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Abstract. The grand composition of n automata may have a number
of states/transitions exponential in n. When it does, it seems not unrea-
sonable for the computation of that grand composition to require expo-
nentially many resources (time, space, or both). Conversely, if the grand
composition of n automata has a number of states/transitions only linear
in n, we may reasonably expect the computation of that grand compo-
sition to also require only linearly many resources.
Recently and problematically, we saw cases of linearly-sized grand com-
positions whose computation required exponentially many resources. We
encountered these cases in the context of Reo (a graphical language for
coordinating components in component-based software), constraint au-
tomata (a general formalism for modeling systems’ behavior), and our
compiler for Reo based on constraint automata. Combined with ear-
lier research on constraint automata verification, these ingredients facil-
itate a correctness-by-construction approach to component-based soft-
ware engineering—one of the hallmarks in Sifakis’ “rigorous system de-
sign”. To achieve that ambitious goal, however, we need to solve the
previously stated problem. In this paper we present such a solution.

1 Introduction

Context. Over the past decades, coordination languages emerged for modeling
and implementing interaction protocols among components in component-based
software. This class of languages includes Reo [1,2]. Reo facilitates compositional
construction of connectors: software entites that embody concurrency protocols
for coordinating the synchronization and communication among components.
Metaphorically, connectors constitute the “glue” that holds components together
in component-based software and mediates their communication. Figure 1 al-
ready shows a number of example connectors in their usual graphical syntax.
Briefly, a connector consists of a number of channels (edges), through which
data can flow, and a number of nodes (vertices), on which channel ends co-
incide. The graphical appearance of a channel indicates its type; channels of
different types have different data-flow behavior. Figure 1, for instance, includes
standard synchronous channels (normal edges) and asynchronous channels with
a 1-capacity buffer (rectangle-decorated edges), among others.
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Fig. 1: Example connectors

Reo has several formal semantics [9], with different purposes. The existence
of such formal semantics forms a crucial precondition for Reo-based rigorous
system design [15]: a design approach proposed by Sifakis centered around the
principles of component-based software engineering, separation of concerns, and
correctness-by-construction. In this paper, we focus on one particularly impor-
tant formal semantics of Reo: constraint automata (ca) [5]. Constraint automata
specify when during execution of a connector which data flow where (i.e., through
which channel ends). We can compute the global ca for a connector from the
local cas for that connector’s nodes and channels. As such, cas constitute a
compositional formal semantics of Reo. Both verification and compilation tools
for Reo leverage this compositionality (e.g., [3,4,12,10,11]); the combination of
such tools facilitates a correctness-by-construction approach to component-based
software-engineering—one of the hallmarks in Sifakis’ rigorous system design.

Problem. Reo’s ca-based verification and compilation tools regularly need to
compute the grand composition of the local cas for a connector’s constituents
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(i.e., its nodes/channels), to obtain its global ca for subsequent correctness anal-
yses or code generation. The grand composition of n constraint automata, how-
ever, may yield a compound ca of a size exponential in n. The representation of
such exponentially-sized compound cas may require an exponential amount of
space; computation of such cas may require an exponential amount of time.

Recently, we reported on a number of experiments with our ca-based Reo-
to-Java compiler [11]. In these experiments, we indeed observed exponential re-
source consumption for computing exponentially-sized grand compositions. Cu-
riously, however, we also observed exponential resource consumption for comput-
ing linearly-sized grand compositions. Whereas exponential resource consump-
tion seems undesirable but understandable for exponentially-sized grand com-
positions, it seems unacceptable and unintelligible for linearly-sized ones. Before
we can achieve the ambitious goal of Reo-based rigorous system design, we must
better understand this problem and find a solution.

Contribution. Based on earlier preliminary observations [11], we present a care-
ful analysis of the previously stated problem. Essentially, as we shortly explain
in more detail, our existing approach for computing grand compositions some-
times involves the computation of exponentially many “intermediately-reacha-
ble-but-finally-unreachable” states in “intermediate compounds”, which become
unreachable only in the “final compound”. Subsequently, we present a solution
for this problem in terms of a new approach for computing grand compositions;
we prove the corresponding algorithm’s correctness using Hoare logic. Finally, we
present our implementation of this new approach and evaluate its performance.

In Section 2, we discuss preliminaries on Reo and cas. In Section 3, we
analyze the previously stated problem. In Section 4, we present our solution.
In Section 5, we evaluate an implementation. Section 7 concludes this paper.
Appendices B and C contain all technical details (i.e., all formal definitions and
in-depth proofs).

2 Preliminaries

2.1 Reo

Reo is a graphical language for compositional construction of interaction proto-
cols, manifested as connectors [1,2]. Connectors consist of channels and nodes,
organized in a graph-like structure. Every channel consists of two ends and a con-
straint that relates the timing and the contents of the data-flows at those ends.
Channel ends have one of two types: source ends accept data into their channels
(i.e., a source end of a channel connects to that channel’s data source/producer),
while sink ends dispense data out of their channels (i.e., a sink end of a channel
connects to that channel’s data sink/consumer). Reo makes no other assump-
tions about channels and allows, for instance, channels with two source ends.
Table 1 shows four common channels. Users of Reo may freely extend this set of
common channels by defining their own channels with custom semantics.
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Syntax Semantics

e1 e2
Synchronously takes a datum d from its source end e1 and writes d to its
sink end e2.

e1 e2
Synchronously takes data from both its source ends and loses them.

e1 e2
Synchronously takes a datum d from its source end e1 and nondeterministi-
cally either writes d to its sink end e2 or loses d.

�
x

e1 e2
Asynchronously

[
takes a datum d from its source end e1 and stores d in a

buffer x
]
, then

[
writes d to its sink end e2 and clears x

]
.

Table 1: Graphical syntax and informal semantics of common channels

Every node has at least one coincident channel end. A node with no coincident
sink channel end is called a source node. A node with no coincident source channel
end is called a sink node. A node with both source and sink coincident channel
ends is called a mixed node. The set of all source nodes and sink nodes of a
connector are collectively referred to as its boundary nodes. In Figure 1, we
distinguish connectors’ white boundary nodes from their shaded mixed nodes.

Every sink channel end coincident on a node serves as a data source for that
node. Analogously, every source channel end coincident on a node serves as a
data sink for that node. A source node of a connector connects to an output
port of a component, which will act as its data source. Similarly, a sink node of
a connector connects to an input port of a component, which will act as its data
sink. Source nodes permit put operations (for components to send data), while
sink nodes permit get operations (for components to receive data); a connector
uses its mixed nodes only for internally routing data.

Contrasting channels, all nodes have the same, fixed data-flow behavior: re-
peatedly, a node nondeterministically selects an available datum out of one of
its data sources and replicates this datum into each of its data sinks. A node’s
nondeterministic selection and its subsequent replication constitute one atomic
execution step; nodes cannot store, generate, or lose data. For a connector to
make a global execution step—usually instigated by pending i/o-operations—its
channels and its nodes must reach consensus about their combined behavior, to
guarantee mutual consistency of their local execution steps (e.g., a node should
not replicate a data item into a channel with an already full buffer). Subse-
quently, connector-wide data-flow emerges. A description of the behavior of the
connectors in Figure 1 appears elsewhere [11].

2.2 Constraint Automata

Although originally developed as a formal semantics of Reo [5], cas constitute a
general operational formalism for modeling the behavior of concurrent systems:
every ca models a component, which has a number of ports through which it
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Fig. 2: Constraint automata for the channels in Table 1 (first three from the left),
for a mixed node with two incoming and one outgoing channel (fourth from the
left), and for two boundary nodes, each with either one incoming or one outgoing
channel (fifth from the left). The latter ca is defined not only over the names of
its coincident channel ends but also over its own name. (Components use node
names—not channel end names—to perform i/o-operations on.)

interacts with its environment. Often, we annotate ports with a direction of
data-flow (i.e., a component can use a port either for producing data or for
consuming data but not for both); in this paper, because these directions do
not matter to our current problem, we omit them. To formalize Reo’s semantics
in terms of ca-based components, we view a channel as a component with two
ports (one for each of its two ends), while we view a node with n coincident sink
ends and m coincident source ends as a component with n+m ports. Then, we
can compositionally compute the ca for a connector by computing the grand
composition of the cas for its constituents. But first, we formally define cas.

Structurally, every ca consists of finite sets of states and transitions, which
model a component’s internal configurations and atomic execution steps. Every
transition has a label that consists of two elements: (i) a set, typically denoted
by P , containing the names of the ports that have synchronous data-flow in that
transition, called a synchronization constraint, and (ii) a logical formula, typi-
cally denoted by φ, that specifies which particular data may flow through which
of the ports in P , called a data constraint. For instance, the atomic data con-
straint d(p1) = d(p2) means that the same datum flows through ports p1 and p2;
the atomic data constraint > means that it does not matter which particular
data flow where. Let Dc denote a universal set of data constraints. More pre-
cisely, Dc serves as the carrier set in some Boolean algebra (Dc,∧,∨,¬,⊥,>),
including atoms of the form d(p1) = d(p2). The details of data constraints do not
matter in this paper, and therefore, we skip them. Let St denote the universal
set of states, let Port denote the universal set of ports, and let Dc(P ) denote
the set of data constraints in which only ports from P occur.

Definition 1. A constraint automaton is a tuple (Q,P all,−→, Q0), where Q ⊆
St is the state space, P all ⊆ Port is the set of known ports, −→ ⊆ Q× 2P

all ×
Dc(P all) × Q is the transition relation, and Q0 ⊆ Q are the initial states. Aut
is the universal set of constraint automata, ranged over by α.
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Figure 2 shows example cas. Let St(α), Port(α), Tr(α), and Init(α) denote α’s
state space, its set of ports, its transition relation, and its initial states.

Our behavioral equivalence in this paper is based on bisimulation. We define
this equivalence in two steps. First, we define simulation.

Definition 2. � ⊆ Aut× Aut× 2St×St is the relation defined as follows:[
[
(q1, P, φ, q

′
1) ∈ Tr(α1)

and (q1, q2) ∈ R

]
implies

[[(q2, P, φ, q′2) ∈ Tr(α2)
and (q′1, q

′
2) ∈ R

]
for some q′2

]]
for all q1, q

′
1, q2, P, φ


and

[[
q1 ∈ Init(α1) implies

[[
q2 ∈ Init(α2) and (q1, q2) ∈ R

]
for some q2

]]
for all q1

]
and Port(α1) = Port(α2) and R ⊆ St(α1)× St(α2)

α1 �R α2

In words, α2 simulates α1 under simulation relation R—in which case α1 �R α2

holds true—whenever we can relate the states of α1 and α2 such that: (i) α2

can mimic every transition that α1 can make in related states, and (ii) α2 can
already perform such mimicry in any of α1’s initial states. If we care only about
the existence of a simulation relation between (the states of) α1 and α2 but not
about its exact content, we often simply write α1 � α2. Formally, we “overload”
relation symbol � as follows.

Definition 3. � ⊆ Aut× Aut is the relation defined as follows:

α1 �R α2 for some R

α1 � α2

The definition of bisimulation now straightforwardly follows.

Definition 4. ' ⊆ Aut× Aut× 2St×St is the relation defined as follows:

α1 �R α2 and α2 �R-1 α1

α1 'R α2

We favor this automata-centric definition of bisimilarity over its definition as
the maximal bisimulation on states, because automata are our primary objects
of interest instead of their states. As with simulation, if we care only about
the existence of a bisimulation relation between (the states of) α1 and α2 but
not about its exact content, we often simply write α1 ' α2 and overload '
accordingly.

Definition 5. ' ⊆ Aut× Aut is the relation defined as follows:

α1 'R α2 for some R

α1 ' α2
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Fig. 3: Composition and abstraction of LateAsyncMerger2 in Figure 1

Note that, as usual with (bi)simulations, α1 ' α2 implies
[
α1 � α2 and α2 � α1

]
,

but
[
α1 � α2 and α2 � α1

]
does not imply α1 ' α2.

To model component composition in terms of cas, we define the following
(synchronous) composition operation.

Definition 6. · ⊗ · : Aut× Aut→ Aut is the function defined as follows:

α1 ⊗ α2 =



St(α1)× St(α2),Port(α1) ∪ Port(α2),


(q1, q2),
P1 ∪ P2,
φ1 ∧ φ2,
(q′1, q

′
2)

 Port(α1) ∩ P2 = Port(α2) ∩ P1

and (q1, P1, φ1, q
′
1) ∈ Tr(α1)

and (q2, P2, φ2, q
′
2) ∈ Tr(α2)

 ,

Init(α1)× Init(α2)


Essentially, the previous definition of ⊗ formalizes the idea that two compo-
nents can fire a transition together only if they agree on the involvement of their
shared ports. Our composition differs slightly from its original definition [5],
where Baier et al. encode the possibility for one ca to idle, while the other ca
makes a transition, explicitly in the definition of composition. Here, we prefer
the equivalent alternative of encoding the idling of components explicitly in their
cas—instead of in the definition of composition—through self-loop transitions
labeled with ∅,>. This has the advantage of a simpler definition of composition,
without losing expressiveness. We stipulate that every example ca that we show
has implicit self-loops for idling in each of their states. (In principle, our the-
ory for cas does not require self-loops; for modeling Reo, however, cas require
self-loops.) Figure 3 shows an example of composition. We adopt left-associative
notation for ⊗ and omit brackets whenever possible (e.g., we write α1⊗α2⊗α3

for (α1⊗α2)⊗α3). Similarly, we adopt left-associative notation for pairs of states
(e.g., we write (q1, q2, q3) for ((q1, q2), q3)). Behaviorally, bracketing is insignif-
icant, because ⊗ is associative/commutative modulo bisimulation. However, as
we reason also structurally about cas in this paper, bracketing matters.

To compute the formal semantics of a connector, we compute the grand
composition of the cas for its constituents using ⊗, in an iterative manner: for

7



an expression α1 ⊗ · · · ⊗ αn, we first compute α := α1 ⊗ α2, then α := α ⊗ α3,
then α := α ⊗ α4, and so on. We call every α ⊗ αi<n in this computation an
intermediate compound ; we call α⊗ αn the final compound.

Beside multiplication, Baier et al. defined another operation on constraint
automata: abstraction [5]. Abstraction removes ports from the observables of a
ca, possibly internalizing transitions (i.e., making those transitions unobservable
from the environment). In practice, abstraction can significantly reduce the size
of a ca, both in terms of states and transitions. Although not the main topic
of this paper, due to its practical relevance, we use abstraction in Section 5. Its
formal definition appears below for completeness.

Definition 7. · 	 · : Aut× Port→ Aut is the function defined as follows:

α	 p = (St(α),Port(α) \ {p},−→, Init(α))

where −→ is the relation defined as follows:

q1
∅,φ1−−−→∅ · · ·

∅,φn−1−−−−→∅ qn
P,φn−−−→∅ qn+1 and P 6= ∅

q1
P,φ1∧···∧φn−−−−−−−−→ qn+1

q
P,φ−−→∅ q′ and P 6= ∅

q
P,φ−−→ q′

where −→∅ is the relation defined as follows:

(q, P, φ, q′) ∈ Tr(α)

q
P\{p},∃p.φ−−−−−−−→∅ q′

3 Problem

In ongoing work, we are developing a ca-based Reo-to-Java compiler; in recent
work, to study the effectiveness of one of our optimization techniques, we com-
pared the performance of the code generated by our compiler with and without
applying that technique [11]. Our comparison featured a number of k-parametric
families of connectors, where k controls the size of a coordinating connector
through its number of coordinated components. Figure 1 shows the k = 2 mem-
bers of the families with which we experimented. One can extend these k = 2
members to their k > 2 versions in a similar way as how we extended Fig-
ure 1a to Figure 1b. We selected these families because each of them exhibits
different behavior in terms of synchrony, exclusion, nondeterminism, direction,
sequentiality, and parallelism, thereby aiming for a balanced comparison.

Although we focused our attention primarily on the performance of the gen-
erated code, we also made some observations about the performance of our com-
piler itself. Without applying the optimization technique under investigation, our
compiler uses the previously explained iterative approach to compute the grand
composition of the cas for a connector’s constituents. Figure 4 shows the compu-
tation times measured for the k-parametric families under study, for 2 ≤ k ≤ 64,
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Fig. 4: Computation times (y-axis) for nine k-parametric families, for 2 ≤ k ≤
64 (x-axis). Time is measured in seconds, except for EarlyAsyncReplicatork and
LateAsyncMergerk, where time is measured in milliseconds.

averaged over sixteen runs.5 For six families, the compiler exhausted its avail-
able resources (five minutes of time or 2 gb of heap space) long before reach-
ing k = 64. The cause: “rapid”—at least exponential—growth in k. For four
of these families, we have a good explanation for this phenomenon: the grand
compositions computed for EarlyAsyncMergerk, EarlyAsyncBarrierMergerk, Late-
AsyncReplicatork, and LateAsyncRouterk grow exponentially in k, such that the
amount of resources required to compute those grand compositions logically
also grows at least exponentially in k. For the other two families, in contrast,
our measurements seem more difficult to explain: the grand compositions com-
puted for EarlyAsyncOutSequencerk and Lockk grow only linearly in k, making
an exponential growth in resource requirements rather surprising.

