-base, searching for learning paths that might
help them. They evaluate its usefulness (taking the steps, a.k.a., walking through or just
inspecting the visited artifacts) and rate them according to its effectiveness. There are no
standard quality metrics here, the learner simply gives her opinion on how satisfying a
specific learning path was for the current context.

Recommend

This step enables the recommendation of possible next steps (on a learning path that is
being currently captured), based on previous learning paths other learners have took. As
such, this step occurs during the first one (Capture). Of course, this recommendation
has an heuristic that relies on the amount of learning paths already captured. The more
learning paths get captured (and rated), the better results the recommendation step

collaborative framework learning 121

provides. Usually, this is intrinsically sensed by the community, so this step is a motivating
feature that spurs the participation of the community.

7.3.4 Learning knowledge categorisation

Knowledge is useless if you can’t get to it. In order to be able to access the information,
we have to give it meaning. As with the notion of Definition [Lon10], humans need some
form of classifying information so that they can, semantically, store it and access it easily.
The web communities have, consciously or not, developed a light form of providing this
categorisation, through what is called tagging.

Tagging

Tagging is the labelling of an entity (usually a web page or something with a URI4)
with words or phrases so one can remember them later and group them with related
finds. This was a shift from a common, rigid and hierarchical form of categorisation
(e.g. folders) into a more flexible, grouping and descriptive-like form. It provides more
means to obtain information as it enriches the identification of objects. On a folder-based
categorisation, one needs to remember the exact name of the folder, whether, in a tag-based
categorisation, one only needs to remember an aspect of the object in question (that
hopefully was tagged that way). Of course neither approach is perfect, therefore they can
be combined, complementing each other5.

This tagging phenomenon has quickly spread across the web, and led to the notion of
folksonomy.

Folksonomy

The term Folksonomy is credited to Thomas Vander Wal, for combining the words
“folk” and “taxonomy” to create this neologism from what he calls “bottom-up social
classification” [Wal]. Shirky defines it as “socially created, typically flat name-spaces”.
An essential feature of these terms is their public nature, that allows users to instantly
determine how others have used the same terms in categorizing their own content, and
view terms others have added. This cycle of use and observation enables the community to
shape the folksonomy, encouraging useful applications and eliminating useless ones [Shi].
As such, a good definition for folksonomy is given by Sturtz [D.N04]:
4 Uniform Resource Identifier.
5 As a quick example, recently, Google Mail has the notion of labels to tag mail messages and allows an
hierarchisation of tags, similar to folders. Yet a mail message can have several labels.

122 collaborative learning with driver

In practical terms, a folksonomy is the complete set of tags - one or two keywords
- that users of a shared content management system apply to individual pieces of
content in order to group or classify those pieces for retrieval. Users are able to
instantly add terms to the folksonomy as they become necessary for a single unit of
content.

The value in this social tagging is derived from people using their own vocabulary and
adding explicit meaning, which may come from inferred understanding of the informa-
tion/object. People are not so much categorising, as providing a means to connect items
(placing hooks) to provide their meaning in their own understanding.

Popular examples of systems that use such categorisation are Flickr6, where users can
tag their digital photographs while uploading them to the system and YouTube7, where
the same is allowed for uploaded videos.

Consequently, the proposed learning knowledge cycle uses these notions to categorise its
elements, that is, its learning paths. Tags are used by the learners to both store and search
for the information they need. Therefore, there is no forced categorisation or taxonomy
imposed to the community. It is the community itself that shapes the way it wants the
information to be categorised.

7.3.5 Collaborative environment requirements

The previous sections addressed the theoretical concepts and issues from where the author
based his proposed work. As such, the proposed collaborative environment, poised to
assist on framework learning, should satisfy the following requirements [FA10], to enable
the persecution of its intended goals:

• Seamlessly integrated. Bringing collaboration into the learning process should
not force the framework learner to leave her usual development environment, or,
at least, her usual learning environment. Learning comes from documentation and
code, which may, or may not, be accessed at the same place (i.e. application or IDE).
Therefore, that should be the same media used to provide community help to the
framework learner.

• Non-intrusive, non-interruptive. Ideally, capturing the learner’s intrinsic knowl-
edge should be implicit. That is, the learner should not be asked to explicitly provide
any information (regarding that knowledge) to the system. In practice, a satisfactory
solution would be not to disrupt the normal functions of the learner, asking very
little of her.

6 http://www.flickr.com
7 http://www.youtube.com

the driver platform 123

• Descriptive, not prescriptive. The system should not tell the learner how to
proceed, but instead should give possible directions on how to solve the task at
hand. Although some unexperienced, novice learners would appreciate a script-like
support of their learning tasks, it would rapidly become constraining, intrusive and
non-effective. Not to mention the inability to provide the exact course of action to
reach the solution that solved her specific problem.

• Shareable knowledge. The system should store and share all the relevant knowl-
edge that helps the framework learning process. Not only the documentation artifacts
and source-code (if applicable8), but the captured knowledge that helps guiding the
learner throughout the learning process (e.g. learning paths).

• Learning knowledge cycle support. The previously presented four-step learning
knowledge cycle § 7.3.3 (p. 119) should be supported, whether through one or a set
of tools.

• Extensible. There should be potential for improvement and to integrate other
useful tools that will provide increasing support to the learning process.

7.4 The DRIVER platform
With these requirements in mind, an instantiation of this environment was implemented,
whose presentation and description is contents of the following sections. It was designed
to address all the issues presented in § 7.3.5 (p. 122).

7.4.1 Setting

The task of providing a collaborative environment brings to mind several ideas on how
to proceed, but, overall, there is a common ground that immediately settles in: the web.
Looking into the web and finding out implementations of collaborative systems results in
lots of available solutions. Selecting one is a challenge (see section 7.5). Mainly, we are
dealing with documentation artifacts that should be readily available, easily searchable and
prone to modification, extension and enhancement. Equally, they should be, somewhat,
structured and presented in a familiar fashion without too much overhead on the medium
by which they are delivered. Therefore, the author chose a wiki.
8 Ultimately, the source code would be present in the documentation through Graded Examples
[AD06a].

124 collaborative learning with driver

Wiki

Earlier in 1995, Ward Cunningham wrote a set of scripts that allowed collaborative editing
of webpages inside the very same browser used to view them [Cun]. He named this system
WikiWikiWeb, due to the analogy between the meaning of the word wiki — quick9 —
and the underlying philosophy of its creation: a quick-web. Since then, wikis10 have
gradually become a popular tool on several domains, including that of software develop-
ment [Lou06], e.g., to assist the creation of lightweight software documentation [Agu03].
They ease collaboration, provide generalized availability of information, and allow the
combination of different types of content, e.g., text, images, models, and code, in a common
substrate [AD05b].

As such, and from the extensive list of available wiki engines11, the author chose the
dokuwiki engine [dok], mainly for the following reasons:

• Lightweight. A dokuwiki is simple, small (code-wise) and doesn’t require much
effort to install and use. It is written in PHP and doesn’t require an auxiliary
database as it resorts to a file-based architecture.

• Semi-structured. Most wiki engines exhibit an unbalanced measure of structure,
that is, some provide a heavily structured, heavily constrained scaffold for placing
information, while others have no structure beyond the notion of a wiki page (similar
to a web page). Dokuwiki provided a lightweight structure form, having two levels of
structure: pages and sections (inside a page). As it will be seen later, this provided
the sufficient amount of structure for the development of the required framework
documentation artifacts repository.

• Extensible. Dokuwiki is open-source and can be seamlessly extended by adding
plug-ins, without tampering with the native wiki source-code.

• Familiar. The author had previous contact with this wiki engine and its familiarity
would prove essential to enable a sustainable pace when developing the required
tools for the proposed collaborative environment.

From the above stated, the wiki serves as a foundation for building the collaborative
environment, providing a suitable set of building blocks to harbor, not only the docu-
mentation artifacts, but the toolset that will enhance the collaboration and support the
learning knowledge cycle.
9 the expression wikiwiki, in Hawaiian, means quick.
10After the creation of the WikiWikiWeb, several new sites and systems — or engines — emerged based
on the same underlying principles, and are generally called wikis. Among them is the well-known
Wikipedia [wik], based on the MediaWiki [med] engine.

11This list can be found at http://www.wikimatrix.org, where an extensive comparison between
engines can be found.

the driver platform 125

Framework documentation artifacts repository

The contents of the wiki compose the framework documentation artifacts repository
(FDAR). These artifacts follow a series of formats according to the related set of pat-
terns patterns for effectively documenting frameworks [AD11], referred to in
§ 6.5 (p. 85).

The wiki contents are, therefore, composed of instantiations of these artifacts related
to a specific framework, available for the learner to read, browse and enhance. An example
of a Framework Overview artifact present on the wiki is shown in Figure 7.3.

For an easier creation of these artifacts by the framework user, the wiki is enhanced
with a plug-in12 that allows the definition of a set of templates that pre-formats the artifact
with the most common sections and content holders it bears. These are, obviously, optional,
but will guide the user in creating the most suitable format to accommodate both his, and
the audience needs. Consequently, the user can easily create new artifacts and promptly
improve the documentation repository.

Additionally, there is a plug-in13 that allows the tagging of pages, so that the user can
build a folksonomy § 7.3.4 (p. 121) for the documentation. These tags can prove useful
later on, helping on the tagging of learning paths.

Patterns

Both the patterns proposed by this dissertation and presented in Chapter 6, as well as
the documentation artifacts patterns referenced in the previous section, are present in
the wiki. The learner can read through both sets of patterns and become aware of their
proposed solutions, as means to improve her learning experience.

7.4.2 Components

The DRIVER toolset was developed as a bundle of dependent plug-ins for dokuwiki, with
the sole purpose of supporting the learning knowledge cycle presented in § 7.3.3 (p. 119).
Component-wise, it can be divided into 5 main complementary items, which are detailed
below.

Capture

The Capture plug-in allows the system to become aware of the learning steps of the user,
by tracking all the navigation along the wiki. All pages and sections the user reads are
12 snippets plug-in, by Michael Klier (available at http://www.dokuwiki.org/plugin:snippets)
13 tag plug-in, by Gina Häußge and Michael Klier (available at
http://www.dokuwiki.org/plugin:tag)

126 collaborative learning with driver

Figure 7.3: Example of a Framework Overview documentation artifact present in the wiki,
as an overall depiction of the collaborative environment view.

logged and recorded, so that the user can, progressively, build her learning path. The start
and end of this capture is signalled by the user, therefore the system has two global states:
capturing and not capturing.

Search

The Search plug-in allows any user, at any time (no matter what state the system is
in), to query the knowledge-base for learning paths that might prove useful. This query
relies on tags that previous users have used to describe their learning paths14, and the
search results are sorted according to the rating score each learning path has. The user
can then preview and walkthrough a specific queried learning path to find out if it’s really
helpful. Additionally, the user can rate any of the queried learning paths according to its
usefulness or even change the scores of learning paths she has already rated. All of this is
done without disrupting any previous navigation the user has made in the wiki, as the
plug-in resides, graphically, in a different layer (side tab).
14The plug-in provides an auto-completion feature, e.g., while the user is typing her tags, the system
provides a list of already existing tags in the knowledge-base

the driver platform 127

Prune/Graft

The Prune/Graft plug-in allows the user to build her (final) learning path for storage
(sharing) purposes. At any time during the capturing state, the user can access all the
steps of the learning path (captured so far) and re-arrange them to compose the relevant
order by which she reached a solution. The composed learning path can then be tagged
for indexing purposes and stored in the knowledge-base for access by the community of
learners. The user can keep building her learning path (resuming her navigation on the
wiki) without loosing the captured steps, until she signals the end of her learning activities
and the system changes to a not capturing state. Even so, the captured steps won’t be
lost until a new capturing state is signalled.

Hint

The Hint plug-in allows the system to recommend possible directions the user might
take towards her solution. This plug-in only operates when the system is in a capturing
state. Depending on the present position15 of the user, the system shows a list of possible
directions the user might browse next, according to the existing learning paths in the
knowledge-base. The user can then, if so wishing, navigate directly to those artifacts.

(Learning knowledge) Database

This plug-in is, non other than, the implementation of the learning path knowledge-base.
It assembles and provides access to the database of learning paths. It was developed to
accommodate the need to store and share the learning paths in a relational database
structure, whereas the dokuwiki engine had no such infrastructure. Nevertheless, it relied
on a file-based database technology to maintain simplicity.

7.4.3 Usage

This section shows a usage example of the toolset, as a means to provide a better under-
standing of how the learning knowledge cycle is supported and to show the implemented
user interface. It is assumed that the framework learner has access to the wiki and has
already sign in with her credentials, which give permission to view the documentation and
use the plug-ins.
15The documentation artifact (i.e. wiki page) the user is currently browsing.

128 collaborative learning with driver

Start your learning path

As depicted in Figure 7.4, the learner has access to a small menu on the top left side of
the wiki. This menu allows her to signal she’s about to start her learning, so the system
can begin capturing her navigation steps.

Figure 7.4: DRIVER menu when going from not capturing to capturing state.

After entering the capturing state, the system provides the following new actions to
the learner while she is browsing the wiki:

• Stop your Learning Path. Used to signal the system that she no longer wants
her browsing steps to be captured. The system moves to the not capturing state and
the menu resumes its previous set of actions.

• Mark as Landmark. This action enables the learner to mark a page as of noticeable
importance to her learning experience. If she reaches a partial conclusion (not yet
the final answer), or realises something important to her knowledge needs (that she
wants to point out and share), this feature allows her to do so.

the driver platform 129

• Ignore Page. This action marks the current page as non-capturable, i.e., every
time the user returns or browses through this page, it is not added to the existing
browsing steps. This is useful if the learner is recurrently going through a certain
page, probably because it is a central page with many links or an index page.

Starting page Landmark Revisiting page Section

steps

page title
section title

Figure 7.5: Depictions of the DRIVER’s learning path trail of the last steps, explaining its
constituent parts and icons.

Besides these new actions, the learner is presented, in the top of the page and at all
times, with a trail of the last steps she took (and that were captured) while browsing
the wiki. These steps can have associated markings or icons, as explained in Figure 7.5.
Each cell or step is composed of an icon (optional) and the captured wiki page title. Both
these elements are clickable anchors to their respective pages, so that the user can directly
navigate to them. In the case of sections, the section title appears first, followed by an
abbreviation of the page the section belongs to (subscript and bracketed). The tooltip
shows the full name of the page.

Capturing a page being browsed is easy because the dokuwiki allows for the capturing
of the navigation between wiki pages. The same is not true for sections. In the case of
sections, the user has to manually mark the section as read. For this, each section has a like
action link at the end of its contents. Consequently, the user can add that particular section
to the captured learning path. Usually this enables parts of a documentation artifact to
be emphasised, instead of the whole document. Later on, the learner can re-arrange the
final learning path to indicate only these sections and not the whole document. This like
action link only appears when the system is in capturing state (Figure 7.6).

Filtering and storing

At any time during the capturing state, the learner can filter and store her learning path.
For that purpose, she uses the Prune/Graft plug-in, accessible by clicking on a tab on
the right side of the wiki. This tab is visible at all times, despite the state the system. If
the system is at a not capturing state, the available learning steps remain from the last
capturing session.

130 collaborative learning with driver

Click here to add this section to the learning path

Figure 7.6: Adding sections to the learning path by hitting the like action link at the end of
the section.

The Prune/Graft plug-in opens up on a different layer from the wiki itself, providing a
set of features without conflicting with the current work session. The user interface can
be seen in Figure 7.7. As such, the following functionalities are allowed:

• Drag and drop learning steps. The user is presented with all the learning steps
she took during the learning session16. These can be dragged into a different area
where she can compose the effective learning path she wishes to store and share.
The steps can be re-arranged at will.

• Preview learning step. The learning steps can be previewed in an auxiliary pane
so that the user can confirm, if her memory fails, the contents of that step. The user
just have to click on the name of the step, which, at this point, loads that page into
the pane. This functionality can be seen in Figure 7.8.

• View similar existing learning paths. While the user is dragging steps into
the effective learning path area, the system searches for similar learning paths that
already exist in the knowledge-base. This allows the user to check for relevant
discrepancies between the learning path she is building and existing others. If the
system encounters an exact match of the learning path the user is constructing, it
does not duplicate when saving. Instead, it will merge the tags the user assigns to
her learning path with the existing ones. This functionality can be seen in Figure 7.9.

• Tagging. At the bottom of the page, the user can tag the effective learning path
using, again, a drag and drop behaviour. She has a list of tags that were present in
the captured wiki pages and from where she can drag the tags she wants to assign

16All steps so far (if still in capturing state) or all steps from last session (if in not capturing state)

the driver platform 131

Captured learning steps

Effective learning path

drag & drop
learning steps

drag & drop
tags

enter new tags

Figure 7.7: Prune/Graft plug-in user interface, showing the main functionalities

the learning path. There is also the possibility of adding new tags through a text
box.

• Save. The user can save the effective learning path she has composed, tagged
accordingly.

• Save unprunned. The user can save the learning path as is, i.e., exactly as it was
captured, having only to tag it accordingly.

Searching and rating

The quickest way to access the knowledge-base of learning paths is to use the Search
plug-in. For that, the learner just have to open the respective tab (visible at all times) on
the right side of the wiki, or clicking on the search option on the menu on the left sidebar.

The interface is quite simple and straightforward (see Figure 7.10), if you are used

132 collaborative learning with driver

clicked and
previewed here

Figure 7.8: Prune/Graft plug-in user interface, showing the preview pane where the user can
preview any step from his capturing session. The preview pane visibility can be
toggled using the Show/Hide button on the top.

to the popular web search engines (Google17, Yahoo18 or Bing19). The user just have to
enter20 the tags by which she wants to query the knowledge-base and the matched learning
paths will be listed.

The search heuristics finds all learning paths that have those tags, where the learning
paths with the most matched tags appear first, sorted descendent by rating.

Each result item has 5 constituent elements:

• Steps. This shows the learning path steps, conveying to the standardised form of
showing learning paths as depicted in Figure 7.5.

• Tags. On the top left corner of each result item, the tags associated with that
learning path are listed, where the matched tags are shown in bold.

17http://www.google.com
18http://www.yahoo.com
19http://www.bing.com
20The text box where the tags are entered has an auto-complete feature that shows existing tags on the
knowledge-base so that the user can maximise the hit ratio.

the driver platform 133

List of similar
learning paths

found.

Figure 7.9: Prune/Graft plug-in user interface, showing similar learning paths when found. The
user can toggle the showing of this list. The shown elements are the same as if
doing a search, except for the rating ability.

• Overall rating. On the top right corner of each result item, the overall rating of
that learning path is shown. The rating value varies between 0 and 5 and follows a
star-like graphical representation, complemented by its numerical value in brackets.

• User rating. On the lower right corner of each result item, the user can view and
change her personal rating of that learning path. The Rate button commits the
user’s rating, entered by using a similar star-like interface.

• Previewer. On the lower left corner of each result item, there is a Show Previewer
button that allows the user to preview the steps of the learning path, similarly to the
same operation on the Prune/Graft plug-in. The only difference is that the preview
pane appears below the respective learning path.

As such, the Search plug-in not only allows finding a suitable learning path, but enables
the community to give their feedback on the usefulness of the learning paths, improving
the effectiveness of the learning knowledge.

Recommending

While in the capturing state, the system can provide the learner with directions on possible
next steps in her learning path. This is done using the Hint plug-in. As shown in
Figure 7.11, the user has access to a tab at the top of the page that slides open to show a
list of recommended next steps, based on the existing learning paths in the knowledge-base.

134 collaborative learning with driver

results list

result item

Figure 7.10: Search plug-in user interface, showing results for a query with the tag start. There
is also a depiction of all the elements present in a result item. The Show Previewer
button works similarly to the preview functionality in the Prune/Graft plug-in,
showing a preview pane directly below the respective result item.

The list item is composed of clickable links to the page or section to where the user can
directly navigate. Prefixed to each item is the number of learning paths (in brackets) that
have the current page as the previous step.

This enables the learner to rely on the knowledge captured from the community to
assist on her learning process. Generally, this only happens when the learner is at a loss,
and seems to be disoriented in her quest for knowledge that might help her. The common
behaviour is to fall back to the last known point, i.e. documentation artifact that appears
to lead somewhere, and try to proceed from there. The Hint plug-in can, then, provide
an educated guidance to possible solution directions. Of course, if the learner is hacking
her way into virgin land, i.e. paving new learning directions, the Hint plug-in won’t be of
much use.

7.4.4 Limitations

The DRIVER toolset is still under development and improvement. At the writing of this
dissertation, the current version still exhibits a few limitations, namely:

the driver platform 135

closed

opened

list of recommended
next steps

Figure 7.11: Hint plug-in user interface, showing recommended next steps, based on the current
location of the user. The picture shows the hint tab located at the top of the page
on a closed state and then on an opened state.

• Knowledge-base maintenance. Once a learning path is captured and stored, it
remains unchanged, unless for its rating score. This is not a bad thing, nevertheless,
it is error-prone, specially when dealing with novice users that might, inadvertently,
store poorly filtered learning paths or even users that, accidentally, store a partially
pruned learning path. As such, the knowledge-base would need a garbage collector to
clean itself from these excessive learning paths (despite the community’s rating-based
mechanism to abandon these useless items).

• Deleted documents. If a page or document, that is present in the wiki at the
time a learning path is captured, is later deleted or moved, the knowledge-base is
not yet prepared to keep the learning paths synchronised with these changes in the
wiki. Actually, there is still issues on how to deal with deleted documents and pages,
and the effect it will have on a containing learning path.

136 collaborative learning with driver

7.4.5 Towards a collective knowledge system

As illustrated in Figure 7.12, the DRIVER toolset has all of the properties of a collective
knowledge system introduced at § 7.2.3 (p. 115):

• User generated content - most of the content is created by the community.
Whether the documentation artifacts in the wiki or the learning path knowledge-
base, the information always originates from the users and can be evolved by them.

• Human-machine synergy - Automation of tasks such as collecting tags from the
artifacts during browsing, presenting similar learning paths to the one just captured
or providing recommendations, spares the user from collecting this information on
her own.

• Increasing returns with scale - as more learners rate existing learning paths,
the search tool brings up the most used and better rated results, contributing with
higher valued information to the user.

• Emergent knowledge - the system offers recommendations for guidance through
the artifacts, based on existing learning paths in the knowledge-base, inferring
new knowledge from the existing data. Of course, the recommendation heuristic
can be extended to improve the results and to more suitably provide effective
recommendations. Nevertheless, the basis is there.

community of
motivated people
with problems and

solutions

larger population of
intelligent people

with similar problems

faceted search
engine

recommendation
engine

computer mediated
social communication
(sharing ,tagging, blogging,
commenting, discussing)

semi-structured
information
repository

Socially clustered
data

(text, tags, metadata...)

"Search"

"Hint"

Wiki / FDAR

Tagged Learning
Paths database

Framework
learners

Framework
learners

Capture,
"Prune/Graft",

Rating

Figure 7.12: The DRIVER toolset as a Collective Knowledge System.

other related tools 137

In short, the proposed collaborative environment provides an extensible scaffold for
building and extending a collective knowledge acquisition system, where the community
of learners can share their insight without too much effort and benefit from its collective
wisdom.

7.5 Other related tools
During the exploratory phase of development of the tools presented, the author was poised
to find a suitable environment to develop the collaborative approach. Several tools emerged
from the literature and state-of-the-art review, already focused in chapters 2 (p. 17), 3 (p.
37) and 4 (p. 53). From those, a couple stood out as strong candidates for the realisation
of the collaborative approach. A brief explanation of the pros and cons of each and the
reasons behind the choice for the wiki-based solution are detailed next.

7.5.1 Environment candidates

Evaluating existing environments suitable for the development of the collaborative approach
and that would allow coverage of the requirements stated in § 7.3.5 (p. 122), was conducted
based on three premisses: (i) it should be an (popular, commonly used) IDE, (ii) it should
have a clear and viable documentation artifacts handling21 infra-structure and (iii) it
should already have work/task/team awareness features.

Three environments stood out: Microsoft Visual Studio [Cord], Rational Team Con-
cert [RTC] and Eclipse [Ecl11], mostly due to their extensible nature and pluggable
architecture. A deeper evaluation was then made of each candidate, assessing its suitability
for the task at hand.

Microsoft Visual Studio/Team Foundation

Visual Studio22 is one of the most popular IDEs currently in the development industry and
it allows extension of its environment through add-ins. It provides a SDK23 that allows
the creation, development and deployment of these extensions for any Visual Studio user.
If fitted24 with the Team Foundation Server, it provides team awareness features. It has
notions of team members, working items, artifacts, processes and relationships between
them.
21CRUD-like (Create, Read, Update, Delete) features.
22At the time of the evaluation, the current Visual Studio release was 2008. Presently, Visual Studio 2010
as been released, but there are no relevant new features that hinder or threaten these statements.

23Software Development Kit.
24Depending on the bundle purchased.

138 collaborative learning with driver

IBM Rational Team Concert/Jazz

Rational Team Concert is IBM’s excellence IDE. Its a team-aware software development
platform that integrates work item tracking, builds, source control, and agile planning.
It is built upon Jazz, a scalable, extensible team-collaboration platform that integrates
tasks across the software lifecycle. The platform also provides useful building blocks and
frameworks that facilitate the development of new products and tools. At its core is the
Jazz Team Server that provides a variety of services (through RESTful web services) and
allows extensions for new tools to integrate their own services. Rational Team Concert has
built-in integrations with collaboration tools such as IBM Sametime® instant messaging
and IBM Connections® social software.

