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Abstract
A probabilistic variant of input-driven pushdown automata (IDPDA), also known as visibly pushdown
automata, is introduced. It is proved that these automata can be determinized: an n-state
probabilistic IDPDA that accepts each string with probability at least λ + δ or at most λ − δ is
transformed to a deterministic IDPDA with at most (1+ 1

δ
)n2−n states recognizing the same language.

An asymptotically close lower bound is provided: for infinitely many n, there is a probabilistic
IDPDA with 4n + 1 states and δ = 1

270n
, such that every equivalent deterministic IDPDA needs at

least 7n2/14 states. A few special cases of automata with reduced determinization complexity are
identified.
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1 Introduction

In probabilistic models of computation, there are several options for every step of the
computation, each with a specified probability. Probabilistic finite automata (PFA) were
introduced by Rabin [23] in 1963. Assuming the two-sided bounded-error condition, that
is, that every string is accepted either with probability at most λ − δ, or with probability
at least λ + δ, for some λ and δ with 0 < λ − δ < λ + δ < 1, Rabin proved that every
such automaton with n states can be transformed to a deterministic automaton (DFA) with
at most (1 + 1

δ )n−1 states. The lower bound on the determinization complexity has been
refined several times: in 1982, Freivalds [11] proved that in the worst case 2Ω(

√
n) states are

necessary, in 1996, Ambainis [4] improved this lower bound to Ω(2n log log n
log n ). Finally, in 2008,

Freivalds [12] established the first exponential lower bound of the order 7n/14, improved to
2n/4 under Artin’s conjecture from number theory.

A probabilistic version of pushdown automata (PDA) was studied by Freivalds [10], who
proved that they can recognize a language not recognized by any nondeterministic PDA.
Later, Hromkovič and Schnitger [13] showed that these two models are incomparable in
power, whereas probabilistic PDA with one-sided error are weaker than both models, yet
stronger than deterministic PDA.

The concept of input-driven pushdown automata (IDPDA) was introduced by Mehl-
horn [16] in 1980. This is a special case of pushdown automata, in which the operations
performed on the stack are determined by the input symbols. Nondeterministic IDPDA were
first defined by von Braunmühl and Verbeek [25], who proved that they can be determinized,
with an n-state nondeterministic automaton transformed to a deterministic one with 2n2

states and O(2n2) stack symbols. In 2004, Alur and Madhusudan [2] have reintroduced the
model under the name of visibly pushdown automata, and obtained some important new
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results: in particular, they proved that determinization requires 2Ω(n2) states in the worst
case, established the closure of the family under all basic language operations, and determined
the computational complexity of the inclusion and universality problems for IDPDA. Their
paper motivated further research in this area. In particular, several related models were
investigated, such as alternating [7], unambiguous [21] and timed input-driven pushdown
automata [24, 8, 19], input-driven pushdown automata on infinite strings [3, 15, 22]. This
research has also inspired some further models, such as pushdown automata driven by finite
transducers [14].

In this paper we introduce and study the probabilistic version of IDPDA, with two-sided
bounded-error condition, similar to the classical PFA [23] and probabilistic PDA [10]. Even
though input-driven pushdown automata with randomized transitions appeared in several
papers on automata on infinite strings and their verification [5, 9, 26], the cited papers were
not concerned with language recognition, making their models much different from what is
studied in this paper.

The first result of this paper is that probabilistic IDPDA with bounded error define the
same class of languages as deterministic IDPDA. To be precise, if a language is recognized
by bounded-error n-state PIDPDA with δ-cutpoint, then the same language is recognized by
a DIDPDA with (1 + 1

δ )n2−n states and const · (1 + 1
δ )n2−n stack symbols. This is done via

considering transition matrices on well-nested strings, and proving that if two matrices are
close enough with respect to a certain norm, then they are equivalent under an equivalence
relation defined by Alur et al. [1]. This in turn implies that the language is recognizable by
an IDPDA.

In Section 5 we also give a lower bound. To do so we essentially find a way to lift lower
bounds for PFAs to lower bounds for PIDPDAs. Then we apply the best known lower bound
for PFAs – the one due to Freivalds [12].

Finally, in Section 6 we study the special case of automata operating on strings nesting
depth one. Three cases of automata with reduced determinization complexity are identified.
First, there is an analog of unary languages, in which every substring enclosed in brackets
is unary, for which determinization requires fewer states than in the general case: only
O((1 + 1

δ )n). We also prove that the same bound holds for automata with Σ0 = {a, b} if the
transitions by a and b commute. The latter condition means that the automaton “counts”
the number of as and bs. Lastly, we show that if the transitions by every symbol in Σ0
are deterministic, then the upper bound can also be significantly reduced to nn, under no
restrictions on the size of Σ0.