Analysis of the intermediate compounds of EarlyAsyncOutSequencerk and
Lockk taught us the following: even if final compounds grow linearly in k, their in-

5 We recollected the data shown in Figure 4 specifically for this paper, but we made
our initial observations based on our previous data [11].
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Fig. 5: Grand composition of the cas for a cycle of three buffered channels (of
capacity 1), closed by a synchronous channel. State labels xyz indicate the empti-
ness/fullness of buffers, where x refers to the first buffer, y to the second buffer,
and z to the third buffer; we omitted transition labels to avoid clutter.

termediate compounds, as computed by the iterative approach, may nevertheless
grow exponentially in k. We can explain this easiest for EarlyAsyncOutSequencerk
(cf. Figure 1e), through the size of its state space, but the same argument applies
to Lockk. EarlyAsyncOutSequencerk consists of a subconnector that, in turn, con-
sists of a cycle of k buffered channels (of capacity 1). The first buffered channel
initially contains a dummy datum � (i.e., its actual value does not matter); the
other buffered channels initially contain nothing. As in the literature [1,2], we
call this subconnector Sequencerk. Because no new data can flow into Sequencerk,
only � cycles through the buffers—ad infinitum—such that only one buffer holds
a datum at any time. Consequently, the ca for Sequencerk has only k states, each
of which represents the presence of � in exactly one of its k buffers.

However, if we compute the grand composition of the local cas for Se-
quencerk’s constituents using the iterative approach, we “close the cycle” only
with the very last application of ⊗: until then, this soon-to-become-cycle still
appears an open-ended chain of buffered channels. Because new data can freely
flow into such an open-ended chain, this chain can have a datum in any buffer
at any time. Consequently, the ca for the largest chain has 2k states. Only when
we compose this penultimate compound with the last local ca, the state space
collapses into k states, as we “find out” that the open-ended chain actually forms
a cycle with exactly one datum. Because Sequencerk constitutes EarlyAsyncOut-
Sequencerk, also EarlyAsyncOutSequencerk suffers from this problem.

Figure 5 shows our previous analysis in pictures. Most interestingly, the in-
termediate compounds in Figure 5 (i.e., the first three automata from the left)
contain progressively more states with the following peculiar property: they are
reachable from an initial state in those intermediate compounds, called interme-
diate-reachability, but neither those states themselves nor any compound state
that they constitute, are reachable in the final compound, called final-unreacha-
bility. Thus, by using the iterative approach for computing a grand composition,
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we may spend exponentially many resources on generating a state space that we
nearly completely discard in the end. This seems the heart of our problem.

4 Solution

The main idea to solve our problem is to compute grand compositions state-by-
state, instead of iteratively. In this new approach, we start computing a grand
composition from its straightforwardly computable set of initial states. Subse-
quently, we expand each of those states by computing their outgoing compound
transitions. These compound transitions enter new compound states, which we
subsequently recursively expand. As such, we compute only the reachable states
of the final compound, avoiding the unnecessary computation of intermediate-
ly-reachable-but-finally-unreachable states. Easy to explain, the main challenge
we faced consisted of finding an elegant formalization of this state-by-state
approach—including an algorithm—amenable to formal reasoning and proofs.
Such proofs are crucially important in the correctness-by-construction principle
advocated in rigorous system design for component-based software engineering.

4.1 State-based Decomposition/Recomposition

We start by formalizing the state-based decomposition of a ca into its per-state
“subautomata” and the recomposition of that ca from those decompositions.
Let σ denote the selection function (cf. relational algebra) that consumes as input
a transition relation −→ and a state q and produces as output the subrelation
of −→ consisting of precisely the transitions in −→ that exit q.

Definition 8. σ : 2St×2
Port×Dc×St×St→ 2St×2

Port×Dc×St is the function defined
as follows:

σq(−→) = {(q, P̂ , φ̂, q̂′) | q P̂ ,φ̂−−→ q̂′}

Next, let ·〈·〉 denote the (state-based) decomposition function that consumes as
input an automaton α and a state q and produces as ouput a ca consisting of
exactly the same set of states, set of ports, and set of initial states, and with a
transition relation consisting of precisely the transitions in α that exit q.

Definition 9. ·〈·〉 : Aut× St→ Aut is the function defined as follows:

α〈q〉 = (St(α),Port(α), σq(Tr(α)), Init(α))

We call q the significant state in α〈q〉. The following lemma states that de-
composition distributes over composition: instead of first computing the grand
composition of n local cas and then decomposing the resulting global ca with
respect to a global state, we can equally first decompose every local ca with re-
spect to its local state and then compute the grand composition of the resulting
per-state decompositions. See Lemma 13 in Appendix B, page 31, for a proof.
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Lemma 1. (α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 = α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

The previous definitions (and lemma) cover the essentials of state-based de-
composition; in the rest of this subsection, we discuss recomposition. Let

⊔
denote a recomposition function that consumes as input a set of cas and pro-
duces as output a ca by taking the grand union of the sets of states, sets of
ports, sets of transitions, and sets of initial states.

Definition 10.
⊔
· : 2Aut → Aut is the function defined as follows:⊔

A =(⋃
{St(α) | α ∈ A},

⋃
{Port(α) | α ∈ A},

⋃
{Tr(α) | α ∈ A},

⋃
{Init(α) | α ∈ A}

)
The following lemma states that a ca equals the recomposition of its state-based
decompositions. See Lemma 14 in Appendix B, page 32, for a proof.

Lemma 2. α =
⊔
{α〈q〉 | q ∈ St(α)}

The following theorem states the correctness of the state-by-state approach for
grand compositions, as outlined in the beginning of this section. Roughly, it
states that the grand composition of n local cas equals the recomposition of
that grand composition’s state-based decompositions. More precisely, however,
it states that this grand composition equals the recomposition of the composition
of state-based decompositions of the local cas. This is a subtle but important
point: it means that to compute the grand composition of n local cas, we only
need to compute compositions of state-based decompositions of those local cas.
We further clarify this point in the next subsection.

Theorem 1.

α1 ⊗ · · · ⊗ αn =
⊔
{α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ St(α1)× · · · × St(αn)}

Proof (sketch). By applying Lemma 2, Definition 6 of ⊗, and Lemma 1. See
Theorem 4 in Appendix B, page 32, for a more detailed proof. ut

4.2 Algorithm

Having formalized de/recomposition, we can now formulate an algorithm for
computing the reachable fragment of grand compositions. First, we formalize
reachability. We call a state q reachable iff q is an initial state or a finite sequence
of k transitions exists that form a path from some initial state to q. Let Reach
denote the reachability function that consumes as input a ca and produces as
output its reachable states.

Definition 11. Reach : Aut→ 2St is the function defined as follows:

Reach(α) = Init(α) ∪
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
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{
true

}
A := ∅
A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}
while α ∈ A′ \A for some α do

A := A ∪ {α}
A′ := A′ ∪

{
α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 (q, P, φ, (q′1, . . . , q

′
n)) ∈ Tr(α)

}
end while{⊔

A = bα1 ⊗ · · · ⊗ αnc
}

Fig. 6: Algorithm for computing the grand composition of n autamata using the
state-by-state approach

Next, let b·c denote the floor function, which takes as input a ca and produces as
output an equivalent—proven below—ca for its reachable states (i.e., the floor
function “rounds” a ca “down” to its reachable fragment).

Definition 12. b·c : Aut→ Aut is the function defined as follows:

bαc =
⊔
{α〈q〉 | q ∈ Reach(α)}

The following lemmas state that a ca simulates its floored version and vice versa.
See Lemmas 18 and 19 in Appendix B, page 33, for a proof.

Lemma 3. α �{(q,q)|q∈Reach(α)} bαc

Lemma 4. bαc �{(q,q)|q∈Reach(α)}-1 α

From these two lemmas, we can immediately conclude the following theorem,
which states that a ca and its floored version are bisimulation equivalent.

Theorem 2. α '{(q,q)|q∈Reach(α)} bαc

Proof (sketch). By applying Lemmas 3 and 4 and Definition 4 of '. See Theo-
rem 5 in Appendix B, page 33, for a more detailed proof. ut

Figure 6 shows an algorithm for computing the grand composition of n local
cas using the state-by-state approach, including a precondition and a postcon-
dition, formulated in terms of de/recomposition and reachability. This algorithm
works as described in the beginning of this section. A denotes the subset of so-
far computed state-based decompositions whose significant state the algorithm
already has expanded (i.e., the algorithm has processed all cas in A). A′, in con-
trast, denotes the full set of so-far computed state-based decompositions (i.e., A′

contains A such that A′ \ A contains the cas that the algorithm still needs to
process). After the algorithm terminates, A contains a number of state-based
decompositions. The postcondition subsequently asserts that the recomposition
of the cas in A equals the reachable fragment of the grand composition.

Figure 7 shows the algorithm in Figure 6 annotated with assertions for total
correctness; Figure 8 shows the loop invariant. This invariant consists of four
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{
true

}{
invar

[A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}]
[A := ∅]

}
A := ∅
A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}{
invar

}
while α ∈ A′ \A for some α do{

α ∈ A′ \A and invar and |St(α1 ⊗ · · · ⊗ αn)| − |A| = z
}{[

invar and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z
]

[A′ := A′ ∪
{
α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 (q, P, φ, (q′1, . . . , q

′
n)) ∈ Tr(α)

}
]

[A := A ∪ {α}]
}

A := A ∪ {α}
A′ := A′ ∪

{
α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 (q, P, φ, (q′1, . . . , q

′
n)) ∈ Tr(α)

}{
invar and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z

}
end while{
invar and

[
α /∈ A′ \A for all α

]}{⊔
A = bα1 ⊗ · · · ⊗ αnc

}
Fig. 7: Algorithm for computing the grand composition of n autamata using the
state-by-state approach, annotated with assertions for total correctness

invar: {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆ A ∪ (A′ \A)
and A,A′ ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

and
[ α ∈ A ∪ (A′ \A) implies[[α = (α1 ⊗ · · · ⊗ αn)〈q〉

and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]
 for all α

]

and
[
[
α ∈ A and (q, P, φ, q′) ∈ Tr(α)

]
implies[[α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and α′ ∈ A ∪ (A′ \A)

]
for some α′]

 for all α, q, q′, P, φ
]

Fig. 8: Addendum to Figure 7

conjuncts. The first conjunct states that A∪A′ contains the initial states in the
grand composition. The second conjunct states that the A and A′ contain only
state-based decompositions of the grand composition. The third conjunct states
that every ca in A∪A′ is a state-based decomposition of the grand composition,
with respect to some reachable state in that grand composition. The fourth
conjunct states that if a ca in A has a transition entering a (global) state q′, A∪
A′ contains a decomposition of the grand composition with respect to q′. As
soon as the loop terminates, the invariant and the negated loop condition imply
that every ca in A has a reachable significant state (“soundness”; consequence
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of the third conjunct) and that, in fact, A contains a ca for every reachable state
(“completeness”; consequence of the fourth conjunct).

Theorem 3. The algorithm in Figure 6 is correct.

Proof (sketch). By the assertions in Figure 7 and the axioms of Hoare logic. See
Theorem 6 in Appendix B, page 35, for a more detailed proof.

Note that the invariant refers only to decompositions of the global ca with
respect to a global state (e.g., (α1 ⊗ · · · ⊗ αn)〈q〉 for a global state q), whereas
the algorithm refers only to decompositions of local cas with respect to local
states (e.g., α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 for local states q1, . . . , qn). Recognizing this
difference is important, because it highlights the main advantage of the state-by-
state approach: by using only decompositions of local cas, the algorithm never
needs to compute any intermediate compounds, so avoiding a potential source
of exponential resource requirements.

5 Implementation, Evaluation, and Discussion

We implemented the state-by-state approach for computing grand compositions
as an extension to our ca-based Reo-to-Java compiler. This compiler is imple-
mented in Java and extends the Ect, a collection of plugins for Eclipse that
serve as an ide for Reo (see http://reo.project.cwi.nl).

To evaluate the performance of the state-by-state approach in practice, we
experimented with the same k-parameteric families of connectors as those in
Figure 4. Because not only composition but also abstraction play an impor-
tant role in practice (as mentioned at the end of Section 2), we consider three
composition–abstraction approaches:

– Alternating iterative approach
Variant of the iterative approach where we abstract away all internal ports
for mixed nodes (which do not contribute to the observable behavior of
a connector) in intermediate compounds directly after their computation;
this approach alternates between composition and abstraction. It has the
advantage that intermediate compounds remain small (i.e., abstraction of
internal ports eliminates internal transitions and collapses states together),
thereby reducing overall resource consumption (i.e., generally, composing
smaller cas requires fewer resources than composing larger cas).

– Phased iterative approach
Variant of the iterative approach where we abstract away all internal ports
only in the final compound and not in intermediate compounds.

– Phased state-by-state approach
Variant of the state-by-state approach where we abstract away all internal
ports only after the composition phase.

Figure 9 shows the computation times that we measured for the various ap-
proaches, connectors, and values of 2 ≤ k ≤ 64. We set a timeout of five minutes
and bounded the size of the heap at 2 gb.
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Fig. 9: Computation times (y-axis) for nine k-parametric families, for 2 ≤ k ≤ 64
(x-axis), by applying the alternating iterative approach (blue lines), the phased
iterative approach before abstraction (dotted-red lines) and after (solid-red
lines), and the phased state-by-state approach before abstraction (dotted-yellow
lines) and after (solid-yellow lines). Time is measured in seconds, except for Early-
AsyncReplicatork and LateAsyncMergerk, where time is measured in milliseconds.
See Appendix A for page-size versions of these plots.

The four families whose grand compositions grow exponentially in k (i.e., Ear-
lyAsyncBarrierMergerk, EarlyAsyncMergerk, LateAsyncReplicatork, and LateAsync-
Routerk) logically provoke exponential growth in resource requirements not only
in the iterative approaches (as already observed in Section 3) but also in the
phased state-by-state approach. Still, the phased state-by-state approach, per-
forms worse than the alternating iterative approach (at least for EarlyAsyncBar-
rierMergerk and EarlyAsyncMergerk).

For EarlyAsyncOutSequencerk and Lockk, the phased state-by-state approach
has substantially better performance: whereas both the alternating and the
phased iterative approaches fail for k > 14 (because these approaches require too
much resources to successfully complete their computation), the phased state-
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by-state approach succeeds for all values of k under study. (These two families
formed the main motivation for doing the work reported on in this paper.)

For EarlyAsyncReplicatork and LateAsyncMergerk, the phased state-by-state
approach seems roughly twice as slow as the iterative approaches. A mundane
reason may be that we have not optimized our implementation of the state-by-
state approach as aggressively as the iterative approach (which has been under
development for several years). Another reason may be that the state-by-state
approach is not as cache/memory-friendly as the iterative approach (i.e., local-
ity issues), because the state-by-state approach continuously accesses all local
cas. Moreover—and more seriously—Alternatork forms a problematic case for
the phased state-by-state approach. Indeed, the alternating iterative approach
performs much better, exactly because it abstracts away internal ports as early
as possible. Interestingly, early abstraction does not have such a significant ef-
fect for all families of connectors under study. This has to do with the particular
structure of Alternatork, explained in detail elsewhere and considered beyond the
scope of this paper [10]. Here, the important point is that, although the phased
state-by-state approach dramatically improves performance in some cases, it is
not a silver bullet. One piece of future work, therefore, concerns the development
of heuristics about which composition approach we should apply when. Another
piece of future work concerns the investigation of a variant of the state-by-state
approach with early abstraction similar to the alternating incremental approach.
The main challenge with this is that to perform abstraction, we require certain
information that, in the state-by-state approach, seems to become available only
once we have completed computing the grand composition. Therefore, we need
to develop clever techniques to obtain this kind of information earlier on.

6 Related Work

The main inspiration for our solution in this paper came from Proença’s dis-
tributed Reo engine [14]. On input of a connector, this engine starts an actor
for each of that connector’s constituents. Each of these actors has some kind of
local automaton (not quite a ca but the differences and details do not matter
here) for its corresponding node/channel. Together, the actors run a distributed
consensus algorithm to synchronize their behavior, by composing their local be-
haviors into one consistent global behavior. As part of this consensus algorithm,
actors exchange data structures with information about their current state and
that state’s outgoing transitions (called frontiers by Proença). By doing so, the
actors effectively compute the composition of their automata at run-time, and
only for their reachable states. Our state-by-state approach for computing grand
compositions effectively does a similar computation at compile-time.

Some literature exists on algorithms for computing the composition of cas.
For instance, Ghassemi et al. documented that the order in which a tool composes
the cas in a grand composition matters [7]: although any order yields the same
final compound (because composition exhibits associativity and commutativity),
different orders may yield diffent intermediate compounds. Some orders may give
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rise to relatively large intermediate compounds, with high resource requirements
as a result, while other orders may keep intermediate compounds small. Choosing
the right order, therefore, matters significantly in practice. In the same paper,
Ghassemi et al. also briefly mention the idea of computing the composition
of two cas in a state-by-state approach, but they do not generalize this to
arbitrary grand compositions as we do in this paper. Pourvatan and Rouhy also
worked on an algorithm for efficiently computing the composition of two cas [13].
Their approach consists of a special algebraic representation of cas, including
a reformulation of the composition operation for this representation. Pourvatan
and Rouhy claim that their approach computes composition twice as fast as the
approach by Ghassemi et al., but evidence remains limited.

State expansion based on reachability also surfaces in what Hopcroft et al.
call “lazy evaluation” of subsets in the powerset construction for determinizing a
nondeterministic finite automaton in classical automata theory [8]. The fact that
we need to compose cas during the expansion of global states—and explicitly do
not want to compute the grand composition beforehand—makes our situation
more complex, though. Lemma 1 plays a key role in this respect.

Our work is related also to on-the-fly model checking, proposed by Gerth et
al. [6], where the state space under verification is generated as needed during the
actual decision procedure instead of in its entirety, beforehand. If a counterex-
ample is found already early during state space generation/exploration, then, no
effort gets wasted on precomputing the entire state space. A key difference is our
use of Hoare logic to prove our technique’s correctness, which to our knowledge
has not been done in the context of on-the-fly model checking.