Eclipse/MyLyn

Eclipse is, similarly, one of the most used IDE’s, mainly because it is freeware, open-source
and has a plug-in-like architecture. It comes with MyLyn, a task-aware plug-in (now
bundled within the IDE) that monitors and enhances the development process through the
introduction of task contexts. Each task has a context. This context is composed of all
the artifacts (documents) the user has opened and/or edited. It emphasises the relevance
of the most edited and read25, visually declutering26 the development environment, thus
focusing the developer on the important items.

7.5.2 Evaluation

All candidate environments were then evaluated for its suitability and viability to develop
and validate the collaborative approach. A list of the pros and cons of each can be seen in
Table 7.13.

Overall, the Eclipse/MyLyn option seemed a better candidate for a more simple,
straightforward and quick implementation of the collaborative approach. Despite having
a strong potential, both Visual Studio and Rational Team Concert were a commercial,
heavyweight IDEs that would require additional effort and cost to setup for development
and eventual validation and deployment of a solution. Eclipse was freeware, lightweight
and easier to setup and, regarding the MyLyn plug-in, having a more active and focused
community of developers. Therefore, the author selected this candidate as the environment
for developing his approach.
25 calculating what is called degree-of-interest (DOI) [KM05].
26hiding non-relevant items.

other related tools 139

Figure 7.13: Candidate environments comparison table.

Spike

After choosing to go for the Eclipse/MyLyn environment, a spike solution was attempted.
Usually, in software development, to ascertain if a specific set of tools covers all the
requirements of a system, a quick prototype27 is developed with the sole purpose of having
proof of concept, that is, a partial solution that covers all the technologies used and that
checks if they can work together to reach all the required goals. This is called a spike28.

The main idea of the prototype was to try to support the learning cycle, as simply as
possible, using the concepts provided by the MyLyn component.

The Mylyn architecture defines the concept of Task and Context. A Task is an activity
that a developer does regarding her work. A Context relates to a Task as the state of
the development environment during the execution of the task. This context includes
which files are opened, which artifacts were consulted, what changes were made to the
system. MyLyn uses these concepts mainly to allow “context-changing”, that is, the user
can change from one task to another without loosing its context, being able to resume the
work as it was left.

The prototype would extend these concepts so that the Task would become a Learning
Task where, besides harnessing all the knowledge the Context already had, there would be
27 In this context, also called vertical prototyping.
28This is a short name for stalagmite, serving as an allegory to symbolise a very focused, direct and
protruded solution.

140 collaborative learning with driver

a special attention for artifacts relating to framework understanding (overviews, recipes,
cookbooks, patterns), present within the current project. A Learning Context would then
be pruned by the user before storage to filter out non-relevant information or artifacts that
might have been used but revealed themselves worthless for the learning process. During
the execution of the Learning Task, similar Learning Contexts would be recommended
that might resemble the current one. This resemblance would be evaluated by looking at
both contextual information (open artifacts, edited files) and “social” information (tags,
ranking, etc). The user would be able to browse through recommended contexts and rank
those that most helped her.

Appraisal

This prototype was developed during the course of a few weeks, and it rendered the
following conclusions, regarding the Eclipse/MyLyn candidate:

• Weak artifact representation. The information regarding the artifacts within a
task or context was shallow. It merely represented a local resource and not a GUID
for a document. It would require a considerable amount of effort to improve that
representation to support the learning cycle needs.

• Context API limited. The Context API that would allow manipulation of Context
was built in a way that it could only manipulate the currently active context. This
would jeopardise the ability to aggregate and manipulate a repository of contexts
that would eventually be extended to contain learning knowledge. The developers
community was questioned about this and it was regarded as a low priority feature,
therefore the effort to change it would have to be on our side. This added a great
deal of complexity to the prototype because this change would crosscut through the
entire architecture of MyLyn, forcing it to be almost completely redesigned.

These hindrances led to reconsider the Eclipse/MyLyn option as a suitable candidate
for the development of the collaborative approach. For all other caveats found, a suit-
able workaround was devised, nevertheless, it would always be found lacking. A new
implementation approach was needed.

7.5.3 Comparing with the candidates

When comparing the proposed collaborative approach with presumed candidates, the
author states the following:

• regarding Eclipse/MyLyn...The task context concept has a large potential for
aiding learners, nevertheless it still lacks an effective, faceted, semantic context search

other related tools 141

tool. The user can import contexts from a repository with all the artifacts references
and its degree-of-interest filtering, but there is no relation between tasks so that the
learner may know what context(s) to import. The context is a great candidate for
aggregating knowledge, but it still lacks learning semantics. The purpose of the spike
was to introduce this feature into the context concept.

• regarding Rational Team Concert/Jazz... RTC/Jazz is an advanced version
of Eclipse/Mylyn, scaled to larger systems, larger teams and covering the whole
development process. It’s sort of an enterprise version and, as such, it has all the pros
and cons of the above candidate, plus the cons of being a commercial, heavyweight
solution.

• regarding Visual Studio/Team Foundation... Team Foundation has a query-
based search engine of work items, but these are not related through relevant
semantics regarding learning usefulness. Their relationships are through process or
team member ownership. The community contribution is through scattered means
of communication that miss a focused aggregation point, thus unsuitable to help
learners.

All candidates are suitable platforms for integrating the learning cycle support, but it
would still require a considerable amount of effort to seamlessly provide the users with
this support. The author’s decision to choose the presented setting had simply to do with
proving his hypotheses in an time-effective, focused way.

7.5.4 Moving to the web

At this point, the feeling was more to start from scratch and develop the minimum required
infra-structure to support the learning cycle. The integration into a IDE could come later.
The main goal was to provide a system that would allow validation of the devised approach.
The focus then turned to the documentation artifacts that would serve as basis for the
learning process.

Nevertheless, there was still the need to provide the learners with a familiar, suitable
environment for their learning process. The choice was obvious. The most used application,
nowadays, is the web browser. So a web-based system would be most suited to present
familiar content to the learners. The next step was then to decide which kind of system
would be most appropriate. It should be easy to use, lightweight and extensible.

142 collaborative learning with driver

Probing web solutions

The wiki solution immediately popped to mind. As already described in § 7.4.1 (p. 123),
a wiki would provide a suitable environment from where to build the prototype that,
eventually, evolved to the toolset presented in this chapter. Nevertheless, other possible
solutions where screened for better suitability, if none other, to support the chosen wiki-
based solution. Thus, the basic platform should support shared, editable documentation
artifacts. Commercial products like Alfresco [Alf] or Confluence [Con] were quickly
discarded, not only for their commercial (non-free) nature, but also for being heavyweight29.
The focus then turned to platforms that were similar to wikis or that had (or integrated
with) an embedded wiki. Possible candidates were Redmine [Red] and open-source CMS30

solution like Drupal [Dru] or Joomla [Joo]:

• Redmine. Is a flexible project management web application31. Written using the
Ruby on Rails framework, it is cross-platform and cross-database, having a bundled
wiki and documentation management. It presented itself as a possible solution, not
only for filling the pre-defined requisites, but because it had been previously worked
with32. The reasons for not adopting Redmine where predominantly two: (1) a
poorly structured wiki (no concept of sections) and (2) the wiki was decoupled from
the documentation infrastructure.

• Drupal/Joomla. Both applications are PHP-based CMSs, open-source and extensible.
Although presented in lightweight bundles, its basic installation still had to be
stripped down of some unnecessary components. Although extensible, both Drupal
and Joomla required some initial investment to learn how to use, and, although the
extension architecture was somewhat similar to dokuwiki’s33 their content structure
was too strict34 to provide document content flexibility.

As such, the wiki-based solution became consolidated as a more quick and effective
means to develop and deliver the proposed learning environment. A simple wiki should
provide enough support and structure to harbour the documentation artifacts and it should
be extensible so that only the minimum necessary features could be added on.
29The basic bundle would bring a reasonable amount of clogging, non-relevant features.
30Content Management System.
31Others similar applications exist but were discarded for not having documentation, or wiki, support.
32Supervised graduate students had developed extensions for Redmine.
33More Joomla, than Drupal.
34Without discussing the differences between a CMS and a wiki, that has been causing some stir on the
blog community.

summary 143

Proof-of-concept: from clickstreams to learning paths

As already explained in § 7.4.1 (p. 123), the dokuwiki was selected to provide the basis
for the development of the DRIVER platform. From all the familiar features this wiki
engine provided, it was still necessary to ascertain if it could implement the learning cycle
§ 7.3.3 (p. 119).

The concept of learning path can be compared to what is known as clickstream, a web
analytics metric. According to WAA35, Web Analytics is the measurement, collection,
analysis and reporting of Internet data for the purposes of understanding and optimizing
Web usage. Clickstream tracks by which order the visitor of a site navigated through its
contents36. A learning path can be seen as constrained form of clickstream, where only
the relevant clicks (navigating between documents and liking sections) are captured.

To provide this proof-of-concept, a dokuwiki plug-in called directions37 was developed.
It provides the wiki user with the whole wiki navigational graph, and shows, for the page
the user is currently browsing, where the users mostly navigate to and from. This was
the starting point for developing the DRIVER platform - a single developer project effort,
under development for about 7 months. The two development technologies with the most
impact were PHP and Javascript, generating a total of 9.3 KLOCs38.

7.6 Summary
This chapter presented DRIVER, a collaborative environment that supports the framework
learning process. Not only it relies on an easy, sharing, lightweight, editable platform (wiki),
that provides documentation artifacts about the framework, but promotes knowledge
acquisition by enabling capture, storage, sharing, rating and recommendation of learning
knowledge.

This learning knowledge takes the form of learning paths. These show how other learners
tackled with similar problems by presenting which documentation artifacts they went
through and by which order. The presented toolset supports this kind of learning process
through a series of plug-ins that seamlessly integrate the documentation infra-structure.
These learning paths are stored and shared by the community of learners, who rate the
level of usefulness this learning data has, allowing the information to mature and improve
its quality and applicability throughout the community.
35Web Analytics Association
36The click stream is the sequence of mouse clicks the user performed on the contents of the site, but
usually, only the navigation (link clicks) is recorded.

37Available at http://www.dokuwiki.org/plugin:directions
38LOC meaning Lines of Code

144 collaborative learning with driver

The presented approach tackles with the intrusiveness the learning process can have
when directly asking for help, usually resulting in disregarding the request, exhibiting
non-availability and, progressively forgetting useful learning knowledge (the issue of loosing
tacit knowledge). Intrusiveness is thus mitigated by resorting to a shared and maturing
knowledge-base of learning knowledge. Not only the asking learner isn’t interrupting her
colleagues, but the knowledgeable learner can, without disrupting his normal functions,
capture and store the grafted learning path, as part of the common procedure of learning.
This also contributes in diminishing the loss of tacit knowledge.

Part III

Validation & Conclusions

Chapter 8

Academic quasi-experiment

8.1 Experiment design . 147
8.2 Experiment description . 151
8.3 Data Analysis . 159
8.4 Validation threats . 177
8.5 Summary . 179

This chapter details a quasi-experiment conducted within a controlled experimental
environment using the DRIVER platform. This study was intended to provide evidence
that the presented collaborative approach helps novices and experts, improving their
framework learning experience. The experiment took groups of similar MSc students
and measured their performance, effectiveness and framework knowledge intake, while
developing a set of tasks using a new framework. In parallel, a set of students already knew
the framework, as to study the process of re-acquiring dormant framework knowledge.
The final results support the hypothesis that the collaborative approach helps improving
framework learning, specially for novices.

8.1 Experiment design
The use of empirical studies with students (ESWS) in software engineering helps researchers
gain insight into new or existing techniques and methods. However, due mainly to
concerns of external validity, these studies are often viewed skeptically by researchers
and practitioners. Empirical studies with professionals, which are widely accepted by
the above-mentioned also suffer from similar generalizability problems. Therefore, just
like any other empirical studies, ESWSs can be valuable to the industrial and research
communities if they are conducted in an adequate way, address appropriate goals, do not

148 academic quasi-experiment

overstate the generalizability of the results and take into account threats to internal and
external validity [CJMS10]. As ESWSs are often used to obtain preliminary evidence in
support of or against research hypothesis, this experiment was designed as such.

The independent experimental validation of claims is not as common in Software
Engineering as in other, more matured sciences. As such, the (quasi-)experiment here
detailed was designed as an experimental package (available at [ESS11]), to be performed in
different locations, and by different researchers, in order to enhance the ability to integrate
the results obtained and allow further meta-analysis on them.

8.1.1 Subjects

The experiment subjects were 24 MSc students from the Integrated Master in Informatics
and Computing Engineering, lectured at the University of Porto, Faculty of Engineering.
They were part of a 4th year class, attending an optional course on “Architecture of
Software Systems”. Its syllabus deals strongly with frameworks and patterns, therefore it
was more than suitable to integrate this experiment into their course work.

Group formation

The subjects were divided into 4 groups, each with its own purpose.

• Baseline (BL). This group established the baseline for the experiment, serv-
ing as the control group. Its subjects used the framework with no aids but the
documentation. The experience protocol for this group was Pre-Questionnaire A
§ 8.2.2 (p. 154) , Treatment A § 8.2.3 (p. 154), Tasks § 8.2.4 (p. 155) and Post-
Questionaire § 8.2.5 (p. 159).

• Experimental Group 1 (EG1). This group used the framework having, besides
the documentation, the patterns (presented in Chapter 6, p. 81) as an aid. The
purpose was to compare results with the baseline group and provide evidence for
the usefulness of the patterns. The experience protocol for this group was Pre-
Questionnaire A § 8.2.2 (p. 154), Treatment B § 8.2.3 (p. 154), Tasks § 8.2.4 (p. 155)
and Post-Questionnaire § 8.2.5 (p. 159).

• Experimental Group 2 (EG2). This group used the framework having the
DRIVER platform (documentation, patterns and wiki plug-ins) § 7.4 (p. 123) as aid.
The purpose was to compare results with the baseline group and provide evidence that
the proposed collaborative environment improves framework understanding. The
experience protocol for this group was Pre-Questionnaire A § 8.2.2 (p. 154), Treatment
C § 8.2.3 (p. 154), Tasks § 8.2.4 (p. 155) and Post-Questionnaire § 8.2.5 (p. 159).

experiment design 149

• Experts (EX). This group used the framework having the DRIVER platform
(documentation, patterns and wiki plug-ins) as aid. The purpose was to provide
evidence that the proposed collaborative environment helps Experts1 increase their
knowledge of the framework. The experience protocol for this group was Pre-
Questionnaire B § 8.2.2 (p. 154), Treatment C § 8.2.3 (p. 154), Tasks § 8.2.4 (p. 155)
and Post-Questionnaire § 8.2.5 (p. 159).

Pre-experiment evaluation

For an experiment of this kind, it is important to assure that the subjects are similar
and that their base skills don’t pose a significant threat to the validity of the results.
Therefore, they were scrutinised based on their academic track, by analysing their grades
on a selected subset of courses. These courses were deemed relevant to the outcome of the
experiment, namely: (i) Programming Fundamentals, (ii) Programming, (iii) Algorithms
and Data Structures, (iv) Algorithm Design and Analysis, (v) Software Engineering, (vi)
Software Development Laboratory, and (vii) Information Systems. Their grades can be
found in Appendix A (p. 189), Table A.1. An independent samples t-test was conducted
to compare the average students’ grades (shown in Table 8.1) between the baseline and
other experimental groups (EG1, EG2, EX).

As shown in Table 8.2, there was no significant difference in the scores for the
Experimental Group 1 (M = 16.93, SD = 1.35) and Baseline (M = 16.84, SD = 0.93)
conditions; ρ = 0.902, within a 95% confidence interval.

As shown in Table 8.3, there was no significant difference in the scores for the
Experimental Group 2 (M = 16.64, SD = 1.49) and Baseline (M = 16.84, SD = 0.93)
conditions; ρ = 0.802, within a 95% confidence interval.

As shown in Table 8.4, there was no significant difference in the scores for the Experts
(M = 16.73, SD = 1.02) and Baseline (M = 16.84, SD = 0.93) conditions; ρ = 0.839,
within a 95% confidence interval.

Group N Mean Std. Deviation Std. Error Mean
BL 6 16.838 0.9261 0.3780

EG1 4 16.928 1.3527 0.6763
EG2 4 16.943 1.4869 0.7435
EX 9 16.730 1.0213 0.3404

Table 8.1: Student grades group statistics.

1 In this context, Experts stands for subjects that have already used the framework for a significant period
of time (over 3 months), performing instantiation and evolution activities.

150 academic quasi-experiment

F Sig. t df Sig. (2-tailed)
Eq. Var. Assumed 0.269 0.618 -0.13 8.000 0.902
Eq. Var. Not Assumed -0.12 4.882 0.912

Table 8.2: Baseline vs. Experimental Group 1 Independent Samples Test. The first two columns
are the Levene’s Test for Equality of Variances, showing a significance greater than
0.05 (0.618). The other three columns are the t-test for Equality of Means. Since
we can assume equal variances, the 2-tailed value of 0.902 allow us to conclude that
there is no statistically significant difference between the two conditions.

F Sig. t df Sig. (2-tailed)
Eq. Var. Assumed 0.607 0.458 0.259 8.000 0.802
Eq. Var. Not Assumed 0.234 4.569 0.825

Table 8.3: Baseline vs. Experimental Group 2 Independent Samples Test. The first two columns
are the Levene’s Test for Equality of Variances, showing a significance greater than
0.05 (0.458). The other three columns are the t-test for Equality of Means. Since
we can assume equal variances, the 2-tailed value of 0.802 allow us to conclude that
there is no statistically significant difference between the two conditions.

8.1.2 Framework selection

Choosing a framework to use in the experiment was an issue. One of the main concerns
was finding a framework that would suit all the experimental groups. The experiment
needed a framework that was unknown to most groups (BL, EG1, EG2) but known to the
Experts (EX) group.

At first, a survey was devised to find out which frameworks, from a pre-selected subset,
were known to the students. Afterwards, it was only a matter of grouping the students
accordingly to the experiment’s needs. Nevertheless, this survey would prove useless if the
subset of frameworks rendered unsuitable results (inability to form the groups), not to
mention the poor control over the reliability of the answers.

F Sig. t df Sig. (2-tailed)
Eq. Var. Assumed 0.050 0.827 0.208 13.00 0.839
Eq. Var. Not Assumed 0.212 11.62 0.836

Table 8.4: Baseline vs. Experts Independent Samples Test. The first two columns are the
Levene’s Test for Equality of Variances, showing a significance greater than 0.05
(0.827). The other three columns are the t-test for Equality of Means. Since we can
assume equal variances, the 2-tailed value of 0.839 allow us to conclude that there is
no statistically significant difference between the two conditions.

experiment description 151

At this point, a solution presented itself. A PhD colleague had been developing a new
framework, called OGHMA [Fer11]. OGHMA is an object-oriented framework targeted
to the development of information systems, on an industrial level, whose structural
requirements can be best described as incomplete by design. It relies on the Adaptive
Object-Model meta-architectural pattern [YBJ01] to allow run-time domain evolution by
the user.

All of the students recruited for this experiment had attended the Software Development
Laboratory course, although distributed by several distinct classes. One of those classes
used the OGHMA framework. Coincidently, some of those students chose the optional
“Architecture of Software Systems” course, which enabled the subject’s pool to have
students with OGHMA experience and others with no prior knowledge of the framework 2.
These conditions prompted OGHMA as the primary candidate for the selection. Choosing
some other framework would imply training the Experts group a priori, whereas choosing
OGHMA would enable a faster setup without jeopardising the experiment goals.

In future experiments, a previous, more extensive survey must be made to the subjects
in order to find a suitable framework that can cope with all the constraints and where
training of the Experts group might be required.

8.2 Experiment description
This section describes the experiment protocol and phases as depicted in Figure 8.1. After
divided into groups, the students were submitted to a pre-experiment questionnaire to
establish their initial state. Then, each group undertook a treatment phase to condition
their experiment environment accordingly and, after going through a series of tasks, a
post-experiment questionnaire was conducted to collect results.

8.2.1 Environment

According to [CJMS10], regarding ESWSs,

The study setting must be appropriate relative to its goals, the skills required and
the activities under study.

Considering this requirement, this section describes the experiment environment.
2 Some students had heard of OGHMA through their colleagues, but had never used it or even knew its
application domain.

152 academic quasi-experiment

start

Group
Formation

Baseline Experimental
Group I

Experimental
Group II Experts

Pre-Questionnaire A

Tasks

Post-Questionnaire

end

Treatment CTreatment A Treatment B

Pre-Questionnaire B

Figure 8.1: Experiment protocol and phases.

Setting

The experiment was conducted on a familiar setting to the students, as an attempt to
minimise the external environmental factors that might threaten the validity of the results.
It took place in laboratory classrooms, the same ones used by the students to attend
classes or develop their course work.

To enforce group and collaborative work [CJMS10], the students were grouped into
pairs with colleagues from their own experimental group and placed in two separate rooms
(BL and EG1 groups in one room and EG2 and EX groups in another room). This was
done to better monitor the experiment progress and to more easily conduct some phase
activities, e.g. video projection (See Treatment C, section 8.2.3, p. 154). Each pair had a
workstation.

They had limited internet access in order to minimise distractions (instant messaging,
e-mail, etc.) and to control experimental variables. Nevertheless they had access to the

experiment description 153

necessary resources to conduct the experiment successfully. These resources included: (1)
an experiment tracker wiki, (2) a documentation wiki and (3) an OGHMA Visual Studio
Solution package.

Experiment tracker wiki

To monitor and control the experiment progress, a wiki3 was provided for the students.
This wiki contained instructions on how to start the experiment and description of the
consecutive tasks to be performed, its requirements and goals. This wiki was also enhanced
with a tracker plug-in that enabled a non-intrusive monitoring of the duration each pair
took to complete each task. The students were warned that they should not proceed to
the next task before finishing the current one, as that would mark the previous task as
done. Not complying with this restriction would lead to invalid time readings.

Documentation wiki

To learn about the OGHMA framework, a documentation wiki was provided with enough
contents to enable the effective coverage of the requirements presented by each task. This
wiki was, in every way, an instantiation of the DRIVER platform described in § 7.4 (p. 123),
except for the availability of the patterns and the learning cycle supporting plug-ins. During
the Treatments phase § 8.2.3 (p. 154) each group would be given access to these resources
according their experiment research goals.

OGHMA Visual Studio Solution

The OGHMA framework was develop in C#, and optimised for use on Microsoft’s Visual
Studio IDE. Therefore, a Solution package was provided to the students (and referenced by
the documentation), hopefully, serving as a more quick and easy platform for development.
It was assumed that all students were proficient using the IDE, as it was included in
their academic track. Nevertheless, this aspect was screened through a pre-experiment
questionnaire item (BG1.8).

8.2.2 Pre-questionnaires

The first phase of the experiment was to hand out a questionnaire to the students. The
questionnaires were designed using a Likert scale [Lik32]. This psychometric bipolar
scaling method contains a set of Likert items, or statements, which the respondent is
asked to evaluate according to any kind of subjective or objective criteria, thus measuring
3 a dokuwiki, the same wiki engine used to implement the DRIVER platform § 7.4.1 (p. 123).

154 academic quasi-experiment

either negative or positive response to the statement. For all the questionnaires in this
experiment (both pre- and post-), the Likert items had a five-point format: (1) strongly
disagree, (2) somewhat disagree, (3) neither agree nor disagree, (4) somewhat agree, and
(5) strongly agree.

Pre-questionnaire A

The pre-experiment questionnaire A was used to ascertain the students background and
general profile in order to screen out possible differences amongst the students regarding
their basic skills. It also served to confirm their acquaintance with the OGHMA framework.
Students of groups Baseline (BL), Experimental Group 1 (EG1) and Experimental Group
2 (EG2) were submitted to this questionnaire (see Appendix B, p. 191), whose answers
are detailed in Appendix C (p. 193), and further analysed in § 8.3 (p. 159).

Pre-questionnaire B

The pre-experiment questionnaire B extended pre-experiment questionnaire A to include
items used to ascertain what knowledge the subjects had about the OGHMA framework,
at the start of the experiment. Students of the Experts (EX) group were submitted to this
questionnaire (see Appendix D, p. 195), whose answers are detailed in Appendix E (p.
199), and further analysed in § 8.3.8 (p. 175).

8.2.3 Treatments

After the pre-questionnaires phase, the students were subject to a treatment phase, where
each group was introduced to their own experiment environment. This is where the groups
actually diverge regarding their experiment research goals. Each treatment is described
next.

Treatment A

This treatment introduced the experiment environment as described in § 8.2.1 (p. 151).
The Baseline (BL) group undertook this treatment.

Treatment B

This treatment extended treatment A by allowing the students to have access to the patterns
(Chapter 6, p. 81) and to spent time knowing about the patterns before advancing to the
next phase. The Experimental Group 1 (EG1) undertook this treatment.

experiment description 155

Treatment C

This treatment extended treatment B by providing the experiment environment with the
whole DRIVER (Chapter 7, p. 109) platform. The DRIVER knowledge base already had
a few learning paths captured in a previous trial run session where a framework expert
performed the same experiment protocol. This expert had previous knowledge of the
framework, but no acquaintance with the documentation wiki. The students were shown a
demonstration video with a quick tutorial on how to use the plug-ins and their purpose,
using a different case scenario. This way the students weren’t biased by any clues on what
documentation to look for in order to perform the experiment tasks. Both Experimental
Group 2 (EG2) and Experts (EX) group undertook this treatment.

