24 research outputs found

    Boolean Algebras from Trace Automata

    Get PDF
    We consider trace automata. Their vertices are Mazurkiewicz traces and they accept finite words. Considering the length of a trace as the length of its Foata normal form, we define the operations of level-length synchronization and of superposition of trace automata. We show that if a family F of trace automata is closed under these operations, then for any deterministic automaton H in F, the word languages accepted by the deterministic automata of F that are length-reducible to H form a Boolean algebra. We show that the family of trace suffix automata with level-regular contexts and the subfamily of vector addition systems satisfy these closure properties. In particular, this yields various Boolean algebras of word languages accepted by deterministic vector addition systems

    Probabilistic Input-Driven Pushdown Automata

    Get PDF

    A Unified Method for Placing Problems in Polylogarithmic Depth

    Get PDF
    In this work we consider the term evaluation problem which is, given a term over some algebra and a valid input to the term, computing the value of the term on that input. In contrast to previous methods we allow the algebra to be completely general and consider the problem of obtaining an efficient upper bound for this problem. Many variants of the problems where the algebra is well behaved have been studied. For example, the problem over the Boolean semiring or over the semiring (N,+,*). We extend this line of work. Our efficient term evaluation algorithm then serves as a tool for obtaining polylogarithmic depth upper bounds for various well-studied problems. To demonstrate the utility of our result we show new bounds and reprove known results for a large spectrum of problems. In particular, the applications of the algorithm we consider include (but are not restricted to) arithmetic formula evaluation, word problems for tree and visibly pushdown automata, and various problems related to bounded tree-width and clique-width graphs

    Synchronizing automata over nested words

    Get PDF
    We extend the concept of a synchronizing word from deterministic finite-state automata (DFA) to nested word automata (NWA): A well-matched nested word is called synchronizing if it resets the control state of any configuration, i. e., takes the NWA from all control states to a single control state. We show that although the shortest synchronizing word for an NWA, if it exists, can be (at most) exponential in the size of the NWA, the existence of such a word can still be decided in polynomial time. As our main contribution, we show that deciding the existence of a short synchronizing word (of at most given length) becomes PSPACE-complete (as opposed to NP-complete for DFA). The upper bound makes a connection to pebble games and Strahler numbers, and the lower bound goes via small-cost synchronizing words for DFA, an intermediate problem that we also show PSPACE-complete. We also characterize the complexity of a number of related problems, using the observation that the intersection nonemptiness problem for NWA is EXP-complete

    Behavioural Preorders on Stochastic Systems - Logical, Topological, and Computational Aspects

    Get PDF

    Behavioural Preorders on Stochastic Systems - Logical, Topological, and Computational Aspects

    Get PDF
    Computer systems can be found everywhere: in space, in our homes, in our cars, in our pockets, and sometimes even in our own bodies. For concerns of safety, economy, and convenience, it is important that such systems work correctly. However, it is a notoriously difficult task to ensure that the software running on computers behaves correctly. One approach to ease this task is that of model checking, where a model of the system is made using some mathematical formalism. Requirements expressed in a formal language can then be verified against the model in order to give guarantees that the model satisfies the requirements. For many computer systems, time is an important factor. As such, we need our formalisms and requirement languages to be able to incorporate real time. We therefore develop formalisms and algorithms that allow us to compare and express properties about real-time systems. We first introduce a logical formalism for reasoning about upper and lower bounds on time, and study the properties of this formalism, including axiomatisation and algorithms for checking when a formula is satisfied. We then consider the question of when a system is faster than another system. We show that this is a difficult question which can not be answered in general, but we identify special cases where this question can be answered. We also show that under this notion of faster-than, a local increase in speed may lead to a global decrease in speed, and we take step towards avoiding this. Finally, we consider how to compare the real-time behaviour of systems not just qualitatively, but also quantitatively. Thus, we are interested in knowing how much one system is faster or slower than another system. This is done by introducing a distance between systems. We show how to compute this distance and that it behaves well with respect to certain properties.Comment: PhD dissertation from Aalborg Universit

