4 research outputs found

    A Reo model of Software Defined Networks

    Get PDF
    Reo is a compositional coordination language for component connectors with a formal semantics based on automata. In this paper, we propose a formal model of software defined networks (SDNs) based on Reo where declarative constructs comprising of basic Reo primitives compose to specify descriptive models of both data and control planes of SDNs. We first describe the model of an SDN switch which can be compactly represented as a single state constraint automaton with a memory storing its flow table. A full network can then be compositionally constructed by composing the switches with basic communication channels. The reactive and proactive behaviour of the controllers in the control plane of an SDN can also be modelled by Reo connectors, which can compose the connectors representing data plane. The resulting model is suitable for testing, simulation, visualization, verification, and ultimately compilation into SDN switch code using the standard tools already available for Reo

    Composing Constraint Automata, State-by-State (Technical Report)

    Get PDF
    The grand composition of n automata may have a number of states/transitions exponential in n. When it does, it seems not unreasonable for the computation of that grand composition to require exponentially many resources (time, space, or both). Conversely, if the grand composition of n automata has a number of states/transitions only linear in n, we may reasonably expect the computation of that grand composition to also require only linearly many resources. Recently and problematically, we saw cases of linearly-sized grand compositions whose computation required exponentially many resources. We encountered these cases in the context of Reo (a graphical language for coordinating components in component-based software), constraint automata (a general formalism for modeling systems' behavior), and our compiler for Reo based on constraint automata. Combined with earlier research on constraint automata verification, these ingredients facilitate a correctness-by-construction approach to component-based software engineering---one of the hallmarks in Sifakis' "rigorous system design". To achieve that ambitious goal, however, we need to solve the previously stated problem. In this paper we present such a solution

    Automated Mapping of Reo Circuits to Constraint Automata

    Get PDF
    AbstractA tool is developed in order to input Reo circuits and generate their corresponding constraint automata. The XML schemas for input and output are presented which establish a common interface for generating an integrated set of tools. Two heuristics in joining constraint automata are presented and experimental results are shown
    corecore