8.2.4 Tasks

At this point, all the groups were ready to start executing the tasks that would led them
to use the framework. It wasn’t disclosed how many tasks were there, merely the goal to
be effective and as less time-consuming as possible.

The tasks were mainly focused on assessing how efficiently the students could incremen-
tally build an information system within 4 iterations. These tasks had already been used
in another experience [Fer11] regarding the OGHMA framework, so they were adapted to
fit this experiment research goals. The description of each iteration is presented next.

Iteration 0

This iteration served only to contextualise the students with the problem domain where
they were going to work and to explain how to conduct their work throughout the iterations.
It also pointed out how to verify the effectiveness of the outcome of each iteration so that
they might confidently proceed to the next one.

The following text was presented to the students:

Welcome to ASSOCIATION 4 Software! With your help, our company will most
certainly thrive and reach higher grounds. Our customers are academic institutions
and scholarly entrepreneurs.

Your first assignment is to implement an
information system for managing scientific conferences. After a careful re-
quirements analysis, the engineers have concluded that the system should be
implemented in several iterations. Having already planned all of the iterations,
you’ll find a detailed UML class diagram for each one, as you go along.

4 ASSOCIATION was a fake software company name made from the course acronym: “ASSO”

156 academic quasi-experiment

Due to the fact that the client wants to validate your system at the end of
each iteration, you’ll have to deliver a releasable product for each iteration.
Each release should have a working Graphical User Interface and Persistency En-
gine. The user should be able to create, read, update and delete the modelled concepts.

In order to achieve these goals, your are going to use the OGHMA frame-
work. You will be given some documentation to help you. You can download the
OGHMA Visual Studio Solution here.

You may start whenever you feel ready.

Good luck!

Iteration 1

The first iteration was designed to yield a very simple system. Only a single screen
would be needed to view and edit the information. There was no polymorphism, shared
aggregations or any type of conditional rules and the whole system could be roughly stored
in two database tables. The purpose was merely to make first contact with the framework
with no excessive task complexity.

The following text and diagram depicted in Figure 8.2 were presented to the students:

In this iteration, you’ll implement the basic concepts of a scientific conference.
A conference is typically related to a specific Scientific Area (e.g., Computer
Science or Software Engineering), but it is not uncommon to find conferences related
to several areas.

Each conference has several editions, normally once per year (e.g. Pattern
Languages Of Programs 2008). Due to several factors, it is also common for
conferences to be co-located with others. For example, the 2008 editions of “Pattern
Languages Of Programs” and “Object-Oriented Programming, Systems, Languages
& Applications” were co-located.

In the end of this iteration, the user should be able to manage Confer-
ences and Editions. Model elements tagged with the stereotype entrypoint
represent main entry points to the system (e.g., the user should be able to invoke a
list of Scientific Areas from the application’s main menu or similar mechanism).

experiment description 157

* *

‹‹open-enum››
Scientific Area

Name: text
Website: url

‹‹entrypoint››
Conference

Number: nat
Year: nat
Theme: enum
Description: text
StartDate: date
EndDate: date

Edition

1..*

*

1..*

colocated-with

Class Diagram — Task 1

Figure 8.2: Iteration 1

Iteration 2

The second iteration was designed to make the students dig deeper into the framework.
There was the need for more screens (due to indexation) and the number of database
tables could grew from two to four, but with minimal modification to the existing artifacts.

The following text and diagram depicted in Figure 8.3 were presented to the students:

In this iteration, you’ll extend your system with two extra features. The first
one – Indexes – classifies conferences according to a rating system per year. For
example, the index “ISI Web of Knowledge” rates thousands of conferences every
year. The rating is given to a particular edition of a conference, so ISI could rate
“Pattern Languages of Programs” as an A in 2015, and as a B in 2016. The second
one - Sessions - allows the user to manage the program (contents) of a conference.
There are two types of sessions: (a) Presentations, and (b) Poster Sessions. For
example, the 2008 edition of “Object-Oriented Programming, Systems, Languages
& Applications” had one (1) poster session, and twelve (12) presentations.

Name: text

‹‹entrypoint››
Index A

B
C

‹‹enum››
Ranking

* 0..*

1

Day: date
Start: time
End: time

Session

Presentation

Poster

0..*

* *

‹‹open-enum››
Scientific Area

Name: text
Website: url

‹‹entrypoint››
Conference

Number: nat
Year: nat
Theme: enum
Description: text
StartDate: date
EndDate: date

Edition

1..*

*

1..*

colocated-with

Class Diagram — Task 2

Figure 8.3: Iteration 2

158 academic quasi-experiment

Iteration 3

The third iteration merely increased the complexity of the system, requiring more elaborate
user-interaction and conditional rules, involving shared many-to-many relationships and
relationship properties. Again the students would have to go deeper into the framework in
order to cope with these requirements.

The following text and diagram depicted in Figure 8.4 were presented to the students:

In this iteration, you’ll provide your system by adding some remaining core
concepts of scientific conferences. People that participate in conferences as authors
have to submit at least one paper, either alone or with colleagues. In addition, they
may be Chairs, Organisers or simple Participants. Different editions normally
have different chairs and organisers.

*

*

* *
Title: text
Paper: file

Submission
Name: text
Affiliation: text
Email: url

‹‹entrypoint››
Person

Chair
Organizer
Participant

‹‹enum››
RoleType

Role

0..*

0..1

1..*

Name: text

‹‹entrypoint››
Index A

B
C

‹‹enum››
Ranking

* 0..*

1

Day: date
Start: time
End: time

Session

Presentation

Poster

0..*

* *

‹‹open-enum››
Scientific Area

Name: text
Website: url

‹‹entrypoint››
Conference

Number: nat
Year: nat
Theme: enum
Description: text
StartDate: date
EndDate: date

Edition

1..*

*

1..*

colocated-with

Class Diagram — Task 3

Figure 8.4: Iteration 3

Iteration 4

This final iteration posed a new challenge: framework evolution. The students had no
customisation points to solve the proposed requirements. Therefore, they would have to
go into the framework internal code and extend it to provide this new configuration ability.
The goal was to put the students in direct contact with the framework code. Here is how
the task was presented:

In this iteration, for reasons of practicability, the client has requested that when-
ever a paper is submitted to a conference, an email should be sent for the Chairs
with the Submission and Authors relevant information.

data analysis 159

8.2.5 Post-questionnaire

At the end of the experiment, the questionnaire in Appendix F (p. 201) was handed out
to the students. The answers from all the participants are detailed in Appendix G (p.
205), and further analysed in § 8.3.6 (p. 169).

8.3 Data Analysis
As mentioned in § 8.2.2 (p. 153), the subjects were given a pre-experiment questionnaire
to screen out possible background and basic skills deviations. During the experiment,
the task completion time was recorded and afterwards, a post-experiment questionnaire
collected further data. This section presents a detailed analysis of the collected data in
order to provide evidence of the validity of the assumptions presented by this dissertation.

Firstly, it will be shown that all groups have no significant background deviations and
that acquaintance of the OGHMA framework is correctly assumed. Secondly, the analysis
will focus on comparing results between the Baseline (BL) and Experimental Groups 1
(EG1) and 2 (EG2). Finally, the Experts (EX) group will be focused on.

8.3.1 Statistical relevance

To provide statistical relevance in the analysis of the questionnaires items, the results are
interpreted as described next. Let the null hypothesis be denoted as H0, the alternative
hypothesis as H1, the baseline group as Gb, the experimental group as Ge

5, and ρ the
probability estimator of wrongly rejecting the null hypothesis. Then, the alternative
hypothesis are either: (i) H1 : Ge 6= Gb, the experimental group differs from the baseline,
(ii) H1 : Ge < Gb, the measure in the experimental group is lower than the baseline, or (iii)
H1 : Ge > Gb, the measure in the experimental group is greater than the baseline. The
outcomes of the two treatments were compared for every answer using the non-parametric,
two-sample, rank-sum Wilcoxon-Mann-Whitney [HW99] test, with n1 = 6 and n2 = 46.
The significance level for all tests was set to 5%, so probability values of ρ ≤ 0.05 are
considered significant, and ρ ≤ 0.01 considered highly significant. The corresponding
alternative hypothesis are further detailed for each question, and a summary of the base
statistics and corresponding test values can be found in Appendices C (p. 193) and G (p.
205).
5 The experimental group can be either EG1 or EG2 depending on what group is being analysed.
6 Both EG1 and EG2 have 4 subjects.

160 academic quasi-experiment

8.3.2 Background

Although an objective comparison between the background of each group was already
conducted using the subjects average grades in key courses § 8.1.1 (p. 149), this section
rejects any subjective difference amongst the participants with respect to their basic skills.

experimental group 1 baseline statistics
12345 x̄ σ 12345 x̄ σ H1 W ρ

BG1.1 3.25 1.26 4.00 0.63 6= 16.5 0.257
BG1.2 4.00 0.82 3.50 0.55 6= 28.5 0.352
BG1.3 4.50 0.58 4.83 0.41 6= 18.0 0.476
BG1.4 3.50 0.58 3.33 0.82 6= 32.0 0.914
BG1.5 3.75 0.50 3.83 0.75 6= 21.5 0.914
BG1.6 3.00 0.82 3.00 0.00 6= 22.0 1.000
BG1.7 4.25 0.50 4.50 0.55 6= 19.0 0.610
BG1.8 3.00 1.41 3.83 1.60 6= 17.0 0.352
BG1.9 4.00 0.00 4.33 0.52 6= 18.0 0.476
BG1.10 3.25 0.96 4.17 0.98 6= 16.0 0.257
BG2 4.75 0.50 4.83 0.41 6= 21.0 0.914

Table 8.5: Summary of Background results between the Baseline (BL) and Experimental Group
1 (EG1), including the values of the non-parametric significance Mann-Whitney-
Wilcoxon test.

BG1.1 I have considerable experience using frameworks

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.257) in the scores for the
experimental group 1 (x̄ = 3.25, σ = 1.26) and baseline (x̄ = 4.00, σ = 0.63) conditions,
as seen in Table 8.5. Let H1 : Ge2 6= Gb, there was no significant difference (ρ = 0.610)
in the scores for the experimental group 2 (x̄ = 3.75, σ = 0.96) and baseline (x̄ = 4.00,
σ = 0.63) conditions, as seen in Table 8.6 (p. 161). As expected, the students have a fair
amount of contact with frameworks throughout their academic track, therefore they feel
comfortable around frameworks.

BG1.2 I have considerable experience analyzing and specifying information systems

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.352) in the scores for the
experimental group 1 (x̄ = 4.00, σ = 0.82) and baseline (x̄ = 3.50, σ = 0.55) conditions,
as seen in Table 8.5. Let H1 : Ge2 6= Gb, there was no significant difference (ρ = 0.352)
in the scores for the experimental group 2 (x̄ = 4.00, σ = 0.82) and baseline (x̄ = 3.50,
σ = 0.55) conditions, as seen in Table 8.6 (p. 161). Almost since the beginning of their

data analysis 161

experimental group 2 baseline statistics
12345 x̄ σ 12345 x̄ σ H1 W ρ

BG1.1 3.75 0.96 4.00 0.63 6= 19.5 0.610
BG1.2 4.00 0.82 3.50 0.55 6= 28.5 0.352
BG1.3 4.50 0.58 4.83 0.41 6= 18.0 0.476
BG1.4 3.50 0.58 3.33 0.82 6= 32.0 0.914
BG1.5 3.25 0.96 3.83 0.75 6= 18.0 0.476
BG1.6 3.50 1.00 3.00 0.00 6= 27.0 0.257
BG1.7 4.25 0.96 4.50 0.55 6= 20.5 0.762
BG1.8 4.00 0.82 3.83 1.60 6= 21.0 0.914
BG1.9 4.25 0.96 4.33 0.52 6= 22.0 1.000
BG1.10 3.50 0.58 4.17 0.98 6= 17.0 0.352
BG2 5.00 0.00 4.83 0.41 6= 31.0 0.762

Table 8.6: Summary of Background results between the Baseline (BL) and Experimental Group
2 (EG2), including the values of the non-parametric significance Mann-Whitney-
Wilcoxon test.

academic track, the students engage in the analysis and specification of information systems.
At this point, all of them had gone through a course especially dedicated to that subject
(namely Information Systems).

BG1.3 I have considerable experience with object-oriented architecture design and
implementation

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.476) in the scores for the
experimental group 1 (x̄ = 4.50, σ = 0.58) and baseline (x̄ = 4.83, σ = 0.41) conditions,
as seen in Table 8.5 (p. 160). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 0.476) in the scores for the experimental group 2 (x̄ = 4.50, σ = 0.58) and baseline
(x̄ = 4.83, σ = 0.41) conditions, as seen in Table 8.6. As object-oriented development lies
at the core of their academic track, it was relevant to ascertain their overall confidence in
evaluating their own capability, to show that their answers were real and balanced. The
high average results prove the reliability of the answers.

BG1.4. I have considerable experience with agile development methodologies

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.914) in the scores for the
experimental group 1 (x̄ = 3.50, σ = 0.58) and baseline (x̄ = 3.33, σ = 0.82) conditions,
as seen in Table 8.5 (p. 160). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 0.914) in the scores for the experimental group 2 (x̄ = 3.50, σ = 0.58) and baseline
(x̄ = 3.33, σ = 0.82) conditions, as seen in Table 8.6. This item served as an evaluation of

162 academic quasi-experiment

the students’ feelings towards pair-like iterative development that would characterise the
experiment process. As such, the development methodology proved not to be a hindrance
throughout the experiment.

BG1.5 I have considerable experience with classical development methodologies

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.914) in the scores for the
experimental group 1 (x̄ = 3.75, σ = 0.50) and baseline (x̄ = 3.83, σ = 0.75) conditions,
as seen in Table 8.5 (p. 160). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 0.476) in the scores for the experimental group 2 (x̄ = 3.25, σ = 0.96) and baseline
(x̄ = 3.83, σ = 0.75) conditions, as seen in Table 8.6 (p. 161). In conjunction with BG1.4
and BG1.6 this item merely served to screen out and confirm possible inconsistent answers
regarding the development methodology.

BG1.6 I have considerable experience with formal development methodologies

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 1.000) in the scores for the
experimental group 1 (x̄ = 3.00, σ = 0.82) and baseline (x̄ = 3.00, σ = 0.00) conditions,
as seen in Table 8.5 (p. 160). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 0.257) in the scores for the experimental group 2 (x̄ = 3.50, σ = 1.00) and baseline
(x̄ = 3.00, σ = 0.00) conditions, as seen in Table 8.6 (p. 161). As some of the tasks relied
on a formal definition of constraints and pre- and post-conditions, this item dispersed any
possible aversion to that form of development.

BG1.7 I have considerable experience with UML class diagrams

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.610) in the scores for the
experimental group 1 (x̄ = 4.25, σ = 0.50) and baseline (x̄ = 4.50, σ = 0.55) conditions,
as seen in Table 8.5 (p. 160). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 0.762) in the scores for the experimental group 2 (x̄ = 4.25, σ = 0.96) and baseline
(x̄ = 4.50, σ = 0.55) conditions, as seen in Table 8.6 (p. 161). Consistent with their
academic track, all groups exhibited a positive response, therefore the UML diagrams
present in the tasks’ description pose no thread to the validity of the experiment results.

BG1.8 I have considerable experience with Visual Studio IDE

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.352) in the scores for the
experimental group 1 (x̄ = 3.00, σ = 1.41) and baseline (x̄ = 3.83, σ = 1.60) conditions,
as seen in Table 8.5 (p. 160). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 0.914) in the scores for the experimental group 2 (x̄ = 4.00, σ = 0.82) and baseline

data analysis 163

(x̄ = 3.83, σ = 1.60) conditions, as seen in Table 8.6 (p. 161). This item discarded the IDE
as a validation threat to the reliability of the experiment results. This was expected due
to the fact that Visual Studio is frequently used as an IDE during their academic track.

BG1.9 I have considerable experience using wikis

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.476) in the scores for the
experimental group 1 (x̄ = 4.00, σ = 0.00) and baseline (x̄ = 4.33, σ = 0.52) conditions,
as seen in Table 8.5 (p. 160). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 1.000) in the scores for the experimental group 2 (x̄ = 4.25, σ = 0.96) and baseline
(x̄ = 4.33, σ = 0.52) conditions, as seen in Table 8.6 (p. 161). As expected, all groups
revealed familiarity with wikis. Their contact with this kind of collaborative technology
starts early in their Integrated Master’s study plan.

BG1.10 I have considerable experience with XML-based languages

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.257) in the scores for the
experimental group 1 (x̄ = 3.25, σ = 0.96) and baseline (x̄ = 4.17, σ = 0.98) conditions,
as seen in Table 8.5 (p. 160). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 0.352) in the scores for the experimental group 2 (x̄ = 3.50, σ = 0.58) and baseline
(x̄ = 4.17, σ = 0.98) conditions, as seen in Table 8.6 (p. 161). To solve most of the tasks,
the students had to use an XML-based language. This item discarded this as a posable
threat to the validity of results.

BG2 I’ve never used or had contact with the OGHMA framework.

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.914) in the scores for the
experimental group 1 (x̄ = 4.75, σ = 0.50) and baseline (x̄ = 4.83, σ = 0.41) conditions,
as seen in Table 8.5 (p. 160). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 0.762) in the scores for the experimental group 2 (x̄ = 5.00, σ = 0.00) and baseline
(x̄ = 4.83, σ = 0.41) conditions, as seen in Table 8.6 (p. 161). This item confirmed the
non-acquaintance with the OGHMA framework. This was a mandatory condition to the
effective prosecution of the experiment goals. The few students that gave an answer not
equals to 5 (strongly agree) were confronted and confessed to have heard of it by other
colleagues, but confirmed never having used it or known its intent or application domain.

8.3.3 External factors

While designing the experiment, there was the concern of providing a neutral, familiar
setting for the participants as to discard possible validation threatening environmental

164 academic quasi-experiment

factors. But even in a common, usual working place there are aspects out of control
(inter-group interaction, disturbances, noise, etc.) and that might pose as threats to the
validity of the results. This section screens out those aspects.

experimental group 1 baseline statistics
12345 x̄ σ 12345 x̄ σ H1 W ρ

EF1 3.00 1.15 3.33 1.37 6= 20.00 0.762
EF2 3.00 0.82 3.00 0.89 6= 22.00 1.000
EF3 4.50 0.58 4.50 0.84 6= 21.00 0.914
EF4 1.50 0.58 1.00 0.00 6= 27.00 0.256

Table 8.7: Summary of external factors results between the Baseline (BL) and Experimental
Group 1 (EG1), including the values of the non-parametric significance Mann-Whitney-
Wilcoxon test.

experimental group 2 baseline statistics
12345 x̄ σ 12345 x̄ σ H1 W ρ

EF1 4.50 0.58 3.33 1.37 6= 26.00 0.171
EF2 3.75 0.50 3.00 0.89 6= 27.00 0.257
EF3 3.50 0.58 4.50 0.84 6= 14.00 0.114
EF4 1.00 0.00 1.00 0.00 6= 22.00 1.000

Table 8.8: Summary of external factors results between the Baseline (BL) and Experimental
Group 2 (EG2), including the values of the non-parametric significance Mann-Whitney-
Wilcoxon test.

EF1 I found the whole experience environment intimidating.

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.762) in the scores for the
experimental group 1 (x̄ = 3.00, σ = 1.15) and baseline (x̄ = 3.33, σ = 1.37) conditions,
as seen in Table 8.7. Let H1 : Ge2 6= Gb, there was no significant difference (ρ = 0.171)
in the scores for the experimental group 2 (x̄ = 4.50, σ = 0.58) and baseline (x̄ = 3.33,
σ = 1.37) conditions, as seen in Table 8.8. Overall, the scores discarded the experiment
environment as a threat. Of course, there is always some degree of intimidation when
we are prompted to participate in an experiment of this kind, but the overall levels of
intimidation were within an acceptable range. Even so, and although not statistically
significant, EG2 exhibited a score a bit higher than expected. This deviation was probably
caused by undertaking Treatment B § 8.2.3 (p. 154) and also from a more strong casual

data analysis 165

monitoring of their work. Nonetheless, this disturbance only occurred in the beginning of
the experiment, so it can be discarded as a relevant threat to validity.

EF2 I enjoyed programming and developing in the experiment.

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 1) in the scores for the
experimental group 1 (x̄ = 3.00, σ = 0.82) and baseline (x̄ = 3.00, σ = 0.89) conditions,
as seen in Table 8.7 (p. 164). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 0.257) in the scores for the experimental group 2 (x̄ = 3.75, σ = 0.50) and baseline
(x̄ = 3.00, σ = 0.89) conditions, as seen in Table 8.8 (p. 164). This item measured the fun
factor or the novel factor. The observed scores reveal that there was no negative feeling
towards the experiment technical work, so this factor can be discarded as a threat to the
whole experiment.

EF3 I would work with my partner again.

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.914) in the scores for the
experimental group 1 (x̄ = 4.50, σ = 0.58) and baseline (x̄ = 4.50, σ = 0.84) conditions,
as seen in Table 8.7 (p. 164). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 0.114) in the scores for the experimental group 2 (x̄ = 3.50, σ = 0.58) and baseline
(x̄ = 4.50, σ = 0.84) conditions, as seen in Table 8.8 (p. 164). It is said that “Birds of a
feather flock together”, that is, it was expected that when forming pairs, the participants
would choose a colleague with whom they had already worked in the past. It was important
to ascertain if the grouping factor was a threat and, consequently, the resulting scores
discarded it.

EF4 I kept getting distracted by other colleagues outside my group.

Let H1 : Ge1 6= Gb, there was no significant difference (ρ = 0.256) in the scores for the
experimental group 1 (x̄ = 1.50, σ = 0.58) and baseline (x̄ = 1.00, σ = 0.00) conditions,
as seen in Table 8.7 (p. 164). Let H1 : Ge2 6= Gb, there was no significant difference
(ρ = 1.000) in the scores for the experimental group 2 (x̄ = 1.00, σ = 0.00) and baseline
(x̄ = 1.00, σ = 0.00) conditions, as seen in Table 8.8 (p. 164). In a familiar, non-intimidating
setting, it is easier to interact and to vocalise more, producing more noise and increasing
the disturbance level. This item served to discard this factor, as shown by the low scores
exhibited by all groups.

166 academic quasi-experiment

8.3.4 Overall satisfaction

This group of questions was intended to provide subjective validation to the thesis on
an overall scope, by questioning subjects on their performance, comfort and feel for the
presented collaborative environment.

experimental group 1 baseline statistics
12345 x̄ σ 12345 x̄ σ H1 W ρ

OVS1 4.00 0.00 2.50 0.55 > 24.00 0.005
OVS2 2.75 0.96 1.50 0.84 > 29.50 0.043
OVS3 4.50 0.58 4.67 0.52 < 20.00 0.881
OVS4 1.75 0.50 2.50 1.05 < 16.50 0.953

Table 8.9: Summary of overall satisfaction results between the Baseline (BL) and Experimental
Group 1 (EG1), including the values of the non-parametric significance Mann-Whitney-
Wilcoxon test.

experimental group 2 baseline statistics
12345 x̄ σ 12345 x̄ σ H1 W ρ

OVS1 3.50 0.58 2.50 0.55 > 14.50 0.048
OVS2 3.00 0.82 1.50 0.84 > 27.00 0.033
OVS3 4.50 0.58 4.67 0.52 < 20.00 0.881
OVS4 2.25 0.50 2.50 1.05 < 20.00 0.738

Table 8.10: Summary of overall satisfaction results between the Baseline (BL) and Experimental
Group 2 (EG2), including the values of the non-parametric significance Mann-
Whitney-Wilcoxon test.

OVS1 Overall, this particular setup was suitable for solving every task presented.

Let H1 : Ge1 > Gb, there was a highly significant difference (ρ = 0.005) in the scores for
the experimental group 1 (x̄ = 4.00, σ = 0.00) and baseline (x̄ = 2.50, σ = 0.55) conditions,
as seen in Table 8.9. Let H1 : Ge2 > Gb, there was a significant difference (ρ = 0.048)
in the scores for the experimental group 2 (x̄ = 3.50, σ = 0.58) and baseline (x̄ = 2.50,
σ = 0.55) conditions, as seen in Table 8.10. The scores obtained by this item give strong
evidence that the presented collaborative environment proved to be well suited for more
easily learning about a framework. The score regarding BL vs. EG1 is pretty clear to
show that the patterns helped dealing with framework learning. The score regarding BL
vs. EG2 is not as strong but it is also significant. When presented with new tools, there

data analysis 167

is always a learning curve factor that attenuates the readily acceptance and recognition of
a useful tool, especially in a time-constrained scenario such as this.

OVS2 I found the documentation available to be sufficient.

Let H1 : Ge1 > Gb, there was a significant difference (ρ = 0.043) in the scores for the
experimental group 1 (x̄ = 2.75, σ = 0.96) and baseline (x̄ = 1.50, σ = 0.84) conditions,
as seen in Table 8.9 (p. 166). Let H1 : Ge2 > Gb, there was a significant difference
(ρ = 0.033) in the scores for the experimental group 2 (x̄ = 3.00, σ = 0.82) and baseline
(x̄ = 1.50, σ = 0.84) conditions, as seen in Table 8.10 (p. 166). A typical issue of
software development in general is that there is never enough documentation. In this
experiment that is also the case. Nevertheless, the intent of this item was to perceive if
the available tools would improve the usage and value of the available documentation,
deemed sufficient to effectively undertake all the tasks presented. The exhibited scores
support that assumption.

OVS3 I felt the need to have access to more information on how to use the frame-
work.

