6 research outputs found

    Navigating the Corridors of Power : Using RFID and Compass Sensors for Robot Localisation and Navigation

    Get PDF
    Localisation and navigation are still of the most important issues in mobile robotics. In certain indoor application scenarios Radio frequency identification (RFID) based absolute localisation has been found to be especially successful in supporting navigation. In this paper we examine the feasibility of an RFID and compass based approach to robot localisation and navigation for indoor environments that are dominated by corridors. We present a proof of concept system and show how it can be used to localized within and navigate through an environment

    Helmsman, Set a Course : Using a Compass and RFID Tags for Indoor Localisation and Navigation

    Get PDF
    Localisation and navigation are still two of the most important issues in mobile robotics. In certain indoor application scenarios RFID (radio frequency identification)-based absolute localisation has been found to be especially successful in supporting navigation. In this paper we evaluate the feasibility of an RFID and compass based approach to robot localisation and navigation for indoor environments that are dominated by corridors. We describe our system and evaluate its performance in a small, but full-scale, test environment

    Optimal sensor arrangements in Angle of Arrival (AoA) and range based localization with linear sensor arrays

    Get PDF
    This paper investigates the linear separation requirements for Angle-of-Arrival (AoA) and range sensors, in order to achieve the optimal performance in estimating the position of a target from multiple and typically noisy sensor measurements. We analyse the sensor-target geometry in terms of the Cramer–Rao inequality and the corresponding Fisher information matrix, in order to characterize localization performance with respect to the linear spatial distribution of sensors. Here in this paper, we consider both fixed and adjustable linear sensor arrays

    Development of mobile robot autonomous docking

    Get PDF
    Práce se zabývá implementací dokovacího algoritmu pro mobilní robot za pomocí vizuálních markerů. Nejprve jsou prozkoumána již realizovaná řešení, následně je navrhnut dokovací systém. Návrh je ověřen testovacím měřením přesnosti detekce markerů pomocí kamery. Po implementaci systému jsou provedeny testy v simulaci a na konkrétním robotovi. Konečná verifikace ověřuje funkčnost všech částí i celku. Výsledkem je schopnost robota ve zmapovaném prostředí samostatně dojet k nabíjecí stanici a zadokovat, po nabití lze stanici opustit.This thesis implements solution for automatic docking for a mobile robot using visual markers. After initial survey of already implemented works, new docking solution is proposed. Feasibility of the solution is verified with tests of marker detection precision. The implementation is tested in a simulation and with a real robot. The functionality of the proposed solution is verified by long-term tests. The result of this work is robot’s ability to navigate known environment to find and dock a charging station. After charging the robot is able to safely disconnect from the station.

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Automated Robot Docking Using Direction Sensing RFID

    Get PDF
    Automated target acquisition and docking is key to enabling various applications of autonomous mobile robots in indoor environments. For the purpose, many researches have been devoted to the development of location sensing techniques employing the latest in RFID or GPS. However, it has not yet become possible to attain high accuracy in those techniques, particularly in cluttered or dynamically changing environments. In this paper, we propose a novel location sensing RFID reader equipped with a dual directional antenna that communicates with controllable RF transponders. The dual directional antenna estimates the direction of arrival (DOA) of signals from various transponders by using the ratio of the received strength between two antennas. This enables the robot to continuously monitor the changes in the ratio and find its way to the target transponder. To verify the validity of the proposed system in real environments populated with unknown obstacles, we perform detailed experiments using simulations and hardware implementations. Specifically, the target acquisition and docking guidance are demonstrated in a multiple transponder environment under various circumstances
    corecore