2 Deterministic Input-driven Pushdown Automata

A deterministic input-driven pushdown automaton (DIDPDA) [3, 16] is a special case of a
deterministic pushdown automaton, in which the input alphabet Σ is split into three disjoint
sets of left brackets Σ+1, right brackets Σ−1 and neutral symbols Σ0. The type of the input
symbol determines the type of the operation with the stack: on a left bracket from Σ+1,
then the automaton always pushes one symbol onto the stack; on a right bracket from Σ−1,
the automaton must pop one symbol; finally, on a neutral symbol in Σ0, the automaton may
not use the stack. In this paper, symbols from Σ+1 and Σ−1 are denoted by left and right
angled brackets, respectively (<, >), whereas lower-case Latin letters from the beginning of
the alphabet (a, b, c, . . .) are used for symbols from Σ0.

▶ Definition 1. A deterministic input-driven pushdown automaton (DIDPDA) is a 6-tuple
A = (Σ, Q, Γ, q0, [δa]a∈Σ, F ), where

Σ = Σ+1 ∪ Σ0 ∪ Σ−1 is an input alphabet split into three disjoint classes;
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Q is a finite set of states of the automaton, with an initial state q0 ∈ Q and with a subset
of accepting states F ⊆ Q;
Γ is a finite set of stack symbols,
the transition function by each left bracket symbol < ∈ Σ+1 is a function δ< : Q → Q × Γ,
which, for a given current state, provides the next state and the symbol to be pushed onto
the stack;
for every right bracket symbol > ∈ Σ−1, a function δ> : Q × Γ → Q specifies the next
state, assuming that the given symbol is popped from the stack;
for a neutral symbol c ∈ Σ0, a function δc : Q → Q provides the next state.

For a string w = a1 . . . aℓ, with a1, . . . , aℓ ∈ Σ, the computation on w starting in a state
r0 with stack contents γ0 ∈ Γ∗ is the sequence {(ri, γi)}ℓ

i=0 ∈ Q × Γ∗, defined as follows.
If ai ∈ Σ+1, then δai(ri−1) = (ri, s) and γi = γi−1s,
If ai ∈ Σ−1, then γi−1 = γis, for some s ∈ Γ, and ri = δai

(ri−1, s).
If ai ∈ Σ0, then γi = γi−1 and ri = δai

(ri−1).
If w is well-nested, then this computation is always defined, and ends in the configuration
(rℓ, γℓ), with γℓ = γ0.

A well-nested string w is accepted if the computation on w starting in q0 with the empty
stack ends in a configuration (q, ε) with q ∈ F . The set of all accepted strings is denoted by
L(A).

One can notice that each word w defines a function fw : Q → Q, such that if A is in state
q, it will be in state fw(q) after reading w. Then L(A) = { w | w is well-nested and fw(q0) ∈
F }.

For every language L, we define the following equivalence relation on the set of all
well-nested strings.

▶ Definition 2. Let L be a set of well-nested strings. Let w1 and w2 be well-nested. The
relation ≈L on the set of well-nested strings is defined by w1 ≈L w2 if, for every two strings
u, v with uv well-nested, the string uw1v is in L if and only if uw2v is in L.

If the language L is understood from the context, the relation ≈L is denoted by ≈.

▶ Lemma 3 (Alur et al. [1]). L is recognized by an IDPDA if and only if there is only a finite
number of the equivalence classes with respect to this equivalence relation.

Moreover, DIDPDA can be chosen such that it has m states and |Σ+1| · m stack symbols,
where m is the number of the equivalence classes. Also, if L is recognized by an IDPDA with
n states, then the number of equivalence classes is not more than nn.

3 Probabilistic Input-driven Automata

Unlike DIDPDAs, probabilistic input-driven pushdown automata may have multiple available
transitions, with a probability of making each of them. Nevertheless, whether the automaton
pushes, pops or leaves the stack intact, is still determined by the current input symbol. In
the end, the input string is accepted if and only if the probability of reaching an accepting
state after reading the string is sufficiently large.

▶ Definition 4. Let S be a countable or a finite set. Let D(S) denote the set of probability
distributions on S, that is, D(S) = { p : S → [0, 1] |

∑
x∈S p(x) = 1 }.

▶ Definition 5. A probabilistic input-driven pushdown automaton (PIDPDA) is a 6-tuple
A = (Σ, Q, Γ, q0, [δa]a∈Σ, F ), where

MFCS 2023
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Σ = Σ+1 ⊔ Σ0 ⊔ Σ−1 is an input alphabet split into three disjoint classes;
Q is a finite set of states of the automaton, with an initial state q0 ∈ D(Q) and with a
subset of accepting states F ⊆ Q;
Γ is a finite set of stack symbols,
the transition function by each left bracket symbol < ∈ Σ+1 is a function δ< : Q →
D(Q × Γ), which, for a given current state p ∈ Q, assigns a probability to each pair (q, s),
that is, the probability of pushing s onto the stack and entering the state q;
for every right bracket symbol > ∈ Σ−1, a function δ> : Q × Γ → D(Q) specifies the
probabilities of entering each state, assuming that the given symbol is popped from the
stack;
for a neutral symbol c ∈ Σ0, a function δc : Q → D(Q) provides the probabilities of the
next state.