Let H1 : Ge1 < Gb, there was no significant difference (ρ = 0.881) in the scores for the
experimental group 1 (x̄ = 4.50, σ = 0.58) and baseline (x̄ = 4.67, σ = 0.52) conditions,
as seen in Table 8.9 (p. 166). Let H1 : Ge2 < Gb, there was no significant difference
(ρ = 0.881) in the scores for the experimental group 2 (x̄ = 4.50, σ = 0.58) and baseline
(x̄ = 4.67, σ = 0.52) conditions, as seen in Table 8.10 (p. 166). This item intended to
measure how much did the provided collaborative environment supported the subjects
cognitive needs. The collected scores show that there was still much to provide to fulfil
their knowledge needs. It is believed that these scores were strongly influenced by the
failure in completing iteration 4, that most subjects exhibited. The increased complexity of
iteration 4 and the already long elapsed experiment time (tiredness) affected effectiveness
during the last stages of the experiment. Therefore, the remaining feeling in the subjects
minds was that they needed to know more about the framework to complete iteration 4,
biasing the overall scores.

OVS4 Despite my experience, the tools available, excluding OGHMA, delayed my
work considerably.

Let H1 : Ge1 < Gb, there was no significant difference (ρ = 0.953) in the scores for the
experimental group 1 (x̄ = 1.75, σ = 0.50) and baseline (x̄ = 2.50, σ = 1.05) conditions,
as seen in Table 8.9 (p. 166). Let H1 : Ge2 < Gb, there was no significant difference

168 academic quasi-experiment

(ρ = 0.738) in the scores for the experimental group 2 (x̄ = 2.25, σ = 0.50) and baseline
(x̄ = 2.50, σ = 1.05) conditions, as seen in Table 8.10 (p. 166). This item intended to
screen out the hindrance level the presented tools might introduce during the experiment,
specially affecting the time-related metrics. Despite not statistically relevant, the low
scores tend to converge to, at least, a balance between the baseline and the experimental
groups, so it is assumed that the tools didn’t pose as a threat to the validity of the
time-related results.

8.3.5 Development process

This category of items intended to ascertain how hard it was to complete each of the tasks
presented and its evolution throughout the experiment, as means to measure the impact
the collaborative environment had on the development process.

experimental group 1 baseline statistics
12345 x̄ σ 12345 x̄ σ H1 W ρ

DP1.1 2.50 1.00 1.67 1.21 < 26.00 0.971
DP1.2 1.75 0.50 1.50 0.84 < 29.50 0.833
DP1.3 3.75 0.96 4.17 1.17 < 18.50 0.795
DP1.4 5.00 0.00 5.00 0.00 < 22.00 1.000

Table 8.11: Summary of development process results between the Baseline (BL) and Exper-
imental Group 1 (EG1), including the values of the non-parametric significance
Mann-Whitney-Wilcoxon test.

experimental group 2 baseline statistics
12345 x̄ σ 12345 x̄ σ H1 W ρ

DP1.1 4.25 0.50 1.67 1.21 < 22.50 1.000
DP1.2 1.75 0.50 1.50 0.84 < 29.50 0.833
DP1.3 3.75 1.26 4.17 1.17 < 19.00 0.853
DP1.4 4.00 1.15 5.00 0.00 < 16.00 1.000

Table 8.12: Summary of development process results between the Baseline (BL) and Exper-
imental Group 2 (EG2), including the values of the non-parametric significance
Mann-Whitney-Wilcoxon test.

In none of the desired hypothesis (H1 : Ge1 < Gb or H1 : Ge2 < Gb) did the scores
produce any relevant statistical results, having some items, even, produced unexpected
scores.

data analysis 169

In an overall analysis, it can be stated that in the case of BL vs. EG1 ,
iteration 1 revealed to be an easy task, getting easier in iteration 2, but increasingly more
difficult when it came to iteration 3 and 4 (where the non-completion of this iteration, led
to the top score of 5). In the case of BL vs. EG2 , the results are similar to the
above stated, with an increased score for iteration 1.

The overall scores of this group of questions was unexpected. This led to a follow-up
informal interview with the students to try to understand their reasons for answering such
scores. The main conclusion from this interview is that their interpretation of the items led
them to answer not so much about the usage of the collaborative environment, but more
about the complexity of the OGHMA framework and their subjective analysis of their
own performance. As such, no evidence can be assumed from this group of questions, as
the answers don’t express its intended purpose. Nevertheless, when asked about iteration
complexity, they noted that Iteration 1 (because it was the first) and Iteration 4 (no one
was able to complete) were the most complex, ordering Iteration 3 as mildly complex and
Iteration 2 as the less complex (especially after tackling with Iteration 1).

8.3.6 Framework knowledge

In order to measure the increase in framework knowledge, a set of 17 items was devised
and presented to the subjects at the end of the experiment. These questions intended
to ascertain how much correct information about the framework the participants had
acquired. It was assumed that all groups (except the Experts) had no prior knowledge of
the framework whatsoever, as corroborated by item BG2.

Categories

According to [AD05a], framework knowledge can be divided into layers, ranging from
more abstract to more concrete information. Not only was it relevant to measure the
amount of framework knowledge acquired, but also at what depth the subjects went in
their learning of the framework. As such, framework knowledge can be divided into the
following seven categories, each representing an abstraction layer, and giving examples of
supporting documentation elements:

• Overview (OV). This category is intended to communicate the purpose of the
framework to potential users, in a clear and concise way: framework overview, and
snapshots.

• Domain (DM). This category defines the application domain covered by the
framework, namely the products that can be developed with the framework, their

170 academic quasi-experiment

variability aspects (hotspots), and how the framework can and should be reused: use
cases, scenarios, examples, cookbooks, recipes, and design patterns.

• Components (CP). This category formally defines a black-box view, i.e. the
properties and behaviour of the products that can be developed with the frame-
work, and how they must interact with custom code: type specifications, operation
specifications, state-charts, contracts, and design patterns.

• Design (DN). This category presents the design principles of the framework, and
describe its micro-architectures and mechanisms of cooperation between components:
technical architecture, application architecture, design patterns, design notebooks,
and refinements from specification level to design level.

• Public view of the implementation (PB). This category represents an external
view of the implementation of framework components: detailed use cases, collabora-
tions, roles, interfaces, classes.

• Protected view of the implementation (PT). This category represents the
view available for developers of components through extension of classes provided by
the framework. In addition to public view, this protected view must include also
subclass/superclass contracts: detailed use cases, collaborations, roles, interfaces,
classes.

• Private view of the implementation (PV). This category presents a white-box
view over the implementation of the framework, usually in the form of source code.

The items presented in the questionnaire tried to cover all these categories and had a
true/false statement-like form (see Table 8.13). They were then shuffled, so its natural
order wouldn’t bias the subjects when answering.

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Category OV OV DM DM OV CP CP/DN DN PB PT PB PT PT PV PT PV PT/DN
Answer T F T F F F T T T T F F T F T T T

Table 8.13: Framework knowledge items categorisation and answers. All items were presented
as true-false statements. As for items 7 and 17, they both cover two categories as
certain knowledge has relevance in several layers.

Results

The relevance of an item-to-item analysis of the scores isn’t so much important as the
total amount of knowledge the subjects acquired. So, the results are shown aggregated

data analysis 171

and processed in two ways: (i) total knowledge acquired and (ii) total knowledge acquired
by category.

When answering a true or false statement, using a five-point format Likert scale
§ 8.2.2 (p. 153), the scores not only show the answer (strongly disagree (1) as false and
strongly agree (5) as true) but also the confidence level of the respondent. The closer the
answer gets to the boundaries of the scale, the more certain the subject is of the answer
(being neither agree nor disagree (3) not knowing the answer). The scores were then
processed and converted into distances from the correct answer, e.g., a score of 2 for a true
statement (5) converts into a distance of 3 (|5 − 2| = 3), whereas for a false statement
it converts into a distance of 1 (|1 − 2| = 1) and so forth. Items the subjects didn’t
know the answer (3) would always contribute the same distance (2). Finally, an average
of the scores for each item was computed and, as done for the initial students’ average
pre-experiment evaluation § 8.1.1 (p. 149), an independent samples t-test was conducted
to compare the averages of the items between the Baseline (BL) and Experimental Groups
1 and 2. These results can be seen in Table 8.14, Table 8.15 and Table 8.16. A comparison
for the framework knowledge distances for each category can be seen in Figure 8.5 and
Figure 8.6. All the aforementioned scores and processing step can be seen in Appendix G,
in Tables G.3 (p. 206), G.4 (p. 207) and G.5 (p. 208).

Group N Mean Std. Deviation Std. Error Mean
BL 17 2.087 0.5598 0.1358

EG1 17 1.647 0.5234 0.1269
EG2 17 1.676 0.5431 0.1317

Table 8.14: Framework knowledge group statistics.

F Sig. t df Sig. (2-tailed)
Eq. Var. Assumed 0.215 0.646 2.364 32.00 0.024
Eq. Var. Not Assumed 2.364 31.86 0.024

Table 8.15: Baseline vs. Experimental Group 1 Independent Samples Test for framework
knowledge. The first two columns are the Levene’s Test for Equality of Variances,
showing a significance greater than 0.05 (0.646). The other three columns are the
t-test for Equality of Means. Since we can assume equal variances, the 2-tailed value
of 0.024 allow us to conclude that there is a statistically significant difference
between the two conditions.

The results provide evidence that the collaborative environment contributes to an
increase on framework knowledge acquisition, thus supporting the hypothesis that it helps
novices on learning about a framework.

172 academic quasi-experiment

F Sig. t df Sig. (2-tailed)
Eq. Var. Assumed 0.041 0.841 2.071 32.00 0.047
Eq. Var. Not Assumed 2.071 31.98 0.047

Table 8.16: Baseline vs. Experimental Group 2 Independent Samples Test for Framework
Knowledge. The first two columns are the Levene’s Test for Equality of Variances,
showing a significance greater than 0.05 (0.841). The other three columns are the
t-test for Equality of Means. Since we can assume equal variances, the 2-tailed value
of 0.047 allow us to conclude that there is a statistically significant difference
between the two conditions.

OV DM CP DN PB PT PV
Baseline 5.58 3.88 1.88 4.75 4.25 10.50 4.63
Experimental Group 1 3.75 3.00 2.38 3.13 3.50 9.25 3.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Figure 8.5: Framework knowledge distances for Baseline (BL) and Experiment Group 1 (EG1).
For all categories, except Components (CP), EG1 scored a better result than BL
(lesser distance to the correct answer).

8.3.7 Objective measurement

During the experiment, the duration each group took to complete each iteration was
recorded. At the end, these results were processed and corrected, considering the effec-
tiveness of the deliverables, so that certain quality-related time deviations (e.g. failure
to comply to requirements, code standards, implementation variations, etc...) could be
minimised and the reliability of the results increased.

All deliverables were inspected for quality and effectiveness and graded, rendering a
time penalty accordingly. The deliverables were graded with the following scale: grade
A (no time penalty), for deliverables that covered all the requirements and presented the
expected implementations; grade A- (5 minutes time penalty) for deliverables that slightly
deviated from the expected implementation, nevertheless covered all the requirements;
grade B, (10 minutes time penalty) for deliverables that somewhat deviated from the

data analysis 173

OV DM CP DN PB PT PV
Baseline 5.58 3.88 1.88 4.75 4.25 10.50 4.63
Experimental Group 2 5.25 3.25 2.38 2.38 2.75 8.50 4.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Figure 8.6: Framework knowledge distances for Baseline (BL) and Experiment Group 2 (EG2).
For all categories, except Components (CP), EG2 scored a better result than BL
(lesser distance to the correct answer).

intended implementation, although still covering the requirements; grade B-, (15 minutes
time penalty) for deliverables that failed to cover one or more requirements, although the
coding of a possible solution was present. The grading of the deliverables can be seen in
Table 8.17.

Iterations
1 2 3 4

Baseline Pair 1 B B A- -
Baseline Pair 2 B B B- -
Baseline Pair 3 B A- B -
Experimental Group 1 Pair 1 A- A A- -
Experimental Group 1 Pair 2 B B A -
Experimental Group 2 Pair 1 B B B -
Experimental Group 2 Pair 2 A- B A- -

Table 8.17: Deliverables grades.

The final results can be seen in Figure 8.7. An analysis iteration-wise follows.

Iteration 1

The exhibited results for Iteration 1, give strong evidence that the presented tools helped
in the first contact with the framework. Both EG1 and EG2 took less time completing

174 academic quasi-experiment

Iteration 1 Iteration 2 Iteration 3
Baseline 97.4 39.4 62.5
Experimental Group 1 66.6 43.8 46.7
Experimental Group 2 85.3 37.1 60.4

0.0

20.0

40.0

60.0

80.0

100.0

120.0

Figure 8.7: Iteration completion time results (average per group). Units in minutes.

this iteration when compared to the Baseline. The longer time EG2 took when compared
to EG1 can be explained by the overhead taken using a new tool (the DRIVER plug-ins).

Iteration 2

For Iteration 2, there is a more even set of results, where, oddly EG1 took a slightly bit
more than both Baseline and EG2. It is believed that the short finishing time they took
in Iteration 1 may have rendered them overconfident for tackling with this iteration, thus
affecting their time performance. On the other hand, despite slim, EG2 performed better
than Baseline.

Iteration 3

Here the results again support the usefulness of the presented tools where both EG1 and
EG2 perform better than the Baseline group.

Iteration 4

There were no deliverables or time results for this Iteration, due to the fact that only a
couple of groups finished within the expected time frame for the experiment, rendering
their results useless for analysis. This is explained by the increased complexity of the
iteration, combined with the already experiment duration and tiredness of the groups.
Even so, it served to force the subjects to dwell deeper into the framework code as to
provide data for ascertaining how much framework knowledge the subjects could intake,

data analysis 175

which has already been analysed in § 8.3.6 (p. 169). The experiment ended at a pre-defined
time for all subjects.

Overall

As an overall analysis, the results indicate that there were better time performances from
Experimental Groups 1 and 2, in comparison to the Baseline group. It is interesting to
observe that when complexity and extensiveness increase, the results are better. This
can be seen in Iteration 1, when there is a first contact with the framework and then
again in Iteration 3. The complexity gap between Iteration 1 and 2 isn’t so great, so the
performance is somewhat similar. But when one turns up the heat, (from Iteration 2 to
Iteration 3) the tools step in to aid on performing better.

8.3.8 Experts group analysis

The purpose of the Experts group was to study the impact the collaborative approach
might have on subjects with prior knowledge of the framework, although not actively using
it. For this experiment, the subjects had been in contact with the framework around 6
months prior to the experiment and during a period of 3 months. During this time, they
engaged in instantiation and evolution tasks. The inactivity period allowed the framework
knowledge acquired to decay, therefore, regaining contact with the framework, after a
while, would generate different cognitive needs than the novice users that had never used
the framework.

Initially, during the experiment design, this group was not supposed to exist. But
while selecting the subjects for the experiment, the profile of several students presented an
opportunity to study this scenario where frameworks users regain contact with a previous
framework. The study wasn’t so much concerned about the time issue (although it would
be monitored), but with the knowledge acquisition and usage of the collaborative approach
(both patterns and toolset).

As such, the Experts group undertook Pre-Questionaire B § 8.2.2 (p. 153) not only
to screen their basic skills and background, but also to take a snapshot of their prior
knowledge of the framework. They answered the same questions about the framework
before and after (Post-Questionnaire § 8.2.5 (p. 159)) the experiment, to measure the
knowledge acquisition metric.

The results prove inconclusive as to where the collaborative approach helps experts
on improving framework learning. Despite the expected better time performance when
compared with the other groups (Figure 8.8), the knowledge acquisition results don’t

176 academic quasi-experiment

indicate (Table 8.18 and Table 8.19) that the approach helped the Experts group in their
(re-)learning of the framework.

Iteration 1 Iteration 2 Iteration 3
Baseline 97.4 39.4 62.5
Experimental Group 1 66.6 43.8 46.7
Experimental Group 2 85.3 37.1 60.4
Experts 47.6 34.6 32.8

0.0

20.0

40.0

60.0

80.0

100.0

120.0

Figure 8.8: Comparing iteration completion time results (average per group) between the Experts
group and all others. The deliverables were also graded, as can be seen in Appendix
§ H (p. 211) and the results equally processed. Units in minutes.

Group N Mean Std. Deviation Std. Error Mean
Experts before experiment 17 1.522 0.5620 0.1363
Experts after experiment 17 1.556 0.5474 0.1328

Table 8.18: Framework knowledge acquisition by the Experts group

Despite these results, other indicators where captured, namely the usage of the collabo-
rative approach to capture their own knowledge of the framework. Although not disclosed
to them, they quickly discovered that some (if not all) the subjects of the Experts group
were sharing the same knowledge base of learning paths, so they spent some time adding
their own and rating others. It is believed that, without the burden of the overhead of
learning a new framework, the subjects spent some time using the DRIVER platform to
capture their learning paths and improve the knowledge-base with their own expertise.
In a later follow-up session, they provided lots of useful feedback on how to improve the
collaborative environment.

validation threats 177

F Sig. t df Sig. (2-tailed)
Eq. Var. Assumed 0.002 0.965 -0.176 32.00 0.861
Eq. Var. Not Assumed -0.176 31.98 0.861

Table 8.19: Experts group Independent Samples Test for framework knowledge. The first two
columns are the Levene’s Test for Equality of Variances, showing a significance
greater than 0.05 (0.965). The other three columns are the t-test for Equality of
Means. Since we can assume equal variances, the 2-tailed value of 0.861 allow
us to conclude that there is no statistically significant difference between the two
conditions.

8.4 Validation threats
The outcome of validation is to gather enough scientific evidence to provide a sound
interpretation of the results. Validation threats are issues and scenarios that may distort
that evidence and thus incorrectly support (or discard) expected results. Each validation
threat should be expected and addressed a priori in order to yield unbiased results or, at
least, minimised a posteriori with effective counter-measures.

This section addresses expected validation threats and how these were discarded, while
others should be attentively focused in future experiments.

• Misunderstanding of the given tasks. Because the tasks relied on textual
specifications and UML diagrams, is was necessary to ensure that the participants
correctly interpret them. This threat was discarded by the pre-experiment evaluation
of their basic skills and through the pre-experiment questionnaire (specially item
BG1.7, regarding UML).

• Insufficient skills to execute the tasks. The tasks required participants to have
the necessary skill to build and evolve information systems, namely knowing how to
work with the given programming language, IDE and database engine. Once again,
this threat was discarded by both pre-experiment evaluation and pre-experiment
questionnaire, through items BG1.2, BG1.3, BG1.8 and BG1.10.

• Overhead due to lack of experience with the new tools. When presented with
new tools, these will, unavoidably, introduce overhead into the development process.
This overhead was expected and compensated when interpreting the observed results.
Nevertheless, the evaluation of the participants subjective feel over this overhead
had to be discarded so that the tools would not pose as a relevant threat beyond
expectations. This discarding was made through the post-experiment questionnaire,
namely item OVS4.

178 academic quasi-experiment

• Experiment-related factors. Knowingly being part of an experiment, changes
the mood and may be an inhibitor of normal development. The performance may
be conditioned by the feel of being observed and judged. The results of item EF1
allow this threat to be discarded.

• Team factors. Despite the forming of pairs being handed to the participants as to
alleviate the possibility of having conflicting partners, it was necessary to make sure
that the final grouping wasn’t a threat to validity. Item EF3 discards this threat.

• Lack of motivation. Due to the length of the tasks (experiment went beyond 3
hours), and the fact that there was no compensation to individuals participating
in the experiment, the lack of motivation could hinder the outcome. This threat is
discarded by item EF2.

• Inter-group competition. In an open-space setting and knowing all groups are
undertaking the same experiment, the ability to have feedback on how others are
performing may influence groups differently. Different people react differently to
pressure. Therefore, there was the need to discard this threat by ascertaining if this
pressure was an issue. Item EF4 served this purpose.

The following threats were not completely discarded, and should be the focus of future
studies:

• Assertion of task completion. One difficulty the subjects exhibited during the
experiment was making sure the developed solution covered all the requirements for
that iteration. There was no deterministic mechanism (e.g., automated tests) that
would quickly allow the groups to effectively verify the effectiveness of their solution.
They had to manually conduct a series of interaction tests to ascertain the quality of
their work. This threatened the time results and so forced a thorough investigation
of the deliverables to compensate for the effectiveness deviations that might had
occurred. In future experiments, this deterministic mechanism should exist to assure
the effectiveness of the deliverables. It could even automatically advance the group
to the next iteration, on full coverage of the presented requirements.

• OGHMA Framework aversion. This threat happened only in the Experts group.
It was noted that some subjects of this group stated that they had a not so good
experience with the OGHMA framework in the past. Therefore, their motivation and
willingness to provide good results was somewhat fragile. Although motivated in
loco to the tasks of the experiment, this threat might happen in future experiments
when the selection of the framework causes feelings of dislike to the participants and,

summary 179

therefore, affect the outcome of the experiment. Of course, this can be discarded by
the item EF2, nevertheless, its importance is reason enough to point it out.

The power of this study could also be improved by (i) increasing the number of
participants, and (ii) switching the participants roles, where individuals in the experimental
groups would undergo the baseline process and vice-versa.

8.5 Summary
This chapter detailed a quasi-experiment conducted within a controlled experimental
environment using the collaborative approach presented in previous chapters.

There were two major groups: one of novices and another of Experts. The novices were
then divided into three groups (Baseline, Experimental Group 1 and Experimental Group
2) to which their background and basic skills were screened through a pre-experiment
questionnaire, guaranteeing no statistical deviation.

All three groups went through the development of the same technical tasks using a
previously unknown framework (OGHMA), all using different development settings to
enable a comparison between having, or not having, the proposed collaborative approach.
The Experts group already knew the framework, but served to assess the usefulness of the
collaborative approach.

A post-questionnaire and their time track were used to assess the outcome of the
experiment.

The final results support the hypothesis that the collaborative approach helps novices
to more effectively learn about a framework. Although more evident between the Baseline
and Experimental Group 1, than Experimental Group 2, both experimental groups fared
better at both time and knowledge intake, when compared to the Baseline group. No
evidence was collected when it comes to experts, but it is believed that, it allows experts
to easily capture and share their learning knowledge about the framework.

Some threats to this validation were identified and further discarded by analysing the
results in pre- and post-experiment questionnaires and due to the nature of the experimental
setting. Not all original hypothesis were supported, though and some borderline threats
which emerged after the experiment can help refine new studies.

180 academic quasi-experiment

Chapter 9

Conclusions

9.1 Key contributions . 182
9.2 Future work . 183
9.3 Final remarks . 185

This dissertation focused on the issues behind the understanding of frameworks, i.e.,
acquiring knowledge on how to use a framework for a specific task at hand.

Frameworks are a powerful technique for software reuse, but with its power comes its
complexity and difficulty in learning how to use. Mitigating factors can come from suitable
documentation and proper training, but these are often neglected and provide insufficient
assistance to the framework learner. Hence, framework understanding, as a sub-domain,
shares most of the trends and challenges of the program comprehension domain, adding
its own flavour according to its specific aspects and characteristics.

Frameworks are a cornerstone of, nowadays, software development - an activity that is
achieving, more and more, a social emphasis. Software is developed by groups of people,
ranging from a handful of elements, to an entire community of developers. With the
advent of the Web and improvement of communication infra-structures, the concept behind
developing software, and keeping the knowledge generated by such an activity, has evolved.
Sharing becomes essential, and collaboration proves vital to keep a sustainable pace and
to provide effective results with satisfactory quality levels.

Using the framework philosophy of reusing experience, the work presented in this
dissertation intended to provide the framework learner with tools and techniques (patterns)
to improve its learning experience and attenuate the learning curve it takes to understand a
framework. Acknowledging the community of developers and learners, it devised a process
and developed supporting tools to nurture the collaboration between these elements
and further enhance the learning experience, thus, improving framework understanding.

182 conclusions

Evidence was collected that verifies the benefits behind these contributions and helps on
the validation of the presented work.

9.1 Key contributions
Briefly, the main contributions of the work presented in this dissertation are:

• Elicitation of the best practices of framework understanding, documented
in a pattern form. Through historical and observational methods, the author
mined, gathered and analysed experiences and identified the recurrent best practices
when understanding a framework. These best practices (9 patterns) were then
compiled into a set of patterns as a suitable form to communicate the empirical
knowledge they hold. The learner is presented with a guiding tool to help focusing
and personalising the learning process to achieve quicker and effective results.

• Definition of a process that supports learning a framework collaboratively.
Collaboration is good if it is mutually beneficial. But if it becomes intrusive, it
fails. Helping learners might sound like a unilateral deal and can become a tiresome
activity if not properly moderated and dealt with. Therefore, the author defined a
collaborative process of helping learners that tries to attenuate the intrusiveness such
an activity might bring. This process enables the capturing of intrinsic knowledge
that, otherwise, would be lost. Through a cycle of capture, filter, share, rate and
recommend, the process allows the seamless collaboration of the community of
learners, grasping its collective knowledge and expertise and, thus, improving the
learning experience.

• Tool support for the learning process in a collaborative environment. For
every process to be effective, it needs to be suitably supported. As such, the author
developed a set of tools that provide support and allow the community of developers
and learners to follow and apply the devised collaborative learning process without
much effort. The tools are presented in a popular, collaborative environment: a wiki,
garnished with framework documentation artifacts and extension capabilities.