7 Conclusion

Our performance evaluation shows that our new approach for computing grand
compositions substantially improves the problematic cases of the existing ap-
proach. However, in other cases, our existing approach outperformed our new
approach. In future work, we want to investigate heuristics for deciding which
of these two approaches we should use when.

Constraint automata comprise a general operational formalism for modeling
the behavior of concurrent systems, where every ca models a component. To
analyze systems modeled as cas, efficiently computing the grand composition of
those cas is very important. This makes our work a relevant advancement to the
theory and practice of component-based software engineering. In this paper, we
focused on the “coordination subsystems”—connectors—among the components.
When expressed in Reo, we can compositionally compute connector behavior
in terms of cas. This enables both verification (e.g., model checking [3,4,12])
and compilation (i.e., code generation [10,11]), whose combination subsequently
facilitates a correctness-by-construction approach to component-based software
engineering—one of the hallmarks in Sifakis’ rigorous system design [15].

We can use our new approach for computing grand compositions also be-
yond Reo, whenever not only the coordinating connectors’ semantics exist as
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cas but also the semantics of their coordinated components. For instance, the
combination of cas and Reo has been used to model and verify a simple railway
network [3], a biomedical sensor network [4], and an industrial communication
platform [12]. To model check temporal logic properties of the composition of the
components and connectors of such systems (e.g., the composition never dead-
locks), we need to compute the grand composition of the cas for all components
and connectors. Here too, our new approach for computing grand compositions
constitutes a valuable alternative to the existing approach. In fact, the abstract
approach of computing compound global behavior out of primitive local behavior
under a “reachability-based” strategy, to avoid excessive intermediate resource
consumption, does not depend on cas and can be applied also to other models.
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A Figure 9 (Large)

Figures 10–18 show page-size versions of the plots in Figure 9.

B Definitions

B.1 Constraint Automata

Definition 13. St is the set of states, ranged over by q.

Definition 14. Port is the set of ports, ranged over by p.

Definition 15. Dc is the set of data constraints, ranged over by φ, where:

⊥ ∈ Dc and
[[
φ1, φ2 ∈ Dc implies φ1 ∧ φ2, φ1 ∨ φ2 ∈ Dc

]
for all φ1, φ2

]
Definition 16. Dc : 2Port → 2Dc is a function.

Definition 17. A constraint automaton is a tuple (Q,P all,−→, Q0), where:

– Q ⊆ St (states)
– P all ⊆ Port (ports)

– −→ ⊆ Q× 2P
all × Dc(P all)×Q (transitions)

– Q0 ⊆ Q (initial states)

Aut is the set of constraint automata, ranged over by α.

Definition 18. St, Init : Aut→ 2St are the functions defined as follows:

St((Q,P all,−→, Q0)) = Q
Init((Q,P all,−→, Q0)) = Q0

Lemma 5. Init(α) ⊆ St(α)

Proof. See page 35.

Lemma 6. (q, P, φ, q′) ∈ Tr(α) implies q, q′ ∈ St(α)

Proof. See page 36.

Definition 19. Port : Aut→ 2Port is the function defined as follows:

Port((Q,P all,−→, Q0)) = P all

Definition 20. Tr : Aut→ 2St×2
Port×Dc×St is the function defined as follows:

Tr((Q,P all,−→, Q0)) = −→
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Fig. 10: Computation times in seconds (y-axis) for Alternatork, for 2 ≤ k ≤ 64 (x-
axis), by applying the alternating iterative approach (blue lines), the phased it-
erative approach before abstraction (dotted-red lines) and after (solid-red lines),
and the phased state-by-state approach before abstraction (dotted-yellow lines)
and after (solid-yellow lines).
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Fig. 11: Computation times in seconds (y-axis) for EarlyAsyncBarrierMergerk,
for 2 ≤ k ≤ 64 (x-axis), by applying the alternating iterative approach (blue
lines), the phased iterative approach before abstraction (dotted-red lines) and
after (solid-red lines), and the phased state-by-state approach before abstraction
(dotted-yellow lines) and after (solid-yellow lines).
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Fig. 12: Computation times in seconds (y-axis) for EarlyAsyncMergerk, for 2 ≤
k ≤ 64 (x-axis), by applying the alternating iterative approach (blue lines), the
phased iterative approach before abstraction (dotted-red lines) and after (solid-
red lines), and the phased state-by-state approach before abstraction (dotted-
yellow lines) and after (solid-yellow lines).
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Fig. 13: Computation times in seconds (y-axis) for EarlyAsyncOutSequencerk,
for 2 ≤ k ≤ 64 (x-axis), by applying the alternating iterative approach (blue
lines), the phased iterative approach before abstraction (dotted-red lines) and
after (solid-red lines), and the phased state-by-state approach before abstraction
(dotted-yellow lines) and after (solid-yellow lines).
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Fig. 14: Computation times in milliseconds (y-axis) for EarlyAsyncReplicatork,
for 2 ≤ k ≤ 64 (x-axis), by applying the alternating iterative approach (blue
lines), the phased iterative approach before abstraction (dotted-red lines) and
after (solid-red lines), and the phased state-by-state approach before abstraction
(dotted-yellow lines) and after (solid-yellow lines).
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Fig. 15: Computation times in milliseconds (y-axis) for LateAsyncMergerk, for 2 ≤
k ≤ 64 (x-axis), by applying the alternating iterative approach (blue lines), the
phased iterative approach before abstraction (dotted-red lines) and after (solid-
red lines), and the phased state-by-state approach before abstraction (dotted-
yellow lines) and after (solid-yellow lines).
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Fig. 16: Computation times in seconds (y-axis) for LateAsyncReplicatork, for 2 ≤
k ≤ 64 (x-axis), by applying the alternating iterative approach (blue lines), the
phased iterative approach before abstraction (dotted-red lines) and after (solid-
red lines), and the phased state-by-state approach before abstraction (dotted-
yellow lines) and after (solid-yellow lines).
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Fig. 17: Computation times in seconds (y-axis) for LateAsyncRouterk, for 2 ≤
k ≤ 64 (x-axis), by applying the alternating iterative approach (blue lines), the
phased iterative approach before abstraction (dotted-red lines) and after (solid-
red lines), and the phased state-by-state approach before abstraction (dotted-
yellow lines) and after (solid-yellow lines).
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Fig. 18: Computation times in seconds (y-axis) for Lockk, for 2 ≤ k ≤ 64 (x-axis),
by applying the alternating iterative approach (blue lines), the phased iterative
approach before abstraction (dotted-red lines) and after (solid-red lines), and
the phased state-by-state approach before abstraction (dotted-yellow lines) and
after (solid-yellow lines).
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B.2 Bisimulation

Definition 21. � ⊆ Aut× Aut× 2St×St is the relation defined as follows:[
[
(q1, P, φ, q

′
1) ∈ Tr(α1)

and (q1, q2) ∈ R

]
implies

[[(q2, P, φ, q′2) ∈ Tr(α2)
and (q′1, q

′
2) ∈ R

]
for some q′2

]]
for all q1, q

′
1, q2, P, φ


and

[[
q1 ∈ Init(α1) implies

[[
q2 ∈ Init(α2) and (q1, q2) ∈ R

]
for some q2

]]
for all q1

]
and Port(α1) = Port(α2) and R ⊆ St(α1)× St(α2)

α1 �R α2

Definition 22. ' ⊆ Aut× Aut× 2St×St is the relation defined as follows:

α1 �R α2 and α2 �R-1 α1

α1 'R α2

B.3 Composition

Definition 23. · ⊗ · : Aut× Aut→ Aut is the function defined as follows:

α1 ⊗ α2 =



St(α1)× St(α2),
Port(α1) ∪ Port(α2),


(q1, q2),
P1 ∪ P2,
φ1 ∧ φ2,
(q′1, q

′
2)

 Port(α1) ∩ P2 = Port(α2) ∩ P1

and (q1, P1, φ1, q
′
1) ∈ Tr(α1)

and (q2, P2, φ2, q
′
2) ∈ Tr(α2)

 ,

Init(α1)× Init(α2)


Lemma 7.

– St(α1 ⊗ α2) = St(α1)× St(α2)
– Port(α1 ⊗ α2) = Port(α1) ∪ Port(α2)
– Init(α1 ⊗ α2) = Init(α1)× Init(α2)

Proof. See page 37.

Lemma 8. St(α1 ⊗ · · · ⊗ αn) = St(α1)× · · · × St(αn)

Proof. See page 38.

Lemma 9. Init(α1 ⊗ · · · ⊗ αn) = Init(α1)× · · · × Init(αn)

Proof. See page 39.
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B.4 Abstraction

Definition 24. · 	 · : Aut× Port→ Aut is the function defined as follows:

α	 p = (St(α),Port(α) \ {p},−→, Init(α))

where −→ is the relation defined as follows:

q1
∅,φ1−−−→∅ · · ·

∅,φn−1−−−−→∅ qn
P,φn−−−→∅ qn+1 and P 6= ∅

q1
P,φ1∧···∧φn−−−−−−−−→ qn+1

q
P,φ−−→∅ q′ and P 6= ∅

q
P,φ−−→ q′

where −→∅ is the relation defined as follows:

(q, P, φ, q′) ∈ Tr(α)

q
P\{p},∃p.φ−−−−−−−→∅ q′

B.5 Decomposition

Definition 25. σ : 2St×2
Port×Dc×St × St → 2St×2

Port×Dc×St is the function de-
fined as follows:

σq(−→) = {(q, P̂ , φ̂, q̂′) | q P̂ ,φ̂−−→ q̂′}

Definition 26. ·〈·〉 : Aut× St→ Aut is the function defined as follows:

α〈q〉 = (St(α),Port(α), σq(Tr(α)), Init(α))

Lemma 10.

– St(α〈q〉) = St(α)
– Port(α〈q〉) = Port(α)
– Init(α〈q〉) = Init(α)

Proof. See page 40.

Lemma 11. (q̂, P̂ , φ̂, q̂′) ∈ Tr(α〈q〉) iff
[
(q̂, P̂ , φ̂, q̂′) ∈ Tr(α) and q̂ = q

]
Proof. See page 40.

Lemma 12. (α1 ⊗ α2)〈(q1, q2)〉 = α1〈q1〉 ⊗ α2〈q2〉

Proof. See page 41.

Lemma 13. (α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 = α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

Proof. See page 43.
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B.6 Recomposition

Definition 27.
⊔
· : 2Aut → Aut is the function defined as follows:

⊔
A =


⋃
{St(α) | α ∈ A},⋃
{Port(α) | α ∈ A},⋃
{Tr(α) | α ∈ A},⋃
{Init(α) | α ∈ A}


Lemma 14. α =

⊔
{α〈q〉 | q ∈ St(α)}

Proof. See page 44.

Theorem 4.

α1 ⊗ · · · ⊗ αn =⊔
{α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ St(α1)× · · · × St(αn)}

Proof. By applying Lemma 14, conclude:

α1 ⊗ · · · ⊗ αn =
⊔
{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Then, by applying Lemma 8, conclude:

α1 ⊗ · · · ⊗ αn =
⊔
{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1)× · · · × St(αn)}

Then, by applying set theory, conclude:

α1 ⊗ · · · ⊗ αn =⊔
{(α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 | (q1, . . . , qn) ∈ St(α1)× · · · × St(αn)}

Then, by applying Lemma 13, conclude:

α1 ⊗ · · · ⊗ αn =⊔
{α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ St(α1)× · · · × St(αn)}

B.7 Reachability

Definition 28. Reach : Aut→ 2St is the function defined as follows:

Reach(α) = Init(α) ∪
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Lemma 15. Reach(α) ⊆ St(α)

Proof. See page 49.

Lemma 16.
[
(q, P, φ, q′) ∈ Tr(α) and q ∈ Reach(α)

]
implies q′ ∈ Reach(α)

Proof. See page 50.
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{
true

}
A := ∅
A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}
while α ∈ A′ \A for some α do

A := A ∪ {α}
A′ := A′ ∪

{
α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 (q, P, φ, (q′1, . . . , q

′
n)) ∈ Tr(α)

}
end while{⊔

A = bα1 ⊗ · · · ⊗ αnc
}

Fig. 19: Algorithm for composing constraint automata, state-by-state

Definition 29. b·c : Aut→ Aut is the function defined as follows:

bαc =
⊔
{α〈q〉 | q ∈ Reach(α)}

Lemma 17.

– St(bαc) = α
– Port(bαc) = α
– Init(bαc) = α

Proof. See page 51.

Lemma 18. α �{(q,q)|q∈Reach(α)} bαc

Proof. See page 53.

Lemma 19. bαc �{(q,q)|q∈Reach(α)}-1 α

Proof. See page 57.

Theorem 5. α '{(q,q)|q∈Reach(α)} bαc

Proof. By applying Lemma 18, conclude α �{(q,q)|q∈Reach(α)} bαc. Then, by ap-
plying Lemma 19, conclude:

α �{(q,q)|q∈Reach(α)} bαc and bαc �{(q,q)|q∈Reach(α)}-1 α

Then, by applying Definition 22 of ', conclude α '{(q,q)|q∈Reach(α)} bαc.

B.8 Algorithm

Figure 19 shows an algorithm for composing constraint automata, state-by-state,
including its precondition and postcondition. Figure 20 (and its addendum in
Figure 21) shows the same algorithm annotated with assertions for total correct-
ness.
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{
true

}{
invar

[A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}]
[A := ∅]

}
A := ∅
A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}{
invar

}
while α ∈ A′ \A for some α do{

α ∈ A′ \A and invar and |St(α1 ⊗ · · · ⊗ αn)| − |A| = z
}{[

invar and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z
]

[A′ := A′ ∪
{
α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 (q, P, φ, (q′1, . . . , q

′
n)) ∈ Tr(α)

}
]

[A := A ∪ {α}]
}

A := A ∪ {α}
A′ := A′ ∪

{
α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 (q, P, φ, (q′1, . . . , q

′
n)) ∈ Tr(α)

}{
invar and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z

}
end while{
invar and

[
α /∈ A′ \A for all α

]}{⊔
A = bα1 ⊗ · · · ⊗ αnc

}
Fig. 20: Algorithm for composing constraint automata, state-by-state, annotated
with assertions for total correctness

invar: {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆ A ∪ (A′ \A)
and A,A′ ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

and
[ α ∈ A ∪ (A′ \A) implies[[α = (α1 ⊗ · · · ⊗ αn)〈q〉

and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]
 for all α

]

and
[
[
α ∈ A and (q, P, φ, q′) ∈ Tr(α)

]
implies[[α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and α′ ∈ A ∪ (A′ \A)

]
for some α′]

 for all α, q, q′, P, φ
]

Fig. 21: Addendum to Figure 20

Lemma 20.

true impliesinvar[A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}]
[A := ∅]


Proof. See page 61.
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Lemma 21.[
α ∈ A′ \A and invar and |St(α1 ⊗ · · · ⊗ αn)| − |A| = z

]
implies[invar and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z

]
[A′ := A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}]
[A := A ∪ {α}]


Proof. See page 66.

Lemma 22.
invar
and

[
α /∈ A′ \A for all α

]
and (q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α1 ⊗ · · · ⊗ αn)
and q1 ∈ Init(α1 ⊗ · · · ⊗ αn)


implies (α1 ⊗ · · · ⊗ αn)〈qk〉 ∈ A

Proof. See page 83.

Lemma 23.
[
invar and

[
α /∈ A′ \ A for all α

]]
implies

⊔
A = bα1 ⊗ · · · ⊗

αnc

Proof. See page 86.

Theorem 6. Figure 19 is correct.

Proof. By the assertions in Figure 20 and Lemmas 20, 21, and 23.

C Proofs

Lemma 5

First, observe:

Z1 Suppose:[
� ∈ Init(α) and α = (Q,P all,−→, Q0)

]
for some �, Q,Q0, P

all,−→

Then, by applying classical transformation rules, conclude:

� ∈ Init((Q,P all,−→, Q0))

Then, by applying Definition 18 of Init, conclude � ∈ Q0.

Z2 Suppose:� ∈ Init(α)
and α = (Q,P all,−→, Q0)
and Q0 ⊆ Q

 for some �, Q,Q0, P
all,−→

Then, by applying Z1 , conclude
[
� ∈ Q0 and Q0 ⊆ Q

]
. Then, by applying

set theory, conclude � ∈ Q. Then, by applying Definition 18 of St, conclude
� ∈ St((Q,P all,−→, Q0)).
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Z3 Suppose:
� ∈ Init(α) for some �

Then, by applying Definition 17 of Aut, conclude:� ∈ Init(α)
and α = (Q,P all,−→, Q0)
and Q0 ⊆ Q

 for some Q,Q0, P
all,−→

Then, by applying Z2 , conclude:

α = (Q,P all,−→, Q0) and � ∈ St((Q,P all,−→, Q0))

Then, by applying classical transformation rules, conclude � ∈ St(α).

Now, prove the lemma by the following reduction. By applying Z3 , conclude:[
� ∈ Init(α) implies � ∈ St(α)

]
for all �

Then, by applying set theory, conclude Init(α) ⊆ St(α).

Lemma 6

First, assume:

A1 (q, P, φ, q′) ∈ Tr(α)

Next, observe:

Z1 Suppose:
α = (Q,P all,−→, Q0) for some Q,Q0, P

all,−→

Then, by applying Definition 18 of St, conclude:

α = (Q,P all,−→, Q0) and St((Q,P all,−→, Q0)) = Q

Then, by applying classical transformation rules, conclude St(α) = Q.