For a string w = a1 . . . aℓ, with a1, . . . , aℓ ∈ Σ, a computation sequence on w is a sequence
{(ri, γi)}ℓ

i=0 ∈ Q × Γ∗, which satisfies the following conditions.
if ai ∈ Σ+1, then γi = γi−1s, for some s ∈ Γ, and the probability of this step is defined by
pi = δai

(ri−1)(ri, s),
if ai ∈ Σ−1, then γi−1 = γis, for some s ∈ Γ, and the probability of this step is
pi = δai

(ri−1, s)(ri).
if ai ∈ Σ0, then γi = γi−1 and the probability is δai

(ri−1)(ri).
The probability of such a sequence is the product p1 · . . . · pℓ of probabilities of individual steps.

The probability of going from configuration (q, γ) to configuration (q′, γ′) by reading a
string w is the sum of probabilities of all computation sequences on w that start with (q, γ)
and end with (q′, γ′).

The probability of accepting a well-nested string w is the probability of going from its
initial configuration to any accepting configuration.

Pr(A accepts w) =
∑
q∈F

Pr(A goes from (q0, ε) to (q, ε) by reading w)

▶ Definition 6. A probabilistic input-driven pushdown automaton A is said to have a δ-cut-
point λ, with δ > 0 and λ ∈ [0, 1], if, for every well-nested w, either Pr(A accepts w) ⩾ λ + δ

or Pr(A accepts w) ⩽ λ − δ.

▶ Definition 7. The language L(A) recognized by an automaton A with a δ-cut-point λ is
the set of all well-nested strings w for which Pr(A accepts w) ⩾ λ + δ.

Similarly to the deterministic case, each well-nested word w defines a stochastic matrix
P w of order |Q| × |Q|, where P w

q,r = Pr(A goes into q from r after reading w). This is a
generalization of functions fw for deterministic IDPDAs.

4 Determinization and Upper Bound

▶ Theorem 8. Let A be a probabilistic IDPDA with a δ-cut-point λ and n states. Then there
exists a deterministic IDPDA that recognizes the same language and has at most (1 + 1

δ )n2−n

states and at most |Σ+1| · (1 + 1
δ )n2−n stack symbols.

To compare, Rabin’s [23] transformation of a PFA to a DFA uses only (1 + 1
δ )n−1 states.

Rabin’s argument estimates the number of Myhill–Nerode equivalence classes, which is
sufficient to describe the computation of a finite automaton. The computations of input-
driven pushdown automata are harder to simulate, and require more involved equivalence
classes of Alur et al. (≈, see Definition 2).
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The main idea of the proof is that if, for two well-nested strings, w and w′, the corres-
ponding stochastic matrices P w and P w′ are close under a certain metric, then they must be
equivalent in the sense of Definition 2, that is, replacing any substring w with w′ does not
change the acceptance status of a string.

We shall use the following lemma which provides an upper bound on the maximum
number of stochastic matrices at least 2δ apart in the metric given by the norm ||ξ|| =
max1⩽k⩽n

∑n
ℓ=1 |ξkℓ|. The proof uses Rabin’s idea involving volumes.

▶ Lemma 9. Let ξ(1), . . . , ξ(m) be stochastic matrices of order n, such that ||ξ(ℓ) − ξ(k)|| ⩾ 2δ

for ℓ ̸= k. Then m ⩽ (1 + 1
δ )n2−n.

Proof. We view n × n matrices as points in Rn2 . Let Mn(R⩾0) denote the set of such
matrices with non-negative elements. For r > 0 let us define

S(r) =
{

t ∈ Mn(R⩾0)
∣∣ ∑

1⩽j⩽n

tij = r for 1 ⩽ i ⩽ n
}

In particular, it follows from the definition that S(1) is the set of stochastic matrices.

▷ Claim 10. If r < δ, then ξ(k) + S(r) and ξ(ℓ) + S(r) are disjoint for k ̸= ℓ.

Proof. Suppose (ξ(k) + S(r)) ∩ (ξ(ℓ) + S(r)) ̸= ∅. Then there exist x, y ∈ S(r) such that
ξ(k) + x = ξ(ℓ) + y. By definition, the norm of every element in S(r) is equal to r, therefore
||ξ(ℓ) − ξ(k)|| = ||x − y|| ⩽ ||x|| + ||y|| = 2r < 2δ, which contradicts the assumption that
||ξ(ℓ) − ξ(k)|| ⩾ 2δ. ◁

Clearly, ξ(1), . . . , ξ(m) ∈ S(1) because they are stochastic. Thus, ξ(1) +S(r), . . . , ξ(m) +S(r) ⊆
S(1) + S(r) = S(1 + r), where the latter equality follows from the definition of S(r). By the
claim, the sets ξ(1) + S(r), . . . , ξ(m) + S(r) are pairwise disjoint, and all of them are contained
in S(r + 1).