• Impact study of the key benefits of the best practices and learning pro-
cess through a repeatable (quasi-)experiment. Insight on the impacts that
both patterns and the collaborative learning process have on learners and devel-
opers was ascertained through a controlled (quasi-) experiment. This experiment
was conceived as a repeatable package, allowing other researchers to conduct and
aggregate further results. Such empirical studies provide supporting evidence for

future work 183

theories and techniques regarding software engineering and, besides serving as a
validation strategy, they raise other issues that may spur further research and define
directions on forthcoming work.

9.2 Future work
Scientific research is always a work in progress and new directions emerge constantly,
whether to improve the present findings or to explore new possibilities. The research paths
described in the next sections are deemed, by the author, worth of pursuit.

9.2.1 Improve and enhance the DRIVER platform

The DRIVER platform, presented in Chapter 7 (p.109) is an on-going project that already
has a forthcoming plan of development, as to improve and extend its functionalities. As
such, the next steps of development will focus on the following goals:

• Improve recommendation heuristics. The Hint plug-in relies on a simple
recommendation algorithm that uses a single-step match position and look-ahead
heuristic. This algorithm can be improved by extending the matching, not only to the
present position, but the trail already being captured. As the categorisation of the
information becomes more semantic (see last item on this list), the recommendation
heuristics can rely on a stronger relationship between the learning paths and provide
better results.

• Improve learner’s profile awareness. The main goal here is to make the com-
munity converge into a social network of learners, with the purpose of using the
profile similarity to achieve and recommend better results. Not only will it matter
how it was rated, but who rated it. Users would have expertise ranks according
to their behaviour and this reward system would motivate learners to provide real,
effective feedback on the usefulness of the learning paths.

• Converge to the semantic web. Can the folksonomy evolve to an ontology1?
Enriching the categorisation and relationship between learning paths, learners and
artifacts might bring new emerging knowledge and improve the reliability of results.

Besides these next steps in development, it is expected to consider all the suggestions
given by the (quasi-)experiment subjects (Chapter 8, p. 147) to improve the usability and
1 According to Tom Gruber [Gru93], and ontology is a “formal, explicit specification of a shared conceptu-
alisation”, i.e., a definition of concepts or objects, their properties and relationships, rendering a shared
vocabulary or taxonomy.

184 conclusions

effectiveness of the platform. Furthermore, there is also a plan to develop a bridge between
the platform and Eclipse IDE, as a means to progressively integrate its functionalities in a
coding environment.

9.2.2 Refine and extend the patterns

Although patterns are intended to be timeless2, thoughts on the epistemology of pat-
terns [KP09] invokes us to convey that:

As Buschmann, Henney and Schmidt [BHS07] point out, patterns and pattern
descriptions evolve over time. Including new findings, e.g. new relevant forces, new
consequences, new contexts or limitations, means to get a better understanding of
the nature of a particular pattern. Therefore, pattern descriptions should be open
towards inspiration by scientific progress, for instance the discovery of new materials,
new procedures or new findings in human-computer interaction.

As such, we must always be on the outlook for new empirical knowledge that might
enhance, enrich and refine our own best practices, or, that might replace it, if that is the
case.

9.2.3 Further studies

The performed experiment presented in chapter 8 (p. 147), provided supporting evidence
for the benefits brought by the proposed contributions. Even so, further studies are
required to solidify the results and consolidate the research.

Industrial settings

Empirical studies should be performed in an professional, non-academic setting, with
developers engaged in full-scale software projects with defined time frames and development
process. These case-studies should engage in critical reflexion of results with periodic
interviews, questionnaires and focus groups over an extended period of time. Lessons
should be learned that might be useful to help others and to act as agents of change in a
real-life problem setting. As this dissertation is written, efforts are underway to undertake
these studies and provide further results for analysis.

Enlarge the Community

So far, the studies have constrained the community of developers to a well-defined group
of people, i.e., the development team. What happens if we extend the community beyond
2 Unless replaced by new, better ones.

final remarks 185

the team and embrace the web community? Insights on the impact this might have on
the proposed contributions would provide relevant data and would raise, amongst others,
scalability issues.

Impact of collaboration in framework understanding

Will the collaborative learning of frameworks change the way developers look at a frame-
work? Will documentation change and adapt to a more collaborative learning experience.
Will new formats or document types emerge from such as effect? These questions should
elicit further studies.

Impact of collaboration in software learning in general

Developers gain by learning a framework collaboratively. But can we generalise these
findings to software in general? Or are frameworks too specific? Broadening the learning
cycle concept to software in general could bring new insights into ways of collaboratively
enhancing the general software learning experience, beyond that of frameworks.

9.3 Final remarks
To end this dissertation, I would like to go back to the start.

When I started off my PhD adventure, my supervisor, Ademar, gave a seminar lecture
about the path of a PhD. This lecture was intended to students, such as myself at the time,
starting their PhDs. He intended to give insight and share his thoughts and experience on
how his PhD (that he had recently finished) had gone through.

Purposely or not, he based his presentation on a set of patterns by Joseph Bergin,
entitled Patterns for the Doctoral Student [Ber]. The context of the patterns read: “You
are considering a Doctoral level degree or are engaged in one. You have many sub goals,
but one overriding goal: completing your doctorate and getting on with your life. How
should you proceed?”. Then, Ademar proceeded pointing out his pattern sequence that
enabled him to successfully finish his PhD.

His presentation was very joyful, but tremendously insightful. I got caught up with
the pattern form as a way to, quickly and effectively communicate a considerable amount
of information (from a topic completely outside software) in a simple and straightforward
manner. I had a map and a compass on how to get my PhD done.

Looking back, I could now make my own presentation (that would take another chapter)
but I will, merely, point out three patterns that I observed and experienced while pursuing
my PhD, and that I will strongly advise others, starting their PhDs:

186 conclusions

• Have passion for the program, to avoid burnout. Motivation fluctuates as obstacles
arise. If you like what you set up to do, it will help to keep your motivation levels
high when faced with these obstacles.

• Avoid complications in your life. As my supervisor, humorously, said: Don’t change
jobs, don’t get married, don’t have kids. You might not think so, but every major
change in your life will postpone the completion of your PhD. This doesn’t mean
don’t have a life, but be aware of the impact big changes will have on your work.

• Always maintain a sustainable effort, even if each step is tiny. Continuous progress
is hard, but small steps can be taken when large ones are elusive. Come up with
simple metrics to measure your progress, daily (e.g., papers read or printed, words
written, planning done, reasoning time, etc). These will give you feedback and will
monitor your progress. Even very slightly, you’ll feel you are closer to your goal than
yesterday.

In retrospective, a PhD is like learning how to drive (learning how to do research). Once
you get your driver’s license (i.e. PhD degree), you’ll be driving real cars (researching) for
the rest of your life.

To close, I would like to leave the words of Joseph Bergin, referring the QWAN3 in his
patterns, and to which I subscribe completely.

Your life and work should make a contribution to the betterment of the world.
The doctorate is one way to get yourself started on that path, but getting the degree
can be a barrier. Rather, you want to think of it as a gate that opens you to the tools
by which you can accomplish great things. But you must pass through that gate in
order to do so, and you must move beyond the gate as well. The doctorate is not
an end in itself, but a beginning. Its intent is for your growth and the improvement
of the world as well. You don’t receive the degree purely on your own work and
merits, but on the work of a vast number of people (and resources) including your
family, society as a whole, and other scholars stretching back to antiquity and beyond.
Honour their work as we honour yours.

Thank you for reading.

3 QWAN is the Quality Without a Name [Ale79]. In short, this quality, which is known to everyone but
cannot be named, is that quality of things that enhances human life and potential. In other contexts it
is sometimes described as “goodness, truth, and beauty” but it goes beyond these things.

Appendices

Appendix A

Pre-experiment subject data

I II III IV V VI VII x̄ σ

BL Subject A 16 14 14 18 15 17 18 16.0 1.7
BL Subject B 18 18 20 17 14 18 18 17.6 1.8
BL Subject C 18 17 16 18 17 18 18 17.4 0.8
BL Subject D 18 18 19 19 15 18 18 17.9 1.3
BL Subject E - - 19 17 14 18 15 16.6 2.1
BL Subject F 13 13 14 18 16 18 17 15.6 2.2
EG1 Subject A 17 16 17 18 15 18 19 17.1 1.3
EG1 Subject B 18 17 18 19 16 18 16 17.4 1.1
EG1 Subject C 18 18 19 19 16 18 19 18.1 1.1
EG1 Subject D 13 12 17 14 14 18 17 15.0 2.3
EG2 Subject A 14 15 15 18 14 18 16 15.7 1.7
EG2 Subject B 12 15 15 18 14 18 16 15.4 2.1
EG2 Subject C 16 17 15 17 16 18 18 16.7 1.1
EG2 Subject D 18 19 20 19 19 18 18 18.7 0.8
EX Subject A 18 16 18 18 14 17 16 16.7 1.5
EX Subject B 16 17 17 18 14 17 19 16.9 1.6
EX Subject C 16 17 16 16 15 17 16 16.1 0.7
EX Subject D 17 17 18 18 15 18 15 16.9 1.3
EX Subject E 12 15 14 18 16 18 17 15.7 2.2
EX Subject F 15 17 16 18 15 18 16 16.4 1.3
EX Subject G 18 19 19 20 19 18 18 18.7 0.8
EX Subject H 15 12 14 17 15 16 17 15.1 1.8
EX Subject I 16 18 18 18 15 18 18 17.3 1.3

Table A.1: Student grades for all participating groups. Each column represents the following
courses: (I) Programming Fundamentals, (II) Programming, (III) Algorithms and
Data Structures, (IV) Algorithm Design and Analysis, (V) Software Engineering,
(VI) Software Development Laboratory, and (VII) Information Systems.

190 pre-experiment subject data

Appendix B

Pre-questionnaire A

The following is a copy of the anonymous questionnaire handed to the subjects of Baseline,
Experimental Groups 1 and 2 at the beginning the experiment.

192 pre-questionnaire a

Empirical Studies in Software Engineering
TENFOGS02

May 2011

Pre-experiment Questionnaire

Before starting the experiment, we ask you to take a minute and answer this brief questionary to acertain
your profile and background, so that the final results can be effectively interpreted and analysed. Thank you.

The questionary is divided into sections with questions. Each question has an identifier (for easy processing
later on) and may have either a single answer, or a list of possible answers. Each answer should be rated as
follows: 1 (Strongly Disagree), 2 (Somewhat Disagree), 3 (Neither Agree nor Disagree),
4 (Somewhat Agree), 5 (Strongly Agree).Your should rate with an ‘X’ every answer as best it re-
sembles your opinion as possible.

Group ID: ______________

Questionnaire

Background

BG1. I have considerable experience...

1 2 3 4 5

...using frameworks.

...analyzing and specifying information systems.

...with object-oriented architecture, design and implementation.

...with agile development methodologies.

...with classical development methodologies.

...with formal development methodologies.

...with UML class diagrams

...with Visual Studio IDE

...using wikis.

...with XML-based languages

1 2 3 4 5

BG2. I’ve never used or had contact with the OGHMA framework.

Thank you for your time.

1

Appendix C

Pre-questionnaire A answers

Baseline x̄ σ EG1 x̄ σ H1 W ρ 6= ρ < ρ >

BG1.1 5 4 4 4 3 4 4.00 0.63 2 3 3 5 3.25 1.26 6= 16.5 0.257 0.110 0.919
BG1.2 4 4 3 3 3 4 3.50 0.55 3 5 4 4 4.00 0.82 6= 28.5 0.352 0.262 0.928
BG1.3 5 5 4 5 5 5 4.83 0.41 4 5 4 5 4.50 0.58 6= 18.0 0.476 0.333 0.967
BG1.4 3 4 3 4 2 4 3.33 0.82 3 4 3 4 3.50 0.58 6= 32.0 0.914 0.548 0.738
BG1.5 4 3 3 4 4 5 3.83 0.75 3 4 4 4 3.75 0.50 6= 21.5 0.914 0.619 0.667
BG1.6 3 3 3 3 3 3 3.00 0.00 3 4 2 3 3.00 0.82 6= 22.0 1.000 0.733 0.734
BG1.7 4 5 5 4 4 5 4.50 0.55 4 5 4 4 4.25 0.50 6= 19.0 0.610 0.452 0.929
BG1.8 5 5 4 3 1 5 3.83 1.60 4 1 4 3 3.00 1.41 6= 17.0 0.352 0.162 0.895
BG1.9 4 5 4 4 5 4 4.33 0.52 4 4 4 4 4.00 0.00 6= 18.0 0.476 0.333 1.000
BG1.10 5 5 3 3 5 4 4.17 0.98 4 3 2 4 3.25 0.96 6= 16.0 0.257 0.148 0.938
BG2 5 5 5 4 5 5 4.83 0.41 5 4 5 5 4.75 0.50 6= 21.0 0.914 0.667 0.866

Table C.1: Pre-experiment questionnaire A results for Baseline and Experimental Group 1
(EG1), each line representing the data of a single question for both groups, with
corresponding means and standard deviation values. It includes the values of the
non-parametric significance Mann-Whitney-Wilcoxon test; see § 8.3.2 (p. 160).

194 pre-questionnaire a answers

Baseline x̄ σ EG2 x̄ σ H1 W ρ 6= ρ < ρ >

BG1.1 5 4 4 4 3 4 4.00 0.63 3 3 4 5 3.75 0.96 6= 19.50 0.610 0.319 0.824
BG1.2 4 4 3 3 3 4 3.50 0.55 3 4 4 5 4.00 0.82 6= 28.50 0.352 0.262 0.928
BG1.3 5 5 4 5 5 5 4.83 0.41 4 4 5 5 4.50 0.58 6= 18.00 0.476 0.333 0.967
BG1.4 3 4 3 4 2 4 3.33 0.82 3 3 4 4 3.50 0.58 6= 32.00 0.914 0.548 0.738
BG1.5 4 3 3 4 4 5 3.83 0.75 4 4 3 2 3.25 0.96 6= 18.00 0.476 0.257 0.886
BG1.6 3 3 3 3 3 3 3.00 0.00 4 4 4 2 3.50 1.00 6= 27.00 0.257 0.129 0.876
BG1.7 4 5 5 4 4 5 4.50 0.55 4 3 5 5 4.25 0.96 6= 20.50 0.762 0.452 0.738
BG1.8 5 5 4 3 1 5 3.83 1.60 3 4 5 4 4.00 0.82 6= 21.00 0.914 0.490 0.624
BG1.9 4 5 4 4 5 4 4.33 0.52 3 4 5 5 4.25 0.96 6= 22.00 1.000 0.548 0.595
BG1.10 5 5 3 3 5 4 4.17 0.98 3 3 4 4 3.50 0.58 6= 17.00 0.352 0.205 0.881
BG2 5 5 5 4 5 5 4.83 0.41 5 5 5 5 5.00 0.00 6= 31.00 0.762 0.600 1.000

Table C.2: Pre-experiment questionnaire A results for Baseline and Experimental Group 2
(EG2), each line representing the data of a single question for both groups, with
corresponding means and standard deviation values. It includes the values of the
non-parametric significance Mann-Whitney-Wilcoxon test; see § 8.3.2 (p. 160).

Appendix D

Pre-questionnaire B

The following is a copy of the anonymous questionnaire handed to the subjects of the
Experts group at the beginning the experiment.

196 pre-questionnaire b

Empirical Studies in Software Engineering
TENFOGS02

May 2011

Pre-experiment Questionnaire

Before starting the experiment, we ask you to take a minute and answer this brief questionary to acertain
your profile and background, so that the final results can be effectively interpreted and analysed. Thank you.

The questionary is divided into sections with questions. Each question has an identifier (for easy processing
later on) and may have either a single answer, or a list of possible answers. Each answer should be rated as
follows: 1 (Strongly Disagree), 2 (Somewhat Disagree), 3 (Neither Agree nor Disagree),
4 (Somewhat Agree), 5 (Strongly Agree).Your should rate with an ‘X’ every answer as best it re-
sembles your opinion as possible.

Group ID: ______________

Questionnaire

Background

BG1. I have considerable experience...

1 2 3 4 5

...using frameworks.

...analyzing and specifying information systems.

...with object-oriented architecture, design and implementation.

...with agile development methodologies.

...with classical development methodologies.

...with formal development methodologies.

...with UML class diagrams

...with Visual Studio IDE

...using wikis.

...with XML-based languages

1 2 3 4 5

BG2. I’ve never used or had contact with the OGHMA framework.

1

197

About the OGHMA framework...

1 2 3 4 5

AF1. The OGHMA framework is suitable to automatically generate graphi-
cal user interfaces.

AF2. Most of the components in the OGHMA framework are only used in
the deployment phase of a project..

AF3. I would use the OGHMA framework to build information systems.

AF4. The OGHMA framework is not suitable for systems that keep chang-
ing their domain model..

AF5. I would use most of the components in the OGHMA framework to
build multi-agent systems.

AF6. Persistency's component cannot be changed to support different
technologies (relational databases, distributed key-value DBs, etc).

AF7. Every action issued by the end-user is concatenated into a Transac-
tion, which is committed when he decides to Save.

AF8. The domain-specific language is implemented by following the Inter-
preter pattern.

AF9. The Entity and Thing form the basis of the TypeSquare pattern, along
with Property and PropertyType.

AF10. Attributes and Relations are different specializations of Properties.

AF11. Invariants are defined as bool-returning expressions and never apply
to an Entity.

AF12. Every run-time object derives from the class Entity.

AF13. To add a new concept to the infrastructure, I would sub-class Thing.

AF14. State-based and operation-based commits take fundamentally differ-
ent code paths.

AF15. MergedContainer is a special type of container used to ensure a
certain level of atomicity, consistency, isolation and durability.

AF16. Every user has a MutableChangeset that collects his operations, be-
fore the transaction is commited.

AF17. Serialization takes place by considering the State object of the Thing
being serialized.

Thank you for your time.

2

198 pre-questionnaire b

Appendix E

Pre-questionnaire B answers

Answers x̄ σ = Distances x̄ σ

AF1 3 4 5 5 3 5 4 4 4 4.11 0.78 5 2 1 0 0 2 0 1 1 1 0.89 1.49
AF2 2 2 3 4 3 4 4 5 2 3.22 1.09 1 1 1 2 3 2 3 3 4 1 2.22 1.10
AF3 3 3 5 4 1 2 2 1 4 2.78 1.39 5 2 2 0 1 4 3 3 4 1 2.22 1.58
AF4 2 1 5 5 2 1 2 5 1 2.67 1.80 1 1 0 4 4 1 0 1 4 0 1.67 1.71
AF5 2 1 3 3 2 3 1 1 3 2.11 0.93 1 1 0 2 2 1 2 0 0 2 1.11 0.88
AF6 1 2 1 1 2 1 4 3 1 1.78 1.09 1 0 1 0 0 1 0 3 2 0 0.78 1.03
AF7 5 4 5 5 3 5 4 5 5 4.56 0.73 5 0 1 0 0 2 0 1 0 0 0.44 1.60
AF8 3 4 4 4 3 4 4 4 3 3.67 0.50 5 2 1 1 1 2 1 1 1 2 1.33 1.25
AF9 3 2 4 4 3 3 3 4 5 3.44 0.88 5 2 3 1 1 2 2 2 1 0 1.56 1.37
AF10 3 4 4 4 4 5 2 3 4 3.67 0.87 5 2 1 1 1 1 0 3 2 1 1.33 1.42
AF11 3 1 3 3 4 3 3 3 3 2.89 0.78 1 2 0 2 2 3 2 2 2 2 1.89 0.79
AF12 3 4 4 4 4 5 3 2 2 3.44 1.01 1 2 3 3 3 3 4 2 1 1 2.44 1.06
AF13 4 4 3 3 4 3 3 4 4 3.56 0.53 5 1 1 2 2 1 2 2 1 1 1.44 1.23
AF14 3 3 3 3 3 4 3 3 3 3.11 0.33 1 2 2 2 2 2 3 2 2 2 2.11 0.47
AF15 4 3 3 3 3 3 3 3 4 3.22 0.44 5 1 2 2 2 2 2 2 2 1 1.78 1.10
AF16 3 4 5 5 4 3 3 5 4 4.00 0.87 5 2 1 0 0 1 2 2 0 1 1.00 1.51
AF17 4 4 3 3 3 3 3 3 4 3.33 0.50 5 1 1 2 2 2 2 2 2 1 1.67 1.15

Table E.1: Pre-experiment questionnaire B results for the Experts group. Left side of the table
shows the answers, while the right side of the table shows computed distances to the
correct answer (stated in column “=”). See § 8.3.8 (p. 175). Background items were
discarded due to its lower relevance to the experiment.

200 pre-questionnaire b answers

Appendix F

Post-questionnaire

The following is a copy of the anonymous questionnaire handed to all subjects at the end
of the experiment.

202 post-questionnaire

Empirical Studies in Software Engineering
TENFOGS02

May 2011

Post-experiment Questionnaire

Thank you for participating in this experiment.We now ask you to take a deep breath, relax, and try to an-
swer this brief questionary that won’t take you more than 5 minutes.

Each question relates to issues regarding your perception about the experiment. The questionary is divided
into sections with questions. Each question has an identifier (for easy processing later on) and may have ei-
ther a single answer, or a list of possible answers. Each answer should be rated as follows: 1 (Strongly
Disagree), 2 (Somewhat Disagree), 3 (Neither Agree nor Disagree), 4 (Somewhat
Agree), 5 (Strongly Agree).Your should rate with an ‘X’ every answer as best it resembles your opin-
ion as possible.

Group ID: ______________

Questionnaire

External Factors

1 2 3 4 5

EF1. I found the whole experience environment intimidating.

EF2. I enjoyed programming and developing in the experiment.

EF3. I would work with my partner again.

EF4. I kept getting distracted by other colleagues outside my group.

Overall Satisfaction

1 2 3 4 5

OVS1. Overall, this particular setup was suitable for solving every task pre-
sented.

OVS2. I found the documentation available to be suficient.

OVS3. I felt the need to have access to more information on how to use
the framework.

OVS4. Despite my experience, the tools available, excluding OGHMA,
delayed my work considerably.

1

203

Development Process

DP1. It was hard to find out how to use the framework to complete...

1 2 3 4 5

...Iteration 1.

...Iteration 2.

...Iteration 3.

...Iteration 4.

About the OGHMA framework...

1 2 3 4 5

AF1. The OGHMA framework is suitable to automatically generate graphi-
cal user interfaces.

AF2. Most of the components in the OGHMA framework are only used in
the deployment phase of a project..

AF3. I would use the OGHMA framework to build information systems.

AF4. The OGHMA framework is not suitable for systems that keep chang-
ing their domain model..

AF5. I would use most of the components in the OGHMA framework to
build multi-agent systems.

AF6. Persistency's component cannot be changed to support different
technologies (relational databases, distributed key-value DBs, etc).

AF7. Every action issued by the end-user is concatenated into a Transac-
tion, which is committed when he decides to Save.

AF8. The domain-specific language is implemented by following the Inter-
preter pattern.

AF9. The Entity and Thing form the basis of the TypeSquare pattern, along
with Property and PropertyType.

AF10. Attributes and Relations are different specializations of Properties.

AF11. Invariants are defined as bool-returning expressions and never apply
to an Entity.

AF12. Every run-time object derives from the class Entity.

AF13. To add a new concept to the infrastructure, I would sub-class Thing.

2

204 post-questionnaire

1 2 3 4 5

AF14. State-based and operation-based commits take fundamentally differ-
ent code paths.

AF15. MergedContainer is a special type of container used to ensure a
certain level of atomicity, consistency, isolation and durability.

AF16. Every user has a MutableChangeset that collects his operations, be-
fore the transaction is commited.

AF17. Serialization takes place by considering the State object of the Thing
being serialized.

If you wish to leave any further comments, please use the following space:

Thank you for your time.

3

Appendix G

Post-Questionnaire answers

Baseline x̄ σ EG1 x̄ σ H1 W ρ 6= ρ < ρ >

EF1 4 5 3 3 4 1 3.33 1.37 2 2 4 4 3.00 1.15 6= 20.0 0.762 0.338 0.695
EF2 2 3 4 4 3 2 3.00 0.89 3 4 2 3 3.00 0.82 6= 22.0 1.000 0.652 0.653
EF3 5 5 5 5 3 4 4.50 0.84 4 4 5 5 4.50 0.58 6= 21.0 0.914 0.548 0.666
EF4 1 1 1 1 1 1 1.00 0.00 2 1 2 1 1.50 0.58 6= 27.0 0.256 0.133 1.000
OVS1 2 2 3 2 3 3 2.50 0.55 4 4 4 4 4.00 0.00 > 24.0 0.010 0.005 1.000
OVS2 1 1 3 1 2 1 1.50 0.84 3 4 2 2 2.75 0.96 > 29.5 0.067 0.043 1.247
OVS3 5 5 4 5 4 5 4.67 0.52 5 4 4 5 4.50 0.58 < 20.0 0.762 0.548 0.881
OVS4 1 3 3 4 2 2 2.50 1.05 2 1 2 2 1.75 0.50 < 16.5 0.257 0.190 0.953
DP1.1 1 1 1 1 4 2 1.67 1.21 2 4 2 2 2.50 1.00 < 26.0 0.171 0.067 0.971
DP1.2 1 1 1 1 3 2 1.50 0.84 2 1 2 2 1.75 0.50 < 29.5 0.476 0.262 0.833
DP1.3 5 5 4 5 4 2 4.17 1.17 5 4 3 3 3.75 0.96 < 18.5 0.476 0.262 0.795
DP1.4 5 5 5 5 5 5 5.00 0.00 5 5 5 5 5.00 0.00 < 22.0 1.000 1.000 1.000

Table G.1: Post-experiment questionnaire results for Baseline and Experimental Group 1 (EG1),
each line representing the data of a single question for both groups, with correspond-
ing means and standard deviation values. It includes the values of the non-parametric
significance Mann-Whitney-Wilcoxon test; see § 8.3 (p. 159).