Now, prove the lemma by the following reduction. By applying Definition 17
of Aut, conclude:[

α = (Q,P all,−→, Q0)

and −→ ⊆ Q× 2P
all × Dc(P all)×Q

]
for some Q,Q0, P

all,−→

Then, by applying Z1 , conclude:

St(α) = Q and −→ ⊆ Q× 2P
all × Dc(P all)×Q
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Then, by applying classical transformation rules, conclude:

−→ ⊆ St(α)× 2P
all × Dc(P all)× St(α)

Then, by applying A1 , conclude:

−→ ⊆ St(α)× 2P
all × Dc(P all)× St(α) and (q, P, φ, q′) ∈ Tr(α)

Then, by applying set theory, conclude:

(q, P, φ, q′) ∈ St(α)× 2P
all × Dc(P all)× St(α)

Then, by applying set theory, conclude q, q′ ∈ St(α).

Lemma 7

First, observe:

Z1 By applying Definition 23 of · ⊗ ·, conclude:

St(α1 ⊗ α2) = St(



St(α1)× St(α2),
Port(α1) ∪ Port(α2),


(q1, q2),
P1 ∪ P2,
φ1 ∧ φ2,
(q′1, q

′
2)

 Port(α1) ∩ P2 = Port(α2) ∩ P1

and (q1, P1, φ1, q
′
1) ∈ Tr(α1)

and (q2, P2, φ2, q
′
2) ∈ Tr(α2)

 ,

Init(α1)× Init(α2)


)

Then, by applying Definition 18 of St, conclude:

St(α1 ⊗ α2) = St(α1)× St(α2)

Z2 By applying Definition 23 of · ⊗ ·, conclude:

Port(α1 ⊗ α2) =

Port(



St(α1)× St(α2),
Port(α1) ∪ Port(α2),


(q1, q2),
P1 ∪ P2,
φ1 ∧ φ2,
(q′1, q

′
2)

 Port(α1) ∩ P2 = Port(α2) ∩ P1

and (q1, P1, φ1, q
′
1) ∈ Tr(α1)

and (q2, P2, φ2, q
′
2) ∈ Tr(α2)

 ,

Init(α1)× Init(α2)


)

Then, by applying Definition 19 of Port, conclude:

Port(α1 ⊗ α2) = Port(α1) ∪ Port(α2)
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Z3 By applying Definition 23 of · ⊗ ·, conclude:

Init(α1 ⊗ α2) =

Init(



St(α1)× St(α2),
Port(α1) ∪ Port(α2),


(q1, q2),
P1 ∪ P2,
φ1 ∧ φ2,
(q′1, q

′
2)

 Port(α1) ∩ P2 = Port(α2) ∩ P1

and (q1, P1, φ1, q
′
1) ∈ Tr(α1)

and (q2, P2, φ2, q
′
2) ∈ Tr(α2)

 ,

Init(α1)× Init(α2)


)

Then, by applying Definition 18 of Init, conclude:

Init(α1 ⊗ α2) = Init(α1)× Init(α2)

Now, prove the lemma by the following reduction. By applying Z1 , conclude:

St(α1 ⊗ α2) = St(α1)× St(α2)

Then, by applying Z2 , conclude:

St(α1 ⊗ α2) = St(α1)× St(α2)
and Port(α1 ⊗ α2) = Port(α1) ∪ Port(α2)

Then, by applying Z3 , conclude:

St(α1 ⊗ α2) = St(α1)× St(α2)
and Port(α1 ⊗ α2) = Port(α1) ∪ Port(α2)
and Init(α1 ⊗ α2) = Init(α1)× Init(α2)

Lemma 8

Prove the lemma by the following induction on n ≥ 1.

– Base: n = 1
Prove the base by the following reduction. By applying classical transforma-
tion rules, conclude St(α1) = St(α1). Then, conclude:

St(α1 ⊗ · · · ⊗ α1) = St(α1)× · · · × St(α1)

Then, by applying Base , conclude:

St(α1 ⊗ · · · ⊗ αn) = St(α1)× · · · × St(αn)
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– IH: [
1 ≤ ñ < n implies

[
St(α1 ⊗ · · · ⊗ αñ) =

St(α1)× · · · × St(αñ)

]]
for all ñ

– Step: n > 1
First, observe:

Z1 By applying Step , conclude n > 1. Then, conclude n − 1 ≥ 1. Then,

conclude n > n− 1 ≥ 1. Then, by applying IH , conclude St(α1 ⊗ · · · ⊗
αn−1) = St(α1)× · · · × St(αn−1).

Now, prove the inductive step by the following reduction. By applying
Lemma 7, conclude St(α1⊗ · · · ⊗αn) = St(α1⊗ · · · ⊗αn−1)× St(αn). Then,
by applying Z1 , conclude:

St(α1 ⊗ · · · ⊗ αn) = St(α1)× · · · × St(αn−1)× St(αn)

Then, conclude St(α1 ⊗ · · · ⊗ αn) = St(α1)× · · · × St(αn).

Lemma 9

Prove the lemma by the following induction on n ≥ 1.

– Base: n = 1
Prove the base by the following reduction. By applying classical transforma-
tion rules, conclude Init(α1) = Init(α1). Then, conclude:

Init(α1 ⊗ · · · ⊗ α1) = Init(α1)× · · · × Init(α1)

Then, by applying Base , conclude:

Init(α1 ⊗ · · · ⊗ αn) = Init(α1)× · · · × Init(αn)

– IH: [
1 ≤ ñ < n implies

[
Init(α1 ⊗ · · · ⊗ αñ) =

Init(α1)× · · · × Init(αñ)

]]
for all ñ

– Step: n > 1
First, observe:

Z1 By applying Step , conclude n > 1. Then, conclude n − 1 ≥ 1. Then,

conclude n > n− 1 ≥ 1. Then, by applying IH , conclude Init(α1⊗ · · ·⊗
αn−1) = Init(α1)× · · · × Init(αn−1).

Now, prove the inductive step by the following reduction. By applying
Lemma 7, conclude Init(α1 ⊗ · · · ⊗ αn) = Init(α1 ⊗ · · · ⊗ αn−1) × Init(αn).
Then, by applying Z1 , conclude:

Init(α1 ⊗ · · · ⊗ αn) = Init(α1)× · · · × Init(αn−1)× Init(αn)

Then, conclude Init(α1 ⊗ · · · ⊗ αn) = Init(α1)× · · · × Init(αn).
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Lemma 10

First, observe:

Z1 By applying Definition 26 of ·〈·〉, conclude:

St(α〈q〉) = St((St(α),Port(α), σq(Tr(α)), Init(α)))

Then, by applying Definition 18 of St, conclude St(α〈q〉) = St(α).

Z2 By applying Definition 26 of ·〈·〉, conclude:

Port(α〈q〉) = Port((St(α),Port(α), σq(Tr(α)), Init(α)))

Then, by applying Definition 18 of St, conclude Port(α〈q〉) = Port(α).

Z3 By applying Definition 26 of ·〈·〉, conclude:

Init(α〈q〉) = Init((St(α),Port(α), σq(Tr(α)), Init(α)))

Then, by applying Definition 18 of St, conclude Init(α〈q〉) = Init(α).

Now, prove the lemma by the following reduction. By applying Z1 , conclude:

St(α〈q〉) = St(α)

Then, by applying Z2 , conclude
[
St(α〈q〉) = St(α) and Port(α〈q〉) = Port(α)

]
.

Then, by applying Z3 , conclude:

St(α〈q〉) = St(α) and Port(α〈q〉) = Port(α) and Init(α〈q〉) = Init(α)

Lemma 11

First, observe:

Z1 Suppose (q̂, P̂ , φ̂, q̂′) ∈ Tr(α〈q〉). Then, by applying Definition 26 of ·〈·〉, con-

clude (q̂, P̂ , φ̂, q̂′) ∈ Tr((St(α),Port(α), σq(Tr(α)), Init(α))). Then, by apply-

ing Definition 20 of Tr, conclude (q̂, P̂ , φ̂, q̂′) ∈ σq(Tr(α)). Then, by applying
Definition 25 of σ, conclude:

(q̂, P̂ , φ̂, q̂′) ∈ {(q, P, φ, q′) | (q, P, φ, q′) ∈ Tr(α)}

Then, by applying set theory, conclude
[
(q̂, P̂ , φ̂, q̂′) ∈ Tr(α) and q̂ = q

]
.
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Z2 Suppose
[
(q̂, P̂ , φ̂, q̂′) ∈ Tr(α) and q̂ = q

]
. Then, by applying classical trans-

formation rules, conclude (q, P̂ , φ̂, q̂′) ∈ Tr(α). Then, by applying set theory,

conclude (q, P̂ , φ̂, q̂′) ∈ {(q, P, φ, q′) | (q, P, φ, q′) ∈ Tr(α)}. Then, by apply-

ing Definition 25 of σ, conclude (q, P̂ , φ̂, q̂′) ∈ σq(Tr(α)). Then, by applying
Definition 20 of Tr, conclude:

(q, P̂ , φ̂, q̂′) ∈ Tr((St(α),Port(α), σq(Tr(α)), Init(α)))

Then, by applying Definition 26 of ·〈·〉, conclude (q, P̂ , φ̂, q̂′) ∈ Tr(α〈q〉).

Z3 Suppose
[
(q̂, P̂ , φ̂, q̂′) ∈ Tr(α) and q̂ = q

]
. The, by applying Z2 , conclude[

q̂ = q and (q, P̂ , φ̂, q̂′) ∈ Tr(α〈q〉)
]
. Then, by applying classical transfor-

mation rules, conclude (q̂, P̂ , φ̂, q̂′) ∈ Tr(α〈q〉).

Now, prove the lemma by the following reduction. By applying Z1 , conclude:

(q̂, P̂ , φ̂, q̂′) ∈ Tr(α〈q〉) implies
[
(q̂, P̂ , φ̂, q̂′) ∈ Tr(α) and q̂ = q

]
Then, by applying Z3 , conclude:[

(q̂, P̂ , φ̂, q̂′) ∈ Tr(α〈q〉) implies
[
(q̂, P̂ , φ̂, q̂′) ∈ Tr(α) and q̂ = q

]]
and

[[
(q̂, P̂ , φ̂, q̂′) ∈ Tr(α) and q̂ = q

]
implies (q̂, P̂ , φ̂, q̂′) ∈ Tr(α〈q〉)

]
Then, by applying classical transformation rules, conclude:

(q̂, P̂ , φ̂, q̂′) ∈ Tr(α〈q〉) iff
[
(q̂, P̂ , φ̂, q̂′) ∈ Tr(α) and q̂ = q

]

Lemma 12

First, observe:

Z1 By applying Definition 23 of · ⊗ ·, conclude:

Tr(α1 ⊗ α2) =

Tr(



St(α1)× St(α2),
Port(α1) ∪ Port(α2),


(q1, q2),
P1 ∪ P2,
φ1 ∧ φ2,
(q′1, q

′
2)

 Port(α1) ∩ P2 = Port(α2) ∩ P1

and (q1, P1, φ1, q
′
1) ∈ Tr(α1)

and (q2, P2, φ2, q
′
2) ∈ Tr(α2)

 ,

Init(α1)× Init(α2)


)
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Then, by applying Definition 20 of Tr, conclude:

Tr(α1 ⊗ α2) =




(q1, q2),
P1 ∪ P2,
φ1 ∧ φ2,
(q′1, q

′
2)

 Port(α1) ∩ P2 = Port(α2) ∩ P1

and (q1, P1, φ1, q
′
1) ∈ Tr(α1)

and (q2, P2, φ2, q
′
2) ∈ Tr(α2)


Z2 By applying Definition 25 of σ, conclude:

σ(q1,q2)(Tr(α1 ⊗ α2)) =

{((q1, q2), P̂ , φ̂, q̂′) | ((q1, q2), P̂ , φ̂, q̂′) ∈ Tr(α1 ⊗ α2)}

Then, by applying Z1 , conclude:

σ(q1,q2)(Tr(α1 ⊗ α2)) =


(q1, q2),

P̂ ,

φ̂,
q̂′


((q1, q2), P̂ , φ̂, q̂′) ∈


(q̂1, q̂2),

P̂1 ∪ P̂2,

φ̂1 ∧ φ̂2,
(q̂′1, q̂

′
2)

 Port(α1) ∩ P̂2 = Port(α2) ∩ P̂1

and (q̂1, P̂1, φ̂1, q̂
′
1) ∈ Tr(α1)

and (q̂2, P̂2, φ̂2, q̂
′
2) ∈ Tr(α2)




Then, by applying classical transformation rules, conclude:

σ(q1,q2)(Tr(α1 ⊗ α2)) =




(q1, q2),

P̂1 ∪ P̂2,

φ̂1 ∧ φ̂2,
(q̂′1, q̂

′
2)

 Port(α1) ∩ P̂2 = Port(α2) ∩ P̂1

and (q1, P̂1, φ̂1, q̂
′
1) ∈ Tr(α1)

and (q2, P̂2, φ̂2, q̂
′
2) ∈ Tr(α2)


Then, by applying Lemma 10, conclude:

σ(q1,q2)(Tr(α1 ⊗ α2)) =


(q1, q2),

P̂1 ∪ P̂2,

φ̂1 ∧ φ̂2,
(q̂′1, q̂

′
2)

 Port(α1〈q1〉) ∩ P̂2 = Port(α2〈q2〉) ∩ P̂1

and (q1, P̂1, φ̂1, q̂
′
1) ∈ Tr(α1)

and (q2, P̂2, φ̂2, q̂
′
2) ∈ Tr(α2)


Then, by applying classical transformation rules, conclude:

σ(q1,q2)(Tr(α1 ⊗ α2)) =


(q̂1, q̂2),

P̂1 ∪ P̂2,

φ̂1 ∧ φ̂2,
(q̂′1, q̂

′
2)

 Port(α1〈q1〉) ∩ P̂2 = Port(α2〈q2〉) ∩ P̂1

and (q̂1, P̂1, φ̂1, q̂
′
1) ∈ Tr(α1) and q̂1 = q1

and (q̂2, P̂2, φ̂2, q̂
′
2) ∈ Tr(α2) and q̂2 = q2
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Then, by applying Lemma 11, conclude:

σ(q1,q2)(Tr(α1 ⊗ α2)) =


(q̂1, q̂2),

P̂1 ∪ P̂2,

φ̂1 ∧ φ̂2,
(q̂′1, q̂

′
2)

 Port(α1〈q1〉) ∩ P̂2 = Port(α2〈q2〉) ∩ P̂1

and (q̂1, P̂1, φ̂1, q̂
′
1) ∈ Tr(α1〈q1〉)

and (q̂2, P̂2, φ̂2, q̂
′
2) ∈ Tr(α2〈q2〉)


Now, prove the lemma by the following reduction. By applying Definition 26
of ·〈·〉, conclude:

(α1 ⊗ α2)〈(q1, q2)〉 =
(St(α1 ⊗ α2),Port(α1 ⊗ α2), σ(q1,q2)(Tr(α1 ⊗ α2)), Init(α1 ⊗ α2))

Then, by applying Lemma 7, conclude:

(α1 ⊗ α2)〈(q1, q2)〉 =


St(α1)× St(α2),

Port(α1) ∪ Port(α2),
σ(q1,q2)(Tr(α1 ⊗ α2)),
Init(α1)× Init(α2)


Then, by applying Z2 , conclude:

(α1 ⊗ α2)〈(q1, q2)〉 =

St(α1)× St(α2),
Port(α1) ∪ Port(α2),


(q̂1, q̂2),

P̂1 ∪ P̂2,

φ̂1 ∧ φ̂2,
(q̂′1, q̂

′
2)

 Port(α1〈q1〉) ∩ P̂2 = Port(α2〈q2〉) ∩ P̂1

and (q̂1, P̂1, φ̂1, q̂
′
1) ∈ Tr(α1〈q1〉)

and (q̂2, P̂2, φ̂2, q̂
′
2) ∈ Tr(α2〈q2〉)


Init(α1)× Init(α2)


Then, by applying Definition 23 of · ⊗ ·, conclude:

(α1 ⊗ α2)〈(q1, q2)〉 = α1〈q1〉 ⊗ α2〈q2〉

Lemma 13

Prove the lemma by the following induction on n ≥ 1.

– Base: n = 1
Prove the base by the following reduction. By applying classical transforma-
tion rules, conclude α1〈q1〉 = α1〈q1〉. Then, conclude:

(α1 ⊗ · · · ⊗ α1)〈(q1, . . . , q1)〉 = α1〈q1〉 ⊗ · · · ⊗ α1〈q1〉

Then, by applying Base , conclude:

(α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 = α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉
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– IH: [
1 ≤ ñ < n implies

[
(α1 ⊗ · · · ⊗ αñ)〈(q1, . . . , qñ)〉

= α1〈q1〉 ⊗ · · · ⊗ αñ〈qñ〉

]]
for all ñ

– Step: n > 1
First, observe:

Z1 By applying Step , conclude n > 1. Then, conclude n − 1 ≥ 1. Then,

conclude n > n − 1 ≥ 1. Then, by applying IH , conclude (α1 ⊗ · · · ⊗
αn−1)〈(q1, . . . , qn−1)〉 = α1〈q1〉 ⊗ · · · ⊗ αn−1〈qn−1〉.

Now, prove the inductive step by the following reduction. By applying
Lemma 12, conclude:

(α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 =
(α1 ⊗ · · · ⊗ αn−1)〈(q1, . . . , qn−1)〉 ⊗ αn〈qn〉

Then, by applying Z1 , conclude:

(α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 =
α1〈q1〉 ⊗ · · · ⊗ αn−1〈qn−1〉 ⊗ αn〈qn〉

Then, conclude (α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 = α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉.