Now the plan is to use volumes of the sets ξ(k) + S(r) to prove that only a limited number
of such sets may fit into S(1 + r). Since the n2-dimensional volume of S(r) is 0, the first step
is determine the right dimension. Let d be the dimension of S(r), which is the same as the
dimension of S(1), since these sets are the same up to scaling. It is claimed that d = n2 − n.
The set S(1) is contained in the (n2 − n)-dimensional (affine) subspace H defined by the
equations ti1 + . . . + tin = 1, i = 1, . . . , n, so d ⩽ n2 − n. On the other hand, S(1) contains a
(n2 − n)-dimensional ball of small radius, confirming that d = n2 − n.

Let Vd denote the d-dimensional volume. The sum of the volumes of the disjoint sets
ξ(k) + S(r) does not exceed the volume of the set S(r + 1) they are contained in.

Vd(S(r+1)) ⩾ Vd((ξ(1) +S(r))∪· · ·∪(ξ(m) +S(r))) = Vd(ξ(1) +S(r))+ · · ·+Vd(ξ(m) +S(r))

Notice that Vd(ξ(1) + S(r)) = Vd(S(r)) because ξ(k) + S(r) is a translation of S(r). Hence,
the last inequality yields mVd(S(r)) ⩽ Vd(S(r + 1)).

The linear transformation t 7→ r+1
r t maps S(r) onto S(r + 1) (because if

∑
1⩽j⩽n tij = r,

then
∑

1⩽j⩽n
r+1

r tij = r+1
r r = r + 1), therefore Vd(S(r + 1)) = ( r+1

r )dVd(S(r)). But we
have already established that Vd(S(r + 1)) ⩾ mVd(S(r)), thus (1 + 1

r )dVd(S(r)) ⩾ mVd(S(r))
and therefore m ⩽ (1 + 1

r )d for 0 < r < δ. Passing to the limit as r tends to δ, we obtain
m ⩽ (1 + 1

δ )d = (1 + 1
δ )n2−n. ◀

The next lemma provides a connection between the matrices P w and the equivalence
classes.

MFCS 2023
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▶ Lemma 11. If ||P w1 − P w2 || < 2δ then w1 ≈ w2.

Proof. Consider any well-nested strings w and uv. Note that because w is well-nested, after
reading uw the stack will be exactly the same as after reading u. Let h be the nesting depth
of u.

Then Pr(A accepts uwv) is expressed as the following sum over all possible stack contents
after reading u and states before and after reading w.∑
γ∈Γh

∑
1⩽i⩽n
1⩽j⩽n

Pr(A goes to (i, γ) after reading u)·P w
ij ·Pr(A accepts from (j, γ) after reading v)

For brevity, denote the probabilities of parts of this computation by

qi(γ) := Pr(A goes into (i, γ) after reading u),
rj(γ) := Pr(A accepts from (j, γ) after reading v),

so that the above probability is expressed as follows.

Pr(A accepts uwv) =
∑

γ∈Γh

∑
1⩽i,j⩽n

qi(γ) · P w
ij · rj(γ)

Then the probability qi(γ) depends only on i, γ and u; the probability rj(γ) depends
only on j, γ and v; and

∑
1⩽i⩽n

∑
γ∈Γh qi(γ) = 1.

Therefore, the difference between the probabilities of accepting uw1v and uw2v is estimated
as∣∣Pr(A accepts uw1v) − Pr(A accepts uw2v)

∣∣ =
∣∣∣∣ ∑

γ∈Γ∗

∑
1⩽i,j⩽n

qi(γ)(P w1
ij − P w2

ij )rj(γ)
∣∣∣∣ ⩽

⩽
∑

γ∈Γ∗

∑
1⩽i,j⩽n

qi(γ) · |P w1
ij − P w2

ij | · rj(γ) ⩽

⩽
∑

γ∈Γ∗

∑
1⩽i,j⩽n

qi(γ) · |P w1
ij − P w2

ij | =

=
∑

1⩽i⩽n

∑
γ∈Γ∗

qi(γ)
∑

1⩽j⩽n

|P w1
ij − P w2

ij | ⩽

⩽

( ∑
1⩽i⩽n

∑
γ∈Γ∗

qi(γ)
)

· max
1⩽i⩽n

∑
1⩽j⩽n

|P w1
ij − P w2

ij | =

= max
1⩽i⩽n

∑
1⩽j⩽n

|P w1
ij − P w2

ij | < 2δ

Since every well-nested string is accepted with the probability of either at least λ + δ or at
most λ − δ, w1 and w2 are accepted or rejected simultaneously, which proves the claim. ◀

Now we are ready to prove the theorem.