206 post-questionnaire answers

Baseline x̄ σ EG2 x̄ σ H1 W ρ 6= ρ < ρ >

EF1 4 5 3 3 4 1 3.33 1.37 4 4 5 5 4.50 0.58 6= 26.0 0.171 0.114 0.972
EF2 2 3 4 4 3 2 3.00 0.89 3 4 4 4 3.75 0.50 6= 27.0 0.257 0.167 0.976
EF3 5 5 5 5 3 4 4.50 0.84 4 3 3 4 3.50 0.58 6= 14.0 0.114 0.057 0.986
EF4 1 1 1 1 1 1 1.00 0.00 1 1 1 1 1.00 0.00 6= 22.0 1.000 1.000 1.000
OVS1 2 2 3 2 3 3 2.50 0.55 4 3 4 3 3.50 0.58 > 14.5 0.670 0.048 1.000
OVS2 1 1 3 1 2 1 1.50 0.84 2 3 3 4 3.00 0.82 > 27.0 0.038 0.033 0.996
OVS3 5 5 4 5 4 5 4.67 0.52 5 4 5 4 4.50 0.58 < 20.0 0.762 0.548 0.881
OVS4 1 3 3 4 2 2 2.50 1.05 2 2 2 3 2.25 0.50 < 20.0 0.762 0.405 0.738
DP1.1 1 1 1 1 4 2 1.67 1.21 4 5 4 4 4.25 0.50 < 22.5 0.019 0.019 1.000
DP1.2 1 1 1 1 3 2 1.50 0.84 2 2 1 2 1.75 0.50 < 29.5 0.476 0.262 0.833
DP1.3 5 5 4 5 4 2 4.17 1.17 4 4 5 2 3.75 1.26 < 19.0 0.610 0.376 0.853
DP1.4 5 5 5 5 5 5 5.00 0.00 5 5 3 3 4.00 1.15 < 16.0 0.257 0.133 1.000

Table G.2: Post-experiment questionnaire results for Baseline and Experimental Group 2 (EG2),
each line representing the data of a single question for both groups, with correspond-
ing means and standard deviation values. It includes the values of the non-parametric
significance Mann-Whitney-Wilcoxon test; see § 8.3 (p. 159).

Answers x̄ σ = Distances x̄ σ

AF1 5 4 4 4 5 4 4.33 0.52 5 0 1 1 1 0 1 1.75 0.52
AF2 4 4 2 3 4 3 3.33 0.82 1 3 3 1 2 3 2 2.33 0.82
AF3 4 3 3 4 2 2 3.00 0.89 5 1 2 2 1 3 3 2.75 0.89
AF4 1 1 3 2 2 4 2.17 1.17 1 0 0 2 1 1 3 1.13 1.17
AF5 3 4 2 2 3 2 2.67 0.82 1 2 3 1 1 2 1 1.50 0.82
AF6 1 1 2 2 2 3 1.83 0.75 1 0 0 1 1 1 2 0.88 0.75
AF7 5 3 3 4 4 5 4.00 0.89 5 0 2 2 1 1 0 2.00 0.89
AF8 5 3 3 3 4 2 3.33 1.03 5 0 2 2 2 1 3 2.50 1.03
AF9 3 3 3 5 3 3 3.33 0.82 5 2 2 2 0 2 2 2.50 0.82
AF10 3 3 3 4 5 4 3.67 0.82 5 2 2 2 1 0 1 2.25 0.82
AF11 3 3 3 3 3 3 3.00 0.00 1 2 2 2 2 2 2 1.75 0.00
AF12 3 3 3 4 3 2 3.00 0.63 1 2 2 2 3 2 1 1.75 0.63
AF13 5 3 3 4 3 2 3.33 1.03 5 0 2 2 1 2 3 2.50 1.03
AF14 4 3 3 3 4 3 3.33 0.52 1 3 2 2 2 3 2 2.00 0.52
AF15 3 3 3 3 3 3 3.00 0.00 5 2 2 2 2 2 2 2.75 0.00
AF16 3 3 3 4 3 3 3.17 0.41 5 2 2 2 1 2 2 2.63 0.41
AF17 3 3 3 4 3 4 3.33 0.52 5 2 2 2 1 2 1 2.50 0.52

Table G.3: Post-experiment questionnaire framework knowledge items results for Baseline. Left
side of the table shows the answers, while the right side of the table shows computed
distances to the correct answer (stated in column “=”). See § 8.3.6 (p. 169)

207

Answers x̄ σ = Distances x̄ σ

AF1 4 5 4 5 4.50 0.58 5 1 0 1 0 0.50 0.58
AF2 2 3 2 3 2.50 0.58 1 1 2 1 2 1.50 0.58
AF3 3 3 4 2 3.00 0.82 5 2 2 1 3 2.00 0.82
AF4 2 1 2 3 2.00 0.82 1 1 0 1 2 1.00 0.82
AF5 3 3 2 3 2.75 0.50 1 2 2 1 2 1.75 0.50
AF6 2 2 4 2 2.50 1.00 1 1 1 3 1 1.50 1.00
AF7 4 4 2 3 3.25 0.96 5 1 1 3 2 1.75 0.96
AF8 3 4 3 3 3.25 0.50 5 2 1 2 2 1.75 0.50
AF9 3 5 3 3 3.50 1.00 5 2 0 2 2 1.50 1.00
AF10 3 3 3 3 3.00 0.00 5 2 2 2 2 2.00 0.00
AF11 3 3 3 3 3.00 0.00 1 2 2 2 2 2.00 0.00
AF12 4 4 3 3 3.50 0.58 1 3 3 2 2 2.50 0.58
AF13 4 2 2 3 2.75 0.96 5 1 3 3 2 2.25 0.96
AF14 3 3 3 3 3.00 0.00 1 2 2 2 2 2.00 0.00
AF15 3 3 3 3 3.00 0.00 5 2 2 2 2 2.00 0.00
AF16 4 5 4 3 4.00 0.82 5 1 0 1 2 1.00 0.82
AF17 4 4 4 4 4.00 0.00 5 1 1 1 1 1.00 0.00

Table G.4: Post-experiment questionnaire framework knowledge items results for Experimental
Group 1. Left side of the table shows the answers, while the right side of the
table shows computed distances to the correct answer (stated in column “=”). See
§ 8.3.6 (p. 169)

208 post-questionnaire answers

Answers x̄ σ = Distances x̄ σ

AF1 4 5 4 4 4.25 0.50 5 1 0 1 1 0.75 0.50
AF2 4 4 4 4 4.00 0.00 1 3 3 3 3 3.00 0.00
AF3 4 3 4 4 3.75 0.50 5 1 2 1 1 1.25 0.50
AF4 3 3 3 3 3.00 0.00 1 2 2 2 2 2.00 0.00
AF5 2 3 2 3 2.50 0.58 1 1 2 1 2 1.50 0.58
AF6 3 2 2 3 2.50 0.58 1 2 1 1 2 1.50 0.58
AF7 3 3 3 4 3.25 0.50 5 2 2 2 1 1.75 0.50
AF8 4 3 4 5 4.00 0.82 5 1 2 1 0 1.00 0.82
AF9 4 4 3 4 3.75 0.50 5 1 1 2 1 1.25 0.50
AF10 3 3 3 3 3.00 0.00 5 2 2 2 2 2.00 0.00
AF11 3 3 1 3 2.50 1.00 1 2 2 0 2 1.50 1.00
AF12 3 3 3 3 3.00 0.00 1 2 2 2 2 2.00 0.00
AF13 3 3 3 3 3.00 0.00 5 2 2 2 2 2.00 0.00
AF14 3 3 3 3 3.00 0.00 1 2 2 2 2 2.00 0.00
AF15 3 3 3 3 3.00 0.00 5 2 2 2 2 2.00 0.00
AF16 3 3 3 3 3.00 0.00 5 2 2 2 2 2.00 0.00
AF17 3 4 5 4 4.00 0.82 5 2 1 0 1 1.00 0.82

Table G.5: Post-experiment questionnaire framework knowledge items results for Experimental
Group 2. Left side of the table shows the answers, while the right side of the
table shows computed distances to the correct answer (stated in column “=”). See
§ 8.3.6 (p. 169)

209

Answers x̄ σ = Distances x̄ σ

AF1 3 4 5 5 3 5 4 4 4 4.11 0.78 5 4 4 5 5 5 2 4 4 4 4.11 0.93
AF2 2 2 3 4 3 4 4 5 2 3.22 1.09 1 4 4 4 4 3 3 3 2 1 3.11 1.05
AF3 3 3 5 4 1 2 2 1 4 2.78 1.39 5 2 2 4 4 3 1 1 4 4 2.78 1.30
AF4 2 1 5 5 2 1 2 5 1 2.67 1.80 1 3 4 1 4 1 4 5 2 1 2.78 1.56
AF5 2 1 3 3 2 3 1 1 3 2.11 0.93 1 3 3 3 3 1 1 1 1 3 2.11 1.05
AF6 1 2 1 1 2 1 4 3 1 1.78 1.09 1 4 1 1 5 1 2 2 2 1 2.11 1.45
AF7 5 4 5 5 3 5 4 5 5 4.56 0.73 5 3 4 4 5 5 5 5 4 5 4.44 0.73
AF8 3 4 4 4 3 4 4 4 3 3.67 0.50 5 3 4 3 3 3 4 3 3 3 3.22 0.44
AF9 3 2 4 4 3 3 3 4 5 3.44 0.88 5 4 3 4 4 3 4 4 3 5 3.78 0.67
AF10 3 4 4 4 4 5 2 3 4 3.67 0.87 5 3 4 4 4 5 4 3 2 3 3.56 0.88
AF11 3 1 3 3 4 3 3 3 3 2.89 0.78 1 3 2 3 4 3 3 3 3 3 3.00 0.50
AF12 3 4 4 4 4 5 3 2 2 3.44 1.01 1 4 3 4 5 4 4 3 3 3 3.67 0.71
AF13 4 4 3 3 4 3 3 4 4 3.56 0.53 5 5 3 4 4 3 1 2 3 4 3.22 1.20
AF14 3 3 3 3 3 4 3 3 3 3.11 0.33 1 2 3 3 3 3 3 3 3 2 2.78 0.44
AF15 4 3 3 3 3 3 3 3 4 3.22 0.44 5 3 4 3 3 3 3 3 3 4 3.22 0.44
AF16 3 4 5 5 4 3 3 5 4 4.00 0.87 5 4 4 4 4 3 4 5 3 4 3.89 0.60
AF17 4 4 3 3 3 3 3 3 4 3.33 0.50 5 5 4 4 4 3 3 5 3 4 3.89 0.78

Table G.6: Post-experiment questionnaire framework knowledge items results for the Experts
group. Left side of the table shows the answers, while the right side of the table
shows computed distances to the correct answer (stated in column “=”). See
§ 8.3.8 (p. 175).

210 post-questionnaire answers

Appendix H

Time and effectiveness results

Iterations
1 2 3 4

Baseline Pair 1 B B A- -
Baseline Pair 2 B B B- -
Baseline Pair 3 B A- B -
Experimental Group 1 Pair 1 A- A A- -
Experimental Group 1 Pair 2 B B A -
Experimental Group 2 Pair 1 B B B -
Experimental Group 2 Pair 2 A- B A- -
Experts Group Pair 1 A- A- A- -
Experts Group Pair 2 A- A- A- -
Experts Group Pair 3 A A- A -
Experts Group Pair 4 A- B A- -
Experts Group Pair 5 A A A -

Table H.1: Deliverables grades, including the Experts group analysis.

212 time and effectiveness results

Iterations
1 2 3 4

Baseline Pair 1 69.2 44.5 79.3 -
Baseline Pair 2 86.8 48.3 64.5 -
Baseline Pair 3 136.1 25.5 43.6 -
Experimental Group 1 Pair 1 74.7 39.8 71.8 -
Experimental Group 1 Pair 2 58.4 47.7 21.5 -
Experimental Group 2 Pair 1 103.1 42.1 60.0 -
Experimental Group 2 Pair 2 85.3 37.1 60.4 -
Experts Group Pair 1 57.6 29.5 37.1 -
Experts Group Pair 2 63.3 31.3 50.5 -
Experts Group Pair 3 56.1 50.6 29.3 -
Experts Group Pair 4 34.9 45.3 30.5 -
Experts Group Pair 5 25.9 16.1 16.4 -

Table H.2: Iteration time results, including the Experts group analysis. Experts Group Pair 2
had only one element, due to the odd number of subjects from the Experts group.
Values in minutes.

Glossary

.NET Microsoft .NET framework for software solutions development [dot].

AJAX Acronym for Asyncronous Javascript And XML. A group of interrelated
web development methods used on the client-side to create asynchronous
web applications [Gar05].

AOP Acronym for Aspect Oriented Programming [KLM+97].

API Acronym for Application Programming Interface.

CDE Acronym for Collaborative Development Environment [BB03].

COBOL Acronym for COmmon Business-Oriented Language. Its one of the oldest
programming languages. Its primary domain is business, finance, and
administrative systems for companies and governments..

CRUD Acronym for Create, Read, Update, and Delete.

DSML Acronym for Domain Specific Modeling Language [DSM].

ESWS Acronym for Empirical Studies With Students.

FORTRAN A general-purpose, procedural, imperative programming language that is
especially suited to numeric computation and scientific computing..

FOSD Acronym for Feature-Oriented Software Development [AK09].

GUI Acronym for Graphical User Interface.

HTML Acronym for HyperText Markup Language.

IDE Acronym for Integrated Development Environment.

J2EE Java Platform, Enterprise Edition. A platform for server programming in
the Java programming language.

kLOC Acronym for kilo Lines Of Code — effectively thousands of LOC.

LOC Acronym for Lines Of Code.

MVC Acronym for Model-View-Controller [KP88].

OO Acronym for Object-Oriented.

PHP Acronym forHypertext PreProcessor. A general-purpose server-side script-
ing language originally designed for web development to produce dynamic
web pages..

QWAN Acronym for Quality Without A Name [Ale79].

SDK Acronym for Software Development Kit.

UML Acronym for Unified Modeling Language [OMG11].

214 glossary

URI Acronym for Uniform Resource Identifier.

VCS Acronym for Version Control System.

XML Acronym for eXtended Markup Language.

References

[AC06] M. Antkiewicz and K. Czarnecki, Framework-specific modeling languages with round-trip
engineering, Proc. of the Model Driven Engineering Languages and Systems, 2006, pp. 692–
706. Cited on pp. 49 and 50.

[Ack00] M. Ackerman, The intellectual challenge of cscw: The gap between social requirements and
technical feasibility, Human-Computer Interaction (2000), no. 15, 179–203. Cited on pp. 55
and 59.

[AD05a] A. Aguiar and G. David, Patterns for documenting frameworks – part i, VikinPLoP’2005
(Helsinki, Finland), September 2005. Cited on pp. 94, 96, 97, 98, 105, and 169.

[AD05b] , Wikiwiki weaving heterogeneous software artifacts, Proceeding of the WikiSym’05 -
International Symposium on Wikis, 2005, pp. 67–74. Cited on p. 124.

[AD06a] , Patterns for documenting frameworks – part ii, EuroPLoP’2006 (Irsee, Germany),
July 2006. Cited on pp. 90, 94, 96, 97, 98, and 123.

[AD06b] , Patterns for documenting frameworks – part iii, PLoP’2006 (Portland, Oregon,
USA), October 2006. Cited on pp. 90, 92, 94, 96, 97, 100, 102, and 103.

[AD11] Ademar Aguiar and Gabriel David, Patterns for effectively documenting frameworks, Trans-
actions on pattern languages of programming II (James Noble and Ralph Johnson, eds.),
Springer-Verlag, Berlin, Heidelberg, 2011, pp. 79–124. Cited on pp. 50, 85, 86, and 125.

[AG08] R. Ahuja and A. Goel, A study of the effect of logging using aop, The 2008 International
Conference on Software Engineering Research and Practive (SERP’08), 2008. Cited on
p. 23.

[Agu03] A. Aguiar, Framework documentation – a minimalist approach, Ph.D. thesis, FEUP, Septem-
ber 2003. Cited on pp. 2, 3, 4, 5, 37, 76, 97, and 124.

[AIS77] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language: Towns, buildings,
construction, Oxford University Press, 1977. Cited on pp. 47, 73, 82, and 83.

[AK03] C. Atkinson and T. Kuhne, Model-driven development: a metamodeling foundation, IEEE
Software 20(5) (2003), 36–41. Cited on p. 24.

[AK09] S. Apel and C. Kastner, An overview of feature-oriented software development, Journal of
Object Technology 8(5) (2009), 49–84. Cited on pp. 23 and 213.

[AKT07] S. Apel, C. Kastner, and S. Trujillo, On the necessity of empirical studies in the assessment
of modularization mechanisms for crosscutting concerns, 1st International Workshop on
Assessment of Contemporary Modularization Techniques, ICSE Workshops, ACoM’07, 2007.
Cited on p. 23.

[Ale79] The timeless way of building, Oxford University Press, 1979. Cited on pp. 82, 186, and 213.

216 REFERENCES

[Alf] Alfresco official site, http://www.alfresco.com/ [Online; accessed September 2011].
Cited on pp. 34 and 142.

[And04] J. Anderson, Cognitive psychology and its implications, Worth Publishers, 2004. Cited on
pp. 48 and 114.

[APP04] S. I. Ahamed, A. Pezewski, and A. Pezewski, Towards framework selection criteria and
suitability for an application framework, Proceedings of the international Conference on
information Technology: Coding and Computing (Itcc’04), vol. 1, 2004, pp. 424–428. Cited
on pp. 88 and 99.

[ASFF11] P. Alves, A. Santos, E. Figueiredo, and F. Ferrari, How do programmers learn aop?, Latin
American Workshop on Aspect-Oriented Software Development, 2011. Cited on p. 23.

[Bas] Project management software, online collaboration: Basecamp, http://basecamphq.com
[Online; accessed September 2011]. Cited on p. 62.

[BB03] G. Booch and A. W. Brown, Collaborative development environments, Advances in Com-
puters 59 (2003), 2–29. Cited on pp. 60, 62, and 213.

[BBvB+] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave
Thomas, Manifesto for agile software development, http://agilemanifesto.org [On-
line; accessed August 2011]. Cited on p. 23.

[BE96] T. Ball and S. G. Eick, Software visualization in the large, IEEE Computer 29 (1996),
33–43. Cited on p. 33.

[BE98] B. Boehm and A. Egyed, Software requirements negotiation: Some lessons learned, 20th
International Conference on Software Engineering (ICSE’98) (Japan), 1998, pp. 503–507.
Cited on p. 61.

[Ben05] J. Bentley, Laziness, impatience, hubris: Personality traits of a great programmer, Proceed-
ings of the 13th Anual SouthEast SAS Users Groups (SESUG) Conference, 2005, pp. 1–9.
Cited on p. 24.

[Ber] Joseph Bergin, Patterns for the doctoral student, Pace University, http://csis.pace.
edu/~bergin/patterns/DoctoralPatterns.html[Online;accessed October 2011].
Cited on p. 185.

[BGS92] M. S. K. Brade, M. Guzdial, and E. Soloway, Whorf: A visualization tool for software
maintenance, Proceedings 1992 IEEE Workshop on Visual Languages, 1992, pp. 148–154.
Cited on p. 31.

[BHS07] F. Buschmann, K. Henney, and D. Schmidt, Pattern oriented software architecture - volume5:
On patterns and pattern languages, vol. 5, John Wiley and Sons, 2007. Cited on p. 184.

[BK01] S. Bassil and R.K. Keller, Software visualization tools: survey and analysis, Proceedings of
the 9th International Workshop on Program Comprehension (IWPC), 2001. Cited on p. 31.

[BKM00] G. Butler, R. Keller, and H. Mili, A framework for framework documentation, ACM
Computing Surveys 32 (2000). Cited on pp. 4, 39, and 76.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila, The semantic web, Scientific American Magazine
(2001). Cited on p. 24.

[BLS05] M. Barnett, K. Leino, and W. Schulte, The spec programming systenm: An overview,
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, 2005, pp. 49–
69. Cited on p. 23.

http://www.alfresco.com/
http://basecamphq.com
http://agilemanifesto.org
http://csis.pace.edu/~bergin/patterns/DoctoralPatterns.html
http://csis.pace.edu/~bergin/patterns/DoctoralPatterns.html

REFERENCES 217

[BM02a] R. Braga and P. Masiero, A process for framework construction based on a pattern lan-
guage, Proceedings of the 26th Annual International Computer Software and Applications
Conference (COMPSAC)., 2002, pp. 615–620. Cited on pp. 47 and 48.

[BM02b] , The role of pattern languages in the instantiation of object-oriented frameworks,
Advances in Object-Oriented Information Systems (2002), 403–410. Cited on p. 48.

[BM03] , Building a wizard for framework instantiation based on a pattern language, Object-
oriented Information Systems, 2003, pp. 95–106. Cited on pp. 47 and 50.

[BMMB99] J. Bosch, P. Molin, M. Mattsson, and P.O. Bengtsson, Framework – problems and experiences,
Building Application Frameworks, M.Fayad, D.Schmidt, R.Johnson, Wiley, 1999. Cited on
p. 37.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern oriented
software architecture - a system of patterns, John Wiley and Sons, 1996. Cited on pp. 23,
37, 100, and 101.

[BMW93] T. J. Biggerstaff, B. W. Mitbander, and D. Webster, The concept assignment problem in
program understanding”, Proceedings of the 15th International Conference on Software
Engineering, 1993, pp. 482–498. Cited on p. 26.

[BNR+03] C. Boldyreff, D. Nutter, S. Rank, M. Smith, P. Wilcox, and R. Dewar, Enviroments to
support collaborative software engineering, Proc of the 2nd Workshop on Cooperative
Supports for Distributed Software Engineering Processes, 2003, pp. 25–28. Cited on p. 60.

[Boo94] G. Booch, Designing an application framework, Dr.Dobb’s Journal 19(2) (1994). Cited on
p. 4.

[Bra95] J .M. Brant, Hotdraw, Master’s thesis, University of Illinois, 1995. Cited on p. 45.

[Bro83] R. Brooks, Towards a theory of the comprehension of computer programs, International
Journal of Man-Machine Studies (1983), 543–554. Cited on p. 19.

[BS93] C.F. Bertholf and J. Scholtz, Program comprehension of literate programs by novice pro-
grammers, Empirical Studies of Programmers: 5th Workshop, 1993. Cited on p. 29.

[BS94] I. Z. Ben-Shaul, Oz: A decentralized process centered environment, Ph.D. thesis, Department
of Computer Science: Columbia University, December 1994. Cited on p. 62.

[BS00] D. Brugali and K. Sycara, Frameworks and pattern languages: an intriguing relationship,
ACM Computing Surveys (CSUR) 32 (1ed) (2000), 2. Cited on p. 47.

[BS05] R. I. Bull and M-A. Storey, Towards visualization support for the eclipse modeling framework,
A Research-Industry Technology Exchange at EclipseCon, 2005. Cited on p. 34.

[BSKH92] I. Z. Ben-Shaul, G. E. Kaiser, and G. T. Heineman, An architecture for multi-user software
development environments, ACM SIGSOFT 92: 5th Symposium on Software Development
Environments (Tyson’s Corner, Virginia), 1992, pp. 149–158. Cited on p. 62.

[BSM06] M. Bruch, T. Schäfer, and M. Mezini, Fruit: Ide support for framework understanding,
OOPSLA Eclipse Technology Exchange, 2006. Cited on pp. 45 and 104.

[BT96] G. A. Bolcer and R. N. Taylor, Endeavors: a process system integration infrastructure,
4th International Conference on the Software Process (ICSP’96) (Brighton, UK), 1996,
pp. 76–89. Cited on pp. 61 and 62.

[Bug] The bugzilla guide - 4.1.2 development release, http://www.bugzilla.org/docs/
tip/en/pdf/Bugzilla-Guide.pdf [Online; accessed August 2011]. Cited on p. 61.

http://www.bugzilla.org/docs/tip/en/pdf/Bugzilla-Guide.pdf
http://www.bugzilla.org/docs/tip/en/pdf/Bugzilla-Guide.pdf

218 REFERENCES

[But98] G. Butler, A reuse case perspective on documenting frameworks, APSEC ’98 Proceedings
of the Fifth Asia Pacific Software Engineering Conference, 1998. Cited on pp. 4, 70, 76,
and 85.

[CDMS02] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider, Source transformation
in software engineering using the txl transformation system, Journal of Information and
Software Technology (44)13 (2002), 827–837. Cited on p. 34.

[CFL06] M. Cortés, M. Fontoura, and C. Lucena, Framework evolution tool, Journal of Object
Technology 5(8) (2006), 101–124. Cited on p. 93.

[CHSV97] W. Codenie, K. Hondt, P. Steyaert, and A. Vercammen, From custom applications to
domain-specific frameworks., Communications of the ACM 40(10) (1997), 71–77. Cited on
p. 92.

[CJMS10] J. C. Carver, L. Jaccheri, S. Morasca, and F. Shull, A checklist for integrating student
empirical studies with research and teaching goals, Empirical Software Engineering 15(1)
(2010). Cited on pp. 148, 151, and 152.