Lemma 14

First, observe:

Z1 Suppose:
� ∈

⋃
{σq(Tr(α)) | q ∈ St(α)} for some �

Then, by applying Definition 25 of σ, conclude:

� ∈
⋃
{{(q, P̂ , φ̂, q̂′) | (q, P̂ , φ̂, q̂′) ∈ Tr(α)} | q ∈ St(α)}

Then, by applying set theory, conclude:

� ∈ {(q, P̂ , φ̂, q̂′) | (q, P̂ , φ̂, q̂′) ∈ Tr(α)} for some q

Then, by applying set theory, conclude � ∈ Tr(α).

Z2 Suppose:[
� ∈ Tr(α) and α = (Q,P all,−→, Q0)

]
for some �, Q,Q0, P

all,−→

Then, by applying classical transformation rules, conclude:

� ∈ Tr((Q,P all,−→, Q0))

Then, by applying Definition 20 of Tr, conclude � ∈ −→.
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Z3 Suppose:� ∈ Tr(α)
and α = (Q,P all,−→, Q0)

and −→ ⊆ Q× 2P
all × Dc(P all)×Q

 for some �, Q,Q0, P
all,−→

Then, by applying Z2 , conclude:

� ∈ −→ and −→ ⊆ Q× 2P
all × Dc(P all)×Q

Then, by applying set theory, conclude � ∈ Q× 2P
all ×Dc(P all)×Q. Then,

by applying Definition 16 of Dc, conclude:

� ∈ Q× 2P
all × Dc(P all)×Q and Dc(P all) ∈ 2Dc

Then, by applying set theory, conclude � ∈ Q × 2P
all × Dc × Q. Then, by

applying set theory, conclude:[
� = (q, P, φ, q′) and q ∈ Q

]
for some q, q′, P, φ

Z4 Suppose:[
q ∈ Q and α = (Q,P all,−→, Q0)

]
for some q,Q,Q0, P

all,−→

Then, by applying Definition 18 of St, conclude:

q ∈ St((Q,P all,−→, Q0)) and α = (Q,P all,−→, Q0)

Then, by applying classical transformation rules, conclude q ∈ St(α).

Z5 Suppose:
� ∈ Tr(α) for some �

Then, by applying Definition 17 of Aut, conclude:

� ∈ Tr(α) and


[
α = (Q,P all,−→, Q0)

and −→ ⊆ Q× 2P
all × Dc(P all)×Q

]
for some Q,Q0, P

all,−→


Then, by applying classical transformation rules, conclude:� ∈ Tr(α)

and α = (Q,P all,−→, Q0)

and −→ ⊆ Q× 2P
all × Dc(P all)×Q

 for some �, Q,Q0, P
all,−→

Then, by applying Z3 , conclude:

α = (Q,P all,−→, Q0) and
[[� = (q, P, φ, q′)

and q ∈ Q

]
for some q, q′, P, φ

]
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Then, by applying classical transformation rules, conclude:α = (Q,P all,−→, Q0)
and � = (q, P, φ, q′)
and q ∈ Q

 for some q, q′, P, φ

Then, by applying Z4 , conclude
[
� = (q, P, φ, q′) and q ∈ St(α)

]
.

Z6 Suppose: [
� ∈ Tr(α) and � = (q, P, φ, q′)

]
for some �, q, q′, P, φ

Then, by applying classical transformation rules, conclude:

(q, P, φ, q′) ∈ Tr(α)

Then, by applying set theory, conclude:

(q, P, φ, q′) ∈ {(q, P̂ , φ̂, q̂′) | (q, P̂ , φ̂, q̂′) ∈ Tr(α)}

Z7 Suppose: [
� ∈ Tr(α) and � = (q, P, φ, q′)

]
for some �, q, q′, P, φ

Then, by applying Z6 , conclude:

� = (q, P, φ, q′) and (q, P, φ, q′) ∈ {(q, P̂ , φ̂, q̂′) | (q, P̂ , φ̂, q̂′) ∈ Tr(α)}

Then, by applying classical transformation rules, conclude:

� ∈ {(q, P̂ , φ̂, q̂′) | (q, P̂ , φ̂, q̂′) ∈ Tr(α)}

Z8 Suppose:
� ∈ Tr(α) for some �

Then, by applying Z5 , conclude:

� ∈ Tr(α) and
[[� = (q, P, φ, q′)

and q ∈ St(α)

]
for some q, q′, P, φ

]
Then, by applying classical transformation rules, conclude:� ∈ Tr(α)

and � = (q, P, φ, q′)
and q ∈ St(α)

 for some q, q′, P, φ

Then, by applying Z7 , conclude:

� ∈ {(q, P̂ , φ̂, q̂′) | (q, P̂ , φ̂, q̂′) ∈ Tr(α)} and q ∈ St(α)

Then, by applying set theory, conclude:

� ∈
⋃
{{(q, P̂ , φ̂, q̂′) | (q, P̂ , φ̂, q̂′) ∈ Tr(α)} | q ∈ St(α)}

Then, by applying Definition 25 of σ, conclude:

� ∈
⋃
{σq(Tr(α)) | q ∈ St(α)}
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Z9 By Z1 , conclude:[
� ∈

⋃
{σq(Tr(α)) | q ∈ St(α)} implies � ∈ Tr(α)

]
for all �

Then, by introducing Z2 , conclude:[[
� ∈

⋃
{σq(Tr(α)) | q ∈ St(α)} implies � ∈ Tr(α)

]
for all �

]
and

[[
� ∈ Tr(α) implies � ∈

⋃
{σq(Tr(α)) | q ∈ St(α)}

]
for all �

]
Then, by applying set theory, conclude:⋃

{σq(Tr(α)) | q ∈ St(α)} ⊆ Tr(α)
and Tr(α) ⊆

⋃
{σq(Tr(α)) | q ∈ St(α)}

Then, by applying set theory, conclude
⋃
{σq(Tr(α)) | q ∈ St(α)} = Tr(α).

Z0 Suppose: [⊔
{α〈q〉 | q ∈ St(α)} = (St(α),Port(α),Tr(α), Init(α))

and α = (Q,P all,−→, Q0)

]
for some Q,Q0, P

all,−→

Then, by applying classical transformation rules, conclude:

⊔
{α〈q〉 | q ∈ St(α)} =


St((Q,P all,−→, Q0)),
Port((Q,P all,−→, Q0)),
Tr((Q,P all,−→, Q0)),
Init((Q,P all,−→, Q0))


Then, by applying Definition 18 of St, Init, conclude:

⊔
{α〈q〉 | q ∈ St(α)} =


Q

Port((Q,P all,−→, Q0)),
Tr((Q,P all,−→, Q0)),

Q0


Then, by applying Definition 19 of Port, conclude:⊔

{α〈q〉 | q ∈ St(α)} = (Q,P all,Tr((Q,P all,−→, Q0)), Q0)

Then, by applying Definition 20 of Tr, conclude:⊔
{α〈q〉 | q ∈ St(α)} = (Q,P all,−→, Q0)

Now, prove the lemma by the following reduction. By applying Definition 27
of
⊔
·, conclude:

⊔
{α〈q〉 | q ∈ St(α)} =


⋃
{St(α) | α ∈ {α〈q〉 | q ∈ St(α)}},⋃
{Port(α) | α ∈ {α〈q〉 | q ∈ St(α)}},⋃
{Tr(α) | α ∈ {α〈q〉 | q ∈ St(α)}},⋃
{Init(α) | α ∈ {α〈q〉 | q ∈ St(α)}}
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Then, by applying set theory, conclude:

⊔
{α〈q〉 | q ∈ St(α)} =


⋃
{St(α〈q〉) | q ∈ St(α)},⋃
{Port(α〈q〉) | q ∈ St(α)},⋃
{Tr(α〈q〉) | q ∈ St(α)},⋃
{Init(α〈q〉) | q ∈ St(α)}


Then, by applying Definition 25 of σ, conclude:⊔

{α〈q〉 | q ∈ St(α)} =
⋃
{St((St(α),Port(α), σq(Tr(α)), Init(α))) | q ∈ St(α)},⋃
{Port((St(α),Port(α), σq(Tr(α)), Init(α))) | q ∈ St(α)},⋃
{Tr((St(α),Port(α), σq(Tr(α)), Init(α))) | q ∈ St(α)},⋃
{Init((St(α),Port(α), σq(Tr(α)), Init(α))) | q ∈ St(α)}


Then, by applying Definition 18 of St, Init, conclude:⊔

{α〈q〉 | q ∈ St(α)} =
⋃
{St(α) | q ∈ St(α)},⋃

{Port((St(α),Port(α), σq(Tr(α)), Init(α))) | q ∈ St(α)},⋃
{Tr((St(α),Port(α), σq(Tr(α)), Init(α))) | q ∈ St(α)},⋃

{Init(α) | q ∈ St(α)}


Then, by applying Definition 19 of St,Port,Tr, Init, conclude:

⊔
{α〈q〉 | q ∈ St(α)} =


⋃
{St(α) | q ∈ St(α)},⋃
{Port(α) | q ∈ St(α)},⋃
{σq(Tr(α)) | q ∈ St(α)},⋃
{Init(α) | q ∈ St(α)}


Then, by applying set theory, conclude:⊔

{α〈q〉 | q ∈ St(α)} = (St(α),Port(α),
⋃
{σq(Tr(α)) | q ∈ St(α)}, Init(α))

Then, by applying Z9 , conclude:⊔
{α〈q〉 | q ∈ St(α)} = (St(α),Port(α),Tr(α), Init(α))

Then, by applying Definition 17 of Aut, conclude:⊔
{α〈q〉 | q ∈ St(α)} = (St(α),Port(α),Tr(α), Init(α))

and
[
α = (Q,P all,−→, Q0) for some Q,Q0, P

all,−→
]

Then, by applying classical transformation rules, conclude:[⊔
{α〈q〉 | q ∈ St(α)} = (St(α),Port(α),Tr(α), Init(α))

and α = (Q,P all,−→, Q0)

]
for some Q,Q0, P

all,−→
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Then, by applying Z0 , conclude:

α = (Q,P all,−→, Q0) and
⊔
{α〈q〉 | q ∈ St(α)} = (Q,P all,−→, Q0)

Then, by applying classical transformation rules, conclude:⊔
{α〈q〉 | q ∈ St(α)} = α

Lemma 15

First, observe:

Z1 Suppose:
� ∈ Init(α) for some �

Then, by applying Lemma 5, conclude
[
� ∈ Init(α) and Init(α) ⊆ St(α)

]
.

Then, by applying set theory, conclude � ∈ St(α).

Z2 Suppose:

� ∈
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
for some �

Then, by applying set theory, conclude:

� = qk and (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)

Then, by applying Lemma 6, conclude
[
� = qk and qk ∈ St(α)

]
. Then, by

applying classical transformation rules, conclude � ∈ St(α).

Z3 Suppose:
� ∈ Reach(α) for some �

Then, by applying Definition 28 of Reach, conclude:

� ∈ Init(α) ∪
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Then, by applying set theory, conclude:

� ∈ Init(α)

or � ∈
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Then, by applying Z1 , conclude:

� ∈ St(α) or � ∈
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Then, by applying Z2 , conclude

[
� ∈ St(α) or � ∈ St(α)

]
. Then, by apply-

ing classical transformation rules, conclude � ∈ St(α).
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Now, prove the lemma by the following reduction. By applying Z3 , conclude:[
� ∈ Reach(α) implies � ∈ St(α)

]
for all �

Then, by applying set theory, conclude Reach(α) ⊆ St(α).

Lemma 16

First, assume:

A1 (q, P, φ, q′) ∈ Tr(α)

A2 q ∈ Reach(α)

Now, prove the lemma by the following reduction. By applying A2 , conclude
q ∈ Reach(α). Then, by applying Definition 28 of Reach, conclude:

q ∈ Init(α) ∪
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Then, by applying set theory, conclude:

q ∈ Init(α) or q ∈
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Then, by applying set theory, conclude:

q ∈ Init(α) or


[
(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, q) ∈ Tr(α)
and q1 ∈ Init(α)

]
for some q1, . . . , qk−1, k, P1, . . . , Pk, φ1, . . . , φk


Then, by applying A1 , conclude:[

(q, P, φ, q′) ∈ Tr(α) and q ∈ Init(α1 ⊗ · · · ⊗ αn)
]

or


[
(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, q), (q, P, φ, q

′) ∈ Tr(α)
and q1 ∈ Init(α)

]
for some q1, . . . , qk−1, k, P1, . . . , Pk, φ1, . . . , φk


Then, by applying set theory, conclude:

q′ ∈
{
q̂k̂

(q̂1, P̂1, φ̂1, q̂2), . . . , (q̂k̂−1, P̂k̂−1, φ̂k̂−1, q̂k̂) ∈ Tr(α)
and q̂1 ∈ Init(α)

}
or q′ ∈

{
q̂k̂

(q̂1, P̂1, φ̂1, q̂2), . . . , (q̂k̂−1, P̂k̂−1, φ̂k̂−1, q̂k̂) ∈ Tr(α)
and q̂1 ∈ Init(α)

}
Then, by applying classical transformation rules, conclude:

q′ ∈
{
q̂k̂

(q̂1, P̂1, φ̂1, q̂2), . . . , (q̂k̂−1, P̂k̂−1, φ̂k̂−1, q̂k̂) ∈ Tr(α)
and q̂1 ∈ Init(α)

}
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Then, by applying classical transformation rules, conclude:

q′ ∈
{
q̂k̂

(q̂1, P̂1, φ̂1, q̂2), . . . , (q̂k̂−1, P̂k̂−1, φ̂k̂−1, q̂k̂) ∈ Tr(α)
and q̂1 ∈ Init(α)

}
or q′ ∈ Init(α)

Then, by applying set theory, conclude:

q′ ∈ Init(α) ∪
{
q̂k̂

(q̂1, P̂1, φ̂1, q̂2), . . . , (q̂k̂−1, P̂k̂−1, φ̂k̂−1, q̂k̂) ∈ Tr(α)
and q̂1 ∈ Init(α)

}
Then, by applying Definition 28 of Reach, conclude q′ ∈ Reach(α1 ⊗ · · · ⊗ αn).

Lemma 17

First, observe:

Z1 By applying Definition 29 of b·c, conclude:

St(bαc) = St(
⊔
{α〈q〉 | q ∈ Reach(α)})

Then, by applying Definition 27 of
⊔
·, conclude:

St(bαc) = St(


⋃
{St(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}},⋃
{Port(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}},⋃
{Tr(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}},⋃
{Init(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}}

)

Then, by applying Definition 18 of St, conclude:

St(bαc) =
⋃
{St(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}}

Then, by applying set theory, conclude:

St(bαc) =
⋃
{St(α〈q〉) | q ∈ Reach(α)}

Then, by applying Lemma 10, conclude:

St(bαc) =
⋃
{St(α) | q ∈ Reach(α)}

Then, by applying set theory, conclude St(bαc) = St(α).

Z2 By applying Definition 29 of b·c, conclude:

Port(bαc) = Port(
⊔
{α〈q〉 | q ∈ Reach(α)})

Then, by applying Definition 27 of
⊔
·, conclude:

Port(bαc) = Port(


⋃
{St(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}},⋃
{Port(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}},⋃
{Tr(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}},⋃
{Init(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}}

)
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Then, by applying Definition 19 of Port, conclude:

Port(bαc) =
⋃
{Port(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}}

Then, by applying set theory, conclude:

Port(bαc) =
⋃
{Port(α〈q〉) | q ∈ Reach(α)}

Then, by applying Lemma 10, conclude:

Port(bαc) =
⋃
{Port(α) | q ∈ Reach(α)}

Then, by applying set theory, conclude Port(bαc) = Port(α).

Z3 By applying Definition 29 of b·c, conclude:

Init(bαc) = Init(
⊔
{α〈q〉 | q ∈ Reach(α)})

Then, by applying Definition 27 of
⊔
·, conclude:

Init(bαc) = Init(


⋃
{St(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}},⋃
{Port(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}},⋃
{Tr(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}},⋃
{Init(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}}

)

Then, by applying Definition 19 of Init, conclude:

Init(bαc) =
⋃
{Init(α̂) | α̂ ∈ {α〈q〉 | q ∈ Reach(α)}}

Then, by applying set theory, conclude:

Init(bαc) =
⋃
{Init(α〈q〉) | q ∈ Reach(α)}

Then, by applying Lemma 10, conclude:

Init(bαc) =
⋃
{Init(α) | q ∈ Reach(α)}

Then, by applying set theory, conclude Init(bαc) = Init(α).

Now, prove the lemma by the following reduction. By applying Z1 , conclude:

St(bαc) = St(α)

Then, by applying Z2 , conclude
[
St(bαc) = St(α) and Port(bαc) = Port(α)

]
.