    Determinization and Minimization of Automata for Nested Words Revisited

    Get PDF
    International audienceWe consider the problem of determinizing and minimizing automata for nested words in practice. For this we compile the nested regular expressions (NREsNRE_s) from the usual XPath benchmark to nested word automata (NWNWAsA_s). The determinization of these NWNW AsA_s, however, fails to produce reasonably small automata. In the best case, huge deterministic NWNWAsA_s are produced after few hours, even for relatively small NREsNRE_s of the benchmark. We propose a different approach to the determinization of automata for nested words. For this, we introduce stepwise hedge automata (SHAsSHA_s) that generalize naturally on both (stepwise) tree automata and on finite word automata. We then show how to determinize SHAsSHA_s, yielding reasonably small deterministic automata for the NREsNRE_s from the XPath benchmark. The size of deterministic SHAsSHA_s automata can be reduced further by a novel minimization algorithm for a subclass of SHAsSHA_s. In order to understand why the new approach to determinization and minimization works so nicely, we investigate the relationship between NWAsNWA_s and SHAsSHA_s further. Clearly, deterministic SHAsSHA_s can be compiled to deterministic NWAs in linear time, and conversely, NWNWAsA_s can be compiled to nondeterministic SHAsSHA_s in polynomial time. Therefore, we can use SHAsSHA_s as intermediates for determinizing NWAsNWA_s, while avoiding the huge size increase with the usual determinization algorithm for NWAsNWA_s. Notably, the NWAs obtained from the SHAsSHA_s perform bottom-up and left-to-right computations only, but no top-down computations. This NWANWA-behavior can be distinguished syntactically by the (weak) single-entry property, suggesting a close relationship between SHAsSHA_s and single-entry NWAsNWA_s. In particular, it turns out that the usual determinization algorithm for NWAsNWA_s behaves well for single-entry NWAsNWA_s, while it quickly explodes without the single-entry property. Furthermore, it is known that the class of deterministic multi-module single-entry NWAsNWA_s enjoys unique minimization. The subclass of deterministic SHAsSHA_s to which our novel minimization algorithm applies is different though, in that we do not impose multiple modules. As further optimizations for reducing the sizes of the constructed SHAsSHA_s, we propose schema-based cleaning and symbolic representations based on apply-else rules, that can be maintained by determinization. We implemented the optimizations and report the experimental results for the automata constructed for the XPathMark benchmark

    Bisimulation as path type for guarded recursive types

    Get PDF
    In type theory, coinductive types are used to represent processes, and are thus crucial for the formal verification of non-terminating reactive programs in proof assistants based on type theory, such as Coq and Agda. Currently, programming and reasoning about coinductive types is difficult for two reasons: The need for recursive definitions to be productive, and the lack of coincidence of the built-in identity types and the important notion of bisimilarity. Guarded recursion in the sense of Nakano has recently been suggested as a possible approach to dealing with the problem of productivity, allowing this to be encoded in types. Indeed, coinductive types can be encoded using a combination of guarded recursion and universal quantification over clocks. This paper studies the notion of bisimilarity for guarded recursive types in Ticked Cubical Type Theory, an extension of Cubical Type Theory with guarded recursion. We prove that, for any functor, an abstract, category theoretic notion of bisimilarity for the final guarded coalgebra is equivalent (in the sense of homotopy type theory) to path equality (the primitive notion of equality in cubical type theory). As a worked example we study a guarded notion of labelled transition systems, and show that, as a special case of the general theorem, path equality coincides with an adaptation of the usual notion of bisimulation for processes. In particular, this implies that guarded recursion can be used to give simple equational reasoning proofs of bisimilarity. This work should be seen as a step towards obtaining bisimilarity as path equality for coinductive types using the encodings mentioned above

    Retracing some paths in categorical semantics: From process-propositions-as-types to categorified reals and computers

    Full text link
    The logical parallelism of propositional connectives and type constructors extends beyond the static realm of predicates, to the dynamic realm of processes. Understanding the logical parallelism of process propositions and dynamic types was one of the central problems of the semantics of computation, albeit not always clear or explicit. It sprung into clarity through the early work of Samson Abramsky, where the central ideas of denotational semantics and process calculus were brought together and analyzed by categorical tools, e.g. in the structure of interaction categories. While some logical structures borne of dynamics of computation immediately started to emerge, others had to wait, be it because the underlying logical principles (mainly those arising from coinduction) were not yet sufficiently well-understood, or simply because the research community was more interested in other semantical tasks. Looking back, it seems that the process logic uncovered by those early semantical efforts might still be starting to emerge and that the vast field of results that have been obtained in the meantime might be a valley on a tip of an iceberg. In the present paper, I try to provide a logical overview of the gamut of interaction categories and to distinguish those that model computation from those that capture processes in general. The main coinductive constructions turn out to be of this latter kind, as illustrated towards the end of the paper by a compact category of all real numbers as processes, computable and uncomputable, with polarized bisimulations as morphisms. The addition of the reals arises as the biproduct, real vector spaces are the enriched bicompletions, and linear algebra arises from the enriched kan extensions. At the final step, I sketch a structure that characterizes the computable fragment of categorical semantics.Comment: 63 pages, 40 figures; cut two words from the title, tried to improve (without lengthening) Sec.8; rewrote a proof in the Appendi
    corecore