[CLNC01] S. Chan, P. Lee, V. Ng, and A. Chan, Syncronous collaborative development of uml models
on the internet, Concurrent Engineering 9 (2) (2001), 111–119. Cited on p. 61.

[CMSB05] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, Hipikat: A project memory for
software development, IEEE Transactions on Software Engineering 31 (2005), 446–465.
Cited on p. 33.

[Cod] Codase - source code search, http://www.codase.com/ [Online; accessed September
2011]. Cited on p. 33.

[Col] Collabnet official site, http://www.collab.net/ [Online;accessed September 2011].
Cited on p. 34.

[Col95] K. Coleman, Groupware technology and applications, Prentice Hall, 1995. Cited on p. 54.

[Con] Confluence site, http://www.atlassian.com/software/confluence/overview
[Online; accessed September 2011]. Cited on p. 142.

[Cop96] Software patterns, SIGS, 1996. Cited on p. 82.

[Cora] IBM Corporation, Ibm software - doors product line, http://www-01.ibm.com/
software/awdtools/doors/productline/ [Online; accessed August 2011]. Cited on
p. 61.

[Corb] Imagix Corporation, Imagix - source code analysis, http://www.imagix.com [Online;
accessed August 2011]. Cited on p. 31.

[Corc] Microsoft Corporation, Office.com, http://office.microsoft.com/ [Online; accessed
August 2011]. Cited on p. 62.

[Cord] , The official site of visual studio 2010, http://www.microsoft.com/
visualstudio/en-gb/ [Online; accessed August 2011]. Cited on pp. 23 and 137.

[Core] Rational Software Corporation, Rational method composer, http://www-01.ibm.com/
software/awdtools/rmc/ [Online; accessed August 2011]. Cited on p. 62.

[Cor89] E.S. Cordingley, Knowledge elicitation principles, techniques and applications, ch. Knowledge
acquisition techniques for knowledge-based systems, Ellis Horwood Limited, 1989. Cited on
p. 114.

http://www.codase.com/
http://www.collab.net/
http://www.atlassian.com/software/confluence/overview
http://www-01.ibm.com/software/awdtools/doors/productline/
http://www-01.ibm.com/software/awdtools/doors/productline/
http://www.imagix.com
http://office.microsoft.com/
http://www.microsoft.com/visualstudio/en-gb/
http://www.microsoft.com/visualstudio/en-gb/
http://www-01.ibm.com/software/awdtools/rmc/
http://www-01.ibm.com/software/awdtools/rmc/

REFERENCES 219

[Cre11] Creately - online diagramming and design, 2011, http://creately.com/ [Online; ac-
cessed September 2011]. Cited on p. 61.

[Cun] Ward Cunningham, Wikiwikiweb, http://c2.com/cgi/wiki [Online;accessed August
2011]. Cited on p. 124.

[CW01] C.L. Corritore and S. Wiedenbeck, An exploratory study of program comprehension strategies
of procedural and object-oriented programmers, International Journal of Huma-Computer
Studies (2001). Cited on p. 22.

[CZvD+09] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke, A systematic
survey of program comprehension through dynamic analysis, IEEE Transactions on Software
Engineering 35(5) (2009), 684–702. Cited on p. 32.

[Dav98] Working knowledge: How organizations manage what they know, Harvard Business School
Press, 1998. Cited on p. 114.

[DB92] P. Dourish and V. Bellotti, Awareness and coordination in shared workspaces, Proceedings
of the 1992 ACM conference on Computer-supported cooperative work (New York, NY,
USA) (ACM Press, ed.), 1992. Cited on pp. 56 and 62.

[Dét01] F. Détienne, Software design – cognitive aspects, Springer Practitioner Series, 2001. Cited
on pp. 18, 22, and 25.

[Deu89] L. P. Deutsch, Design reuse and frameworks in the smalltalk-80 system, Software reusability:
vol. 2, applications and experience 2 (1989), 57–71. Cited on p. 2.

[DK99] S. Dossick and G. Kaiser, Chime: a metadata-based distributed software development envi-
ronment, Proceedings of the 7th European Software Engineering conference help jointly with
the 7th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
1999, pp. 464–475. Cited on p. 60.

[DKCR05] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson, Towards understanding programs
through wear-based filtering, Softvis, 2005. Cited on pp. 24 and 33.

[DL06] Esther Derby and Diana Larsen, Agile retrospectives: Making good teams great, Pragmatic
Bookshelf, 2006. Cited on p. 23.

[D.N04] D.N.Sturtz, Communal categorization: The folksonomy, Essay for a Library and Information
Science course at Drexel University., December 2004. Cited on p. 121.

[dok] Dokuwiki, http://www.dokuwiki.org [Online; accessed August 2011]. Cited on p. 124.

[dot] Microsoft .net website, http://www.microsoft.com/net [Online; accessed September
2011]. Cited on p. 213.

[Dou03] P. Dourish, The appropriation of interactive technologies: Some lessons from placeless
documents, Computer Supported Cooperative Work (Kluwer Academic Publishers, ed.),
vol. 12, 2003, pp. 465–490. Cited on p. 56.

[Dro11] Dropbox - simplify your file (website), 2011, http://www.dropbox.com [Online; accessed
September 2011]. Cited on p. 62.

[Dru] Drupal - open source cms, http://drupal.org [Online; accessed September 2011]. Cited
on p. 142.

[dSCdW+06] I. A. da Silva, P. H. Chen, C. V. der Westhuizen, R. M. Ripley, and A. van der Hoek,
Lighthouse: Coordination through emerging design, Proc. of the 2006 OOPSLA workshop
on eclipse technology eXchange, 2006. Cited on p. 62.

http://creately.com/
http://c2.com/cgi/wiki
http://www.dokuwiki.org
http://www.microsoft.com/net
http://www.dropbox.com
http://drupal.org

220 REFERENCES

[DSE06] M. Desmond, M-A. Storey, and C. Exton, Fluid source code views for just in-time comprehen-
sion, Workshop on Software Engineering Properties of Languages and Aspect Technologies
(SPLAT’06), 2006. Cited on p. 31.

[DSM] Dsm forum : Domain specific modeling, http://www.dsmforum.org/ [Online; accessed
September 2011]. Cited on pp. 49 and 213.

[Dus03] L. Dusseault, Webdav: Next-generation collaborative web authoring, Prentice Hall PTR,
2003. Cited on p. 62.

[ea95] R. Baecker et al., Readings in human-computer interaction: toward the year 2000, Morgan
Kaufmann Publishers, 1995. Cited on pp. 31 and 57.

[Ecl] Eclipse uml plug-in, http://www.visual-paradigm.com/solution/eclipseuml/
[Online; accessed September 2011]. Cited on p. 33.

[Ecl11] Eclipse project, August 2011, http://www.eclipse.org [Online; accessed August 2011].
Cited on pp. 23, 32, and 137.

[EGR93] C. A. Ellis, S. J. Gibbs, and G. L. Rein, Groupware some issues and experiences, Readings
in groupware and computer-supported cooperative work, Baecker, Morgan Kaufmann, San
Francisco, 1993, pp. 9–28. Cited on pp. 54 and 55.

[End95] M. Endsley, Toward a theory of situation awareness in dynamic systems, Human Factors
(37)1 (1995), 32–64. Cited on pp. 58 and 62.

[Ent] Entreprise architect, http://www.sparxsystems.com/ [Online; accessed September
2011]. Cited on p. 33.

[ES98] K. Erdös and H. M. Sneed, Partial comprehension of complex programs (enough to perform
maintenance), Proceedings of the 6th International Workshop on Program Comprehension,
1998, pp. 98–105. Cited on p. 27.

[ESJ92] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr., Seesoft – a tool for visualizing line oriented
software statistics, IEEE Transactions on Software Engineering (28)4 (1992), 396–412.
Cited on p. 62.

[ESS11] http://softeng.fe.up.pt/essewiki, August 2011, http://softeng.fe.up.pt/esseWiki
[Online; accessed August 2011]. Cited on p. 148.

[FA08] N. Flores and A.Aguiar, Patterns for framework understanding, 15th Pattern Languages of
Programming Conference (PLoP’08) (Nashville, USA), October 2008. Cited on p. 107.

[FA10] N. Flores and A. Aguiar, Understanding frameworks collaboratively : Tool requirements,
International Journal on Advances on Software vol. 3 (2010). Cited on p. 122.

[Fav01] J.-M. Favre, Gsee: A generic software exploration enviroment., Proceedings of the 9th
International Workshop on Program Comprehension (IWPC), 2001, pp. 233–244. Cited on
p. 31.

[FD04] J. Froehlich and P. Dourich, Unifying artifacts and activities in a visual tool for distributed
software development teams, Proceedings of the 26th International Conference on Software
Engineering, 2004, pp. 387–396. Cited on p. 34.

[Fer11] H. Ferreira, Adaptive object-modelling: Patterns, tools and applications, Ph.D. thesis,
University of Porto, Faculty of Engineering, 2011. Cited on pp. 151 and 155.

[FGS06] G. Fairbanks, D. Garlan, and W. Scherlis, Design fragments make using frameworks easier,
OOPSLA, 2006. Cited on pp. 46 and 104.

http://www.dsmforum.org/
http://www.visual-paradigm.com/solution/eclipseuml/
http://www.eclipse.org
http://www.sparxsystems.com/
http://softeng.fe.up.pt/esseWiki

REFERENCES 221

[FHLS97] G. Froehlich, H. Hoover, L. Lui, and P. Sorenson, Hooking into object-oriented application
frameworks, Proceedings of the 19th International Conference on Software Engineering,
1997, pp. 491–501. Cited on pp. 37, 45, 90, and 103.

[FHLS00] G. Froehlich, H. Hoover, L. Lui, and P. Sorenson, Choosing an object-oriented domain
framework, ACM Computing Surveys 32 (1) (2000). Cited on p. 88.

[FKAL09] J. Feigenspan, C. Kastner, S. Apel, and T. Leich, How to compare program comprehension in
fosd empirically - an experience report, Proc. Int’l Workshop on Feature-Oriented Software
Development, 2009, pp. 55–62. Cited on p. 23.

[Flo06] Nuno Flores, Engenharia reversa de padrões em arquitecturas reutilizáveis, Master’s thesis,
Faculty of Engineering, 2006. Cited on pp. xvi and 71.

[Fos] Sam Walter Foss, The calf-path, http://holyjoe.org/poetry/foss3.htm [Online;
accessed August 2011]. Cited on p. 117.

[FPR01] M. Fontoura, W. Pree, and B. Rumpe, The uml profile for framework architectures, Addison-
Wesley Professional, 2001. Cited on pp. 48 and 91.

[FS88] R. Felder and L. K. Silverman, Learning and teaching styles in engineering education,
Engineering Education 78(7) (1988), 674–681. Cited on p. 94.

[FS97] M. Fayad and D. Schmidt, Object-oriented application frameworks, Communications of the
ACM 40(10) (1997), 32–38. Cited on p. 2.

[FS05] R. Felder and J. Spurlin, Applications, reliability, and validity of the index of learning styles,
International Journal of Engineering Education 21(1) (2005), 103–112. Cited on pp. 6, 50,
and 93.

[FSJ99] M. Fayad, D. Schimdt, and R. Johnson, Building application frameworks, Wiley, 1999. Cited
on pp. 37, 39, 86, and 90.

[Fua07] M. Muztaba Fuad, An autonomic software architecture for distributed applications, Tech.
report, 2007. Cited on p. 23.

[GA07] M. Goulao and F. Brito Abreu, Modeling the experimental software engineering process,
QUATIC’07: Proceedings of the 6th International Conference on Quality of Information
and Communications Technology (Washington, DC, USA) (IEEE Computer Society, ed.),
2007, pp. 77–90. Cited on p. 79.

[Gar05] J. J. Garrett, Ajax: A new approach to web applications, February 2005, http://www.
adaptivepath.com/publications/essays/archives/000385.php [Online; ac-
cessed August 2011]. Cited on pp. 23 and 213.

[GB04] N. Gold and K. Bennett, Program comprehension for web services, Proceedings of the 12th
IEEE International Workshop on Program Comprehension, 2004. Cited on p. 22.

[GCS05] D.M. German, D. Cubranic, and M-A. Storey, A framework for describing and understanding
mining tools in software development, ACM SIGSOFT Software Engineering Notes 30(4)
(2005), 1–5. Cited on p. 30.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns — elements of reusable
object-oriented software, Addison-Wesley, 1995. Cited on pp. 23, 37, 44, 46, 50, 83, 102,
and 103.

[GHL+11] A. Guzzi, L. Hattori, M. Lanza, M. Pinzger, and A. van Deursen, Collective code bookmarks
for program comprehension, Proceedings of the 19th International Conference on Program
Comprehension, 2011, pp. 101–110. Cited on p. 34.

http://holyjoe.org/poetry/foss3.htm
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

222 REFERENCES

[GM95] D. Gangopadhyay and S. Mitra, Understanding frameworks by exploration of exemplars,
Proceedings of CASE-95 (IEEE Computer Society, ed.), 1995, pp. 90–99. Cited on p. 37.

[GP92] T.R.G. Green and M. Petre, When visual programs are harder to read than textual pro-
grams, Human-Computer Interaction: Tasks and Organization, Proceedings (ECCE)-6 (6th
European Conference Cognitive Ergonomics), 1992. Cited on p. 31.

[Gre88] I. Greif, Computer-supported cooperative work: a book of readings, Morgan Kaufmann
Publishers, 1988. Cited on p. 55.

[Gre91] Computer-supported co-operative work and groupware, Academic Press Ltd., London, 1991.
Cited on p. 55.

[Gri99] R. Grinter, Systems architecture: Product designing and social engineering, ACM Conference
on Work Activities Coordination and Collaboration (WACC’99) (San Francisco, California),
1999, pp. 11–18. Cited on p. 58.

[GRS04] C. Gutwim, R.Penner, and K. Schneider, Group awareness in distributed software develop-
ment, ACM CSCW, 2004, pp. 72–81. Cited on p. 26.

[Gru88] J. Grudin, Why cscw applications fail: problems in the design and evaluation of organiza-
tion of organizational interfaces, Proceedings of the 1988 ACM conference on Computer-
supported cooperative work (New York, NY, USA) (ACM Press New York, ed.), 1988.
Cited on p. 56.

[Gru93] T. Gruber, A translation approach to portable ontology specifications, Knowledge Acquisition
5(2) (1993), 199–220. Cited on p. 183.

[Gru94] J. Grudin, Computer-supported co-operative work: History and focus, Computer (27)5
(1994). Cited on p. 54.

[Gru07] T. Gruber, Collective knowledge systems: Where the social web meets the semantic web.,
Journal of Web Semantics (2007). Cited on pp. 115 and 116.

[HCRP04] S. Hupfer, L.-T Cheng, S. Ross, and J. Patterson, Introducing collaboration into an ap-
plication development environment, Proceedings of the ACM Conference on Computer
Supported Cooperative Work, 2004, pp. 444–454. Cited on pp. 34 and 62.

[HH01] D. Hou and H. J. Hoover, Towards specifying constraints for object-oriented frameworks,
Proceedings of the 2001 conference of the Centre for Advanced Studies on Collaborative
research (IBM Press, ed.), 2001, p. 5. Cited on p. 49.

[HHG90] R. Helm, I. Holland, and D. Gangopadhyay, Contracts: specifying behavioral compositions
in object-oriented systems, Proceedings of the European conference on object-oriented
programming (ECOOP’90), 1990, pp. 169–180. Cited on p. 49.

[HIBK97] T. Hendrix, J.H. Cross II, L. Barowski, and K.Mathias, Tool support for reverse engineering
multi-lingual software, Proceedings of the 4th Working Conference on Reverse Engineering
(WCRE’97), 1997, pp. 136–143. Cited on p. 31.

[HK06] J. Hautamäki and K. Koskimies, Finding and documenting the specialization interface of an
application framework, Software-Practice and Experience 36(13) (2006), 1443–1465. Cited
on pp. 48 and 50.

[HL11] D. Hou and L. Li, Obstacles in using frameworks and apis: An exploratory study of
programmers’ newsgroups discussions, IEEE 19th International Conference in Program
Comprehension (ICPC), 2011. Cited on p. 42.

REFERENCES 223

[HOB05] A. R. Haydarlou, B. J. Overeinder, and F. M. T. Brazier, A self-healing approach for object-
oriented applications, Proceedings of the 3rd International Workshop on Self-Adaptive and
Autonomic Computing Systems, 2005, pp. 191–195. Cited on p. 23.

[Hoh96] Journey of the software professional: The sociology of software development, Prentice Hall,
1996. Cited on p. 18.

[Hou08] D. Hou, Investigating the effects of framework design knowledge in example-based framework
learning, IEEE International Conference on Software Maintenance, 2008, pp. 37–46. Cited
on pp. 42 and 94.

[HW99] M. Hollander and D. A. Wolfe, Nonparametric statistical methods, Wiley-Interscience,
January 1999. Cited on p. 159.

[HWH05] D. Hou, K. Wong, and H. J. Hoover, What can programmer questions tell us about frame-
works?, Proceedings of the 13th International Workshop on Program Comprehension
(IPWC’05), 2005, pp. 87–96. Cited on p. 41.

[IK02] I.Hammouda and K.Koskimies, A pattern-based j2ee application development environment,
Nordic Journal of Computing (3)9 (2002), 248–260. Cited on p. 44.

[Ima] Imagix4d official website, http://www.imagix.com [Online; accessed September 2011].
Cited on p. 33.

[ISO87] S. Isoda, T. Shimomura, and Y. Ono, Vips: A visual debugger, IEEE Software (1987). Cited
on p. 31.

[JF88] R. E. Johnson and B. Foote, Designing reusable classes, Journal of Object-Oriented Pro-
gramming 1(2) (1988), 22–35. Cited on p. 2.

[Jir] Jira official website, http://www.atlassian.com/software/jira/overview [On-
line; accessed September 2011]. Cited on p. 34.

[JK02] J.Hannemann and G. Kiczales, Design pattern implementation in java and aspectj, Pro-
ceedings of the 17th ACM SIGPLAN conference on Object-oriented programming, systems,
languages and applications, 2002, pp. 161–173. Cited on p. 44.

[JLJL90] P. Johnson-Lenz and T. Johnson-Lenz, Rhythms, boundaries, and containers: Creative
dynamics of asyncronous group life, Research Report 4, Awakening Technology, April 1990.
Cited on p. 54.

[JN99] E. E. Jacobson and P. Nowack, Frameworks and patterns: Architectural abstractions,
Building Application Frameworks, John Wiley and Sons, 1999, pp. 29–54. Cited on pp. 101
and 104.

[Joh88] Groupware: Computer support for business teams, The Free Press, 1988. Cited on pp. 54
and 57.

[Joh92] R. Johnson, Documenting frameworks using patterns, Proceedings of the OOPSLA’92,
SIGPLAN notices, vol. 27(10), 1992, pp. 63–76. Cited on pp. 37, 44, 47, and 50.

[Joh97] , Components, framework, patterns, SIGSOFT Software Engineering Notes 22(3)
(1997), 10–17. Cited on pp. 38, 42, and 45.

[Joo] Joomla!, http://joomla.org [Online; accessed September 2011]. Cited on p. 142.

[Kad92] R. Kadia, Issues encountered in building a flexible software development environment, ACM
SIGSOFT 92: 5th Symposium on Software Development Environments (Tyson’s Corner,
Virginia), 1992, pp. 169–180. Cited on p. 62.

http://www.imagix.com
http://www.atlassian.com/software/jira/overview
http://joomla.org

224 REFERENCES

[KAKB+08] B. Kitchenham, H. Al-Khilidar, M. Ali Babar, M. Berry, K. Cox, J. Keung, F. Kurniawati,
M. Staples, H. Zhang, and L. Zhu, Evaluating guidelines for reporting empirical software
engineering studies, Empirical Software Engineering 13 (1) (2008), 97–121. Cited on p. 79.

[Kli91] R. Kling, Co-operation, co-ordination and control in computer-supported work, Communica-
tions of the ACM (34)12 (1991). Cited on p. 55.

[KLM+97] G. Kizcales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J-M Loingtier, and J. Irwin,
Aspect oriented programming, Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), June 1997. Cited on pp. 23 and 213.

[Klo] Klocwork official website, http://www.klocwork.com/ [Online; accessed September
2011]. Cited on p. 33.

[KM05] M. Kersten and G. Murphy, Mylar: a degree-of-interest model for ide’s, International
Conference on Aspect Oriented Software Development, 2005, pp. 159–168. Cited on pp. 24,
33, and 138.

[KMCA06] A.J. Ko, B.A. Myers, M.J. Coblenz, and H.H. Aung, An exploratory study of how developers
seek, relate, and collect relevant information during software maintenance tasks, IEEE
Transactions on Software Engineering (2006), 971–987. Cited on p. 24.

[KP88] G. E. Krasner and S. T. Pope, A cookbook for using the model-view-controller user interface
paradigm in smalltalk-80, Journal of Object-Oriented Programming 1(3) (1988), 26–49.
Cited on pp. 37, 43, and 213.

[KP09] C. Kohls and S. Panke, Is that true...? - thoughts on the epistemology of patterns, PLoP
’09 : Proceedings of the 16th Conference on Patterns Languages of Programs, 2009. Cited
on pp. 82 and 184.

[KRW05] D. Kirk, M. Roper, and M. Wood, Identifying and addressing problems in framework reuse,
Proceedings of the 13th International Workshop on Program Comprehension (IPWC’05),
2005, pp. 77–86. Cited on pp. 40 and 94.

[KTC+92] S. M. Kaplan, W. J. Tolone, A. M. Carroll, D. P. Bogia, and C. Bignoli, Supporting
collaborative software development with conversationbuilder, ACM SIGSOFT 92: 5th
Symposium on Software Development Environments (Tyson’s Corner, Virginia), 1992,
pp. 11–20. Cited on p. 62.

[LAD+94] P. Linos, P. Aubet, L. Dumas, Y. Helleboid, P. Lejeune, and P. Tulula, Visualizing program
dependencies: An experimental study, Software-Practice and Experience 24(4) (1994),
387–403. Cited on p. 31.

[LB03] C. Larman and V. Basili, Iterative and incremental development: A brief history, Computer
36(6) (2003), 47–56. Cited on p. 58.

[LD01] M. Lanza and S. Ducasse, A categorization of classes based on visualization of their internal
structure: the class blueprint, Proceedings for OOPSLA 2001 (2001), 300–311. Cited on
p. 32.

[Lea94] D. Lea, Chistopher alexander: An introduction for object-oriented designers, Software
Engineering Notes 19(1) (1994), 39–45. Cited on p. 82.

[Lik32] R. Likert, A technique for the measurement of attitudes, Archives of Psychology 22 140
(1932), 1–55. Cited on p. 153.

[Lio92a] Y.I. Liou, Collaborative knowledge acquisition, Expert Systems with Applications 5 (1992),
no. 1-2, 1–13. Cited on p. 115.

http://www.klocwork.com/

REFERENCES 225

[Lio92b] , Knowledge acquisition: issues, techniques and methodology, SIGMIS Database 23,
vol. 1, 1992, pp. 59–64. Cited on p. 113.

[LOJW98] B. S. Lerner, L. J. Osterweil, Stanley M. Sutton Jr., and A. Wise, Programming process
coordination in little-jil toward the harmonious functioning of parts for effective results,
European Workshop on Software Process Technology, 1998. Cited on p. 61.

[Lon10] G. Longworth, Concise encyclopedia of philosophy of language and linguistics, ch. Definitions:
Uses and Varieties, Elsevier, 2010. Cited on p. 121.

[Lou06] P. Louridas, Using wikis in software development, IEEE Software 23 (2006), 88–91. Cited
on p. 124.

[LPLS86] D.C Littman, J. Pinto, S. Letovsky, and E. Soloway, Mental models and software main-
tenance, Proceedings of the 1st Workshop on Empirical Studies of Programmers, 1986,
pp. 80–98. Cited on p. 20.

[LVD03] T. D. LaToza, G. Venolia, and R. DeLine, Maintaining mental models: A study of developer
working habits, Proc. of the International Conference of Software Engineering (ICSE’06)
(Shanghai, China), 2003. Cited on pp. 7, 71, 96, and 111.

[MC94] T. W. Malone and K. Crowston, The interdisciplinary study of coordination, ACM Com-
puting Surveys (CSUR) 26(1) (1994), 87–199. Cited on pp. 33 and 59.

[McA00] Donald R. McAndrews, Team software process: An overview and preliminary results of
using disciplined practices, the, Cmu/sei-2000-tr-015, CMU/SEI, 2000. Cited on p. 23.

[MD85] S. Mittal and C.L. Dym, Knowledge acquisition from multiple experts, Al Magazine 6(2)
(1985), 32–36. Cited on p. 113.

[med] Mediawiki - the free wiki engine, 2007, http://www.mediawiki.org [Online; accessed
August 2011]. Cited on p. 124.

[MFH02] A. Mockus, R. Fielding, and J.D. Herbsleb, Two case studies of open source software devel-
opment: Apache and mozilla, ACM Transactions of Software Engineering and Methodology
11(3) (2002), 309–346. Cited on p. 26.

[MFM03] A. Marcus, L. Feng, and J.I. Maletic, Comprehension of software analysis data using 3d
visualization, Proceedings of the IEEE International Workshop on Program Comprehension
(IWPC2003), 2003, pp. 105–114. Cited on p. 33.

[M.H91] M.H.Brown, Zeus: A system for algorithm animation and multi-view editing, Proceedings
of the IEEE 1991 Workshop on Visual Languages, 1991, pp. 4–9. Cited on p. 31.