Then, by applying Z3 , conclude:

St(bαc) = St(α) and Port(bαc) = Port(α) and Init(bαc) = Init(α)
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Lemma 18

First, observe:

Z1 Suppose:
(bqc, P, φ, q′) ∈ Tr(α) for some bqc, q′, P, φ

Then, by applying classical transformation rules, conclude:[
(bqc, P, φ, q′) ∈ Tr(α) and bq̂c = bqc

]
for some bq̂c

Then, by applying Lemma 11, conclude:

(bqc, P, φ, q′) ∈ Tr(α〈bq̂c〉) and bq̂c = bqc

Then, by applying classical transformation rules, conclude:

(bqc, P, φ, q′) ∈ Tr(α〈bqc〉)

Z2 Suppose: (q, P, φ, q′) ∈ Tr(α)
and q = bqc
and q ∈ Reach(α)

 for some q, bqc, q′, P, φ

Then, by applying classical transformation rules, conclude:

(bqc, P, φ, q′) ∈ Tr(α) and bqc ∈ Reach(α)

Then, by applying Z1 , conclude:

(bqc, P, φ, q′) ∈ Tr(α〈bqc〉) and bqc ∈ Reach(α)

Then, by applying set theory, conclude:

(bqc, P, φ, q′) ∈
⋃
{Tr(α〈q̂〉) | q̂ ∈ Reach(α)}

Then, by applying set theory, conclude:

(bqc, P, φ, q′) ∈
⋃
{Tr(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}}

Then, by applying Definition 20 of Tr, conclude:

(bqc, P, φ, q′) ∈ Tr(


⋃
{St(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Port(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Tr(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Init(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}}

)

Then, by applying Definition 27 of
⊔
·, conclude:

(bqc, P, φ, q′) ∈ Tr(
⊔
{α〈q̂〉 | q̂ ∈ Reach(α)})

Then, by applying Definition 29 of b·c, conclude (bqc, P, φ, q′) ∈ Tr(bαc).
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Z3 Suppose:[
(q, P, φ, q′) ∈ Tr(α) and q ∈ Reach(α)

]
for some q, q′, P, φ

Then, by applying Lemma 16, conclude q′ ∈ Reach(α). Then, by applying
set theory, conclude (q′, q′) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}.

Z4 Suppose:[
(q, P, φ, q′) ∈ Tr(α)
and (q, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q, bqc, q′, P, φ

Then, by applying classical transformation rules, conclude:

(q, P, φ, q′) ∈ Tr(α) and q = bqc and q ∈ Reach(α)

Then, by applying Z2 , conclude:

(q, P, φ, q′) ∈ Tr(α) and q ∈ Reach(α) and (bqc, P, φ, q′) ∈ Tr(bαc)

Then, by applying Z3 , conclude:

(q′, q′) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)} and (bqc, P, φ, q′) ∈ Tr(bαc)

Then, by applying classical transformation rules, conclude:[
(q′, bq′c) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}
and (bqc, P, φ, bq′c) ∈ Tr(bαc)

]
for some bq′c

Z5 Suppose:
q ∈ Init(α) for some q

Then, by applying classical transformation rules, conclude:

q ∈ Init(α)

or q ∈
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Then, by applying set theory, conclude:

q ∈ Init(α) ∪
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Then, by applying Definition 28 of Reach, conclude q ∈ Reach(α).

Z6 Suppose:
q ∈ Init(α) for some q

Then, by applying Z5 , conclude
[
q ∈ Init(α) and q ∈ Reach(α)

]
. Then, by

applying Lemma 10, conclude
[
q ∈ Init(α〈q〉) and q ∈ Reach(α)

]
. Then, by
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applying set theory, conclude q ∈
⋃
{Init(α〈q̂〉) | q̂ ∈ Reach(α)}. Then, by

applying set theory, conclude:

q ∈
⋃
{Init(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}}

Then, by applying Definition 18 of Init, conclude:

q ∈ Init(


⋃
{St(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Port(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Tr(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Init(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}}

)

Then, by applying Definition 27 of
⊔
·, conclude:

q ∈ Init(
⊔
{α〈q̂〉 | q̂ ∈ Reach(α)})

Then, by applying Definition 29 of b·c, conclude q ∈ Init(bαc).

Z7 Suppose:
q ∈ Init(α) for some q

Then, by applying Z5 , conclude q ∈ Reach(α). Then, by applying set theory,
conclude (q, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}.

Z8 Suppose:
q ∈ Init(α) for some q

Then, by applying Z6 , conclude
[
q ∈ Init(α) and q ∈ Init(bαc)

]
. Then, by

applying Z7 , conclude:

(q, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)} and q ∈ Init(bαc)

Then, by applying classical transformation rules, conclude:[
(q, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)} and bqc ∈ Init(bαc)

]
for some bqc

Z9 Suppose:
q ∈ Reach(α) for some q

Then, by applying Lemma 15, conclude:

q ∈ Reach(α) and Reach(α) ⊆ St(α)

Then, by applying set theory, conclude q ∈ St(α). Then, by applying set
theory, conclude (q, q) ∈ St(α)× St(α).

Z0 Suppose:
� ∈ {(q, q) | q ∈ Reach(α)} for some �

Then, by applying set theory, conclude
[
� = (q, q) and q ∈ Reach(α)

]
.

Then, by applying Z9 , conclude
[
� = (q, q) and (q, q) ∈ St(α) × St(α)

]
.

Then, by applying classical transformation rules, conclude:

� ∈ St(α)× St(α)
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Y1 By applying Z0 , conclude:[
� ∈ {(q, q) | q ∈ Reach(α)} implies � ∈ St(α)× St(α)

]
for all �

Then, by applying classical transformation rules, conclude:

{(q, q) | q ∈ Reach(α)} ⊆ St(α)× St(α)

Now, prove the lemma by the following reduction. By applying Z4 , conclude:

[
(q, P, φ, q′) ∈ Tr(α)
and (q, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]

implies


[
(q′, bq′c) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}
and (bqc, P, φ, bq′c) ∈ Tr(bαc)

]
for some bq′c



 for all q, bqc, q′, P, φ

Then, by applying Z8 , conclude:

[


[
(q, P, φ, q′) ∈ Tr(α)
and (q, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]

implies


[
(q′, bq′c) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}
and (bqc, P, φ, bq′c) ∈ Tr(bαc)

]
for some bq′c



 for all q, bqc, q′, P, φ
]

and
[[
q ∈ Init(α) implies


[
(q, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}
and bqc ∈ Init(bαc)

]
for some bqc

] for all q
]

Then, by applying Lemma 17, conclude:

[


[
(q, P, φ, q′) ∈ Tr(α)
and (q, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]

implies


[
(q′, bq′c) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}
and (bqc, P, φ, bq′c) ∈ Tr(bαc)

]
for some bq′c



 for all q, bqc, q′, P, φ
]

and
[[
q ∈ Init(α) implies


[
(q, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}
and bqc ∈ Init(bαc)

]
for some bqc

] for all q
]

and Port(α) = Port(bαc)
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Then, by applying Y1 , conclude:

[


[
(q, P, φ, q′) ∈ Tr(α)
and (q, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]

implies


[
(q′, bq′c) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}
and (bqc, P, φ, bq′c) ∈ Tr(bαc)

]
for some bq′c



 for all q, bqc, q′, P, φ
]

and
[[
q ∈ Init(α) implies


[
(q, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}
and bqc ∈ Init(bαc)

]
for some bqc

] for all q
]

and Port(α) = Port(bαc)
and {(q, q) | q ∈ Reach(α)} ⊆ St(α)× St(α)

Then, by applying Definition 21 of · � ·, conclude α �{(q,q)|q∈Reach(α)} bαc.

Lemma 19

First, observe:

Z1 Suppose:
(q, P, φ, bq′c) ∈ Tr(bαc) for some q, bq′c, P, φ

Then, by applying Definition 29 of b·c, conclude:

(q, P, φ, bq′c) ∈ Tr(
⊔
{α〈q̂〉 | q̂ ∈ Reach(α)})

Then, by applying Definition 27 of
⊔
·, conclude:

(q, P, φ, bq′c) ∈ Tr(


⋃
{St(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Port(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Tr(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Init(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}}

)

Then, by applying Definition 20 of Tr, conclude:

(q, P, φ, bq′c) ∈
⋃
{Tr(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}}

Then, by applying set theory, conclude:

(q, P, φ, bq′c) ∈
⋃
{Tr(α〈q̂〉) | q̂ ∈ Reach(α)}

Then, by applying set theory, conclude:

(q, P, φ, bq′c) ∈ Tr(α〈q̂〉) for some q̂

Then, by applying Lemma 11, conclude (q, P, φ, bq′c) ∈ Tr(α).
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Z2 Suppose:[
(q, P, φ, bq′c) ∈ Tr(α) and q ∈ Reach(α)

]
for some q, bq′c, P, φ

Then, by applying Lemma 16, conclude bq′c ∈ Reach(α). Then, by applying
set theory, conclude (bq′c, bq′c) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}.

Z3 Suppose:[
(bqc, P, φ, bq′c) ∈ Tr(bαc)
and (bqc, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q, bqc, bq′c, P, φ

Then, by applying classical transformation rules, conclude:

(bqc, P, φ, bq′c) ∈ Tr(bαc) and bqc = q and bqc ∈ Reach(α)

Then, by applying classical transformation rules, conclude:

(q, P, φ, bq′c) ∈ Tr(bαc) and q ∈ Reach(α)

Then, by applying Z1 , conclude:

(q, P, φ, bq′c) ∈ Tr(α) and q ∈ Reach(α)

Then, by applying Z2 , conclude:

(q, P, φ, bq′c) ∈ Tr(α) and (bq′c, bq′c) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

Then, by applying classical transformation rules, conclude:[
(q, P, φ, q′) ∈ Tr(α)
and (bq′c, q′) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q′

Z4 Suppose:
bqc ∈ Init(α) for some bqc

Then, by applying classical transformation rules, conclude:

bqc ∈ Init(α)

or bqc ∈
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Then, by applying set theory, conclude:

bqc ∈ Init(α) ∪
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Then, by applying Definition 28 of Reach, conclude bqc ∈ Reach(α). Then,
by applying set theory, conclude (bqc, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}.
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Z5 Suppose:
bqc ∈ Init(bαc) for some bqc

Then, by applying Definition 29 of b·c, conclude:

bqc ∈ Init(
⊔
{α〈q̂〉 | q̂ ∈ Reach(α)})

Then, by applying Definition 27 of
⊔
·, conclude:

bqc ∈ Init(


⋃
{St(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Port(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Tr(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}},⋃
{Init(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}}

)

Then, by applying Definition 20 of Tr, conclude:

bqc ∈
⋃
{Init(α̂) | α̂ ∈ {α〈q̂〉 | q̂ ∈ Reach(α)}}

Then, by applying set theory, conclude:

bqc ∈
⋃
{Init(α〈q̂〉) | q̂ ∈ Reach(α)}

Then, by applying Lemma 10, conclude bqc ∈
⋃
{Init(α) | q̂ ∈ Reach(α)}.

Then, by applying set theory, conclude bqc ∈ Init(α). Then, by applying Z4

, conclude:

bqc ∈ Init(α) and (bqc, bqc) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

Then, by applying classical transformation rules, conclude:[
q ∈ Init(α)
and (bqc, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q

Z6 Suppose:
q ∈ Reach(α) for some q

Then, by applying Lemma 15, conclude:

q ∈ Reach(α) and Reach(α) ⊆ St(α)

Then, by applying set theory, conclude q ∈ St(α). Then, by applying set
theory, conclude (q, q) ∈ St(α)× St(α).

Z7 Suppose:
� ∈ {(q, q) | q ∈ Reach(α)} for some �

Then, by applying set theory, conclude
[
� = (q, q) and q ∈ Reach(α)

]
.

Then, by applying Z6 , conclude
[
� = (q, q) and (q, q) ∈ St(α) × St(α)

]
.

Then, by applying classical transformation rules, conclude:

� ∈ St(α)× St(α)
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Z8 By applying Z7 , conclude:[
� ∈ {(q, q) | q ∈ Reach(α)} implies � ∈ St(α)× St(α)

]
for all �

Then, by applying classical transformation rules, conclude:

{(q, q) | q ∈ Reach(α)} ⊆ St(α)× St(α)

Now, prove the lemma by the following reduction. By applying Z3 , conclude:

[
(bqc, P, φ, bq′c) ∈ Tr(bαc)
and (bqc, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
implies

[
(q, P, φ, q′) ∈ Tr(bαc)
and (bq′c, q′) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q′



 for all q, bqc, bq′c, P, φ

Then, by applying Z5 , conclude:

[


[
(bqc, P, φ, bq′c) ∈ Tr(bαc)
and (bqc, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
implies

[
(q, P, φ, q′) ∈ Tr(bαc)
and (bq′c, q′) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q′



 for all q, bqc, bq′c, P, φ
]

and
[


bqc ∈ Init(bαc) implies
[
q ∈ Init(α)
and (bqc, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q


 for all bqc

]

Then, by applying Lemma 17, conclude:

[


[
(bqc, P, φ, bq′c) ∈ Tr(bαc)
and (bqc, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
implies

[
(q, P, φ, q′) ∈ Tr(bαc)
and (bq′c, q′) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q′



 for all q, bqc, bq′c, P, φ
]

and
[


bqc ∈ Init(bαc) implies
[
q ∈ Init(α)
and (bqc, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q


 for all bqc

]

and Port(bαc) = Port(α)
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Then, by applying Z8 , conclude:

[


[
(bqc, P, φ, bq′c) ∈ Tr(bαc)
and (bqc, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
implies

[
(q, P, φ, q′) ∈ Tr(bαc)
and (bq′c, q′) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q′



 for all q, bqc, bq′c, P, φ
]

and
[


bqc ∈ Init(bαc) implies
[
q ∈ Init(α)
and (bqc, q) ∈ {(q̂, q̂) | q̂ ∈ Reach(α)}

]
for some q


 for all bqc

]

and Port(bαc) = Port(α)
and {(q, q) | q ∈ Reach(α)} ⊆ St(α)× St(α)

Then, by applying Definition 21 of · � ·, conclude bαc �{(q,q)|q∈Reach(α)} α. Then,
by applying set theory, conclude bαc �{(q,q)|q∈Reach(α)}-1 α.

Lemma 20

First, assume:

A1 true

Next, observe:

Z1 By applying classical transformation rules, conclude:

{α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}
= {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}

Then, by applying Lemma 9, conclude:

{α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)} =
{α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}

Then, by applying Lemma 13, conclude:

{(α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)}
= {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}

Then, by applying classical transformation rules, conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)}
= {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | q ∈ Init(α1)× · · · × Init(αn)}

Then, by applying set theory, conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)}
⊆ {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | q ∈ Init(α1)× · · · × Init(αn)}
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Then, by applying set theory, conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

∅ ∪ (

{
α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

}
\ ∅)

Z2 Suppose:

� ∈
{
α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

}
for some �

Then, by applying Lemma 5, conclude:

� ∈

α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)
and Init(α1) ⊆ St(α1)
and · · ·
and Init(αn) ⊆ St(αn)


Then, by applying set theory, conclude:

� ∈ {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ St(α1)× · · · × St(αn)}

Then, by applying Lemma 8, conclude:

� ∈ {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ St(α1 ⊗ · · · ⊗ αn)}

Then, by applying Lemma 13, conclude:

� ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ St(α1 ⊗ · · · ⊗ αn)}

Z3 By applying Z2 , conclude:� ∈ {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}
implies

� ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ St(α1 ⊗ · · · ⊗ αn)}


for all �

Then, by applying set theory, conclude:

{α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}
⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ St(α1 ⊗ · · · ⊗ αn)}

Then, by applying set theory, conclude:

∅, {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}
⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ St(α1 ⊗ · · · ⊗ αn)}
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Z4 Suppose:
q ∈ Init(α) for some q, α

Then, by applying set theory, conclude:

q ∈ Init(α) ∪
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}
Then, by applying Definition 28 of Reach, conclude q ∈ Reach(α).

Z5 Suppose:

α ∈ ∅ ∪ (

{
α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

}
\ ∅)

for some α

Then, by applying set theory, conclude:

α ∈ {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}

Then, by applying Lemma 9, conclude:

α ∈ {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)}

Then, by applying Lemma 13, conclude:

α ∈ {(α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)}

Then, by applying set theory, conclude:

α = (α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉
and (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)

Then, by applying classical transformation rules, conclude:[
α = (α1 ⊗ · · · ⊗ αn)〈q〉 and q ∈ Init(α1 ⊗ · · · ⊗ αn)

]
for some q

Then, by applying Z4 , conclude:

α = (α1 ⊗ · · · ⊗ αn)〈q〉 and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

Z6 Suppose: [
α ∈ ∅ and (q, P, φ, q′) ∈ Tr(α)

]
for some α, q, q′, P, φ

Then, by applying set theory, conclude
[
false and (q, P, φ, q′) ∈ Tr(α)

]
.