Proof of Theorem 8. The proof is by bounding the number of equivalence classes under
≈. Suppose there are at least m equivalence classes, then we can take w1, . . . , wm to be
the representatives of these classes. This yields m points P w1 , . . . , P wm in [0, 1]n2 . Due to
Lemma 11, for k ̸= ℓ, the inequality ||P wℓ

ij − P wk
ij || ⩾ 2δ holds because wk ̸≈ wℓ. Then,

Lemma 9 implies m ⩽ (1 + 1
δ )n2−n. By Lemma 3, there is a DIDPDA with m states and

|Σ+1| · m stack symbols accepting the same language. ◀
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5 Lower bounds

The first exponential lower bounds on the complexity of determinizing an n-state PFA were
constructed by Freivalds [12]. His lower bound exists in two versions, both of the form cn,
but with different values of c: one bound holds unconditionally, whereas the other, with a
greater base c, relies on Artin’s conjecture from number theory. The second bound also uses
PFAs with a smaller error probability.

▶ Theorem 12 (Freivalds [12]). For infinitely many numbers n, there exists a PFA with
n states with a δ0-cutpoint λ0 = 1

2 , such that any equivalent DFA needs at least cn states,
where c = 7 1

14 and δ0 = 1
270 . If Artin’s conjecture is true, then the estimate holds for

c = 2 1
4 , δ0 = 1

36 .

We will use this result to construct a lower bound in our setting.

▶ Theorem 13. For infinitely many numbers n, there exists a PIDPDA with 4n + 1 states
and a δ(n) = δ0

n -cutpoint λ(n) = 1
2n , such that every equivalent DIDPDA needs at least cn2

states, where c = 7 1
14 and δ0 = 1

270 . If Artin’s conjecture is true, then the estimate holds for
c = 2 1

4 , δ0 = 1
36 .

Proof. For infinitely many numbers n, Freivalds constructed a language Kn such that:
it can be recognized by a PFA A with a δ0-cutpoint λ0 = 1

2 and n states,
any DFA recognizing Kn requires at least cn states.

The latter means that there exists a set { ui | 1 ⩽ i ⩽ ⌈cn⌉ } of at least cn strings such
that for every two strings from this set, ui1 and ui2 with i1 ̸= i2, there exists a separating
string v with one of the concatenations ui1v, ui2v in Kn and the other not in Kn. Let
{ vj | 1 ⩽ j ⩽ m } be a finite set of such separating strings, so that for all i1 and i2 with
i1 ̸= i2 there exists j ∈ {1, . . . , m} with ui1vj ∈ Kn if and only if ui2vj /∈ Kn.

In the PFA defined by Freivalds, let Q be its set of states, and consider the probability
distribution on the set of states after reading each string ui from the initial state, as well as
the probability of accepting each string vj from each state, and denote them by the following
vectors pi ∈ Rn and rj ∈ Rn.

(pi)q = Pr(A goes into q after reading ui)
(rj)q = Pr(A accepts from q after reading vj)

Then the probability of accepting each concatenation uivj is a scalar product ⟨pi, rj⟩, and
since this is a bounded-error PFA with δ0-cutpoint λ0 = 1

2 , the following two properties must
hold.
(i) For every i, j either ⟨pi, rj⟩ ⩾ λ0 + δ0 or ⟨pi, rj⟩ ⩽ λ0 − δ0.
(ii) For every i1 ≠ i2 there exists j such that ⟨pi1 , rj⟩ ⩾ λ0 + δ0 and ⟨pi2 , rj⟩ ⩽ λ0 − δ0 (or

⟨pi2 , rj⟩ ⩾ λ0 + δ0 and ⟨pi1 , rj⟩ ⩽ λ0 − δ0).
Now these strings ui and vj , along with the PFA, are used to construct the desired probabilistic
input-driven automaton. It is constructed over an alphabet with a single left bracket,

Σ+1 = {<},

with a large set of neutral symbols each encoding an n-tuple of strings ui,

Σ0 = { ai1,...,in | 1 ⩽ i1, . . . , in ⩽ ⌈cn⌉ },

MFCS 2023
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and with right brackets representing separating strings applied to one particular component
of an n-tuple.

Σ−1 = { >k,j | k ∈ {1, 2, . . . , n}; 0 ⩽ j ⩽ m }

Define the new language as Ln = { <ai1,...,in>k,j | uik
vj ∈ Kn }. Then, in order to test the

membership of a concatenation uik
vj in Kn, a deterministic IDPDA will have to remember

the entire n-tuple of strings, whereas a probabilistic automaton can randomly choose k in
the beginning, and then simulate Freivalds’ automaton on the k-th component of the tuple.

▷ Claim 14. There exists a PIDPDA B with 4n + 1 states and a δ(n)-cutpoint λ(n)
recognizing Ln.

Proof. An n-state PIDPDA, which assumes three-symbol input strings of the form
<ai1,...,in>k,j , is constructed first; later it will be extended to check the form of the string.

The automaton operating on well-formed strings uses the same set of states Q as Freivalds’
automaton. Assume that the states are numbers: Q = {1, . . . , n}, and let n be the only
accepting state. The same set Q is also used as the stack alphabet.

In the initial state, the automaton reads the left bracket < and equiprobably chooses the
next state s and pushes s onto the stack. Next, it encounters a symbol ai1,...,in in the state s,
and simply replicates the probability distribution of Freivalds’ automaton on the string uis

.