[MHK+01] M.Hakala, J. Hautamäki, K.Koskimies, J.Paakki, A.Viljamaa, and J.Viljamaa, Annotating
reusable software architectures with specialization patterns, Proceedings of the Working
IEEE/IFIPConference on Software Architecture (WICSA’01), 2001, p. 171. Cited on pp. 44
and 50.

[MK88] H. Muller and K. Klashinsky, Rigi – a system for programming-in-the-large, Proceedings
of the 10th International Conference on Software Engineering (ICSE’10), 1988, pp. 80–86.
Cited on pp. 31 and 32.

[ML05] A. Murray and T. Lethbridge, On generating cognitive patterns of software comprehension,
Proceedings of the 2005 conference of the Centre for Advanced Studies on Collaborative
research, vol. 200-211, 2005. Cited on p. 28.

[MMM95] H. Mili, F. Mili, and A. Mili, Reusing software: Issues and research directions, Software
Engineering 21(6) (1995), 528–562. Cited on p. 1.

http://www.mediawiki.org

226 REFERENCES

[MN96] S. Moser and O. Nierstrasz, The effect of object-oriented frameworks on productivity, IEEE
Computer (1996), 45–51. Cited on p. 37.

[MNS95] G.C. Murphy, D. Notkin, and K. Sullivan, Software reflexion models: Bridging the gap
between source and high-level models, Proceedings of Foundations of Software Engineering,
1995, pp. 18–28. Cited on p. 32.

[MRB97] R. Martin, D. Riehle, and F. Buschmann, Pattern languages of program design, vol. 3,
Addison-Wesley, 1997. Cited on p. 82.

[MRS02] M. Morisio, D. Romano, and I. Stamelos, Quality, productivity, and learning in framework-
based development: An exploratory case study, IEEE Transactions on Software Engineering
28(9) (2002), 876–888. Cited on pp. 40 and 50.

[MS95] A. Mendelson and J. Sametinger, Reverse engineering by visualizing and querying, Software
– Concepts and Tools 16 (1995), 170–182. Cited on p. 31.

[MVS09] G.C. Murphy, P. Viriyakattiyaporn, and D. Shepherd, Using activity traces to characterize
programming behaviour beyond the lab, Proceedings of the International Conference on
Program Comprehension, 2009, pp. 90–94. Cited on p. 24.

[NA05] N.Flores and A.Aguiar, Jfreedom: a reverse engineering tool to recover framework de-
sign, Proceedings of the 1st International Workshop on Object-Oriented Reengineering,
ECOOP’05, 2005. Cited on pp. 46 and 50.

[NAT68] NATO, Software engineering conference, October 1968. Cited on p. 17.

[NBM95] J. F. Nunamaker, R. O. Briggs, and D. D. Mittleman, Electronic meeting systems: Ten years
of lessons learned, Groupware: Technology and Applications (D. Coleman and R. Khanna,
eds.), Prentice-Hall, Englewood Cliffs, NJ, 1995. Cited on p. 54.

[Net] Netbeans ide, http://netbeans.org/ [Online; accessed August 2011]. Cited on p. 23.

[NK02] J. Noerbjerg and P. Kraft, Software practice is social practice, Social Thinking, Software
Thinking, Software Practice, MIT Press, 2002, pp. 205–222. Cited on p. 110.

[NOY00] K. Nakakoji, K. Ohira, and Y. Yamamoto, Computational support for collective creativity,
Knowlegde-Based Systems Journal, Elsevier Science 13(7-8) (2000), 451.458. Cited on
p. 110.

[NYY06] K. Nakakoji, Y. Yamamoto, and Y. Ye, Supporting software development as knowledge
community evolution, Proceedings of the CSCW Workshop on Suporting the Social Side of
Large Scale Software Development, 2006. Cited on pp. 7 and 71.

[OBM05] C. O’Reilly, D. Bustard, and P. Morrow, The war room command console (shared visualiza-
tions for inclusive team coordination), Softvis, 2005. Cited on p. 34.

[OC99] A. Ortigosa and M. Campo, Smartbooks: A step beyond active-cookbooks to aid in framework
instantiation, Technology of Object-Oriented Languages and Systems, Prentice Hall, 1999.
Cited on p. 44.

[OH03] M. Ohki and Y. Hosaka, A program visualization tool for program comprehension, Human
Centric Computing Languages (2003). Cited on p. 31.

[OLDR11] F. Olivero, M. Lanza, M. D’Ambros, and R. Robbes, Enabling program comprehension
through a visual object-focused development environment, IEEE Symposium on Visual
Languages and Human-Centric Computing, 2011, pp. 127–134. Cited on p. 34.

http://netbeans.org/

REFERENCES 227

[OMG] OMG, Object constraint language specification, http://www.omg.org/spec/OCL/ [On-
line; accessed August 2011]. Cited on p. 23.

[OMG10] Model driven architecture (mda), 2010, http://www.omg.org/mda [Online; accessed
August 2011]. Cited on p. 23.

[OMG11] OMG, Unified modeling language specification, 2011, http://www.uml.org/ [Online;
accessed August 2011]. Cited on pp. 23 and 213.

[Pac05] M. Pacione, A novel software visualization model to support object-oriented program com-
prehension, Ph.D. thesis, University of Strathclyde, Glasgow, 2005. Cited on p. 31.

[PBT97] M. Petre, A. Blackwell, and T.Green, Cognitive questions in software visualization, Software
Visualization: Programming as a Multi-Media Experience, MIT Press, 1997, pp. 453–480.
Cited on pp. 22 and 31.

[Pen] Penumbra := eclipse assmalltalkplugin, http://www.info.ucl.ac.be/~jbrichau/
penumbra.html [Online; accessed September 2011]. Cited on p. 33.

[Pen87] N. Pennington, Stimulus structures and mental representations in expert comprehension
of computer programs, Cognitive Psychology 19 (1987), 295–341. Cited on pp. 20, 22, 29,
and 31.

[Pen92] D. A. Penny, The software landscape: A visual formalism for programming-in-the-large,
Ph.D. thesis, University of Toronto, 1992. Cited on p. 33.

[PJ05] N. Pillay and V.R. Jugoo, An investigation into student characteristics affecting novice
programming performance, ACM SIGCSE Bulletin 37(4) (2005), 107–110. Cited on p. 24.

[P.N99] P.N.Robillard, The role of knowledge in software development, Communications of the ACM
42(1) (1999), 87–92. Cited on p. 110.

[PPI11] Psycology of programming interest group, 2011, http://www.cs.york.ac.uk/
ppig2011/ [Online; accessed September 2011]. Cited on p. 25.

[Pre94] W. Pree, Design patterns for object-oriented software development, Addison-Wesley, 1994.
Cited on pp. 45, 49, 90, and 103.

[Pre95] , Framework development and reuse support, Visual Object-Oriented Programming,
Concepts and Environments, Prentice Hall, 1995. Cited on p. 43.

[PSK07] M. Di Penta, R.E.K. Stirewalt, and E. Kraemer, Desigining your next empirical study on
program comprehension, Proceedings of the 15th IEEE International Conference on Program
Comprehension (ICPC’07), 2007, pp. 281–285. Cited on p. 26.

[RCM04] M. Robillard, W. Coelho, and G. Murphy, How effective developers investigate source code:
An exploratory study, IEEE Transactions on Software Engineering 30 (12) (2004). Cited
on pp. 92, 95, and 106.

[RCWP91] G.-C. Roman, K. C. Cox, C. D. Wilcox, and J. Y. Plun, Pavane: A system for declara-
tive visualization of concurrent computations, Technical report wucs-91-26, Washington
University, St. Louis, 1991. Cited on p. 31.

[RDL90] V. Rajlich, N. Damskinos, and P. Linos, Vifor: A tool for software maintenance, Software-
Practice and Experience 20(1) (1990), 67–77. Cited on p. 31.

[Red] Redmine.org, http://redmine.org [Online; accessed September 2011]. Cited on p. 142.

http://www.omg.org/spec/OCL/
http://www.omg.org/mda
http://www.uml.org/
http://www.info.ucl.ac.be/~jbrichau/penumbra.html
http://www.info.ucl.ac.be/~jbrichau/penumbra.html
http://www.cs.york.ac.uk/ppig2011/
http://www.cs.york.ac.uk/ppig2011/
http://redmine.org

228 REFERENCES

[Rei01] S. Reiss, An overview of bloom, Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Work-
shop on Program analysis for software tools and engineering, 2001, pp. 2–5. Cited on
p. 33.

[Rie00] D. Riehle, Framework design: A role modelling approach, Ph.D. thesis, Swiss Federal
Institute of Technology, 2000. Cited on p. 49.

[Ris86] R. S. Rist, Plans in programming: Definition, demonstration, and development, Proceedings
of the 1st Workshop on Empirical Studies of Programmers, 1986. Cited on p. 29.

[RJ97] D. Roberts and R. E. Johnson, Evolving frameworks: A pattern language for developing
object-oriented frameworks, Pattern Languages of Program Design 3, Addison-Wesley, 1997.
Cited on pp. 86 and 93.

[RL07] R. Robbes and M. Lanza, Characterizing and understanding development sessions, Proceed-
ings of the 15th IEEE International Conference on Program Comprehension (ICPC’07),
2007, pp. 155–166. Cited on p. 24.

[RM03] M.P. Robillard and G. Murphy, Feat: A tool for locating, describing, and analyzing concerns
in source code, Proceedings of the 25th International Conference on Software Engineering,
2003, pp. 822–823. Cited on p. 33.

[RSVW94] W. Reinhard, J. Schweitzer, G. Volksen, and M. Weber, Cscw tools: concepts and architec-
tures, Computer 27(5) (1994), 28–36. Cited on p. 56.

[RTC] Rational team concert, http://www-01.ibm.com/software/rational/products/
rtc/ [Online; accessed September 2011]. Cited on p. 137.

[SAA+00] A.Th. Schreiber, J. Akkermans, A. Anjewierden, R. De Hoog, N. Shadbolt, W. Van De Velde,
and B. Wielinga, Knowledge engineering and management: The commonkads methodology,
MIT Press, 2000. Cited on p. 114.

[Sar05] A. Sarma, A survey of collaborative tools in software development, Tech. report, ISR -
Institute for Software Research, University of California, 2005. Cited on pp. 60, 61, and 62.

[SB92] K. Schmidt and L. Bannon, Taking cscw seriously, Computer Supported Cooperative Work
1 (1992), 7–40. Cited on p. 56.

[SBdL92] P. Schorn, A. Brungger, and M. de Lorenzi, The xyz geobench: Animation of geometric
algorithms, Animations for Geometric Algorithms: A Video Review, Digital Systems
Research Center, Palo Alto, California, 1992. Cited on p. 31.

[Sca89] D. A. Scanlan, Structured flowcharts outperform pseudocode: An experimental comparison,
IEEE Trans. Soft. Eng. (1989). Cited on p. 31.

[SCG05] M-A. Storey, D. Cubranic, and D. M. German, On the use of visualization to support
awareness of human activities in software development: A survey and a framework, In Proc.
of the 2005 ACM symposium on Software Visualization, 2005, pp. 193–202. Cited on p. 30.

[SD96] S.Tilley and D.B.Smith, Coming attractions in program understanding, Technical Report
96-TR-019, CMU/SEI, 1996. Cited on pp. 21 and 30.

[SE84] E. Soloway and K. Erlich, Empirical studies of programming knowledge, IEEE Transactions
on Software Engineering 10(5) (1984), 595–609. Cited on pp. 19 and 29.

[Sec] Second life, http://secondlife.com [Online; accessed September 2011]. Cited on p. 64.

[SES05] J. Singer, R. Elves, and M-A. Storey, Navtracks demonstration: Supporting navigation in
software space, International Workshop on Program Comprehension, 2005. Cited on p. 33.

http://www-01.ibm.com/software/rational/products/rtc/
http://www-01.ibm.com/software/rational/products/rtc/
http://secondlife.com

REFERENCES 229

[SFC94] M-A Storey, F. Fracchia, and S. Carpendale, A top down approach to algorithm animation,
Technical Report CMPT 94-05, Simon Frasier University, Brunaby, B.C., Canada, 1994.
Cited on p. 31.

[SFM97] M-A Storey, F. Fracchia, and H. Muller, Cognitive design elements to support the construction
of a mental model during software visualization, Proceedings of the 5th International
Workshop on Program Comprehension (IWPC’97) (Dearborn, Michigan), 1997, pp. 17–28.
Cited on pp. 21, 31, and 95.

[SG96] M. Shaw and D. Garlan, Software architecture – perspectives on an emerging discipline,
Prentice Hall, 1996. Cited on p. 101.

[SG07] I. Safer and G.C.Murphy, Comparing episodic and semantic interfaces for task bound-
ary identification, Proceedings of the Conference of the Center of Advanced Studies on
Collaborative Research, no. 229-243, 2007. Cited on p. 24.

[Shi] C. Shirky, Folksonomy, http://many.corante.com/archives/2004/08/25/
folksonomy.php [Online; accessed August 2011]. Cited on p. 121.

[Shn77] B. Shneiderman, Measuring computer program quality and comprehension, International
Journal of Man-Machine Studies 9 (1977), 465–478. Cited on p. 29.

[SK10] K. Sirbi and P. J. Kulkarni, Stronger enforcement of security using aop and spring aop,
Journal of Computing 2(6) (2010). Cited on p. 23.

[SLB00] F. Schull, F. Lanubile, and V. Basil, Investigating reading techniques for object-oriented
framework learning, IEEE Transactions on Software Engineering 26(11) (2000). Cited on
pp. 39, 42, 94, and 95.

[SLVA97] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, An examination of software engineering
work practices, Proceedings of CASCON’97, 1997, pp. 209–233. Cited on pp. 27 and 31.

[SM79] B. Shneiderman and R. Mayer, Syntatic/semantic interactions in programmer behavior: A
model and experimental results, International Journal of Computer and Information Science
8(3) (1979), 219–238. Cited on p. 19.

[SMV06] J. Sillito, G. Murphy, and K. De Volder, Questions programmers ask during software
evolution tasks, Proceedings of the 14th ACM SIGSOFT international Symposium on
Foundations of Software Engineering, 2006. Cited on pp. 94 and 106.

[SNvdH] A. Sarma, Z. Noroozi, and A. van der Hoek, Palantír – raising awareness among configuration
management workspaces, Proceedings of the 25th International Conference on Software
Engineering, pp. 444–454. Cited on p. 62.

[Sof11] Software visualization symposium, 2011, http://www.softvis.org [Online; accessed
September 2011]. Cited on p. 26.

[SPL+88] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert, Designing documentation
to compensate for delocalized plans, Communication of the ACM 31(11) (1988), 1259–1267.
Cited on p. 20.

[SS00] S.E. Sim and M-A. Storey, A structured demonstration of program comprehension tools,
Proceedings of the 7th Working Conference in Reverse Engineering (WCRE), 2000, pp. 184–
193. Cited on p. 26.

[SSP95] A. Schappert, P. Sommerlad, and W. Pree, Automated framework development, Symposium
on Software Reusability (SSR’95) (ACM Software Engineering Notes, ed.), 1995. Cited on
p. 43.

http://many.corante.com/archives/2004/08/25/folksonomy.php
http://many.corante.com/archives/2004/08/25/folksonomy.php
http://www.softvis.org

230 REFERENCES

[SSS07] F. Shull, J. Singer, and D.I.K. Sjøberg, Guide to advanced empirical software engineering,
Springer-Verlag, 2007. Cited on p. 79.

[Sto03] M-A. Storey, Designing a software exploration tool using a cognitive framework of design
elements, Software Visualization (2003). Cited on pp. 32 and 33.

[Sto05] , Theories, methods and tools in program comprehension: Past, present and future,
Proceedings of the 13th IEEE International Workshop on Program Comprehension (IWPC)
(St. Louis, MO) (IEEE Computer Society Press, ed.), 2005, pp. 181–191. Cited on pp. 17,
22, 25, 29, 32, and 95.

[Sub] Subethaedit - collaborative text editing, http://www.codingmonkeys.de/
subethaedit/ [Online; accessed September 2011]. Cited on p. 34.

[Sur04] J. Surowiecki, The wisdom of crowds: Why the many are smarter than the few and how
collective wisdom shapes business, economies, societies and nations, Anchor Publishing,
2004. Cited on pp. 78, 97, and 111.

[Tei09] T. Teixeira, Web collaboration for software engineering, Mscthesis, Faculty of Engineering
of University of Porto (FEUP), July 2009. Cited on p. 62.

[THP92] W.F. Tichy, N. Habermann, and L. Pretchelt, Summary of the dagstuhl workshop on future
directions in software engineering, ACM SIGSOFT Software Engineering Notes 18(1)
(1992), 35–48. Cited on p. 9.

[TKS01] T.Eisenbarth, R. Koschke, and D. Simon, iding program comprehension by static and
dynamic feature analysis, Proceedings of the IEEE International Conference on Software
Maintenance, 2001. Cited on p. 32.

[TM04] T. Tourwé and T. Mens, Automated support for framework-based software evolution, Pro-
ceedings of the International Conference on Software Maintenance, 2004, p. 148. Cited on
p. 45.

[TN99] S. Terzis and P. Nixon, Building the next generation groupware: A survey of groupware and
its impact on the virtual enterprise, Technical Report TCD-CS-1999-08, Trinity College
Dublin, Department of Computer Science, 1999. Cited on p. 55.

[Tog11] Together - visual modeling for software architecture design, 2011, http://www.borland.
com/us/products/together/ [Online; accessed September 2011]. Cited on p. 33.

[Tou02] T. Tourwé, Automated support for framework-based software evolution, Ph.D. thesis, Vrije
Universiteit, 2002. Cited on p. 45.

[Tra] The trac project, http://trac.edgewall.org/ [Online; accessed September 2011].
Cited on p. 61.

[TW07] A. Turner and C. Wang, Ajax: Selecting the framework that fits, Dr. Dobb’s Journal (2007).
Cited on p. 88.

[Ves85] I. Vessey, Expertise in debugging computer programs: A process analysis, International
Journal of Man-Machine Studies (1985). Cited on p. 25.

[VLH11] Ieee symposium on visual languages and human-centric computing, 2011, http://www.cs.
cmu.edu/~vlhcc2011/ [Online; accessed September 2011]. Cited on p. 25.

[vMV93] A. von Maryhauser and A. Vans, From code understanding needs to reverse engineering
tool capabilities, Proceedings of CASE’93, 1993, pp. 230–239. Cited on pp. 27 and 31.

http://www.codingmonkeys.de/subethaedit/
http://www.codingmonkeys.de/subethaedit/
http://www.borland.com/us/products/together/
http://www.borland.com/us/products/together/
http://trac.edgewall.org/
http://www.cs.cmu.edu/~vlhcc2011/
http://www.cs.cmu.edu/~vlhcc2011/

REFERENCES 231

[vMV95] , Program comprehension during software maintenance and evolution, IEEE Com-
puter (1995), 44–55. Cited on p. 20.

[Vol06] K. De Volder, Jquery: A generic code browser with a declarative configuration language.,
Practical Aspects of Declarative Languages (2006), 88–102. Cited on p. 46.

[Wal] T. W. Wal, You down with folksonomy?, http://www.vanderwal.net/random/
entrysel.php?blog=1529 [Online; accessed August 2011]. Cited on p. 121.

[Wat86] A guide to expert systems, Addison-Wesley, 1986. Cited on p. 113.

[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing object-oriented software, Prentice
Hall, 1990. Cited on p. 97.

[WCR11] Working conference in reverse engineering (wcre), 2011, http://www.cs.wm.edu/
semeru/wcre2011/ [Online; accessed October 2011]. Cited on p. 26.

[Wei98] The psychology of computer programming: Silver anniversary editions, Dorset House Pub-
lishing Company, September 1998. Cited on p. 53.

[Whi07] J. Whitehead, Collaboration in software engineering: A roadmap, Future of Software
Engineering within the International Conference on Software Engineering (Washington,
DC) (IEEE Computer Society, ed.), 2007, pp. 214–225. Cited on pp. 58, 59, and 60.

[wik] Wikipedia, the free encyclopedia, 2010., http://www.wikipedia.org [Online; accessed
August 2011]. Cited on p. 124.

[Wil91] P. Wilson, Computer supported cooperative work: An introduction, Kluwer Academic Pub
(1991). Cited on p. 55.

[WKB09] M. Weimer, A. Karatzoglou, and M. Bruch, Maximum margin matrix factorization for code
recommendation, Proceedings of the 3rd ACM Conference on Recommender Systems., 2009,
pp. 309–312. Cited on p. 33.

[WL07] R. Wettel and M. Lanza, Program comprehension through software habitability, Proceedings
of the 15th IEEE International Conference on Program Comprehension (ICPC’07), 2007,
pp. 231–240. Cited on p. 33.

[Won00] K. Wong, The reverse engineering notebook, Ph.D. thesis, University of Victoria, 2000.
Cited on p. 31.

[YBJ01] Joseph Yoder, Federico Balaguer, and Ralph Johnson, Adaptive object models for imple-
menting business rules, Urbana (2001). Cited on pp. 23 and 151.

[YR11] A.T.T. Ying and M. Robillard, The influence of the task on programmer behaviour, Proceed-
ings of the International Conference on Program Comprehension, 2011, pp. 31–40. Cited
on p. 24.

[ZA05] U. Zdun and P. Avgeriou, Modelling architectural patterns using architectural primitives,
OOPSLA, 2005. Cited on pp. 46 and 101.

[ZGH07] L. Zou, M.W. Godfrey, and A.E. Hassan, Detecting interaction coupling from task interaction
histories, Proceedings of the International Conference on Program Comprehension, 2007,
pp. 135–144. Cited on p. 24.

[ZL00] I. Zayour and T. C. Lethbridge, A cognitive and user centric based approach for reverse
engineering tool design, Proceedings of the CASCON 2000, 2000. Cited on pp. 28 and 31.

[ZW98] M.V. Zelkowitz and D.R. Wallace, Experimental models for validating technology, IEEE
Computer 31(5) (1998), 23–31. Cited on pp. 9 and 10.

http://www.vanderwal.net/random/entrysel.php?blog=1529
http://www.vanderwal.net/random/entrysel.php?blog=1529
http://www.cs.wm.edu/semeru/wcre2011/
http://www.cs.wm.edu/semeru/wcre2011/
http://www.wikipedia.org

232 REFERENCES

	Abstract
	Resumo
	Preface
	Introduction
	Software reuse and frameworks
	Understanding frameworks
	Documenting frameworks
	When documentation is not enough
	Grasping the community

	Research goals
	Research strategy
	Expected results
	How to read this dissertation

	I State of the art
	Program comprehension
	Cognitive theories and models
	Concepts
	Top-down comprehension strategy
	Bottom-up comprehension strategy
	Systematic and opportunistic behaviours
	Integrated comprehension
	Factors affecting comprehension strategies

	Program, task and programmers
	Program characteristics
	Program trends
	Task characteristics
	Programmer characteristics
	Programmer trends

	Tools for program comprehension
	Tool requirements studies
	Tool requirements
	Tool development
	Tool trends

	Summary

	Framework understanding
	Studies on framework understanding
	Tools and techniques for framework understanding
	Cookbooks and recipes
	Design artifacts
	Pattern languages
	Notations and formal languages

	Trends
	Summary

	Collaborative software development
	Groupware
	Computer-supported collaborative work
	Collaborative software engineering
	Goals
	Characteristics
	Tools

	Trends
	Summary

	II Problem & Solution
	Research problem and solution
	Open issues
	Research questions
	Research focus
	Thesis statement
	Research goals
	Proposed approach
	Learning process
	Improving the learning process - patterns and tools

	Research strategy
	Summary

	Patterns for understanding frameworks
	Why patterns?
	Pattern form
	Patterns overview
	Problems addressed
	Related patterns
	Pattern Selecting a Framework
	Pattern Instantiating a Framework
	Pattern Evolving a Framework
	Pattern Drive Your Learning
	Pattern Knowledge-Keeping
	Pattern Understand the Application Domain
	Pattern Understand the Architecture
	Pattern Understand the Design Internals
	Pattern Understand the Source Code
	Summary

	Collaborative learning with DRIVER
	What is DRIVER?
	Improving knowledge collaboratively
	Going for the crowd
	Grasping the collective knowledge
	Collective knowledge systems

	Collaborative framework learning
	Concepts
	``Pave the cowpath'' revisited
	The learning knowledge cycle
	Learning knowledge categorisation
	Collaborative environment requirements

	The DRIVER platform
	Setting
	Components
	Usage
	Limitations
	Towards a collective knowledge system

	Other related tools
	Environment candidates
	Evaluation
	Comparing with the candidates
	Moving to the web

	Summary

	III Validation & Conclusions
	Academic quasi-experiment
	Experiment design
	Subjects
	Framework selection

	Experiment description
	Environment
	Pre-questionnaires
	Treatments
	Tasks
	Post-questionnaire

	Data Analysis
	Statistical relevance
	Background
	External factors
	Overall satisfaction
	Development process
	Framework knowledge
	Objective measurement
	Experts group analysis

	Validation threats
	Summary

	Conclusions
	Key contributions
	Future work
	Improve and enhance the DRIVER platform
	Refine and extend the patterns
	Further studies

	Final remarks

	Appendices
	Pre-experiment subject data
	Pre-questionnaire A
	Pre-questionnaire A answers
	Pre-questionnaire B
	Pre-questionnaire B answers
	Post-questionnaire
	Post-Questionnaire answers
	Time and effectiveness results

	Glossary
	References