Then, by applying classical transformation rules, conclude false. Then, by
applying classical transformation rules, conclude:

α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and α′ ∈ ∅ ∪ (

 α1〈q1〉
⊗ · · · ⊗
αn〈qn〉

 q1,
. . . ,
qn

 ∈ Init(α1)
× · · · ×
Init(αn)

 \ ∅)
 for some α′
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Now, prove the lemma by the following reduction. By applying Z1 , conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

∅ ∪ (

{
α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

}
\ ∅)

Then, by applying Z3 , conclude:{(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

∅ ∪ (

{
α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

}
\ ∅)


and

[
∅, {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}

⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ St(α1 ⊗ · · · ⊗ αn)}

]
Then, by applying Z5 , conclude:{(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

∅ ∪ (

{
α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

}
\ ∅)


and

[
∅, {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}

⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ St(α1 ⊗ · · · ⊗ αn)}

]

and




α ∈ ∅ ∪ (

{
α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

}
\ ∅)

implies[[α = (α1 ⊗ · · · ⊗ αn)〈q〉
and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]


for all α
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Then, by applying Z6 , conclude:{(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

∅ ∪ (

{
α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

}
\ ∅)


and

[
∅, {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}

⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ St(α1 ⊗ · · · ⊗ αn)}

]

and




α ∈ ∅ ∪ (

{
α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

}
\ ∅)

implies[[α = (α1 ⊗ · · · ⊗ αn)〈q〉
and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]


for all α



and





[
α ∈ ∅ and (q, P, φ, q′) ∈ Tr(α)

]
implies


α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and α′ ∈ ∅ ∪ (

 α1〈q1〉
⊗ · · · ⊗
αn〈qn〉

 q1,
. . . ,
qn

 ∈ Init(α1)
× · · · ×
Init(αn)

 \ ∅)


for some α′




for all α, q, q′, P, φ
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Then, by applying classical transformation rules, conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

A ∪ (

{
α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

}
\A)


and

[
A, {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}

⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ St(α1 ⊗ · · · ⊗ αn)}

]

and




α ∈ A ∪ (

 α1〈q1〉
⊗ · · · ⊗
αn〈qn〉

(q1, . . . , qn) ∈
Init(α1)× · · · × Init(αn)

 \A)

implies[[α = (α1 ⊗ · · · ⊗ αn)〈q〉
and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]


for all α



and





[
α ∈ A and (q, P, φ, q′) ∈ Tr(α)

]
implies


α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and α′ ∈ A ∪ (

 α1〈q1〉
⊗ · · · ⊗
αn〈qn〉

 q1,
. . . ,
qn

 ∈ Init(α1)
× · · · ×
Init(αn)

 \A)


for some α′




for all α, q, q′, P, φ




[A := ∅]

Then, by applying classical transformation rules, conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆ A ∪ (A′ \A)
and A,A′ ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | (q1, . . . , qn) ∈ St(α1 ⊗ · · · ⊗ αn)}

and
[ α ∈ A ∪ (A′ \A) implies[[α = (α1 ⊗ · · · ⊗ αn)〈q〉

and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]
 for all α

]

and
[
[
α ∈ A and (q, P, φ, q′) ∈ Tr(α)

]
implies[[α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and α′ ∈ A ∪ (A′ \A)

]
for some α′

]
 for all α, q, q′, P, φ

]


[A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}]
[A := ∅]

Lemma 21

First, assume:
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A1 α ∈ A′ \A

A2 invar

A3 |St(α1 ⊗ · · · ⊗ αn)| − |A| = z

Next, observe:

Z1 By applying A1 , conclude α ∈ A′\A. Then, by applying set theory, conclude
A′ \ A = {α} ∪ ((A′ \ A) \ {α}). Then, by applying set theory, conclude
A′ \A = {α} ∪ (A′ \ (A ∪ {α})).

Z2 Suppose:
� ∈ A′ for some �

Then, by applying classical transformation rules, conclude:

� ∈ A′ or � ∈ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}

Then, by applying set theory, conclude:

� ∈ A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}

Z3 Suppose:
� ∈ A′ \ (A ∪ {α}) for some �

Then, by applying set theory, conclude
[
� ∈ A′ and � /∈ A ∪ {α}

]
. Then,

by applying Z2 , conclude:

� ∈ A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}
and � /∈ A ∪ {α}

Then, by applying set theory, conclude:

� ∈ (A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n)) ∈ Tr(α)

) \ (A ∪ {α})

Z4 Suppose:
� ∈ A ∪ {α} ∪ (A′ \ (A ∪ {α})) for some �

Then, by appyling set theory, conclude:

� ∈ A ∪ {α} or � ∈ A′ \ (A ∪ {α})

Then, by applying Z3 , conclude:

� ∈ A ∪ {α}

or � ∈ (A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n)) ∈ Tr(α)

) \ (A ∪ {α})
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Then, by applyig set theory, conclude:

� ∈ A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))

Z5 By applying Z4 , conclude:
� ∈ A ∪ {α} ∪ (A′ \ (A ∪ {α})) implies

� ∈ A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


for all �

Then, by applying set theory, conclude:

A ∪ {α} ∪ (A′ \ (A ∪ {α})) ⊆

A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))

Z6 By applying A2 , conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆ A ∪ (A′ \A)

Then, by applying Z1 , conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)}
⊆ A ∪ {α} ∪ (A′ \ (A ∪ {α}))

Then, by applying Z5 , conclude:[
{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)}

⊆ A ∪ {α} ∪ (A′ \ (A ∪ {α}))

]

and


A ∪ {α} ∪ (A′ \ (A ∪ {α})) ⊆

A ∪ {α}

∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


Then, by applying set theory, conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))
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Z7 By applying A1 , conclude α ∈ A′ \ A. Then, by applying ZFC, conclude

α ∈ A′. Then, by applying A2 , conclude:

α ∈ A′ and A′ ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Then, by applying set theory, conclude:

α ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Z8 By applying A2 , conclude A ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}.
Then, by applying Z7 , conclude:

A ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}
and α ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Then, by applying set theory, conclude:

A ∪ {α} ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Z9 Suppose:

� ∈ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)} for some �

Then, by applying Lemma 13, conclude:

� ∈ {(α1 ⊗ · · · ⊗ αn)〈(q′1, . . . , q′n)〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}

Then, by applying classical transformation rules, conclude:

� ∈ {(α1 ⊗ · · · ⊗ αn)〈q′〉 | (q, P, φ, q′) ∈ Tr(α)}

Then, by applying set theory, conclude:[
� = (α1 ⊗ · · · ⊗ αn)〈q′〉 and (q, P, φ, q′) ∈ Tr(α)

]
for some q, q′, P, φ

Z0 By applying Z7 , conclude α ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}.
Then, by applying set theory, conclude:

α = (α1 ⊗ · · · ⊗ αn)〈q〉 for some q

Y1 Suppose:
(q, P, φ, q′) ∈ Tr(α) for some q, q′, P, φ

Then, by applying Z0 , conclude:

(q, P, φ, q′) ∈ Tr((α1 ⊗ · · · ⊗ αn)〈q̂〉) for some q̂

Then, by applying Lemma 11, conclude (q, P, φ, q′) ∈ Tr(α1⊗· · ·⊗αn). Then,
by applying Lemma 6, conclude q′ ∈ St(α1 ⊗ · · · ⊗ αn).
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Y2 Suppose:

� ∈ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)} for some �

Then, by applying Z9 , conclude:[
� = (α1 ⊗ · · · ⊗ αn)〈q′〉 and (q, P, φ, q′) ∈ Tr(α)

]
for some q, q′, P, φ

Then, by applying Y1 , conclude:

� = (α1 ⊗ · · · ⊗ αn)〈q′〉 and q′ ∈ St(α1 ⊗ · · · ⊗ αn)

Then, by applying set theory, conclude:

� ∈ {(α1 ⊗ · · · ⊗ αn)〈q̂〉 | q̂ ∈ St(α1 ⊗ · · · ⊗ αn)}

Y3 By applying Y2 , conclude:[
� ∈ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}
implies � ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

]
for all �

Then, by applying set theory, conclude:

{α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}
⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Then, by applying A2 , conclude:

A′, {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}
⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Then, by applying set theory, conclude:

A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}
⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Y4 By applying Z8 , conclude:

A ∪ {α} ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Then, by applying Y3 , conclude:

A ∪ {α}, A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}
⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Y5 Suppose:
α̂ ∈ {α} for some α̂

Then, by applying set theory, conclude α̂ = α. Then, by applying A1 , con-
clude

[
α̂ = α and α ∈ A′ \ A

]
. Then, by applying classical transformation

rules, conclude α̂ ∈ A′ \A.
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Y6 Suppose: [
α̂ ∈ A′ and α̂ /∈ A ∪ {α}

]
for some α̂

Then, by applying set theory, conclude α̂ ∈ A′\(A∪{α}). Then, by applying
set theory, conclude α̂ ∈ (A′\A)\{α}. Then, by applying set theory, conclude
α̂ ∈ A′ \A.

Y7 Suppose:

α̂ ∈ (A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}) for some α̂

Then, by applying set theory, conclude:

α̂ ∈ (A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) and α̂ /∈ A ∪ {α}

Then, by applying set theory, conclude:

[
α̂ ∈ A′ or α̂ ∈

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

] and α̂ /∈ A ∪ {α}

Then, by applying classical transformation rules, conclude:

[
α̂ ∈ A′ and α̂ /∈ A ∪ {α}

]
or α̂ ∈

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)


Then, by applying Y6 , conclude:

α̂ ∈ A′ \A or α̂ ∈

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n)) ∈ Tr(α)


Y8 Suppose: [

α̂ ∈ A or α̂ ∈ A′ \A or α̂ ∈ A′ \A
]

for some α̂

Then, by applying classical transformation rules, conclude:

α̂ ∈ A or α̂ ∈ A′ \A

Then, by applying set theory, conclude α̂ ∈ A∪ (A′ \A). Then, by applying
A2 , conclude:[

α̂ = (α1 ⊗ · · · ⊗ αn)〈q〉 and q ∈ Reach(α1 ⊗ · · · ⊗ αn)
]

for some q
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Y9 Suppose:[
(q, P, φ, q′) ∈ Tr(α) and α = (α1 ⊗ · · · ⊗ αn)〈q̂〉

]
for some q, q̂, q′, P, φ

Then, by applying classical transformation rules, conclude:

(q, P, φ, q′) ∈ Tr((α1 ⊗ · · · ⊗ αn)〈q̂〉)

Then, by applying Lemma 11, conclude:

(q, P, φ, q′) ∈ Tr(α1 ⊗ · · · ⊗ αn) and q = q̂

Y0 Suppose:
(q, P, φ, q′) ∈ Tr(α) for some q, q′, P, φ

Then, by applying classical transformation rules, conclude:(q, P, φ, q′) ∈ Tr(α)
and α = (α1 ⊗ · · · ⊗ αn)〈q̂〉
and q̂ ∈ Reach(α1 ⊗ · · · ⊗ αn)

 for some q̂

Then, by applying Y9 , conclude:

(q, P, φ, q′) ∈ Tr(α1 ⊗ · · · ⊗ αn) and q = q̂
and q̂ ∈ Reach(α1 ⊗ · · · ⊗ αn)

Then, by applying classical transformation rules, conclude:

(q, P, φ, q′) ∈ Tr(α1 ⊗ · · · ⊗ αn) and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

Then, by applying Lemma 16, conclude q′ ∈ Reach(α1 ⊗ · · · ⊗ αn).

X1 Suppose:

α̂ ∈ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)} for some α̂

Then, by applying Z9 , conclude:[
α̂ = (α1 ⊗ · · · ⊗ αn)〈q′〉 and (q, P, φ, q′) ∈ Tr(α)

]
for some q, q′, P, φ

Then, by applyig Y0 , conclude:

α̂ = (α1 ⊗ · · · ⊗ αn)〈q′〉 and q′ ∈ Reach(α1 ⊗ · · · ⊗ αn)

X2 Suppose:

α̂ ∈ A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))

for some α̂
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Then, by applying set theory, conclude:

α̂ ∈ A
or α̂ ∈ {α}

or α̂ ∈ (A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n)) ∈ Tr(α)

) \ (A ∪ {α})

Then, by applying Y5 , conclude:

α̂ ∈ A
or α̂ ∈ A′ \A

or α̂ ∈ (A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n)) ∈ Tr(α)

) \ (A ∪ {α})

Then, by appyling Y7 , conclude:

α̂ ∈ A
or α̂ ∈ A′ \A

or α̂ ∈ A′ \A or α̂ ∈

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n)) ∈ Tr(α)


Then, by applying Y8 , conclude:[[

α̂ = (α1 ⊗ · · · ⊗ αn)〈q〉 and q ∈ Reach(α1 ⊗ · · · ⊗ αn)
]

for some q
]

or α̂ ∈ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}

Then, by applying X1 , conclude:

[[α̂ = (α1 ⊗ · · · ⊗ αn)〈q〉
and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]
or
[[α̂ = (α1 ⊗ · · · ⊗ αn)〈q〉

and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]
Then, by applying classical transformation rules, conclude:[

α̂ = (α1 ⊗ · · · ⊗ αn)〈q〉 and q ∈ Reach(α1 ⊗ · · · ⊗ αn)
]

for some q

X3 Suppose:
α′ ∈ A ∪ (A′ \A) for some α′
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Then, by applying Z1 , conclude α′ ∈ A ∪ {α} ∪ (A′ \ (A ∪ {α})). Then, by

applying Z5 conclude:

α′ ∈ A ∪ {α} ∪ (A′ \ (A ∪ {α}))

and


A ∪ {α} ∪ (A′ \ (A ∪ {α})) ⊆

A ∪ {α}

∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


Then, by applying set theory, conclude:

α′ ∈ A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))

X4 Suppose: [
α̂ ∈ A and (q, P, φ, q′) ∈ Tr(α̂)

]
for some α̂, q, q′, P, φ

Then, by applying A2 , conclude:[
α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉 and α′ ∈ A ∪ (A′ \A)

]
for some α′

Then, by applying X3 , conclude:

α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and


α′ ∈ A ∪ {α}

∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


X5 Suppose:

(q, P, φ, q′) ∈ Tr(α) for some q, q′, P, φ

Then, by applying Y1 , conclude q′ ∈ St(α1⊗· · ·⊗ · · ·αn). Then, by applying
Lemma 8, conclude q′ ∈ St(α1)×· · ·×St(αn). Then, by applying set theory,
conclude

[
q′ = (q′1, . . . , q

′
n) for some q′1, . . . , q

′
n

]
.

X6 Suppose:[
α̂ ∈ {α} and (q, P, φ, q′) ∈ Tr(α̂)

]
for some α̂, q, q′, P, φ

Then, by applying classical transformation rules, conclude:

α̂ = α and (q, P, φ, q′) ∈ Tr(α̂)
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Then, by applying classical transformation rules, conclude:

(q, P, φ, q′) ∈ Tr(α)

Then, by applying set theory, conclude:

(α1 ⊗ · · · ⊗ αn)〈q′〉 ∈ {(α1 ⊗ · · · ⊗ αn)〈q̂′〉 | (q̂, P̂ , φ̂, q̂′) ∈ Tr(α̂)}

Then, by applying X5 , conclude:

(α1 ⊗ · · · ⊗ αn)〈q′〉 ∈
{(α1 ⊗ · · · ⊗ αn)〈q̂′〉 | (q̂, P̂ , φ̂, q̂′) ∈ Tr(α̂) and q̂′ = (q̂′1, . . . , q̂

′
n)}

Then, by applying classical transformation rules, conclude:

(α1 ⊗ · · · ⊗ αn)〈q′〉 ∈
{(α1 ⊗ · · · ⊗ αn)〈(q̂′1, . . . , q̂′n)〉 | (q̂, P̂ , φ̂, (q̂′1, . . . , q̂′n)) ∈ Tr(α̂)}

Then, by applying Lemma 13, conclude:

(α1 ⊗ · · · ⊗ αn)〈q′〉 ∈
{α1〈q̂′1〉 ⊗ · · · ⊗ αn〈q̂′n〉 | (q̂, P̂ , φ̂, (q̂′1, . . . , q̂′n)) ∈ Tr(α̂)}

Then, by applying classical transformation rules, conclude:[
(α1 ⊗ · · · ⊗ αn)〈q′〉 ∈
{α1〈q̂′1〉 ⊗ · · · ⊗ αn〈q̂′n〉 | (q̂, P̂ , φ̂, (q̂′1, . . . , q̂′n)) ∈ Tr(α̂)}

]
or (α1 ⊗ · · · ⊗ αn)〈q′〉 ∈ A′

Then, by applying set theory, conclude:

(α1 ⊗ · · · ⊗ αn)〈q′〉 ∈
A′ ∪ {α1〈q̂′1〉 ⊗ · · · ⊗ αn〈q̂′n〉 | (q̂, P̂ , φ̂, (q̂′1, . . . , q̂′n)) ∈ Tr(α̂)}

Then, by applying set theory, conclude:

(α1 ⊗ · · · ⊗ αn)〈q′〉 ∈

A ∪ {α} ∪ ((A′ ∪

 α1〈q̂′1〉
⊗ · · · ⊗
αn〈q̂′n〉

(q̂, P̂ , φ̂, (q̂′1, . . . , q̂
′
n))

∈ Tr(α̂)

) \ (A ∪ {α}))

Then, by applying classical transformation rules, conclude:

α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and



α′ ∈
A ∪ {α}

∪ ((A′ ∪


α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ,

 q′1,
. . . ,
q′n

)

∈ Tr(α)

) \ (A ∪ {α}))




for some α′
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X7 Suppose:[
α̂ ∈ A ∪ {α} and (q, P, φ, q′) ∈ Tr(α̂)

]
for some α̂, q, q′, P, φ

Then, by applying set theory, conclude:[
α̂ ∈ A or α̂ ∈ {α}

]
and (q, P, φ, q′) ∈ Tr(α̂)

Then, by applying classical transformation rules, conclude:[
α̂ ∈ A and (q, P, φ, q′) ∈ Tr(α̂)

]
or
[
α̂ ∈ {α} and (q, P, φ, q′) ∈ Tr(α̂)

]
Then, by applying X4 , conclude:



α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and



α′ ∈
A ∪ {α}

∪ ((A′ ∪


α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ,

 q′1,
. . . ,
q′n

)

∈ Tr(α)

) \ (A ∪ {α}))




for some α′


or
[
α̂ ∈ {α} and (q, P, φ, q′) ∈ Tr(α̂)

]
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Then, by applying X6 , conclude:



α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and



α′ ∈
A ∪ {α}

∪ ((A′ ∪



α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉



q,
P,
φ, q′1,
. . . ,
q′n




∈ Tr(α)


) \ (A ∪ {α}))




for some α′



or





α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and



α′ ∈
A ∪ {α}

∪ ((A′ ∪



α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉



q,
P,
φ, q′1,
. . . ,
q′n




∈ Tr(α)


) \ (A ∪ {α}))




for some α′


Then, by applying classical transformation rules, conclude:

α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and



α′ ∈
A ∪ {α}

∪ ((A′ ∪


α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ,

 q′1,
. . . ,
q′n

)

∈ Tr(α)

) \ (A ∪ {α}))




for some α′

X8 By applying A1 , conclude α ∈ A′\A. Then, by applying set theory, conclude
α /∈ A. Then, by applying set theory, conclude:

|A ∪ {α}| = |A|+ 1
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X9 By applying Z8 , conclude:

A ∪ {α} ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

Then, by applying set theory, conclude:

|A ∪ {α}| ≤ |{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}|

Then, by applying set theory, conclude:

|A ∪ {α}| ≤ |{q | q ∈ St(α1 ⊗ · · · ⊗ αn)}|

Then, by applying set theory, conclude |A ∪ {α}| ≤ |St(α1 ⊗ · · · ⊗ αn)|.
Then, conclude |St(α1 ⊗ · · · ⊗ αn)| − |A ∪ {α}| ≥ 0.