δ′
ai1,...,in

(s)(t) = (pis
)t

Finally, upon reading a right bracket >k,j in a state t, the automaton should decide whether
to enter the accepting state n. It pops the number s from the stack, and if it does not
match k, the automaton rejects (by entering n with probability 0). If s equals k, then the
automaton accepts with the same probability (rj)t, with which Freivalds’ automaton accepts
the string vj from the state t.

δ′
>k,j

(t, s)(n) =
{

0, if k ̸= s

(rj)t, if k = s

δ′
>k,j

(t, s)(1) = 1 − δ′
>k,j

(t, s)(n)

δ′
>k,j

(t, s)(ℓ) = 0 (2 ⩽ ℓ ⩽ n − 1)

It is claimed that this automaton accepts a string <ai1,...in
>k,j with probability 1

n ⟨pik
, rj⟩.

Indeed, the randomly chosen number s matches k with probability 1
n , and, provided that it

happened, the probability of acceptance is∑
q∈Q

(
Pr(B goes from k to q after reading ai1,...,in

)·

· Pr(B accepts from q upon reading >k,j with k in the stack)
)

=

=
∑
q∈Q

(pik
)q · (rj)q = ⟨pik

, qj⟩

By (ii), the scalar product ⟨pik
, qj⟩ is either at least λ0 + δ0 (if uik

vj ∈ Kn), or at most
λ0 − δ0 (if uik

vj ̸∈ Kn). Therefore, the overall probability is either at least λ0
n + δ0

n , or at
most λ0

n − δ0
n .

The construction above works for words in <Σ0Σ−1, other words may violate the δ-
cutpoint condition. To eliminate them we can take a 4-state partial DFA that verifies that
the input string is indeed of the form <Σ0Σ−1, and take the direct product of the automaton
above and this DFA. One extra dead state is added for ill-formed strings. ◁
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▷ Claim 15. Any DIDPDA recognizing Ln has at least |Σ0| ⩾ cn2 states.

Proof. Since all well-formed strings begin with the same left bracket <, a deterministic
automaton cannot store any information on the stack: it always pushes the same stack
symbol. Consider the state of the DIDPDA after reading <ai1,...,in

. it is claimed that this
state must be different for different symbols.

Suppose the contrary, that for some two symbols ai1,...,in
̸= ai′

1,...,i′
n
, the state after

reading them is the same state q. Let k be such that ik ≠ i′
k, and let vj be the separating

string for uik
and ui′

k
with respect to Freivalds’ automaton, that is, exactly one of the strings

uik
vj , ui′

k
vj is in Kn. Then, by the definition of Ln, exactly one of the strings <ai1,...,in>k,j

and <ai′
1,...,i′

n
>k,j is in Ln. However, since the IDPDA is in the same configuration before

reading >k,j on either string, it either accepts both strings or rejects both of them. The
contradiction obtained shows that the number of states in the DIDPDA is at least |Σ0|. ◁

The theorem follows from the two claims. ◀

The upper bound on the size of the constructed automaton gives (1+ 1
δ(n) )(4n+1)2−(4n+1) =

(1 + n
δ0

)16n2+4n ⩽ (n+1
δ0

)16n2+4n = c(16n2+4n) logc
n+1

δ0 = c(16n2+4n)(logc(n+1)−logc δ0) =
c(16+o(1))n2 logc n = c(16 logc 2+o(1))n2 log2 n. We see that the exponent differs from the one
in the lower bound by an O(log n) factor.

6 Sharper Upper Bounds in Special Cases

For probabilistic finite automata, the case of a unary alphabet is much different from the
general case. The first lower bound on the determinization complexity in the unary case was
given by Freivalds [11]. Milani and Pighizzini [18] proved that the worst-case determinization
blowup in the unary case is of the order of Landau’s function, that is, e(1+o(1))

√
n ln n. Later

Mereghetti et al. [17] and Bianchi et al. [6] investigated more details of the complexity of
unary PFAs.

For input-driven pushdown automata, there is no unary case in the strict sense: as long
as there is a pair of matching brackets, one can use them to encode any alphabet. In order
to obtain a variant of the unary case, the use of brackets should be somehow restricted. The
following condition of nesting depth one still allows encoding a binary alphabet by abusing
the brackets, but this can be done only outside the brackets; if |Σ0| = 1, then inside the
brackets the string is truly unary.

▶ Definition 16. A well-nested language L is called a depth-one language if for every w ∈ L

the maximal nesting depth of w is one, i.e., L ⊆ Σ∗
0(Σ+1Σ∗

0Σ−1Σ∗
0)∗.

For depth-one languages, it is natural to consider the classical Myhill–Nerode relation
operating on the outer level of brackets and restricted to well-nested strings.

▶ Definition 17. For a language of well-nested strings L, define a relation ∼L on the set of
well-nested strings by u ∼L u′ if and only if, for every well-nested string v, the string uv is
in L if and only if u′v is in L. When the language L is clear from the context, the relation
∼L shall be denoted by ∼.

