24,283 research outputs found

    Pipelined genetic propagation

    Get PDF
    © 2015 IEEE.Genetic Algorithms (GAs) are a class of numerical and combinatorial optimisers which are especially useful for solving complex non-linear and non-convex problems. However, the required execution time often limits their application to small-scale or latency-insensitive problems, so techniques to increase the computational efficiency of GAs are needed. FPGA-based acceleration has significant potential for speeding up genetic algorithms, but existing FPGA GAs are limited by the generational approaches inherited from software GAs. Many parts of the generational approach do not map well to hardware, such as the large shared population memory and intrinsic loop-carried dependency. To address this problem, this paper proposes a new hardware-oriented approach to GAs, called Pipelined Genetic Propagation (PGP), which is intrinsically distributed and pipelined. PGP represents a GA solver as a graph of loosely coupled genetic operators, which allows the solution to be scaled to the available resources, and also to dynamically change topology at run-time to explore different solution strategies. Experiments show that pipelined genetic propagation is effective in solving seven different applications. Our PGP design is 5 times faster than a recent FPGA-based GA system, and 90 times faster than a CPU-based GA system

    An Evolutionary Learning Approach for Adaptive Negotiation Agents

    Get PDF
    Developing effective and efficient negotiation mechanisms for real-world applications such as e-Business is challenging since negotiations in such a context are characterised by combinatorially complex negotiation spaces, tough deadlines, very limited information about the opponents, and volatile negotiator preferences. Accordingly, practical negotiation systems should be empowered by effective learning mechanisms to acquire dynamic domain knowledge from the possibly changing negotiation contexts. This paper illustrates our adaptive negotiation agents which are underpinned by robust evolutionary learning mechanisms to deal with complex and dynamic negotiation contexts. Our experimental results show that GA-based adaptive negotiation agents outperform a theoretically optimal negotiation mechanism which guarantees Pareto optimal. Our research work opens the door to the development of practical negotiation systems for real-world applications

    Supervised learning with hybrid global optimisation methods

    Get PDF
    • …
    corecore