9 research outputs found

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems

    Secure and efficient routing in highly dynamic WLAN mesh networks

    Get PDF
    Recent advances in embedded systems, energy storage, and communication interfaces, accompanied by the falling prices of WLAN routers and a considerable increase in the throughput of a WLAN (IEEE 802.11), have facilitated the proliferation of WLAN Mesh Network (WMN) applications. In addition to their current deployments in less dynamic community networks, WMNs have become a key solution in various highly dynamic scenarios. For instance, WMNs are intended to interconnect self-organized, cooperative, and small Unmanned Aerial Vehicles (UAVs) in a wide range of applications, such as emergency response, environmental monitoring, and ad-hoc network provisioning. Nevertheless, WMNs still face major security challenges as they are prone to routing attacks. Consequently, the network can be sabotaged and, in the case of UAV-WMN-supported missions, the attacker might manipulate payload data or even hijack UAVs. Contemporary security standards, such as the IEEE 802.11i and the security mechanisms of the IEEE 802.11s mesh standard, are vulnerable to routing attacks, as experimentally shown in this research. Therefore, a secure routing protocol is indispensable for making feasible the deployment of WMNs in critical scenarios, such as UAV-WMN-assisted applications. As far as the author of this thesis knows, none of the existing research approaches for secure routing in WMNs have gained acceptance in practice due to their high overhead or strong assumptions. In this research, a new approach, which is called Position-Aware, Secure, and Efficient mesh Routing (PASER), is proposed. This new proposal defeats more attacks than the IEEE 802.11s/i security mechanisms and the well-known, secure routing protocol Authenticated Routing for Ad-hoc Networks (ARAN), without making restrictive assumptions. It is shown that PASER achieves —in realistic UAV-WMN scenarios— similar performance results as the well-established, nonsecure routing protocols Hybrid Wireless Mesh Protocol (HWMP) combined with the IEEE 802.11s security mechanisms. Two representative scenarios are considered: (1) on-demand ubiquitous network access and (2) efficient exploration of sizable areas in disaster relief. The performance evaluation results are produced using an experimentally validated simulation model of WMNs, realistic mobility patterns of UAVs, and an experimentally derived channel model for the air-to-air WMN link between UAVs. The findings of this evaluation are justified by the route discovery delay and the message overhead of the considered solutions

    Efficient Key Management Schemes for Smart Grid

    Get PDF
    With the increasing digitization of different components of Smart Grid by incorporating smart(er) devices, there is an ongoing effort to deploy them for various applications. However, if these devices are compromised, they can reveal sensitive information from such systems. Therefore, securing them against cyber-attacks may represent the first step towards the protection of the critical infrastructure. Nevertheless, realization of the desirable security features such as confidentiality, integrity and authentication relies entirely on cryptographic keys that can be either symmetric or asymmetric. A major need, along with this, is to deal with managing these keys for a large number of devices in Smart Grid. While such key management can be easily addressed by transferring the existing protocols to Smart Grid domain, this is not an easy task, as one needs to deal with the limitations of the current communication infrastructures and resource-constrained devices in Smart Grid. In general, effective mechanisms for Smart Grid security must guarantee the security of the applications by managing (1) key revocation; and (2) key exchange. Moreover, such management should be provided without compromising the general performance of the Smart Grid applications and thus needs to incur minimal overhead to Smart Grid systems. This dissertation aims to fill this gap by proposing specialized key management techniques for resource and communication constrained Smart Grid environments. Specifically, motivated by the need of reducing the revocation management overhead, we first present a distributed public key revocation management scheme for Advanced Metering Infrastructure (AMI) by utilizing distributed hash trees (DHTs). The basic idea is to enable sharing of the burden among smart meters to reduce the overall overhead. Second, we propose another revocation management scheme by utilizing cryptographic accumulators, which reduces the space requirements for revocation information significantly. Finally, we turn our attention to symmetric key exchange problem and propose a 0-Round Trip Time (RTT) message exchange scheme to minimize the message exchanges. This scheme enables a lightweight yet secure symmetric key-exchange between field devices and the control center in Smart Gird by utilizing a dynamic hash chain mechanism. The evaluation of the proposed approaches show that they significantly out-perform existing conventional approaches

    Enabling Things to Talk

    Get PDF
    Information Systems Applications (incl. Internet); Business IT Infrastructure; Computer Appl. in Administrative Data Processing; Operations Management; Software Engineering; Special Purpose and Application-Based Systems; Business Information Systems; Ubiquitous Computing; Reference Architecture; Spatio-Temporal Systems; Smart Objects; Supply Chain Management; IoT; SCM; Web Applications; Internet of Things; Smart Homes; RFI

    Non-Hierarchical Networks for Censorship-Resistant Personal Communication.

    Full text link
    The Internet promises widespread access to the world’s collective information and fast communication among people, but common government censorship and spying undermines this potential. This censorship is facilitated by the Internet’s hierarchical structure. Most traffic flows through routers owned by a small number of ISPs, who can be secretly coerced into aiding such efforts. Traditional crypographic defenses are confusing to common users. This thesis advocates direct removal of the underlying heirarchical infrastructure instead, replacing it with non-hierarchical networks. These networks lack such chokepoints, instead requiring would-be censors to control a substantial fraction of the participating devices—an expensive proposition. We take four steps towards the development of practical non-hierarchical networks. (1) We first describe Whisper, a non-hierarchical mobile ad hoc network (MANET) architecture for personal communication among friends and family that resists censorship and surveillance. At its core are two novel techniques, an efficient routing scheme based on the predictability of human locations anda variant of onion-routing suitable for decentralized MANETs. (2) We describe the design and implementation of Shout, a MANET architecture for censorship-resistant, Twitter-like public microblogging. (3) We describe the Mason test, amethod used to detect Sybil attacks in ad hoc networks in which trusted authorities are not available. (4) We characterize and model the aggregate behavior of Twitter users to enable simulation-based study of systems like Shout. We use our characterization of the retweet graph to analyze a novel spammer detection technique for Shout.PhDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107314/1/drbild_1.pd
    corecore