Denote by [u] the equivalence class of a string u under ∼.

Later it will be shown that if a depth-one language uses unary strings inside the brackets,
then the determinization complexity is reduced. More generally, assume that the string
inside each pair of brackets belongs to a regular set S ⊆ Σ∗

0.

MFCS 2023
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▶ Definition 18. Let S ⊆ Σ∗
0 be a regular prefix-closed language, that is, if w1w2 ∈ S, then

w1 ∈ S. A depth-one language L is called S-nice if, for every string x ∈ L and for every
partition x = u<w>v, with w ∈ Σ∗

0, the string w is in S.

For an S-nice language L, consider the equivalence relation from Definition 2, defined by
w ≈ w′ if and only if, for all x, y with xy well-nested, xwy ∈ L if and only if xw′y ∈ L. The
following notation is introduced for equivalence classes restricted to elements of S.

▶ Definition 19. For u ∈ S, let [[u]]S ⊆ S be the set of all strings in S equivalent to u under
the relation ≈.

For S-nice languages, there is an automaton of size proportional to the number of these
equivalence classes (cf. Lemma 3 for the general case).

▶ Lemma 20. Let L be an S-nice language, and let n1 be the number of equivalence classes
under ∼, and let n2 be the number of equivalence classes under ≈ restricted to S. Then there
exists a DIDPDA recognizing L with n1 + O(n2) states and n1 · |Σ+1| stack symbols.

Equivalence classes under ∼ become states used outside brackets. Whenever a bracket
is encountered, these states are pushed onto the stack along with the bracket. Equivalence
classes under ≈ are used as states inside brackets. The details are omitted for brevity.

Thus, in order to obtain upper bounds on the size of DIDPDA recognizing various
languages of restricted form, it is sufficient to estimate the number of equivalence classes
under both relations ∼ and ≈.

The first observation is that the number of Myhill–Nerode classes on the outer level of
brackets can be estimated using Rabin’s [23] argument for finite automata.

▶ Lemma 21. Let a language L be recognized by a PIDPDA A with n states and a δ-cutpoint
λ. Then L has at most (1 + 1

δ )n−1 equivalence classes under ∼.

Sketch of a proof. Rabin’s [23, Thm. 3] argument works, because it never refers to actual
transitions of a probabilistic automaton, and uses only probabilities of computations over
prefixes and suffixes. If these prefixes and suffixes contain any brackets, this does not affect
the argument.

For well-nested u and v we introduce the vectors p(u), r(v) ∈ Rn with

p(u)i = Pr(A goes into qi after reading u),
r(v)i = Pr(A accepts from qi after reading v).

Then the probability that A accepts uv is equal to
n∑

i=1
Pr(A goes into qi after reading u)·Pr(A accepts from qi after reading v) = ⟨p(u), r(v)⟩.

Again, for well-nested u and u′ it turns out that
∑n

i=1 |p(u)i − p(u′)i| < 2δ implies u ∼ u′,
because for any well-nested v the following inequality holds.

|Pr(A accepts uv) − Pr(A accepts u′v)| = |⟨p(u), r(v)⟩ − ⟨p(u′), r(v)⟩| =

= |⟨p(u) − p(u′), r(v)⟩| =
∣∣∣ n∑

i=1
(p(u)i − p(u′)i)r(v)i

∣∣∣ ≤

≤
n∑

i=1
|p(u)i − p(u′)i| · r(v)i ≤

n∑
i=1

|p(u)i − p(u′)i| < 2δ

Therefore, pairwise inequivalent strings u1, . . . , um yield vectors p(u1), . . . , p(um) with∑n
i=1 |p(uk)i − p(ul)i| > 2δ, and, as Rabin showed, in this case m ≤ (1 + 1

δ )m. ◀
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In some special cases of languages, the number of equivalence classes under ≈ restricted
to S is fairly small, leading to upper bounds on the size of DIDPDA. The first such case is
when the probabilistic automaton behaves deterministically inside the brackets.

▶ Theorem 22. Let A be a PIDPDA with n states and a δ-cutpoint λ that recognizes a
depth-one language, and assume that all transitions by symbols in Σ0 are deterministic. Then
there is an equivalent DIDPDA with O(nn) states.

Proof. By Lemma 21, the number of equivalence classes under ∼ for L is at most (1 + 1
δ )n−1.

The language is S-nice with S = Σ∗
0. Recall that if P w1 = P w2 , the words w1 and w2 are

equivalent under ≈. Since all matrices P w for w ∈ S = Σ∗
0 are deterministic, they correspond

to functions from Q to Q and, hence, the number of such matrices is not greater than nn.
Thus, there are at most nn equivalence classes under ≈ restricted to S.

Finally, by Lemma 20, there is a DIDPDA with O
(
(1 + 1

δ )n−1 + nn
)

= O(nn) states. ◀

The theorem implies that it is impossible to achieve the Ω(cn2) lower bound with a depth-one
language using probabilistic transitions only for the brackets.