X0 By applying A3 , conclude |St(α1 ⊗ · · · ⊗ αn)| − |A| = z. Then, conclude:

|St(α1 ⊗ · · · ⊗ αn)| − |A| − 1 < z

Then, conclude |St(α1 ⊗ · · · ⊗ αn)| − (|A| + 1) < z. Then, by applying X8 ,

conclude |St(α1 ⊗ · · · ⊗ αn)|−|A ∪ {α}| < z. Then, by applying X9 , conclude
0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A ∪ {α}| < z.

Now, prove the lemma by the following reduction. By applying Z6 , conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))

Then, by applying Y4 , conclude:
{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


and

[
A ∪ {α}, A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}

⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

]
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Then, by applying X2 , conclude:
{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


and

[
A ∪ {α}, A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}

⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

]

and






α̂ ∈
A ∪ {α}

∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


implies

[[ α̂ = (α1 ⊗ · · · ⊗ αn)〈q〉
and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]


for all α̂
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Then, by applying X7 , conclude:
{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


and

[
A ∪ {α}, A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}

⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

]

and






α̂ ∈
A ∪ {α}

∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


implies

[[ α̂ = (α1 ⊗ · · · ⊗ αn)〈q〉
and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]


for all α̂



and





[
α̂ ∈ A ∪ {α} and (q, P, φ, q′) ∈ Tr(α̂)

]
implies



α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and



α′ ∈
A ∪ {α}

∪ ((A′ ∪



α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉



q,
P,
φ, q′1,
. . . ,
q′n




∈ Tr(α)


) \ (A ∪ {α}))




for some α′




for all α̂, q, q′, P, φ
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Then, by applying X0 , conclude:
{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

A ∪ {α} ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


and

[
A ∪ {α}, A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}

⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

]

and






α̂ ∈
A ∪ {α}

∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \ (A ∪ {α}))


implies

[[ α̂ = (α1 ⊗ · · · ⊗ αn)〈q〉
and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]


for all α̂



and





[
α̂ ∈ A ∪ {α} and (q, P, φ, q′) ∈ Tr(α̂)

]
implies



α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and



α′ ∈
A ∪ {α}

∪ ((A′ ∪



α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉



q,
P,
φ, q′1,
. . . ,
q′n




∈ Tr(α)


) \ (A ∪ {α}))




for some α′




for all α̂, q, q′, P, φ


and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A ∪ {α}| < z
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Then, by applying classical transformation rules, conclude:


{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆

A ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \A)


and

[
A,A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}

⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

]

and




α̂ ∈ A ∪ ((A′ ∪

 α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉

(q, P, φ, (q′1, . . . , q
′
n))

∈ Tr(α)

) \A)

implies
[[ α̂ = (α1 ⊗ · · · ⊗ αn)〈q〉

and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]


for all α̂



and





[
α̂ ∈ A and (q, P, φ, q′) ∈ Tr(α̂)

]
implies



α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and α′ ∈ A ∪ ((A′ ∪



α1〈q′1〉
⊗ · · · ⊗
αn〈q′n〉



q,
P,
φ, q′1,
. . . ,
q′n




∈ Tr(α)


) \A)


for some α′




for all α̂, q, q′, P, φ


and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z


[A := A ∪ {α}]
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Then, by applying classical transformation rules, conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆ A ∪ (A′ \A)

and A,A′ ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

and
[ α̂ ∈ A ∪ (A′ \A) implies[[ α̂ = (α1 ⊗ · · · ⊗ αn)〈q〉

and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]
 for all α̂

]

and
[
[
α̂ ∈ A and (q, P, φ, q′) ∈ Tr(α̂)

]
implies[[α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉

and α′ ∈ A ∪ (A′ \A)

]
for some α′

]
 for all α̂, q, q′, P, φ

]
and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z


[A′ := A′ ∪ {α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 | (q, P, φ, (q′1, . . . , q′n)) ∈ Tr(α)}]
[A := A ∪ {α}]

Lemma 22

First, assume:

A1 invar

A2 α /∈ A′ \A for all α

A3 (q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α1 ⊗ · · · ⊗ αn)

A4 q1 ∈ Init(α1 ⊗ · · · ⊗ αn)

Next, observe:

Z1 Suppose:
α ∈ A′ \A for some α

Then, by applying A2 , conclude
[
α ∈ A′ \ A and α /∈ A′ \ A

]
. Then, by

applying classical transformation rules, conclude false.

Z2 Suppose:
α ∈ A ∪ (A′ \A) for some α

Then, by applying set theory, conclude
[
α ∈ A or α ∈ A′ \ A

]
. Then,

by applying Z1 , conclude
[
α ∈ A or false

]
. Then, by applying classical

transformation rules, conclude α ∈ A.

Now, prove the lemma by the following induction on k ≥ 2.

– Base: k = 2
First, observe:
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Y1 By applying A4 , conclude q1 ∈ Init(α1 ⊗ · · · ⊗ αn). Then, by applying
set theory, conclude:

(α1 ⊗ · · · ⊗ αn)〈q1〉 ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)}

Then, by applying A1 , conclude:

(α1 ⊗ · · · ⊗ αn)〈q1〉 ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)}
and {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆ A ∪ (A′ \A)

Then, by applying set theory, conclude:

(α1 ⊗ · · · ⊗ αn)〈q1〉 ∈ A ∪ (A′ \A)

Then, by applying Z2 , conclude (α1 ⊗ · · · ⊗ αn)〈q1〉 ∈ A.

Now, prove the base by the following reduction. By applying A3 , conclude
(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α1 ⊗ · · · ⊗ αn). Then, by ap-
plying Base , conclude:

(q1, P1, φ1, q2), . . . , (q2−1, P2−1, φ2−1, q2) ∈ Tr(α1 ⊗ · · · ⊗ αn)

Then, conclude (q1, P1, φ1, q2), . . . , (q1, P1, φ1, q2) ∈ Tr(α1⊗ · · · ⊗αn). Then,
conclude (q1, P1, φ1, q2) ∈ Tr(α1 ⊗ · · · ⊗ αn). Then, by applying classical
transformation rules, conclude:[

(q1, P1, φ1, q2) ∈ Tr(α1 ⊗ · · · ⊗ αn) and q̂1 = q1
]

for some q̂1

Then, by applying Lemma 11, conclude:

(q̂1, P1, φ1, q2) ∈ Tr((α1 ⊗ · · · ⊗ αn)〈q1〉) and q̂1 = q1

Then, by applying classical transformation rules, conclude:

(q1, P1, φ1, q2) ∈ Tr((α1 ⊗ · · · ⊗ αn)〈q1〉)

Then, by applying Y1 , conclude:

(q1, P1, φ1, q2) ∈ Tr((α1 ⊗ · · · ⊗ αn)〈q1〉) and (α1 ⊗ · · · ⊗ αn)〈q1〉 ∈ A

Then, by applying A1 , conclude:[
α′ = (α1 ⊗ · · · ⊗ αn)〈q2〉 and α′ ∈ A ∪ (A′ \A)

]
for some α′

Then, by applying classical transformation rules, conclude:

(α1 ⊗ · · · ⊗ αn)〈q2〉 ∈ A ∪ (A′ \A)

Then, by applying Z2 , conclude (α1 ⊗ · · · ⊗αn)〈q2〉 ∈ A. Then, by applying

Base , conclude (α1 ⊗ · · · ⊗ αn)〈qk〉 ∈ A.
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– IH:


invar
and

[
α /∈ A′ \A for all α

]
and (q1, P1, φ1, q2), . . . , (qk̃−1, Pk̃−1, φk̃−1, qk̃) ∈ Tr(α1 ⊗ · · · ⊗ αn)
and q1 ∈ Init(α1 ⊗ · · · ⊗ αn)

and 2 ≤ k̃ < k


implies (α1 ⊗ · · · ⊗ αn)〈qk̃〉 ∈ A


for all k̃

– Step: k > 2
First, observe:

X1 By applying Step , conclude k > 2. Then, conclude k − 1 ≥ 2. Then,
conclude k > k − 1 ≥ 2.

X2 By applying A4 , conclude (qk−1, Pk−1, φk−1, qk) ∈ Tr(α1 ⊗ · · · ⊗ αn).
Then, by applying classical transformation rules, conclude:[

(qk−1, Pk−1, φk−1, qk) ∈ Tr(α1 ⊗ · · · ⊗ αn)
and q̂k−1 = qk−1

]
for some q̂k−1

Then, by applying Lemma 11, conclude:

(q̂k−1, Pk−1, φk−1, qk) ∈ Tr((α1 ⊗ · · · ⊗ αn)〈qk−1〉) and q̂k−1 = qk−1

Then, by applying classical transformation rules, conclude:

(qk−1, Pk−1, φk−1, qk) ∈ Tr((α1 ⊗ · · · ⊗ αn)〈qk−1〉)

Now, prove the inductive step by the following reduction. By applying A1 ,

conclude invar. Then, by applying A3 , conclude:

invar and
[
α /∈ A′ \A for all α

]
Then, by applying A4 , conclude:

invar
and

[
α /∈ A′ \A for all α

]
and (q1, P1, φ1, q2), . . . , (qk−2, Pk−2, φk−2, qk−1) ∈ Tr(α1 ⊗ · · · ⊗ αn)

Then, by applying X1 , conclude:

invar
and

[
α /∈ A′ \A for all α

]
and (q1, P1, φ1, q2), . . . , (qk−2, Pk−2, φk−2, qk−1) ∈ Tr(α1 ⊗ · · · ⊗ αn)
and 2 ≤ k − 1 < k
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Then, by applying IH , conclude (α1⊗· · ·⊗αn)〈qk−1〉 ∈ A. Then, by applying

X2 , conclude:

(α1 ⊗ · · · ⊗ αn)〈qk−1〉 ∈ A
and (qk−1, Pk−1, φk−1, qk) ∈ Tr((α1 ⊗ · · · ⊗ αn)〈qk−1〉)

Then, by applying A1 , conclude:[
α′ = (α1 ⊗ · · · ⊗ αn)〈qk〉 and α′ ∈ A ∪ (A′ \A)

]
for some α′

Then, by applying classical transformation rules, conclude:

(α1 ⊗ · · · ⊗ αn)〈qk〉 ∈ A ∪ (A′ \A)

Then, by applying Z2 , conclude (α1 ⊗ · · · ⊗ αn)〈qk〉 ∈ A.

Lemma 23

First, assume:

A1 invar

A2 α /∈ A′ \A for all α

Next, observe:

Z1 Suppose:
(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A′ \A for some q

Then, by applying A2 , conclude:

(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A′ \A and (α1 ⊗ · · · ⊗ αn)〈q〉 /∈ A′ \A

Then, by applying classical transformation rules, conclude false.

Z2 Suppose:
q ∈ Init(α1 ⊗ · · · ⊗ αn) for some q

Then, by applying set theory, conclude:

(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ {(α1 ⊗ · · · ⊗ αn)〈q̂〉 | q̂ ∈ Init(α1 ⊗ · · · ⊗ αn)}

Then, by applying A1 , conclude:

(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ {(α1 ⊗ · · · ⊗ αn)〈q̂〉 | q̂ ∈ Init(α1 ⊗ · · · ⊗ αn)}
and {(α1 ⊗ · · · ⊗ αn)〈q̂〉 | q̂ ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆ A ∪ (A′ \A)

Then, by applying set theory, conclude (α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A ∪ (A′ \ A).
Then, by applying set theory, conclude:

(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A or (α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A′ \A

Then, by applying Z1 , conclude
[
(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A or false

]
. Then,

by applying classical transformation rules, conclude:

(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A
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Z3 Suppose:[
(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α1 ⊗ · · · ⊗ αn)
and q1 ∈ Init(α1 ⊗ · · · ⊗ αn)

]
for some q1, . . . , qk, P1, . . . , Pk, φ1, . . . , φk

Then, by applying A1 , conclude:

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α1 ⊗ · · · ⊗ αn)
and q1 ∈ Init(α1 ⊗ · · · ⊗ αn)
and invar

Then, by applying A2 , conclude:

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α1 ⊗ · · · ⊗ αn)
and q1 ∈ Init(α1 ⊗ · · · ⊗ αn)
and invar
and

[
α /∈ A′ \A for all α

]
Then, by applying Lemma 22, conclude (α1 ⊗ · · · ⊗ αn)〈qk〉 ∈ A.

Z4 Suppose:

q ∈

qk
[
(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk)

∈ Tr(α1 ⊗ · · · ⊗ αn)

]
and q1 ∈ Init(α1 ⊗ · · · ⊗ αn)

 for some q

Then, by applying set theory, conclude:q = qk
and (q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α1 ⊗ · · · ⊗ αn)
and q1 ∈ Init(α1 ⊗ · · · ⊗ αn)


for some q1, . . . , qk, P1, . . . , Pk, φ1, . . . , φk

Then, by applying Z3 , conclude
[
q = qk and (α1 ⊗ · · · ⊗ αn)〈qk〉 ∈ A

]
.

Then, by applying classical transformation rules, conclude:

(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A

Z5 Suppose:
q ∈ Reach(α1 ⊗ · · · ⊗ αn) for some q

Then, by applying Definition 28 of Reach, conclude:

q ∈ Init(α1 ⊗ · · · ⊗ αn)

∪

qk
[
(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk)

∈ Tr(α1 ⊗ · · · ⊗ αn)

]
and q1 ∈ Init(α1 ⊗ · · · ⊗ αn)
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Then, by applying set theory, conclude:

q ∈ Init(α1 ⊗ · · · ⊗ αn)

or q ∈

qk
[
(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk)

∈ Tr(α1 ⊗ · · · ⊗ αn)

]
and q1 ∈ Init(α1 ⊗ · · · ⊗ αn)


Then, by applying Z2 , conclude:

(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A

or q ∈

qk
[
(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk)

∈ Tr(α1 ⊗ · · · ⊗ αn)

]
and q1 ∈ Init(α1 ⊗ · · · ⊗ αn)


Then, by applying Z4 , conclude:

(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A or (α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A

Then, by applying classical transformation rules, conclude:

(α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A

Z6 Suppose:

� ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Reach(α1 ⊗ · · · ⊗ αn)} for some �

Then, by applying set theory, conclude:[
� = (α1 ⊗ · · · ⊗ αn)〈q〉 and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

Then, by applying Z5 , conclude:

� = (α1 ⊗ · · · ⊗ αn)〈q〉 and (α1 ⊗ · · · ⊗ αn)〈q〉 ∈ A

Then, by applying classical transformation rules, conclude � ∈ A.

Z7 Suppose: [
� ∈ A and � = α

]
for some �, α

Then, by applying classical transformation rules, conclude α ∈ A. Then, by
applying classical transformation rules, conclude:

α ∈ A or α ∈ A′ \A

Then, by applying set theory, conclude α ∈ A∪ (A′ \A). Then, by applying
A1 , conclude:[

α = (α1 ⊗ · · · ⊗ αn)〈q〉 and q ∈ Reach(α1 ⊗ · · · ⊗ αn)
]

for some q

Then, by applying set theory, conclude:

α ∈ {(α1 ⊗ · · · ⊗ αn)〈q̂〉 | q̂ ∈ Reach(α1 ⊗ · · · ⊗ αn)}
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Z8 Suppose:
� ∈ A for some �

Then, by applying classical transformation rules, conclude:[
� ∈ A and � = α

]
for some α

Then, by applying Z7 , conclude:

� = α and α ∈ {(α1 ⊗ · · · ⊗ αn)〈q̂〉 | q̂ ∈ Reach(α1 ⊗ · · · ⊗ αn)}

Then, by applying classical transformation rules, conclude:

� ∈ {(α1 ⊗ · · · ⊗ αn)〈q̂〉 | q̂ ∈ Reach(α1 ⊗ · · · ⊗ αn)}

Z9 By applying Z6 , conclude:[
� ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Reach(α1 ⊗ · · · ⊗ αn)}

implies � ∈ A

]
for all �

Then, by applying Z8 , conclude:

[[� ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Reach(α1 ⊗ · · · ⊗ αn)}
implies � ∈ A

]
for all �

]
and

[[ � ∈ A implies
� ∈ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Reach(α1 ⊗ · · · ⊗ αn)}

]
for all �

]
Then, by applying set theory, conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Reach(α1 ⊗ · · · ⊗ αn)} ⊆ A
and A ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Reach(α1 ⊗ · · · ⊗ αn)}

Then, by applying set theory, conclude:

{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Reach(α1 ⊗ · · · ⊗ αn)} = A

Now, prove the lemma by the following reduction. By applying Definition 29
of b·c, conclude:

bα1 ⊗ · · · ⊗ αnc =
⊔
{(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Reach(α1 ⊗ · · · ⊗ αn)}

Then, by applying Z9 , conclude bα1 ⊗ · · · ⊗ αnc =
⊔
A.
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