2 research outputs found

    A Mechanism for Securing IoT-enabled Applications at the Fog Layer

    Get PDF
    The Internet of Things (IoT) is an emerging paradigm branded by heterogeneous technologies composed of smart ubiquitous objects that are seamlessly connected to the Internet. These objects are deployed as Low power and Lossy Networks (LLN) to provide innovative services in various application domains, such as smart cities, smart health, smart communities. The LLN is a form of a network where the interconnected devices are highly resource-constrained (i.e., power, memory, and processing) and characterized by high loss rates, low data rates and instability in the communication links. Additionally, IoT devices produce a massive amount of confidential and security-sensitive data. Various cryptographic-based techniques exist that can effectively cope with security attacks, but are not suitable for IoT as they incur high consumption of resources (i.e., memory, storage and processing). One way to address this problem is by offloading the additional security-related operations to a more resourceful entity such as a fog-based node. Generally, fog computing enables security and analysis of latency-sensitive data directly at the network’s edge. This paper proposes a novel Fog Security Service (FSS) to provide end-to-end security at fog layer for IoT devices, using two well-established cryptographic schemes, identity-based encryption and identity-based signature. The FSS provides security services, such as authentication, confidentiality, and non-repudiation. The proposed architecture is implemented and evaluated in OPNET simulator using a single network topology with different traffic loads. The FSS performed better when compared with the APaaS and the legacy method

    Fast, Reliable, and Secure Drone Communication: A Comprehensive Survey

    Get PDF
    Drone security is currently a major topic of discussion among researchers and industrialists. Although there are multiple applications of drones, if the security challenges are not anticipated and required architectural changes are not made, the upcoming drone applications will not be able to serve their actual purpose. Therefore, in this paper, we present a detailed review of the security-critical drone applications, and security-related challenges in drone communication such as DoS attacks, Man-in-the-middle attacks, De-Authentication attacks, and so on. Furthermore, as part of solution architectures, the use of Blockchain, Software Defined Networks (SDN), Machine Learning, and Fog/Edge computing are discussed as these are the most emerging technologies. Drones are highly resource-constrained devices and therefore it is not possible to deploy heavy security algorithms on board. Blockchain can be used to cryptographically store all the data that is sent to/from the drones, thereby saving it from tampering and eavesdropping. Various ML algorithms can be used to detect malicious drones in the network and to detect safe routes. Additionally, the SDN technology can be used to make the drone network reliable by allowing the controller to keep a close check on data traffic, and fog computing can be used to keep the computation capabilities closer to the drones without overloading them.The work of Vinay Chamola and Fei Richard Yu was supported in part by the SICI SICRG Grant through the Project Artificial Intelligence Enabled Security Provisioning and Vehicular Vision Innovations for Autonomous Vehicles, and in part by the Government of Canada's National Crime Prevention Strategy and Natural Sciences and Engineering Research Council of Canada (NSERC) CREATE Program for Building Trust in Connected and Autonomous Vehicles (TrustCAV)
    corecore