The special case of automata in Theorem 22 had the transition matrices inside the
brackets generate a finite set of size nn. In other special cases of automata with reduced
determinization complexity, defined below, transition matrices inside the brackets generate
infinite subspaces, yet the dimension of those subspaces is bounded. The following lemma
allows a small DIDPDA to be constructed in such cases.

▶ Lemma 23. Let L be an S-nice language recognized by a PIDPDA with n states. Let
W be the subspace of Mn(R) generated by { P w | w ∈ S }. Then there is a DIDPDA with
O((1 + 1

δ )max{n−1,dim W }) states recognizing L.

The proof of Lemma 23 relies on the following geometric property.

▶ Lemma 24. Let ξ(1), . . . , ξ(m) be stochastic matrices of order n, such that ||ξ(k) −ξ(ℓ)|| ⩾ 2δ

for k ̸= ℓ. Assume that there exists a linear subspace W ⩽ Mn(R), such that for every i the
matrix ξ(i) lies in W . Then m ⩽ (1 + 1

δ )min{n2−n,dim W }.

Lemma 24 is proved generally similarly to Lemma 9, but requires a more careful choice of
S(r); the proof is omitted due to space constraints.

Proof of Lemma 23. Indeed, the number of equivalence classes under ≈ is bounded by
(1 + 1

δ )max{n−1,dim W }: if we have m equivalence classes under ≈, then they yield m pairwise
inequivalent strings w1, . . . , wm. That, in turn, by Lemma 11, gives rise to m matrices
P w1 , . . . , P wm with ||P wk − P wℓ || ⩾ 2δ for k ̸= ℓ. By Lemma 24, m ≤ (1 + 1

δ )max{n−1,dim W }.
Furthermore, the number of equivalence classes under ∼ is bounded by (1 + 1

δ )n−1 by
Lemma 21. Combining these two observations and using Lemma 20, we obtain the desired
result. ◀

The first class of languages with an improved bound on the dimension of the subspace
generated by transition matrices inside the brackets is the following variant of unary languages.

▶ Theorem 25. If L is an S-nice language, and S = a∗
1 ∪ . . . ∪ a∗

k for some a1, . . . , ak ∈ Σ∗
0,

then there is a DIDPDA recognizing L with O((1 + 1
δ )kn) states.

Proof. For every word w in S the matrix P w is of the form (P ai)m for some m ∈ N0
and 1 ⩽ i ⩽ k. By Cayley–Hamilton theorem, for each ai the space Wi generated by
{ (P ai)m | m ≥ 0 } has the dimension of at most n; therefore, all such matrices lie in a vector
space W = W1 + . . . + Wn such that dim W ⩽

∑n
i=1 dim Wi ⩽ kn. It remains to apply

Lemma 23. ◀
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▶ Corollary 26. If S = a∗, then there is a DIDPDA recognizing L with O((1 + 1
δ )n) states.

In particular, the theorem shows that we would not be able to prove the lower bound
from Section 5 using a “unary” depth-one language. For instance, the determinization of
the automaton that reads <an> and verifies that n belongs to some fixed subset yields at
most exponential growth in the number of states. This is somewhat similar to the case of
probabilistic finite automata, where the state complexity of the determinization in the unary
case is also reduced.

The last special case with improved determinization is the case of automata that use
strings over an alphabet {a, b} inside the brackets, and the transitions by a commute with
transitions by b, that is, P aP b = P bP a. In other words, such automata only count the
number of as and bs inside the brackets. In this case, there is the following known result on
the dimension of the subspace they generate.

▶ Theorem 27 (Gerstenhaber, 1961). Let A, B ∈ Mn(R) be a pair of commuting matrices.
Then the dimension of the subalgebra generated by {A, B} is at most n.

▶ Theorem 28. If S = {a, b}∗ and P a and P b commute, then there exists an equivalent
DIDPDA with O((1 + 1

δ )n) states.

Proof. If w ∈ S, then P w = (P a)|w|a(P b)|w|b lies in the subalgebra generated by {P a, P b},
whose dimension is at most n. Now we can use Lemma 23 to get the desired upper bound. ◀

7 Conclusion

It would be interesting to refine the results on the complexity of determinization for the
new model by proving a lower bound on both the number of states and the number of
stack symbols. Such a lower bound is known for the determinization of nondeterministic
input-driven pushdown automata [20] and of their event-clock real-time extension [19]. The
method employed in these papers uses strings of arbitrarily large nesting depth, and the
automaton makes non-deterministic choices at each nesting level; however, if the same
approach were used in our case, then the probability of error would tend to 1 as the nesting
depth goes to infinity. Apparently, a new method would be necessary to prove such a bound
in the probabilistic case.

Another interesting direction to pursue is improving the bound with respect to δ. Our
current upper bound is polynomial in 1

δ . However, it seems possible that there is room for
improvement: either a trade-off between the number of states and the probability of error,
or perhaps an upper bound that does not depend on δ at all.
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