344 research outputs found

    3D visualization processes for recreating and studying organismal form

    Get PDF
    The study of biological form is a vital goal of evolutionary biology and functional morphology. We review an emerging set of methods that allow scientists to create and study accurate 3D models of living organisms and animate those models for biomechanical and fluid dynamic analyses. The methods for creating such models include 3D photogrammetry, laser and CT-scanning, and 3D software. New multi-camera devices can be used to create accurate 3D models of living animals in the wild and captivity. New websites and virtual reality/augmented reality devices now enable the visualization and sharing of these data. We provide examples of these approaches for animals ranging from large whales to lizards and show applications for several areas: Natural history collections; body condition/scaling, bioinspired robotics, computational fluids dynamics (CFD), machine learning, and education. We provide two data sets to demonstrate the efficacy of CFD and machine learning approaches and conclude with a prospectus

    The dawn of the human-machine era: a forecast of new and emerging language technologies

    Get PDF
    New language technologies are coming, thanks to the huge and competing private investment fuelling rapid progress; we can either understand and foresee their effects, or be taken by surprise and spend our time trying to catch up. This report scketches out some transformative new technologies that are likely to fundamentally change our use of language. Some of these may feel unrealistically futuristic or far-fetched, but a central purpose of this report - and the wider LITHME network - is to illustrate that these are mostly just the logical development and maturation of technologies currently in prototype. But will everyone benefit from all these shiny new gadgets? Throughout this report we emphasise a range of groups who will be disadvantaged and issues of inequality. Important issues of security and privacy will accompany new language technologies. A further caution is to re-emphasise the current limitations of AI. Looking ahead, we see many intriguing opportunities and new capabilities, but a range of other uncertainties and inequalities. New devices will enable new ways to talk, to translate, to remember, and to learn. But advances in technology will reproduce existing inequalities among those who cannot afford these devices, among the world's smaller languages, and especially for sign language. Debates over privacy and security will flare and crackle with every new immersive gadget. We will move together into this curious new world with a mix of excitement and apprehension - reacting, debating, sharing and disagreeing as we always do. Plug in, as the human-machine era dawn

    A survey on human performance capture and animation

    Get PDF
    With the rapid development of computing technology, three-dimensional (3D) human body models and their dynamic motions are widely used in the digital entertainment industry. Human perfor- mance mainly involves human body shapes and motions. Key research problems include how to capture and analyze static geometric appearance and dynamic movement of human bodies, and how to simulate human body motions with physical e�ects. In this survey, according to main research directions of human body performance capture and animation, we summarize recent advances in key research topics, namely human body surface reconstruction, motion capture and synthesis, as well as physics-based motion sim- ulation, and further discuss future research problems and directions. We hope this will be helpful for readers to have a comprehensive understanding of human performance capture and animatio

    Graphical Image Rendering: Modeling, Animation of Facial or Wild Images

    Get PDF
    In this comparative study, we intend to analyse different methodologies to perform 3-Dimensional modeling and printing, by using raw images as input without any supervision by a human. Since the input consists of only raw images, the foundation of the methods is finding symmetry in images. But the images that seem symmetric are not symmetric due to the perspective effect and utterance of other factors. The method uses factors like depth, albedo, point of view, and lighting from the input image to formulate 3D shapes. A 3D template model with feature points is created, and by deforming the 3D template model, a 3D model of the subject is then reconstructed from orthogonal photos. The number and locations of the proper amount of feature points are derived. Procrustes Analysis and Radial Basis Functions (RBFs) are used for the deformation. Images are then mapped onto the mesh following the deformations for realistic visualization. Characterization of the input image shows an asymmetric cause of shading, lighting, and albedo rendering the symmetry of images. The experiments show that using these methods can give exact 3D shapes of objects like human faces, cars, and cats

    Facial and Bodily Expressions for Control and Adaptation of Games (ECAG 2008)

    Get PDF

    Facial Modelling and animation trends in the new millennium : a survey

    Get PDF
    M.Sc (Computer Science)Facial modelling and animation is considered one of the most challenging areas in the animation world. Since Parke and Waters’s (1996) comprehensive book, no major work encompassing the entire field of facial animation has been published. This thesis covers Parke and Waters’s work, while also providing a survey of the developments in the field since 1996. The thesis describes, analyses, and compares (where applicable) the existing techniques and practices used to produce the facial animation. Where applicable, the related techniques are grouped in the same chapter and described in a chronological fashion, outlining their differences, as well as their advantages and disadvantages. The thesis is concluded by exploratory work towards a talking head for Northern Sotho. Facial animation and lip synchronisation of a fragment of Northern Sotho is done by using software tools primarily designed for English.Computin

    Automated analysis and visualization of preclinical whole-body microCT data

    Get PDF
    In this thesis, several strategies are presented that aim to facilitate the analysis and visualization of whole-body in vivo data of small animals. Based on the particular challenges for image processing, when dealing with whole-body follow-up data, we addressed several aspects in this thesis. The developed methods are tailored to handle data of subjects with significantly varying posture and address the large tissue heterogeneity of entire animals. In addition, we aim to compensate for lacking tissue contrast by relying on approximation of organs based on an animal atlas. Beyond that, we provide a solution to automate the combination of multimodality, multidimensional data.* Advanced School for Computing and Imaging (ASCI), Delft, NL * Bontius Stichting inz Doelfonds Beeldverwerking, Leiden, NL * Caliper Life Sciences, Hopkinton, USA * Foundation Imago, Oegstgeest, NLUBL - phd migration 201
    • …
    corecore