532 research outputs found

    BeSpaceD: Towards a Tool Framework and Methodology for the Specification and Verification of Spatial Behavior of Distributed Software Component Systems

    Full text link
    In this report, we present work towards a framework for modeling and checking behavior of spatially distributed component systems. Design goals of our framework are the ability to model spatial behavior in a component oriented, simple and intuitive way, the possibility to automatically analyse and verify systems and integration possibilities with other modeling and verification tools. We present examples and the verification steps necessary to prove properties such as range coverage or the absence of collisions between components and technical details

    An automaton over data words that captures EMSO logic

    Full text link
    We develop a general framework for the specification and implementation of systems whose executions are words, or partial orders, over an infinite alphabet. As a model of an implementation, we introduce class register automata, a one-way automata model over words with multiple data values. Our model combines register automata and class memory automata. It has natural interpretations. In particular, it captures communicating automata with an unbounded number of processes, whose semantics can be described as a set of (dynamic) message sequence charts. On the specification side, we provide a local existential monadic second-order logic that does not impose any restriction on the number of variables. We study the realizability problem and show that every formula from that logic can be effectively, and in elementary time, translated into an equivalent class register automaton

    Reachability of Communicating Timed Processes

    Full text link
    We study the reachability problem for communicating timed processes, both in discrete and dense time. Our model comprises automata with local timing constraints communicating over unbounded FIFO channels. Each automaton can only access its set of local clocks; all clocks evolve at the same rate. Our main contribution is a complete characterization of decidable and undecidable communication topologies, for both discrete and dense time. We also obtain complexity results, by showing that communicating timed processes are at least as hard as Petri nets; in the discrete time, we also show equivalence with Petri nets. Our results follow from mutual topology-preserving reductions between timed automata and (untimed) counter automata.Comment: Extended versio

    A Holistic Approach in Embedded System Development

    Full text link
    We present pState, a tool for developing "complex" embedded systems by integrating validation into the design process. The goal is to reduce validation time. To this end, qualitative and quantitative properties are specified in system models expressed as pCharts, an extended version of hierarchical state machines. These properties are specified in an intuitive way such that they can be written by engineers who are domain experts, without needing to be familiar with temporal logic. From the system model, executable code that preserves the verified properties is generated. The design is documented on the model and the documentation is passed as comments into the generated code. On the series of examples we illustrate how models and properties are specified using pState.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    A comparative reliability analysis of ETCS train radio communications

    Get PDF
    StoCharts have been proposed as a UML statechart extension for performance and dependability evaluation, and were applied in the context of train radio reliability assessment to show the principal tractability of realistic cases with this approach. In this paper, we extend on this bare feasibility result in two important directions. First, we sketch the cornerstones of a mechanizable translation of StoCharts to MoDeST. The latter is a process algebra-based formalism supported by the Motor/Möbius tool tandem. Second, we exploit this translation for a detailed analysis of the train radio case study

    SMA -- The Smyle Modeling Approach

    Get PDF
    This paper introduces the model-based software development lifecycle model SMA -- the Smyle Modeling Approach -- which is centered around Smyle. Smyle is a dedicated learning procedure to support engineers to interactively obtain design models from requirements, characterized as either being desired (positive) or unwanted (negative) system behavior. Within SMA, the learning approach is complemented by so-called scenario patterns where the engineer can specify clearly desired or unwanted behavior. This way, user interaction is reduced to the interesting scenarios limiting the design effort considerably. In SMA, the learning phase is further complemented by an effective analysis phase that allows for detecting design flaws at an early design stage. Using learning techniques allows us to gradually develop and refine requirements, naturally supporting evolving requirements, and allows for a rather inexpensive redesign in case anomalous system behavior is detected during analysis, testing, or maintenance. This paper describes the approach and reports on first practical experiences

    Integrated Modeling and Verification of Real-Time Systems through Multiple Paradigms

    Get PDF
    Complex systems typically have many different parts and facets, with different characteristics. In a multi-paradigm approach to modeling, formalisms with different natures are used in combination to describe complementary parts and aspects of the system. This can have a beneficial impact on the modeling activity, as different paradigms an be better suited to describe different aspects of the system. While each paradigm provides a different view on the many facets of the system, it is of paramount importance that a coherent comprehensive model emerges from the combination of the various partial descriptions. In this paper we present a technique to model different aspects of the same system with different formalisms, while keeping the various models tightly integrated with one another. In addition, our approach leverages the flexibility provided by a bounded satisfiability checker to encode the verification problem of the integrated model in the propositional satisfiability (SAT) problem; this allows users to carry out formal verification activities both on the whole model and on parts thereof. The effectiveness of the approach is illustrated through the example of a monitoring system.Comment: 27 page
    • …
    corecore